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Abstract 
This paper proposes an extension of the multiver- 
sion two phase locking protocol, called EMVZPL, 
which enables update transactions to use versions 
while guaranteeing the serializability of all trans- 
actions. The use of the protocol is restricted to 
transactions, called write-then-read transactions 
that consist of two consecutive parts: a write part 
containing both read and write operations in some 
arbitrary order, and an abusively called read part, 
containing read operations or write operations on 
data items already locked in the write part of the 
transaction. With EMVZPL, read operations in 
the read part use versions and read locks acquired 
in the write part can be released just before en- 
tering the read part. We prove the correctness of 
our protocol, and show that its implementation 
requires very few changes to classical implemen- 
tations of MVZPL. After presenting various meth- 
ods used by application developers to implement 
integrity checking, we show how EMV2PL can be 
effectively used to optimize the processing of up- 
date transactions that perform integrity checks. 
Finally, performance studies show the benefits of 
our protocol compared to a (strict) two phase 
locking protocol. 

1 Introduction 
Constraint checking is a key issue of many modern ap- 
plications, which is acknowledged by recent evolutions of 
the SQL standard to accommodate a larger class of as- 
sertions (SQLZ) and triggers (SQL3 [Me193]). To verify 
integrity constraints, update transactions may have to per- 
form many additional read operations. 
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Update transactions that terminate by issuing many read 
operations expose to specific performance problems that 
are illustrated bellow. 

Example 1.1 Consider a stock-market application where 
a broker is responsible for ordering shares for her client’s 
portfolios. The following relations are used: 

Order (o-key, portfolio-id, share-name, stockmarket, 
price) 

MaxRiskCstockmarket, value) 
MinRisk(stockmarket, value) 

Share orders are registered in the Order relation. The 
MaxRisk and MinRisk relations respectively give for each 
stock-market the minimal and maximal risk that the bro- 
ker should take to make benefits. These relations are fre- 
quently updated by transactions that analyse the activity 
of the various stock-markets. The application enforces the 
Risk constraint which forbids any insertion of a share order 
if the corresponding risk is not contained in the risk thresh- 
old interval indicated by relations MaxRisk and MinRisk. 

Take a transaction program, entry-order(p) that inserts 
tuples into relation Order for a given portfolio p. To en- 
force the Risk constraint the transaction has to perform 
additional read operations before committing. Checking 
the Risk constraint requires to read for each new inserted 
share order the corresponding items in relations MaxRisk 
and MinRisk. 

Suppose that an entry-order(p) transaction runs in iso- 
lation degree 3 and obeys the strict two phase locking pol- 
icy (SZPL) [BHG87]. Whenever entry-order executes, the 
reads incurred by constraint checking may be conflicting 
with concurrent executions of update transactions on rela- 
tions MaxRisk, MinRisk. When a conflict occurs between 
two transactions, one transaction is blocked and waits that 
the other one releases its locks (when committing or abort- 
ing). Thus, running instances of entry-order augment the 
lock contention and impede the transactional traffic in the 
database system. This situation may lead to performance 
thrashing as showed in [ThoSl]. 

Our main contribution is to propose an extension of the 
multiversion two phase locking (MVZPL) protocol, called 
EMV2PL, which enables update transactions to use ver- 
sions and guarantees the serializability of all transactions. 
The use of our protocol is restricted to a particular class 
of update transactions called write-then-read transactions 
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(henceforth noted W]R transactions). A transaction in this 
class consists of two consecutive parts: the first part (called 
the write part) contains both read and write operations in 
some arbitrary order, and the second part (abusively called 
the read part) only contains read operations or write op- 
erations on data items already written in the first part of 
the transaction. In our protocol, the W part of a W]R 
transaction T is executed under the SZPL protocol. Then, 
when T reaches the end of its W part, T gets a Lock- 
point-Timestamp and releases all its read locks. From that 
point, T does not take locks anymore and a read(x) opera- 
tion accesses the most recent committed version of z that 
precedes T’s Lockpoint-Timestamp. 

Example 1.2 Let Tl be an entry-order transaction that 
inserts a share order o on the stock-market m such that 
risk(o) = 35, and checks the Risk constraint. Let t = 
(m, 20) (resp. u = ( m, 30)) be the tuple of MinRisk (resp. 
MaxRisk) that contains the minimal (resp. maximal) ad- 
vised risk for the stock-market m. Suppose that a trans- 
action T2 increments the Value attribute of tuples t and 
u by 20. Then executing Tl and T2 concurrently under 
EMV2PL may yield the following history that would not 
have been accepted by the SPPL protocol : 

Iii: Wl(o) Rl(t) W2(t) W2(u) c(T2) M(u) c(T1) 

Tl gets a Lockpoint-Timestamp tsl after inserting o and 
before reading tuples t and u, while T2 gets a Lock- 
point-Timestamp ts2 after writing u. Thus, since tsl < ts2, 
Tl does not see the version of u created by T2 and reads 
a risk interval of [20,30]. Hence, Tl is serialized before T2 
and the Risk constraint violation is detected. 0 

Our protocol increases concurrency by allowing W]R trans- 
actions to take advantage of versions in two ways: (i) 
they release their read locks before executing their read 
part, and (ii) they execute their read part without taking 
any lock, as read-only transactions do with MVZPL. All 
the read operations of the read part are performed using 
the same lockpoint-timestamp and thus guarantees that 
no phantom occurs during the execution of the read part. 
Moreover, like S%PL, EMVSPL uses a “pessimistic” ap- 
proach to concurrency control which allowed us to fairly 
compare its performance with an SZPL protocol, and 
demonstrate that EMV2PL brings a significant increase in 
concurrency and reduces the probability of deadlocks. Fi- 
nally, a notable feature of our protocol is its simplicity, as 
attest the few modifications to a classical MVZPL imple- 
mentation that are required to implement it(see [LST97]). 
We consider it as a virtue since our intention in this re- 
search is not to invent yet another new concurrency control 
protocol but rather to enhance existing implementations to 
better match application needs. 

A second important contribution of this paper is to show 
how EMVZPL can be effectively used to optimize an appli- 
cation’s transaction throughput when update transactions 
execute triggers or check integrity constraints. We exam- 
ine various methods, procedural and declarative, used by 
application developers, to implement integrity checking in 
transactions and analyse the consequence of each method 

on the pattern of transactions. Finally, we propose tun- 
ing rules that indicate how to design transactions with 
integrity checking under EMVZPL to achieve the better 
performance throughput. 

1.1 Paper Outline 

The remaining of the paper is structured as follows. Sec- 
tion 2 formally defines the EMV2PL protocol, proves its 
correctness and briefly explains how it can be implemented. 
Section 3 discusses the potential of EMV2PL to optimize 
transactions that perform integrity checking. Section 4 
presents our performance study and provides simple tuning 
rules. for designing transactions with constraint checking 
under EMV2PL. Section 5 presents related work, and Sec- 
tion 6 concludes the paper. 

2 Extended Multiversion Two Phase Lock 
Protocol 

In this section we formally define the EMVSPL protocol 
and prove its correctness, we explain its behavior with re- 
spect to deadlocks and external consistency. 

2.1 The EMV2PL Protocol 

We now present the EMVSPL protocol. First, R and W 
transactions are processed as with MVZPL. An R transac- 
tion first obtains a start number noted sn from TM. Then 
every read(z) gets the most recent version of x having a 
timestamp less than or equal to sn. Reads in a W trans- 
action follow the usual S2PL protocol, whereas a write(x) 
creates a new version of x (if x is written for the first time). 
Before committing, a W transaction obtains its transaction 
number (noted tn), associates this number to each of its 
versions, and releases all its locks. 

Figure 1 shows how the operations issued by a W]R 
transactions are processed. The write part of the transac- 
tion is processed as a W transaction. When the end of the 
write part is reached, the transaction signals it reached a 
lockpoint’ to the TM and receives a transaction number tn. 
The transaction then releases all the S locks it has acquired 
so far. After that point, read and write operations are 
processed as follows. A read(x) operation invokes a func- 
tion check-read(x) that checks if there is an uncommitted 
version2 of x created by another transaction whose num- 
ber is smaller than the caller’s tn. In that case, checkread 
waits until that transaction commits. After that, the W]R 
transaction reads the most recent version of x with times- 
tamp smaller than or equal to tn. A write(x) operation 
only modifies a version already created in the write part. 
Before committing, a W]R transaction associates its tn to 
each version it created and releases all its locks. 

To maintain the h’s, the TM uses a monotonically in- 
creasing counter. Since W and WIR transactions obtain 
their tn after they acquired their last locks and before com- 
mitting, tn’s are lockpoints. For R transactions, the TM 
simply guarantees that their sn is smaller than the tn of 

‘A lock point of a transaction is any point in time between the 
last lock acquired and the first lock released 

2. ~.a., a version created by a still active transaction 
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Operation Invocation Operation Execution 

begin(T) 4 

read(z) get read lock on z 
/* may wait according to 2PL */ 
return the most recent version of z 

write(y) get write-lock on y 
/*may wait according to 2PL */ 
create a new version of y 

lockpoint get h(T) from TM 
release S locks 

read(z) check-read(z) 
/*may wait )*/ 
return z’s version with largest 
version number 5 h(T) 

write(t) update the last version of t 
/*this version was created by T 
before lo&point(T) */ 

end(T) commit(T): 
perform database updates 
with version number h(T) 
release locks 

Figure 1: Execution of WIR transaction 

any active or forthcoming transaction. Thus, an R trans- 
action reads only versions of committed transactions. 

Theorem : The EMVZPL protocol guarantees serializ- 
ability of all transactions (see the proof in [LST97]). 

2.2 Deadlocks 

Clearly, EMV2PL suffers from deadlocks since it uses SZPL 
for serializing W transactions and the write parts of WIR 
transactions. However, once a WIR transaction starts ex- 
ecuting its read part, it may not be involved anymore in 
deadlocks (see the proof in [LST97]). 

2.3 External Consistency 

Although EMVZPL guarantees serializability, it does not 
preserve external consistency. That is, the order in which 
transactions commit may differ from their serialization or- 
der as shows the following example: 

Example 2.1 Let Ti be a WIR entry-order transaction 
that inserts a share order o on the stock-market m such 
that risk(o) = 35 and checks the Risk constraint in its read 
part. Let t = (m,20) (resp. u = ( m,30)) be the tuple of 
MinRisk (resp. MaxRisk) that contains the minimal (resp. 
maximal) advised risk for the stock-market m. Suppose 
a transaction T2 increments the Value attribute of tuple 
u by 10. Then executing 2’1 and T2 concurrently under 
EMVZPL may yield the following history: 

Hl: Wl(o) Ft1Ct) W2(u) c(T2) RI(u) Abort(T1) 

Since Tl reaches its lockpoint before T2 then it is serial- 
ized before T2 by EMVZPL and thus Tl does not see that 
transaction T2 made (and committed) a larger risk interval 
and that the order could have been accepted. 0 

RIW 
procedural declarative 

check-before-write none 

Table 1: patterns of transactions and integrity checking 
methods 

Such consistency ‘Lfaults” are likely to occur if the read 
part WIR transactions are long. Should external consis- 
tency be critical, it may help to show the value of transac- 
tion lockpoint-timestamps to users, instead of showing the 
transaction commit time, since these timestamps reflect the 
serialization order. Intuitively, the lockpoint-timestamp of 
a WIR transaction indicates at which time the decision to 
commit or abort was taken (even though the system com- 
mitted or aborted the transactions at some later time). 

3 Application to Integrity Checking 

We showed through the examples of section 1 that 
EMVZPL allows to avoid constraint anomalies. However, 
the applicability of EMVSPL suffer from the following limi- 
tations: (i)the transactions must be write-then-read trans- 
actions and, (ii) the lockpoint (i.e., the end of the write 
part) must be detected. In this section, we discuss the 
applicability of EMV2PL to constraint checking. We con- 
sider different methods for programming integrity checks 
and analyze consequences of each method on the pattern 
of transactions. All the resulting patterns are summarized 
in table 1. Moreover, We show how the lockpoint can be 
automatically detected (i.e., without knowing the transac- 
tions in advance) in the case of deferred declarative triggers 
and assertions. 

Procedural Approach: The vast majority of database 
applications implement integrity constraints using a pro- 
cedural approach whereby integrity checks are embedded 
into application programs. We distinguish three classes of 
integrity checking methods: 

l the write-then-check method consists in checking con- 
straints at the end of transaction. Such method is 
sometimes mandatory because some temporary incon- 
sistent state is unavoidable during the execution of the 
transaction, or the interactive effects between two or 
more updates have to be controlled afterwards, or the 
integrity checks depend on the logic of the transaction 
program (especially when some conditional branching 
is used). 

l the check-before-write method consists in checking 
constraints at the beginning of transactions. This 
method is expected to bring the following advantages: 
(i) exclusive locks on the updated data items are held 
for a shorter time if the updates occur at the end of the 
transaction, and (ii) less work is possibly wasted when 
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the transaction violates data integrity since there are 
no unnecessary writes. 

l the immediate checking method consists in checking 
constraints just before or just after update operations. 
Such a method allows to provide intermediate consis- 
tent states during the execution of the transaction. 

All the resulting patterns are shown in Table 1. Among 
these methods, only the write-then-check method yields 
W]R transactions. Hence, provided that the programmer 
has the ability to manually insert a lockpoint (e.g., using a 
specific command in the transaction program) at the end 
of the write part, a transaction’s execution can take ad- 
vantage of our EMVZPL protocol. 

Declarative Assertions: Declarative assertions include 
two forms of constraints: check constraints3 and referential 
constraints. Referential constraints and check constraints 
can be checked either immediately (immediate mode) af- 
ter an SQL statement or at the end of the transaction 
(deferred mode). The execution of immediate referential 
and check constraints yields (W]R)* transactions. The ex- 
ecution of deferred referential and check constraints yields 
W]R transactions provided that the referential constraints 
with “cascade” or “set null” action are executed first. In 
this case, a lockpoint can be dynamically detected by the 
system (i.e., without knowing in advance the transactions) 
when all the remaining constraints are with “ no action”. 

Declarative Triggers: Another way to enforce integrity 
constraints is to use triggers. Triggers can be executed ei- 
ther immediately before or after the triggering SQL state- 
ment (immediate mode) or at the end of the transaction 
(deferred mode). But unlike deferred constraints, deferred 
triggers do not necessarily yield W]R transactions since 
the action of triggers can perform database updates. More 
precisely, the problem is the following: given a transaction 
ready to commit and a set of deferred triggers activated 
by the transaction, how can the database system statically 
detect a transaction lockpoint4? 

A simple method that can be used by the rule manager 
to detect a lockpoint when triggers execute at the end of 
transactions, consists in detecting a specific class of trig- 
gers called RCA safe triggers. An RCA trigger is a trigger 
whose action part does not acquire new exclusive locks. 
RCA stands for Rollback, Compensative, Alerter trigger. 
Indeed, the action part of triggers that do not acquire new 
exclusive lock typically (i) performs a rollback, (ii) over- 
writes database items that have been already inserted, up- 
dated or deleted by the triggering transaction or (iii) raises 

3SQL-92 distinguishes table check constraints and assertions: 
A table check constraint is attached to one table and is used to 
express a condition that must be true for every tuple in the table. 
An assertion is a stand-alone check constraint in a schema and is 
normally used to specify a condition that affects more than one 
table. 

*In fact, the problem is more complicated because check con- 
straints, referential constraints, and triggers can be mixed together. 
However, considering the general framework requires to have a pre- 
cise description of an execution model for deferred triggers and as- 
sertions, a still open problem which is largely out of the scope of 
this paper. 

an alert. An RCA trigger is safe if it cannot transitively 
trigger a non-RCA trigger. When the rule manager re- 
ceives the L‘end-of-transaction” signal from a transaction, 
the 5’ set of triggers that have been activated is computed. 
Then, the rule manager recursively selects a trigger T from 
S, executes T and recomputes S. The rule manager signals 
the lockpoint to the TM when all the triggers in 5’ are RCA 
and safe. 
Remark about RCA and safe triggers: Let us note that RCA 
safe triggers can be detected at the time triggers are de- 
fined. The safe property can be determined using a trigger- 
ing action graph (TAG), as defined in [Me193]. The RCA 
property may require a complicated code analysis (except 
for evident cases as alerters or rollback triggers), however. 

4 Performance Study 

In this section we evaluate the performance of S2PL and 
EMVSPL under various transaction workloads in a central- 
ized database. To compare the relative benefits of SZPL 
and EMVPPL for various transaction patterns and in a 
wide range of operating conditions, we have implemented 
a simulation model ‘. In our experiments, we consider the 
case of workloads where some initial W transactions are 
lengthened by the execution of additional read operations 
(e.g., implied by the execution of decision support proce- 
dures or constraint checking) producing either R/W, W]R 
or (W]R)* transaction patterns (see table 1). 

Moreover, as we will see, performance analysis of differ- 
ent workloads and operating situations authorizes a kind 
of feedback tuning approach which given a set of W trans- 
actions and a set of additional reads operations, suggests 
a suitable transaction pattern ( R]W, W]R or (WIR)‘) 
to profitably execute these new read operations under 
EMVPPL. In particular, our tuning guide is useful in the 
context of constraint checking in order to select a perfor- 
mant constraint checking method between the procedural 
check-before-write or write-then-check, and the declarative 
immediate or deferred methods. 

4.1 The Simulation Model 

Our simulation model is strongly derived from [BC92] 
and [SLSV95]. It has two parts: the system model sim- 
ulates the behavior of the various operating system and 
DBMS components, while the application model simulates 
the database items and the transactional workload. 

4.1.1 The System Model 

In our simulation, we model the concurrent execution of 
transactions on a single site database. To keep the simu- 
lator simple, we simulate page-level locking. This allows 
us not to simulate indexes and index locking, and trans- 
actions access records randomly. The system model is 
divided into four main components: a Transaction Man- 
ager (TM), a Concurrency Control Manager (CCM), a 
Data Manager (DM) and a Log Manager (LM). The TM 
is responsible for issuing concurrency control requests and 

5Note that our simulation model only reflects the relative benefits 
and costs but not the exact numbers. 
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name Description Value 
buf-size Nb of pages in the buffer pool 600 
k Resource Unit ( kCPUs and 2k Disks ) 1, 2, 3 
ret-cpu CPU time for accessing a record 1 ms 
pi0 I/O time for accessing a page 7 ms 
log-i0 time for issuing a I/O log access 7 ms 
log-io-w I/O time for sequentially writing 

1 page on log disk 1 ms 
corn-cpu cpu time for executing a commit 1 ms 
ab-cpu cpu time for executing an abort 1 ms 
restart restart delay of an aborted transaction 5 ms 
CPU-CC cpu time for servicing one cc request 1 ms 

Table 2: System Parameters Definitions and Values 

their corresponding database operations. It also assures 
the durability property by flushing all log records of com- 
mitted transactions to durable memory. The CCM sched- 
ules the concurrency control requests according to either 
the SZPL or EMVZPL protocol. The LM provides read 
and insert-flush interfaces to the log table. The DM is re- 
sponsible for granting access to the physical data objects 
and executing the database operations. 

The DM encapsulates the details of a LRU Buffer Man- 
ager. The number of pages in the buffer cache is buf-size. 
These pages are shared by the main segment and the ver- 
sion pool. When a dirty version pool is chosen for re- 
placement by the LRU algorithm, the DM first checks if 
it contains needed versions. If not (i.e., if it contains only 
obsolete versions), the page is considered non-dirty and 
simply discarded. Otherwise, it is written on disk. We 
have chosen to simulate the on-page version caching tech- 
nique [BC92] because it is one of the most efficient tech- 
nique for maintaining version and processing transactions: 
first, versions are maintained for records (instead of pages), 
second, a small portion of each page is used for caching pre- 
vious versions of records. As a result, readers may find the 
adequate version without performing any additional I/OS. 
Also, these versions may sometimes be eliminated while 
still in the page and thus have not to be appended into the 
version pool at all. 

The physical queuing model consists in k resource units, 
each containing one CPU server and two I/O servers. The 
requests to the CPU queue and I/O queues are serviced 
FCFS (first come, first serve). Parameter ret-cpu is the 
amount of CPU time for accessing a record in a page. Pa- 
rameter p-io is the amount of I/O time associated with ac- 
cessing a data page from the disk. We added one separate 
I/O server dedicated to the log file. The parameter log-io 
represents the fixed I/O time overhead associated with is- 
suing the I/O. Parameter log-io-w is the amount of I/O 
time associated with writing a log record on the Log disk 
in sequential order. Parameter corn-cpu is the amount of 
CPU time associated with executing the commit (releasing 
locks, etc). Parameter ab-cpu is the amount of CPU time 
associated with executing the abort statement (executing 
undo operations, releasing locks etc). Table 2 summarizes 
the parameters of the system model and their values for 
the experiments. 

name 
num-ret 
nb-ret-p 
mpl 
U-size 
p-write-U 

Rper W 

P-Roll 

P-type 

Description 
Nb of records in the database 
Nb of cached records per page 
Nb of terminals 
mean size of Update part of tx 
fraction of write in the 
Update part of tx 
Nb of additional reads per write 
in the Update part of tx 
Probability that RperW read 
operations generate a rollback 
pattern of the extended tx 

The database contains num-ret records. With S2PL, 18 
records fit in one page (this corresponds to pages of 8K con- 
taining records of 454 bytes). With EMVSPL the records 
are assumed to contain an additional 50 bytes to store the 
timestamp and version pointer. As a result, only 15 records 
fit in one page, whose nb-ret-p records are used to cache 
previous versions. 

A transaction workload contains transactions that con- 
sist of an update part that is extented with additional read 
operations. There are mpl terminals executing transac- 
tions. Parameter U-size is the average number of oper- 
ations executed by the update part of each transaction 
(without the additional reads). Among these operations, 
p-write-U are write operations. Moreover, a transaction 
executes RperW additional read operations per write op- 
erations occurring in its update part. Parameter P-type 
represents the obtained pattern of transactions. They can 
be R]W, WJR or (W]R)* transactions. In a R(W (resp. 
W]R) transaction then all the additional read operations 
are executed at the beginning (resp. at the end) of the 
transaction. If the transaction is (W]R)* then RperWread 
operations are executed “on the fly” just after each write 
operation. We also vary the probability P-Roll of executing 
a rollback after Rper W additional reads. When additional 
read operations consist of integrity checks, this enables to 
simulate the detection of an integrity violation that leads 
to reject the transaction. Let us recall that, in our exper- 
iments, workloads only contain transactions of the same 
pattern. All the parameters are summarized in Table 3 
(where “transaction” is abbreviated “tx”). 

Regarding the measurements, each simulation consisted 
of 3 to 5 repetitions, each consisting of 2000 seconds of 
simulation time. These numbers were chosen in order to 
achieve more than 90 percent confidence intervals for our 
results. 

4.2 Experiment 1 : Benefits of EMV2PL 

The goal of this experiment is to show the value of 
EMVSPL for applications containing W]R transactions. 
The workload contains only WJR transactions (P-type = 
W]R). In Figure 11(a), we vary the multi-programming 
level mpl from 1 to 70. RperW is fixed to 6. We mea- 
sure the throughput (number of transactions per second) 
of concurrent W]R transactions running under SZPL (curve 

Value 
150000 
3 
1 to 70 
30 

25% 

1 to 13 

0 to 10 
WIR, W’, 
/w1?2\* 

Table 3: Workload Parameters Definitions 

4.1.2 The Application Model 
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Figure 11(a): W]R t”, through;t: mpl is(ovaryi?i 

Figure 12(a): W]R tx response time (S2PL) 
S2PL) or EMVZPL (curve EMVZPL). Figure 11(a) 
shows that EMVZPL always gives the best performance. 
With large multi-programming levels (mpl 2 40), the 
throughput of W]R transactions under SZPL reaches a 
thrashing situation. As observed and explained in several 
studies [ThoSl] [CKLSO], the thrashing situation is caused 
by system under-utilization due to transaction blocking 
and wasted processing caused by transaction aborts. The 
curve EMVZPL shows that executing W]R transactions 
under EMVZPL avoids such thrashing situation. This is 
because EMVZPL eliminates the read-write lock conflicts 
due to the read operations executed in the read part of the 
transactions and reduces deadlocks among W]R transac- 
tions. Indeed, with mpl = 60, the mean number of waits 
per transaction is 2.21 under SZPL and only 1.01 under 
EMVZPL. With mpl= 60, the rate of aborts is 20% under 
SZPL and only 1% under EMVZPL. 

In Figures 11(b), 12(a) and 12(b) we fixed mpl to 50 and 
varied the number of additional reads per write operation 
from 1 to 13. Figure 11(b) shows the throughput of W]R 
transactions. The throughput of W]R transactions is al- 
ways better under EMVZPL than under SZPL. Moreover, 
the longer are the WIR transactions, the bigger is the gain 
in performance for EMVPPL. Figure 12(a)(resp. 12(b) ) 
shows the response time of W]R transactions and how it is 
divided into CPU, wait and I/O times under S2PL (resp. 

Figure 

I 5 9 13 - 

11(b) W]R tx throughput:RperW is varying 

Figure 12(b): W]R tx response time (EMV2PL) 
EMVBPL). EMV2PL significantly reduces the wait time of 
W]R transactions while the contention on disk servers in- 
creases because transactions execute operations at a faster 
rate. The number k of resource units is thus an impor- 
tant parameter. Figure 13 shows the gain in throughput 
of W]R transactions under EMVZPL relative to SZPL with 
one, two or three resource units and under various multi- 
programming levels. It shows that EMVBPL is more ef- 
ficient as there are more resource units since the gain in 
concurrency is less affected by a higher contention on disk 
servers. 

4.3 Experiment 2 : Application to Integrity 
Checking 

In the following experiments, we evaluate workloads of 
transactions that perform integrity checking. We assume 
that one single integrity check is performed per write op- 
eration occurring in the transactions. We also assume that 
each integrity check requires a fixed number of read opera- 
tions indicated by the RperW parameter. The P-Roll pa- 
rameter represents the probability that an integrity check 
detects a constraint violation and rollbacks the transac- 
tion. In these experiments, we compare the performance 
of transactions executed with various integrity checking 
methods. As shown in Table 1, the choice of an integrity 
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checking method has an impact on the pattern of a trans- 
actions. Procedural check-before-write policy for transac- 
tions granularity yields RIW transactions. Declarative de- 
ferred checking and procedural write-then-check for trans- 
actions granularity yields WIR transactions. Other policies 
yield (WIR)* transactions. In the following experiments, 
we fixed the RperW parameter to 6. We execute WIR 
transactions under EMVZPL. RIW and (WIR)* are exe- 
cuted under SZPL. 

Figure 14 shows the total throughput when no integrity 
check can issue a rollback (pl-011 =O). Curves RJW and 
(WIR)’ show that with large multiprogramming levels the 
throughput of RIW or (WIR)* reaches a thrashing situation 
caused by the additional read locks taken during constraint 
checking. Curves WIR shows that checking the constraints 
at the end of the transaction under EMVSPL avoids the 
thrashing situation. This is because EMVZPL eliminates 
all the read-write conflicts and deadlocks due to constraint 
checking. 

Effect of rollbacks Figures 15(a) and 15(b) shows the in- 
fluence of transaction rollbacks caused by integrity checks. 
In Figure 15(a) (resp Figure 15(b)) the probability proll 
that a constraint is violated and produces a rollback is set 
to 5% (resp. 10%). The curves show that RlW transactions 
provide the best troughput when the multiprogramming 
level is small. Indeed, checking constraints at the begin- 
ning of transactions allows to avoid unnecessary operations 
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when the constraint is violated. Of course, higher is the 
probability of rollbacks, better is the throughput of RIW 
transactions (compare the curves RIW in Figures 15(a) 
and 15(b)). However, WIR transaction under EMVZPL 
outperform RIW transactions when the multiprogramming 
becomes larger. Indeed, WIR transaction under EMVZPL 
outperform RIW transactions when mpl > 30 if p-roll = 
5% (see Figure 15(a)) and when mpl > 40 if p-roll = 10% 
(see Figure 15(b)). This is explained as follows. When the 
multiprogramming level is large the read-write lock con- 
tention is high. Since EMVZPL eliminates these locks con- 
flicts the effect of EMVZPL becomes predominant. 

Effect of read-write lock conflicts To show the effect 
of read-write lock conflicts we divided the database into 
two parts DBl and DB2. Transactions perform only op- 
erations on DBl. Constraint checking produces only read 
operations on DB2. In these experiments RperW is fixed 
to 12 and p-roll = 0. Figure 16(a) shows the through- 
put of WIR, R(W and (W/R)* transactions. This figure 
shows that checking constraint at the beginning of transac- 
tions gives always the best performance. This is explained 
as follows. In WJR transactions, exclusive locks taken in 
the write part are held for a longer time than with RlW 
transactions. Indeed, WIR transactions keep the exclu- 
sive locks until the whole read part is executed while RIW 
transactions release their exclusive locks at the end of the 
write part. Moreover, since constraints are only executed 
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on DB2, they never conflict with the write operations per- 
formed by the transactions on DBl. Thus, EMVSPL does 
not eliminate any read-write conflicts and its good effect 
becomes insignificant. Finally, Figure 16(a) also shows 
that executing WIR transactions under EMVZPL gives bet- 
ter performance than executing (WIR)’ under SPPL. This 
is because EMVSPL allows transactions to release their 
read locks before executing their read part. Thus, in aver- 
age, read locks on DBl are held for a shorter time under 
EMVZPL. 

In Figure 16(b), we consider a workload where 50% of 
the constraints perform operations on DBl and 50% on 
DB2. We consider here three constraint checking poli- 
cies. The check-before-write policy that yields RIW trans- 
actions, the write-then-check (or deferred checking) pol- 
icy that yields WIR transactions and a mixed policy that 
consists in checking constraints on DB2 at the beginning 
of transactions and checking constraints on DBl at the 
end of transactions. This policy yields RlWlR transac- 
tions. RIW transactions are executed under S2PL. WIR 
and RlWlR transactions are executed under EMVZPL. 
Let us note that, under EMVZPL, RlWlR transactions 
take locks until the end of their W part, that is, the first 
read part of these transactions is executed as under SZPL 
and the second read part is executed using versions. Fig- 
ure 16(b) shows the resulting throughputs under various 
multi-programming levels. It shows that the mixed policy 
(RIWIR transactions) gives the best performance. This 
is explained as follows. First, by executing the constraints 
that perform read operations on DBl at the end of transac- 
tions under EMV;ZPL, we eliminate all the additional read- 
write conflicts and avoid a trashing situation (only the RIW 
curve shows a thrashing behavior.) Second, by executing 
constraints that performs read operations on DB2 at the 
beginning of transactions we do not add any read-write 
lock conflict and shorten the write lock holding time of 
the transactions (compare the WIR curve with the RlWlR 
curve). 

4.4 Rule-of-Thumb Lessons from these Experi- 
ments 

The simulation results show that, when the workload con- 
tains WIR transactions, EMVZPL allows to increase the 

0 m 10 HI mpl 

Figure 16(b): 50% read-write conflicts 
performance by eliminating read-write lock conflicts due 
to the R part of the WIR transactions. In particular, the 
results show that executing additional read operations in 
WIR transactions under EMV2PL allows to prevent lock 
contention thrashing possibly caused by these additional 
reads. This performance improvement is reduced by the 
increased resource contention caused by versions. 

Moreover, the simulation results show that executing 
read operations for constraint checking at the end of trans- 
actions is usually the best solution under EMV2PL to im- 
prove the performance except in the following situations: 

(1) 

(2) 

(3) 

There is resource contention. Once again, adding read 
operations at the end of transactions intensifies the use 
of versions and thus increases the resource contention. 

The read operations are not involved in any read-write 
lock conflict. In such a case, executing the read oper- 
ations using versions does not eliminate any lock con- 
flict. Moreover, exclusive locks taken in the Write part 
of the transaction are held for a longer time (until all 
the additional read operations are executed). Thus, 
the best solution is to execute the additional read op- 
erations at the beginning of transaction. 

the read operations consist of integrity checks with a 
“high” probability of rollbacks. In such a case, checking 
the constraint at the end of the transaction will possi- 
bly waste unnecessary operations. Once again, a best 
solution is to perform the checks with a high proba- 
bility of rollback at the beginning of transactions. 

These considerations lead to a simple feedback method to 
improve the pattern of transactions that execute a set of 
constraints. 

Guideline for tuning constraint checking under EMVZPL 

(1) Evaluate the lock contention 

(2) Evaluate the system load 

(3) If the system is under-utilized because of lock con- 
tention then: 

(a) Find the constraints that are involved in a lot of 
lock conflicts. If they are not often violated, try 
to execute them in a deferred mode. 
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(b) Find the constraints that are involved in very few 
lock conflicts, and try to execute them at the be- 
ginning of transactions. 

(4) If lock contention is low, find the constraints that are 
very often violated and try to execute them at the 
beginning of transactions. 

5 Related Work 
An extensive literature addresses the problem of design- 
ing concurrency control algorithms that augment the per- 
formance of concurrent transactions. Our work directly 
builds 011 previous work on MV2PL protocols ([CFL+82], 
[BHG87], [AK91], [MPL92)), but differs from those by fo- 
cusing on the problem of optimizing read operations in 
update transactions. 

To avoid thrashing due to read operations a first so- 
lution is to use S2PL with a “read committed” locking 
level (also called locking isolation level 2). A transaction 
running under this level uses short duration read locks. 
Unfortunately, such a consistency level may lead to con- 
straint violation anomalies as demonstrated in [BBG+95]. 
EMVZPL avoids these anomalies by ensuring serializability 
of transactions. 

Another solution is to use versions to increase concur- 
rency between t,ransactions is with the Snapshot Isolation 
multiversion protocol [BBGf95]. In this protocol, a trans- 
action T executing a read(x) operation always reads the 
most recent version of 2 that has been committed before 
t,he beginning of T, later called Start-Tim&amp of T. 
Therefore, T reads a snapshot of the database as of the time 
it started. Updates performed by transactions that are ac- 
tive after T’s start-Timestamp are invisible to T. When T 
is ready to commit, it gets a Commit-Time&amp greater 
than any existing Start-Timestamp or Commit-Timestamp. 
Then, T successfully commits only if no other transac- 
tion with a Commit-Timestamp belonging to T’s inter- 
val: [Start-Timestamp, CommiLTimestamp] wrote data 
that T also wrote. Otherwise, T aborts. When T com- 
mits, its changes become visible to all transactions whose 
Start-Timestamp are larger than T’s Commit-Timestamp. 
The Snapshot Isolation admits a simple implementation 
modeled on the work of Reed [Ree81]. Unfortunately, snap- 
shot Isolation does not guarantee serializability and may 
lead to constraint violation anomalies as demonstrated in 
in [BBG+95]. 

The 2V2PL multiversion protocol authorizes the use of 
versions in update transactions, and guarantees serializ- 
ability of transactions. In this protocol, there are three 
modes of locks associated to each lock unit: read lock (r), 
write lock (.w) and certification locks (c). The correspond- 
ing compatibility matrix is the following: 

r W C 

r compatible compatible not compatible 
W compatible not compatible not compatible 
c not compatible not compatible not compatible 

After each read (resp. write) operation, a r lock (resp. w 
lock) is taken. A read(x) operation always accesses the last 
committed version of x. At the end of the transaction, w 

locks are converted into c locks, and the transact,ion mm- 

mits if and only if all the w locks have been successfully 
converted into c locks. To compare EMV2PL with 2V2PL, 
we compare the set of serializable histories that they admit. 
In fact , EMV2PL accepts histories that are not accepted 
by 2V2PL and conversely as shown by the following exam- 
ples. 

Example 5.1 Suppose we have two WIR transactions Tl 
and T2, and consider the following history: 

vi(x) rl(t) w2(y) d(y) r2Cy) c2 I-l(z) cl 

If we assume that the read part of Tl contains the rl(t), 
rl(y) and rl(z) operations and the read part of T2 con- 

tains r2(y), then EMVZPL accepts t,his history. Indeed, 
T2 is never blocked since T2 does not, access an item al- 
ready locked by another transaction and can commit as 
soon as all its operations are performed. Moreover, since 
Tl reaches its lockpoint before T2, Tl cannot be blocked 
by the locks taken by T2 on y. 2V2PL does not accept this 
history: before committing, T2 must convert its ‘UI lock on 

y into a c lock. To do this, T2 must wait that Tl releases 
its r lock on y. Thus T2 must wait until Tl commits. 

Consider now two transactions T3 and T4 and the fol- 
lowing history: 

v3(x) r4(x) v4(y) c4 v3(z) c3 

2V2PL accepts this history. Indeed, T4 can commit since 
it takes a w lock on a item that is not accessed by another 
transaction. On the contrary, EMV2PL does not, accept 
this history because T4 is not a W(R transaction and hence 
the r4(2) operation must take a lock on 2:; Since z is locked 
by T3, T4 must wait until T3 commits. 0 

So far, the largest body of work on the enforcement of se- 
mantic integrity constraints has focused on efficient algo- 
rithms to detect if a constraint is violated. The problem of 
optimizing the execution of multiple integrity checks within 
a transaction has been first addressed in [BP79]. This pa- 
per compares the performance of different constraint check- 
ing policies (including the check-before-write and the write- 
then-check methods) and show that the check-before-write 
method is the most efficient (in terms of transaction re- 
sponse time) because it avoids redundant computations 
and expensive rollbacks. However, all these works do not 
consider the possible concurrency between transactions. 

A very few research papers have addressed the problem 
of optimizing the throughput of concurrent transactions 
that perform integrity checks. The Commit-LSN method, 
proposed in [MohSO], is used (among other things) to avoid 
taking a lock when checking a referential integrity con- 
straint. More precisely, no read lock is acquired on data 
items involved in a “no action” referential integrity con- 
straint 6 if (i) the constraint is satisfied, and (ii) a property 
of the Commit-LSN is verified. In contrast, our proposal is 
not limited to referential constraints (verified or not) but 
can be applied to any integrity check as long as it does not 
require new write locks. However our method only applies 
to WIR transactions. 

Gimmediate or deferred 
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6 Conclusions [BC92] 

EMVSPL is a simple yet efficient extension of MV2PL 
which enables a W]R transaction that has acquired all its 
write locks to (i) release its read locks, and (ii) execute 
new read operations on versions without taking locks. In 
[LST97], we proved the correctness of this protocol, and 
showed that its implementation only requires a few changes 
with respect to an existing implementation of MV2PL. Per- 
formance studies show that for workloads containing W]R 
transactions, EMV2PL can significantly improve the over- 
all throughput of transactions (i.e., W]R, and W transac- 
tions), with a relatively small utilization of versions. 

We then presented a specific, yet important, applica- 
tion of our protocol to the problem of integrity checking. 
We described various possible methods for implementing 
integrity checking. For ‘read-only” integrity checks, we 
showed that: if the probability that a transaction violates 
integrity is small, then checking integrity at the end of 
transactions run under EMVZPL, is the method that of- 
ten achieves the best total transaction throughput. Hence, 
(declarative) deferred checking generally offers better per- 
formance that immediate checking for “read-only” integrity 
checks, which in our view relaunches the interest of imple- 
menting deferred assertions and deferred triggers in rela- 
tional database systems. 

We foresee two directions of future work. One is to 
extend our simulation experiments to handle non uniform 
lock conflicts between data items. An interesting applica- 
tion of this is given by “summary tables”, which consist 
of materialized views computed from base relations. Re- 
lations MaxRisk and MinRisk in the example of Section 
2 are two examples of summary tables. These tables are 
quite frequent in decision support applications and for in- 
tegrity checking. We plan to investigate the performance 
of EMVZPL in application scenarios where summary tables 
are read at the end of transactions. Another direction is to 
compare more in depth the performance of immediate ver- 
sus deferred checking by taking into account the respective 
overheads associated with these two methods. 
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