
Using Versions in Update Transactions:

Application to Integrity Checking

Francois Llirbat Eric Simon
INRIA, prance INRIA, France

Francois.llirbat@inria.fr Eric.simon@inria.fr

Dimitri Tombroff
Chorus Systems. France

dimiOchorus.fr

Abstract
This paper proposes an extension of the multiver-
sion two phase locking protocol, called EMVZPL,
which enables update transactions to use versions
while guaranteeing the serializability of all trans-
actions. The use of the protocol is restricted to
transactions, called write-then-read transactions
that consist of two consecutive parts: a write part
containing both read and write operations in some
arbitrary order, and an abusively called read part,
containing read operations or write operations on
data items already locked in the write part of the
transaction. With EMVZPL, read operations in
the read part use versions and read locks acquired
in the write part can be released just before en-
tering the read part. We prove the correctness of
our protocol, and show that its implementation
requires very few changes to classical implemen-
tations of MVZPL. After presenting various meth-
ods used by application developers to implement
integrity checking, we show how EMV2PL can be
effectively used to optimize the processing of up-
date transactions that perform integrity checks.
Finally, performance studies show the benefits of
our protocol compared to a (strict) two phase
locking protocol.

1 Introduction
Constraint checking is a key issue of many modern ap-
plications, which is acknowledged by recent evolutions of
the SQL standard to accommodate a larger class of as-
sertions (SQLZ) and triggers (SQL3 [Me193]). To verify
integrity constraints, update transactions may have to per-
form many additional read operations.

Permission to CODV without fee all or oart of this material is
. I . -

granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice IS given that
copying IS by permission of the Very Large Data Base Endowment.
To copy otherwise, or to republish, requires a fee and/or special
permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

Update transactions that terminate by issuing many read
operations expose to specific performance problems that
are illustrated bellow.

Example 1.1 Consider a stock-market application where
a broker is responsible for ordering shares for her client’s
portfolios. The following relations are used:

Order (o-key, portfolio-id, share-name, stockmarket,
price)

MaxRiskCstockmarket, value)
MinRisk(stockmarket, value)

Share orders are registered in the Order relation. The
MaxRisk and MinRisk relations respectively give for each
stock-market the minimal and maximal risk that the bro-
ker should take to make benefits. These relations are fre-
quently updated by transactions that analyse the activity
of the various stock-markets. The application enforces the
Risk constraint which forbids any insertion of a share order
if the corresponding risk is not contained in the risk thresh-
old interval indicated by relations MaxRisk and MinRisk.

Take a transaction program, entry-order(p) that inserts
tuples into relation Order for a given portfolio p. To en-
force the Risk constraint the transaction has to perform
additional read operations before committing. Checking
the Risk constraint requires to read for each new inserted
share order the corresponding items in relations MaxRisk
and MinRisk.

Suppose that an entry-order(p) transaction runs in iso-
lation degree 3 and obeys the strict two phase locking pol-
icy (SZPL) [BHG87]. Whenever entry-order executes, the
reads incurred by constraint checking may be conflicting
with concurrent executions of update transactions on rela-
tions MaxRisk, MinRisk. When a conflict occurs between
two transactions, one transaction is blocked and waits that
the other one releases its locks (when committing or abort-
ing). Thus, running instances of entry-order augment the
lock contention and impede the transactional traffic in the
database system. This situation may lead to performance
thrashing as showed in [ThoSl].

Our main contribution is to propose an extension of the
multiversion two phase locking (MVZPL) protocol, called
EMV2PL, which enables update transactions to use ver-
sions and guarantees the serializability of all transactions.
The use of our protocol is restricted to a particular class
of update transactions called write-then-read transactions

96

(henceforth noted W]R transactions). A transaction in this
class consists of two consecutive parts: the first part (called
the write part) contains both read and write operations in
some arbitrary order, and the second part (abusively called
the read part) only contains read operations or write op-
erations on data items already written in the first part of
the transaction. In our protocol, the W part of a W]R
transaction T is executed under the SZPL protocol. Then,
when T reaches the end of its W part, T gets a Lock-
point-Timestamp and releases all its read locks. From that
point, T does not take locks anymore and a read(x) opera-
tion accesses the most recent committed version of z that
precedes T’s Lockpoint-Timestamp.

Example 1.2 Let Tl be an entry-order transaction that
inserts a share order o on the stock-market m such that
risk(o) = 35, and checks the Risk constraint. Let t =
(m, 20) (resp. u = (m, 30)) be the tuple of MinRisk (resp.
MaxRisk) that contains the minimal (resp. maximal) ad-
vised risk for the stock-market m. Suppose that a trans-
action T2 increments the Value attribute of tuples t and
u by 20. Then executing Tl and T2 concurrently under
EMV2PL may yield the following history that would not
have been accepted by the SPPL protocol :

Iii: Wl(o) Rl(t) W2(t) W2(u) c(T2) M(u) c(T1)

Tl gets a Lockpoint-Timestamp tsl after inserting o and
before reading tuples t and u, while T2 gets a Lock-
point-Timestamp ts2 after writing u. Thus, since tsl < ts2,
Tl does not see the version of u created by T2 and reads
a risk interval of [20,30]. Hence, Tl is serialized before T2
and the Risk constraint violation is detected. 0

Our protocol increases concurrency by allowing W]R trans-
actions to take advantage of versions in two ways: (i)
they release their read locks before executing their read
part, and (ii) they execute their read part without taking
any lock, as read-only transactions do with MVZPL. All
the read operations of the read part are performed using
the same lockpoint-timestamp and thus guarantees that
no phantom occurs during the execution of the read part.
Moreover, like S%PL, EMVSPL uses a “pessimistic” ap-
proach to concurrency control which allowed us to fairly
compare its performance with an SZPL protocol, and
demonstrate that EMV2PL brings a significant increase in
concurrency and reduces the probability of deadlocks. Fi-
nally, a notable feature of our protocol is its simplicity, as
attest the few modifications to a classical MVZPL imple-
mentation that are required to implement it(see [LST97]).
We consider it as a virtue since our intention in this re-
search is not to invent yet another new concurrency control
protocol but rather to enhance existing implementations to
better match application needs.

A second important contribution of this paper is to show
how EMVZPL can be effectively used to optimize an appli-
cation’s transaction throughput when update transactions
execute triggers or check integrity constraints. We exam-
ine various methods, procedural and declarative, used by
application developers, to implement integrity checking in
transactions and analyse the consequence of each method

on the pattern of transactions. Finally, we propose tun-
ing rules that indicate how to design transactions with
integrity checking under EMVZPL to achieve the better
performance throughput.

1.1 Paper Outline

The remaining of the paper is structured as follows. Sec-
tion 2 formally defines the EMV2PL protocol, proves its
correctness and briefly explains how it can be implemented.
Section 3 discusses the potential of EMV2PL to optimize
transactions that perform integrity checking. Section 4
presents our performance study and provides simple tuning
rules. for designing transactions with constraint checking
under EMV2PL. Section 5 presents related work, and Sec-
tion 6 concludes the paper.

2 Extended Multiversion Two Phase Lock
Protocol

In this section we formally define the EMVSPL protocol
and prove its correctness, we explain its behavior with re-
spect to deadlocks and external consistency.

2.1 The EMV2PL Protocol

We now present the EMVSPL protocol. First, R and W
transactions are processed as with MVZPL. An R transac-
tion first obtains a start number noted sn from TM. Then
every read(z) gets the most recent version of x having a
timestamp less than or equal to sn. Reads in a W trans-
action follow the usual S2PL protocol, whereas a write(x)
creates a new version of x (if x is written for the first time).
Before committing, a W transaction obtains its transaction
number (noted tn), associates this number to each of its
versions, and releases all its locks.

Figure 1 shows how the operations issued by a W]R
transactions are processed. The write part of the transac-
tion is processed as a W transaction. When the end of the
write part is reached, the transaction signals it reached a
lockpoint’ to the TM and receives a transaction number tn.
The transaction then releases all the S locks it has acquired
so far. After that point, read and write operations are
processed as follows. A read(x) operation invokes a func-
tion check-read(x) that checks if there is an uncommitted
version2 of x created by another transaction whose num-
ber is smaller than the caller’s tn. In that case, checkread
waits until that transaction commits. After that, the W]R
transaction reads the most recent version of x with times-
tamp smaller than or equal to tn. A write(x) operation
only modifies a version already created in the write part.
Before committing, a W]R transaction associates its tn to
each version it created and releases all its locks.

To maintain the h’s, the TM uses a monotonically in-
creasing counter. Since W and WIR transactions obtain
their tn after they acquired their last locks and before com-
mitting, tn’s are lockpoints. For R transactions, the TM
simply guarantees that their sn is smaller than the tn of

‘A lock point of a transaction is any point in time between the
last lock acquired and the first lock released

2. ~.a., a version created by a still active transaction

97

Operation Invocation Operation Execution

begin(T) 4

read(z) get read lock on z
/* may wait according to 2PL */
return the most recent version of z

write(y) get write-lock on y
/*may wait according to 2PL */
create a new version of y

lockpoint get h(T) from TM
release S locks

read(z) check-read(z)
/*may wait)*/
return z’s version with largest
version number 5 h(T)

write(t) update the last version of t
/*this version was created by T
before lo&point(T) */

end(T) commit(T):
perform database updates
with version number h(T)
release locks

Figure 1: Execution of WIR transaction

any active or forthcoming transaction. Thus, an R trans-
action reads only versions of committed transactions.

Theorem : The EMVZPL protocol guarantees serializ-
ability of all transactions (see the proof in [LST97]).

2.2 Deadlocks

Clearly, EMV2PL suffers from deadlocks since it uses SZPL
for serializing W transactions and the write parts of WIR
transactions. However, once a WIR transaction starts ex-
ecuting its read part, it may not be involved anymore in
deadlocks (see the proof in [LST97]).

2.3 External Consistency

Although EMVZPL guarantees serializability, it does not
preserve external consistency. That is, the order in which
transactions commit may differ from their serialization or-
der as shows the following example:

Example 2.1 Let Ti be a WIR entry-order transaction
that inserts a share order o on the stock-market m such
that risk(o) = 35 and checks the Risk constraint in its read
part. Let t = (m,20) (resp. u = (m,30)) be the tuple of
MinRisk (resp. MaxRisk) that contains the minimal (resp.
maximal) advised risk for the stock-market m. Suppose
a transaction T2 increments the Value attribute of tuple
u by 10. Then executing 2’1 and T2 concurrently under
EMVZPL may yield the following history:

Hl: Wl(o) Ft1Ct) W2(u) c(T2) RI(u) Abort(T1)

Since Tl reaches its lockpoint before T2 then it is serial-
ized before T2 by EMVZPL and thus Tl does not see that
transaction T2 made (and committed) a larger risk interval
and that the order could have been accepted. 0

RIW
procedural declarative

check-before-write none

Table 1: patterns of transactions and integrity checking
methods

Such consistency ‘Lfaults” are likely to occur if the read
part WIR transactions are long. Should external consis-
tency be critical, it may help to show the value of transac-
tion lockpoint-timestamps to users, instead of showing the
transaction commit time, since these timestamps reflect the
serialization order. Intuitively, the lockpoint-timestamp of
a WIR transaction indicates at which time the decision to
commit or abort was taken (even though the system com-
mitted or aborted the transactions at some later time).

3 Application to Integrity Checking

We showed through the examples of section 1 that
EMVZPL allows to avoid constraint anomalies. However,
the applicability of EMVSPL suffer from the following limi-
tations: (i)the transactions must be write-then-read trans-
actions and, (ii) the lockpoint (i.e., the end of the write
part) must be detected. In this section, we discuss the
applicability of EMV2PL to constraint checking. We con-
sider different methods for programming integrity checks
and analyze consequences of each method on the pattern
of transactions. All the resulting patterns are summarized
in table 1. Moreover, We show how the lockpoint can be
automatically detected (i.e., without knowing the transac-
tions in advance) in the case of deferred declarative triggers
and assertions.

Procedural Approach: The vast majority of database
applications implement integrity constraints using a pro-
cedural approach whereby integrity checks are embedded
into application programs. We distinguish three classes of
integrity checking methods:

l the write-then-check method consists in checking con-
straints at the end of transaction. Such method is
sometimes mandatory because some temporary incon-
sistent state is unavoidable during the execution of the
transaction, or the interactive effects between two or
more updates have to be controlled afterwards, or the
integrity checks depend on the logic of the transaction
program (especially when some conditional branching
is used).

l the check-before-write method consists in checking
constraints at the beginning of transactions. This
method is expected to bring the following advantages:
(i) exclusive locks on the updated data items are held
for a shorter time if the updates occur at the end of the
transaction, and (ii) less work is possibly wasted when

98

the transaction violates data integrity since there are
no unnecessary writes.

l the immediate checking method consists in checking
constraints just before or just after update operations.
Such a method allows to provide intermediate consis-
tent states during the execution of the transaction.

All the resulting patterns are shown in Table 1. Among
these methods, only the write-then-check method yields
W]R transactions. Hence, provided that the programmer
has the ability to manually insert a lockpoint (e.g., using a
specific command in the transaction program) at the end
of the write part, a transaction’s execution can take ad-
vantage of our EMVZPL protocol.

Declarative Assertions: Declarative assertions include
two forms of constraints: check constraints3 and referential
constraints. Referential constraints and check constraints
can be checked either immediately (immediate mode) af-
ter an SQL statement or at the end of the transaction
(deferred mode). The execution of immediate referential
and check constraints yields (W]R)* transactions. The ex-
ecution of deferred referential and check constraints yields
W]R transactions provided that the referential constraints
with “cascade” or “set null” action are executed first. In
this case, a lockpoint can be dynamically detected by the
system (i.e., without knowing in advance the transactions)
when all the remaining constraints are with “ no action”.

Declarative Triggers: Another way to enforce integrity
constraints is to use triggers. Triggers can be executed ei-
ther immediately before or after the triggering SQL state-
ment (immediate mode) or at the end of the transaction
(deferred mode). But unlike deferred constraints, deferred
triggers do not necessarily yield W]R transactions since
the action of triggers can perform database updates. More
precisely, the problem is the following: given a transaction
ready to commit and a set of deferred triggers activated
by the transaction, how can the database system statically
detect a transaction lockpoint4?

A simple method that can be used by the rule manager
to detect a lockpoint when triggers execute at the end of
transactions, consists in detecting a specific class of trig-
gers called RCA safe triggers. An RCA trigger is a trigger
whose action part does not acquire new exclusive locks.
RCA stands for Rollback, Compensative, Alerter trigger.
Indeed, the action part of triggers that do not acquire new
exclusive lock typically (i) performs a rollback, (ii) over-
writes database items that have been already inserted, up-
dated or deleted by the triggering transaction or (iii) raises

3SQL-92 distinguishes table check constraints and assertions:
A table check constraint is attached to one table and is used to
express a condition that must be true for every tuple in the table.
An assertion is a stand-alone check constraint in a schema and is
normally used to specify a condition that affects more than one
table.

*In fact, the problem is more complicated because check con-
straints, referential constraints, and triggers can be mixed together.
However, considering the general framework requires to have a pre-
cise description of an execution model for deferred triggers and as-
sertions, a still open problem which is largely out of the scope of
this paper.

an alert. An RCA trigger is safe if it cannot transitively
trigger a non-RCA trigger. When the rule manager re-
ceives the L‘end-of-transaction” signal from a transaction,
the 5’ set of triggers that have been activated is computed.
Then, the rule manager recursively selects a trigger T from
S, executes T and recomputes S. The rule manager signals
the lockpoint to the TM when all the triggers in 5’ are RCA
and safe.
Remark about RCA and safe triggers: Let us note that RCA
safe triggers can be detected at the time triggers are de-
fined. The safe property can be determined using a trigger-
ing action graph (TAG), as defined in [Me193]. The RCA
property may require a complicated code analysis (except
for evident cases as alerters or rollback triggers), however.

4 Performance Study

In this section we evaluate the performance of S2PL and
EMVSPL under various transaction workloads in a central-
ized database. To compare the relative benefits of SZPL
and EMVPPL for various transaction patterns and in a
wide range of operating conditions, we have implemented
a simulation model ‘. In our experiments, we consider the
case of workloads where some initial W transactions are
lengthened by the execution of additional read operations
(e.g., implied by the execution of decision support proce-
dures or constraint checking) producing either R/W, W]R
or (W]R)* transaction patterns (see table 1).

Moreover, as we will see, performance analysis of differ-
ent workloads and operating situations authorizes a kind
of feedback tuning approach which given a set of W trans-
actions and a set of additional reads operations, suggests
a suitable transaction pattern (R]W, W]R or (WIR)‘)
to profitably execute these new read operations under
EMVPPL. In particular, our tuning guide is useful in the
context of constraint checking in order to select a perfor-
mant constraint checking method between the procedural
check-before-write or write-then-check, and the declarative
immediate or deferred methods.

4.1 The Simulation Model

Our simulation model is strongly derived from [BC92]
and [SLSV95]. It has two parts: the system model sim-
ulates the behavior of the various operating system and
DBMS components, while the application model simulates
the database items and the transactional workload.

4.1.1 The System Model

In our simulation, we model the concurrent execution of
transactions on a single site database. To keep the simu-
lator simple, we simulate page-level locking. This allows
us not to simulate indexes and index locking, and trans-
actions access records randomly. The system model is
divided into four main components: a Transaction Man-
ager (TM), a Concurrency Control Manager (CCM), a
Data Manager (DM) and a Log Manager (LM). The TM
is responsible for issuing concurrency control requests and

5Note that our simulation model only reflects the relative benefits
and costs but not the exact numbers.

99

name Description Value
buf-size Nb of pages in the buffer pool 600
k Resource Unit (kCPUs and 2k Disks) 1, 2, 3
ret-cpu CPU time for accessing a record 1 ms
pi0 I/O time for accessing a page 7 ms
log-i0 time for issuing a I/O log access 7 ms
log-io-w I/O time for sequentially writing

1 page on log disk 1 ms
corn-cpu cpu time for executing a commit 1 ms
ab-cpu cpu time for executing an abort 1 ms
restart restart delay of an aborted transaction 5 ms
CPU-CC cpu time for servicing one cc request 1 ms

Table 2: System Parameters Definitions and Values

their corresponding database operations. It also assures
the durability property by flushing all log records of com-
mitted transactions to durable memory. The CCM sched-
ules the concurrency control requests according to either
the SZPL or EMVZPL protocol. The LM provides read
and insert-flush interfaces to the log table. The DM is re-
sponsible for granting access to the physical data objects
and executing the database operations.

The DM encapsulates the details of a LRU Buffer Man-
ager. The number of pages in the buffer cache is buf-size.
These pages are shared by the main segment and the ver-
sion pool. When a dirty version pool is chosen for re-
placement by the LRU algorithm, the DM first checks if
it contains needed versions. If not (i.e., if it contains only
obsolete versions), the page is considered non-dirty and
simply discarded. Otherwise, it is written on disk. We
have chosen to simulate the on-page version caching tech-
nique [BC92] because it is one of the most efficient tech-
nique for maintaining version and processing transactions:
first, versions are maintained for records (instead of pages),
second, a small portion of each page is used for caching pre-
vious versions of records. As a result, readers may find the
adequate version without performing any additional I/OS.
Also, these versions may sometimes be eliminated while
still in the page and thus have not to be appended into the
version pool at all.

The physical queuing model consists in k resource units,
each containing one CPU server and two I/O servers. The
requests to the CPU queue and I/O queues are serviced
FCFS (first come, first serve). Parameter ret-cpu is the
amount of CPU time for accessing a record in a page. Pa-
rameter p-io is the amount of I/O time associated with ac-
cessing a data page from the disk. We added one separate
I/O server dedicated to the log file. The parameter log-io
represents the fixed I/O time overhead associated with is-
suing the I/O. Parameter log-io-w is the amount of I/O
time associated with writing a log record on the Log disk
in sequential order. Parameter corn-cpu is the amount of
CPU time associated with executing the commit (releasing
locks, etc). Parameter ab-cpu is the amount of CPU time
associated with executing the abort statement (executing
undo operations, releasing locks etc). Table 2 summarizes
the parameters of the system model and their values for
the experiments.

name
num-ret
nb-ret-p
mpl
U-size
p-write-U

Rper W

P-Roll

P-type

Description
Nb of records in the database
Nb of cached records per page
Nb of terminals
mean size of Update part of tx
fraction of write in the
Update part of tx
Nb of additional reads per write
in the Update part of tx
Probability that RperW read
operations generate a rollback
pattern of the extended tx

The database contains num-ret records. With S2PL, 18
records fit in one page (this corresponds to pages of 8K con-
taining records of 454 bytes). With EMVSPL the records
are assumed to contain an additional 50 bytes to store the
timestamp and version pointer. As a result, only 15 records
fit in one page, whose nb-ret-p records are used to cache
previous versions.

A transaction workload contains transactions that con-
sist of an update part that is extented with additional read
operations. There are mpl terminals executing transac-
tions. Parameter U-size is the average number of oper-
ations executed by the update part of each transaction
(without the additional reads). Among these operations,
p-write-U are write operations. Moreover, a transaction
executes RperW additional read operations per write op-
erations occurring in its update part. Parameter P-type
represents the obtained pattern of transactions. They can
be R]W, WJR or (W]R)* transactions. In a R(W (resp.
W]R) transaction then all the additional read operations
are executed at the beginning (resp. at the end) of the
transaction. If the transaction is (W]R)* then RperWread
operations are executed “on the fly” just after each write
operation. We also vary the probability P-Roll of executing
a rollback after Rper W additional reads. When additional
read operations consist of integrity checks, this enables to
simulate the detection of an integrity violation that leads
to reject the transaction. Let us recall that, in our exper-
iments, workloads only contain transactions of the same
pattern. All the parameters are summarized in Table 3
(where “transaction” is abbreviated “tx”).

Regarding the measurements, each simulation consisted
of 3 to 5 repetitions, each consisting of 2000 seconds of
simulation time. These numbers were chosen in order to
achieve more than 90 percent confidence intervals for our
results.

4.2 Experiment 1 : Benefits of EMV2PL

The goal of this experiment is to show the value of
EMVSPL for applications containing W]R transactions.
The workload contains only WJR transactions (P-type =
W]R). In Figure 11(a), we vary the multi-programming
level mpl from 1 to 70. RperW is fixed to 6. We mea-
sure the throughput (number of transactions per second)
of concurrent W]R transactions running under SZPL (curve

Value
150000
3
1 to 70
30

25%

1 to 13

0 to 10
WIR, W’,
/w1?2*

Table 3: Workload Parameters Definitions

4.1.2 The Application Model

100

‘0
Figure 11(a): W]R t”, through;t: mpl is(ovaryi?i

Figure 12(a): W]R tx response time (S2PL)
S2PL) or EMVZPL (curve EMVZPL). Figure 11(a)
shows that EMVZPL always gives the best performance.
With large multi-programming levels (mpl 2 40), the
throughput of W]R transactions under SZPL reaches a
thrashing situation. As observed and explained in several
studies [ThoSl] [CKLSO], the thrashing situation is caused
by system under-utilization due to transaction blocking
and wasted processing caused by transaction aborts. The
curve EMVZPL shows that executing W]R transactions
under EMVZPL avoids such thrashing situation. This is
because EMVZPL eliminates the read-write lock conflicts
due to the read operations executed in the read part of the
transactions and reduces deadlocks among W]R transac-
tions. Indeed, with mpl = 60, the mean number of waits
per transaction is 2.21 under SZPL and only 1.01 under
EMVZPL. With mpl= 60, the rate of aborts is 20% under
SZPL and only 1% under EMVZPL.

In Figures 11(b), 12(a) and 12(b) we fixed mpl to 50 and
varied the number of additional reads per write operation
from 1 to 13. Figure 11(b) shows the throughput of W]R
transactions. The throughput of W]R transactions is al-
ways better under EMVZPL than under SZPL. Moreover,
the longer are the WIR transactions, the bigger is the gain
in performance for EMVPPL. Figure 12(a)(resp. 12(b))
shows the response time of W]R transactions and how it is
divided into CPU, wait and I/O times under S2PL (resp.

Figure

I 5 9 13 -

11(b) W]R tx throughput:RperW is varying

Figure 12(b): W]R tx response time (EMV2PL)
EMVBPL). EMV2PL significantly reduces the wait time of
W]R transactions while the contention on disk servers in-
creases because transactions execute operations at a faster
rate. The number k of resource units is thus an impor-
tant parameter. Figure 13 shows the gain in throughput
of W]R transactions under EMVZPL relative to SZPL with
one, two or three resource units and under various multi-
programming levels. It shows that EMVBPL is more ef-
ficient as there are more resource units since the gain in
concurrency is less affected by a higher contention on disk
servers.

4.3 Experiment 2 : Application to Integrity
Checking

In the following experiments, we evaluate workloads of
transactions that perform integrity checking. We assume
that one single integrity check is performed per write op-
eration occurring in the transactions. We also assume that
each integrity check requires a fixed number of read opera-
tions indicated by the RperW parameter. The P-Roll pa-
rameter represents the probability that an integrity check
detects a constraint violation and rollbacks the transac-
tion. In these experiments, we compare the performance
of transactions executed with various integrity checking
methods. As shown in Table 1, the choice of an integrity

101

checking method has an impact on the pattern of a trans-
actions. Procedural check-before-write policy for transac-
tions granularity yields RIW transactions. Declarative de-
ferred checking and procedural write-then-check for trans-
actions granularity yields WIR transactions. Other policies
yield (WIR)* transactions. In the following experiments,
we fixed the RperW parameter to 6. We execute WIR
transactions under EMVZPL. RIW and (WIR)* are exe-
cuted under SZPL.

Figure 14 shows the total throughput when no integrity
check can issue a rollback (pl-011 =O). Curves RJW and
(WIR)’ show that with large multiprogramming levels the
throughput of RIW or (WIR)* reaches a thrashing situation
caused by the additional read locks taken during constraint
checking. Curves WIR shows that checking the constraints
at the end of the transaction under EMVSPL avoids the
thrashing situation. This is because EMVZPL eliminates
all the read-write conflicts and deadlocks due to constraint
checking.

Effect of rollbacks Figures 15(a) and 15(b) shows the in-
fluence of transaction rollbacks caused by integrity checks.
In Figure 15(a) (resp Figure 15(b)) the probability proll
that a constraint is violated and produces a rollback is set
to 5% (resp. 10%). The curves show that RlW transactions
provide the best troughput when the multiprogramming
level is small. Indeed, checking constraints at the begin-
ning of transactions allows to avoid unnecessary operations

‘0
Figure 14: ;lR., RIWamd (WlRF thr~ghputa

Ih
nm (

F&e 15(b): L~oll = l&l
64 mpl

when the constraint is violated. Of course, higher is the
probability of rollbacks, better is the throughput of RIW
transactions (compare the curves RIW in Figures 15(a)
and 15(b)). However, WIR transaction under EMVZPL
outperform RIW transactions when the multiprogramming
becomes larger. Indeed, WIR transaction under EMVZPL
outperform RIW transactions when mpl > 30 if p-roll =
5% (see Figure 15(a)) and when mpl > 40 if p-roll = 10%
(see Figure 15(b)). This is explained as follows. When the
multiprogramming level is large the read-write lock con-
tention is high. Since EMVZPL eliminates these locks con-
flicts the effect of EMVZPL becomes predominant.

Effect of read-write lock conflicts To show the effect
of read-write lock conflicts we divided the database into
two parts DBl and DB2. Transactions perform only op-
erations on DBl. Constraint checking produces only read
operations on DB2. In these experiments RperW is fixed
to 12 and p-roll = 0. Figure 16(a) shows the through-
put of WIR, R(W and (W/R)* transactions. This figure
shows that checking constraint at the beginning of transac-
tions gives always the best performance. This is explained
as follows. In WJR transactions, exclusive locks taken in
the write part are held for a longer time than with RlW
transactions. Indeed, WIR transactions keep the exclu-
sive locks until the whole read part is executed while RIW
transactions release their exclusive locks at the end of the
write part. Moreover, since constraints are only executed

102

Co.50 .: :

am

0 60 rnpl
Fikre 16(a) N”, read-write conflicts

on DB2, they never conflict with the write operations per-
formed by the transactions on DBl. Thus, EMVSPL does
not eliminate any read-write conflicts and its good effect
becomes insignificant. Finally, Figure 16(a) also shows
that executing WIR transactions under EMVZPL gives bet-
ter performance than executing (WIR)’ under SPPL. This
is because EMVSPL allows transactions to release their
read locks before executing their read part. Thus, in aver-
age, read locks on DBl are held for a shorter time under
EMVZPL.

In Figure 16(b), we consider a workload where 50% of
the constraints perform operations on DBl and 50% on
DB2. We consider here three constraint checking poli-
cies. The check-before-write policy that yields RIW trans-
actions, the write-then-check (or deferred checking) pol-
icy that yields WIR transactions and a mixed policy that
consists in checking constraints on DB2 at the beginning
of transactions and checking constraints on DBl at the
end of transactions. This policy yields RlWlR transac-
tions. RIW transactions are executed under S2PL. WIR
and RlWlR transactions are executed under EMVZPL.
Let us note that, under EMVZPL, RlWlR transactions
take locks until the end of their W part, that is, the first
read part of these transactions is executed as under SZPL
and the second read part is executed using versions. Fig-
ure 16(b) shows the resulting throughputs under various
multi-programming levels. It shows that the mixed policy
(RIWIR transactions) gives the best performance. This
is explained as follows. First, by executing the constraints
that perform read operations on DBl at the end of transac-
tions under EMV;ZPL, we eliminate all the additional read-
write conflicts and avoid a trashing situation (only the RIW
curve shows a thrashing behavior.) Second, by executing
constraints that performs read operations on DB2 at the
beginning of transactions we do not add any read-write
lock conflict and shorten the write lock holding time of
the transactions (compare the WIR curve with the RlWlR
curve).

4.4 Rule-of-Thumb Lessons from these Experi-
ments

The simulation results show that, when the workload con-
tains WIR transactions, EMVZPL allows to increase the

0 m 10 HI mpl

Figure 16(b): 50% read-write conflicts
performance by eliminating read-write lock conflicts due
to the R part of the WIR transactions. In particular, the
results show that executing additional read operations in
WIR transactions under EMV2PL allows to prevent lock
contention thrashing possibly caused by these additional
reads. This performance improvement is reduced by the
increased resource contention caused by versions.

Moreover, the simulation results show that executing
read operations for constraint checking at the end of trans-
actions is usually the best solution under EMV2PL to im-
prove the performance except in the following situations:

(1)

(2)

(3)

There is resource contention. Once again, adding read
operations at the end of transactions intensifies the use
of versions and thus increases the resource contention.

The read operations are not involved in any read-write
lock conflict. In such a case, executing the read oper-
ations using versions does not eliminate any lock con-
flict. Moreover, exclusive locks taken in the Write part
of the transaction are held for a longer time (until all
the additional read operations are executed). Thus,
the best solution is to execute the additional read op-
erations at the beginning of transaction.

the read operations consist of integrity checks with a
“high” probability of rollbacks. In such a case, checking
the constraint at the end of the transaction will possi-
bly waste unnecessary operations. Once again, a best
solution is to perform the checks with a high proba-
bility of rollback at the beginning of transactions.

These considerations lead to a simple feedback method to
improve the pattern of transactions that execute a set of
constraints.

Guideline for tuning constraint checking under EMVZPL

(1) Evaluate the lock contention

(2) Evaluate the system load

(3) If the system is under-utilized because of lock con-
tention then:

(a) Find the constraints that are involved in a lot of
lock conflicts. If they are not often violated, try
to execute them in a deferred mode.

103

(b) Find the constraints that are involved in very few
lock conflicts, and try to execute them at the be-
ginning of transactions.

(4) If lock contention is low, find the constraints that are
very often violated and try to execute them at the
beginning of transactions.

5 Related Work
An extensive literature addresses the problem of design-
ing concurrency control algorithms that augment the per-
formance of concurrent transactions. Our work directly
builds 011 previous work on MV2PL protocols ([CFL+82],
[BHG87], [AK91], [MPL92)), but differs from those by fo-
cusing on the problem of optimizing read operations in
update transactions.

To avoid thrashing due to read operations a first so-
lution is to use S2PL with a “read committed” locking
level (also called locking isolation level 2). A transaction
running under this level uses short duration read locks.
Unfortunately, such a consistency level may lead to con-
straint violation anomalies as demonstrated in [BBG+95].
EMVZPL avoids these anomalies by ensuring serializability
of transactions.

Another solution is to use versions to increase concur-
rency between t,ransactions is with the Snapshot Isolation
multiversion protocol [BBGf95]. In this protocol, a trans-
action T executing a read(x) operation always reads the
most recent version of 2 that has been committed before
t,he beginning of T, later called Start-Tim& of T.
Therefore, T reads a snapshot of the database as of the time
it started. Updates performed by transactions that are ac-
tive after T’s start-Timestamp are invisible to T. When T
is ready to commit, it gets a Commit-Time& greater
than any existing Start-Timestamp or Commit-Timestamp.
Then, T successfully commits only if no other transac-
tion with a Commit-Timestamp belonging to T’s inter-
val: [Start-Timestamp, CommiLTimestamp] wrote data
that T also wrote. Otherwise, T aborts. When T com-
mits, its changes become visible to all transactions whose
Start-Timestamp are larger than T’s Commit-Timestamp.
The Snapshot Isolation admits a simple implementation
modeled on the work of Reed [Ree81]. Unfortunately, snap-
shot Isolation does not guarantee serializability and may
lead to constraint violation anomalies as demonstrated in
in [BBG+95].

The 2V2PL multiversion protocol authorizes the use of
versions in update transactions, and guarantees serializ-
ability of transactions. In this protocol, there are three
modes of locks associated to each lock unit: read lock (r),
write lock (.w) and certification locks (c). The correspond-
ing compatibility matrix is the following:

r W C

r compatible compatible not compatible
W compatible not compatible not compatible
c not compatible not compatible not compatible

After each read (resp. write) operation, a r lock (resp. w
lock) is taken. A read(x) operation always accesses the last
committed version of x. At the end of the transaction, w

locks are converted into c locks, and the transact,ion mm-

mits if and only if all the w locks have been successfully
converted into c locks. To compare EMV2PL with 2V2PL,
we compare the set of serializable histories that they admit.
In fact , EMV2PL accepts histories that are not accepted
by 2V2PL and conversely as shown by the following exam-
ples.

Example 5.1 Suppose we have two WIR transactions Tl
and T2, and consider the following history:

vi(x) rl(t) w2(y) d(y) r2Cy) c2 I-l(z) cl

If we assume that the read part of Tl contains the rl(t),
rl(y) and rl(z) operations and the read part of T2 con-

tains r2(y), then EMVZPL accepts t,his history. Indeed,
T2 is never blocked since T2 does not, access an item al-
ready locked by another transaction and can commit as
soon as all its operations are performed. Moreover, since
Tl reaches its lockpoint before T2, Tl cannot be blocked
by the locks taken by T2 on y. 2V2PL does not accept this
history: before committing, T2 must convert its ‘UI lock on

y into a c lock. To do this, T2 must wait that Tl releases
its r lock on y. Thus T2 must wait until Tl commits.

Consider now two transactions T3 and T4 and the fol-
lowing history:

v3(x) r4(x) v4(y) c4 v3(z) c3

2V2PL accepts this history. Indeed, T4 can commit since
it takes a w lock on a item that is not accessed by another
transaction. On the contrary, EMV2PL does not, accept
this history because T4 is not a W(R transaction and hence
the r4(2) operation must take a lock on 2:; Since z is locked
by T3, T4 must wait until T3 commits. 0

So far, the largest body of work on the enforcement of se-
mantic integrity constraints has focused on efficient algo-
rithms to detect if a constraint is violated. The problem of
optimizing the execution of multiple integrity checks within
a transaction has been first addressed in [BP79]. This pa-
per compares the performance of different constraint check-
ing policies (including the check-before-write and the write-
then-check methods) and show that the check-before-write
method is the most efficient (in terms of transaction re-
sponse time) because it avoids redundant computations
and expensive rollbacks. However, all these works do not
consider the possible concurrency between transactions.

A very few research papers have addressed the problem
of optimizing the throughput of concurrent transactions
that perform integrity checks. The Commit-LSN method,
proposed in [MohSO], is used (among other things) to avoid
taking a lock when checking a referential integrity con-
straint. More precisely, no read lock is acquired on data
items involved in a “no action” referential integrity con-
straint 6 if (i) the constraint is satisfied, and (ii) a property
of the Commit-LSN is verified. In contrast, our proposal is
not limited to referential constraints (verified or not) but
can be applied to any integrity check as long as it does not
require new write locks. However our method only applies
to WIR transactions.

Gimmediate or deferred

104

6 Conclusions [BC92]

EMVSPL is a simple yet efficient extension of MV2PL
which enables a W]R transaction that has acquired all its
write locks to (i) release its read locks, and (ii) execute
new read operations on versions without taking locks. In
[LST97], we proved the correctness of this protocol, and
showed that its implementation only requires a few changes
with respect to an existing implementation of MV2PL. Per-
formance studies show that for workloads containing W]R
transactions, EMV2PL can significantly improve the over-
all throughput of transactions (i.e., W]R, and W transac-
tions), with a relatively small utilization of versions.

We then presented a specific, yet important, applica-
tion of our protocol to the problem of integrity checking.
We described various possible methods for implementing
integrity checking. For ‘read-only” integrity checks, we
showed that: if the probability that a transaction violates
integrity is small, then checking integrity at the end of
transactions run under EMVZPL, is the method that of-
ten achieves the best total transaction throughput. Hence,
(declarative) deferred checking generally offers better per-
formance that immediate checking for “read-only” integrity
checks, which in our view relaunches the interest of imple-
menting deferred assertions and deferred triggers in rela-
tional database systems.

We foresee two directions of future work. One is to
extend our simulation experiments to handle non uniform
lock conflicts between data items. An interesting applica-
tion of this is given by “summary tables”, which consist
of materialized views computed from base relations. Re-
lations MaxRisk and MinRisk in the example of Section
2 are two examples of summary tables. These tables are
quite frequent in decision support applications and for in-
tegrity checking. We plan to investigate the performance
of EMVZPL in application scenarios where summary tables
are read at the end of transactions. Another direction is to
compare more in depth the performance of immediate ver-
sus deferred checking by taking into account the respective
overheads associated with these two methods.

Acknowledgments
We are grateful to Anthony Tomasic for his detailed com-
ments that enabled to improve this paper. We also thank
Francoise Fabret, Angelika Kotz-Dittrich, C. Mohan, and
Dennis Shasha for constructive discussions about the pa-
per.

References

(AK911 D. Agrawal and V. Krishnaswamy. Using mul-
tiversion data for non-interfering execution of
write-only transactions. Proc. ACM SIGMOD
Int. Conf. on Management of Data, Denver,
Colorado, 20:98-107, May 1991.

[BBG+95] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A critique of ansi sql
isolation levels. Proc. of the ACM SIGMOD
Int. Conf. on Management of Data, San Jose,
California, pages 1-8, May 1995.

[BHG87]

[BP791

[CFL+82]

[CKLSO]

[LST97]

[Me1931

[MohSO]

[MPL92]

[ReeSl]

[SLSVSS]

[ThoSl]

P. M. Bober and M. J. Carey. On mixing queries
and transactions via multiversion locking. Proc.
Int. Conf. on Data Engineering, Tempe, Ari-
aona, pages 535-545, February 1992.

P.A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recovery in
Database Systems. Addison-Wesley Publishing
Company, 1987.

D.Z. Badal and G.J. Popek. Cost and per-
formance analysis of semantic integrity valida-
tion methods. Proc. ACM SIGMOD Int. Conf.
on management of Data, Boston, Mass., pages
109-115, 1979.

A. Chan, S. Fox, W.K. Lin, A. Nori, and D.R.
Ries. The implementation of an integrated con-
currency control and recovery scheme. Proc.
ACM SIGMOD Int. Conf. on Management of
Data, Orlando, Florida, pages 184-191, June
1982.

M.J. Carey, S. Krishnamurthy, and M. Livny.
Load control for locking : the half and hall
approach. Proc. ACM Symposium on the
Principles of Database Systems, 1990. voir
lck.Carey.89.

F. Llirbat, E. Simon, and D. Tombroff. Us-
ing versions in update transactions: Applica-
tion to integrity checking. Technical report,
INRIA, 1997. extended version, available at
http//rodin.inria/personnes/francois.llirbat.

J. Melton, editor. (ISO/ANSI Working Draft)
Database Language SQLJ. Number ANSI
X3H2-90-412 and IS0 DBL-YOK 003. Febru-
ary 1993.

C. Mohan. Commitlsn: a novel and simple
method for reducing locking and latching in
transaction processing systems. Proc. of the
16th Int. Conf. on Very Large Data Bases, Bris-
bane, Australia, pages 406-418, August 1990.

C. Mohan, H. Pirahesh, and R. Lorie. Efficient
and flexible methods for transient versioning of
records to avoid locking by read-only transac-
tions. Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, San Diego, California, pages
124-133, June 1992.

D. Reed. Implementing atomic actions decen-
tralized data. ACM TOCS, 1981.

D. Shasha, F. Llirbat, E. Simon, and P. Val-
duriez. Transaction chopping: Algorithms and
performance studies. ACM ‘i?ansactions on
Database Systems, 20(3), December 1995.

A. Thomasian. Performance limits of two-phase
locking. Proc. Int. Conf. on Data Engineering,
pages 426-435, April 1991.

105

