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Abstract 

The explosion in complex multi-media content 
makes it crucial for database systems to support 
such data efficiently. We make the case that 
the next generation of object-relational database 
systems should be based on Enhanced Abstract 
Data Type (E-ADT) technology, rather than on the 
“blackbox” ADTs used in current systems. An 
E-ADT is an abstract data type that exposes the 
semantics of its methods. Query optimizations are 
performed using these semantics, resulting in ef- 
ficient query processing. The added functionality 
does not compromise the modularity of data types 
and the extensibility of the type system. Funda- 
mental architectural changes are required to build 
such a database system; these have been explored 
through the implementation of E-ADTs in Predu- 
tor. Initial performance results demonstrate an 
order of magnitude in performance improvements. 

1 Introduction 

We are witnessing an explosion in the volume and com- 
plexity of digital information that people want to access and 
analyze. If a DBMS is to appeal to application developers, 
it must support complex data types like geographic entities, 
chemical and biological structures, financial time-series and 
multi-media objects. Further, the level of functionality and 
performance should be comparable to special-purpose sys- 
tems. Many relational database vendors are currently build- 
ing “object-relational” extensions to support complex data. 
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Current object-relational databases (OR-DBMSs) model 
complex content as “blackbox” abstract data types (ADTs), 
with procedural methods that can be used within SQL 
queries. While the DBMS optimizes relational operations 
like joins, there is hardly any optimization for ADT me& 
ods. Obviously, queries perform poorly if most of the exe- 
cution cost occurs in expressions involving ADT methods. 
Instead, we propose the concept of Enhanced Abstract Data 
Types (E-ADTs) which expose the semantics of their meth- 
ods to the DBMS. This allows the system to choose any 
specific implementation of each method, and importantly, 
to optimize expressions involving a combination of method 
invocations. For example, Sharpen(Clip(Image, Region)) 
is likely to be more efficient than Clip(Sha?pen(Image), Re- 
gion). Essentially, the use of E-ADT methods in an SQL 
query becomes declarative, rather than procedural. While 
E-ADTs are a simple idea, it is a non-trivial task to build a 
system that supports them. Several questions arise: what is 
the right architecture?, what are the right abstractions?, what 
are the appropriate internal interfaces? We are building the 
Predator object-relational database system to address these 
questions. Several E-ADTs have been developed for com- 
plex types like images, audio, video, rasters, polygons, etc. 
Our implementation indicates that E-ADTs are practical, and 
our experiments suggest the orders of magnitude in resulting 
performance improvements. 

This paper has three goals: (1) to make the case that 
object-relational databases should be based on E-ADTs , 
(2) to demonstrate that E-ADTs are practical, based on the 
Predator implementation, (3) to open up new research op- 
portunities on ways to improve and extend the functionality 
of E-ADTs. 

1.1 Background 
Most OR-DBMSs support type extensibility; new data types 
can be added to the system without changes to the exist- 
ing code. The basic technology used is that of Abstract 
Data Types (ADTs), which was adapted from program- 
ming language concepts [Gut77, LZ74] to databases in the 
1980s [SRG83, St0861 in the Postgres [SRH90] system. The 
DBMS maintains a table of ADTs, and new ADTs may be 
added by a database developer. Each ADT implements a 
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common internal interface through which the system can 
access and manipulate values of that type. The internal 
interface includes dictions for the storage and indexed re- 
trieval of values. Each ADT can also declare primitive 
methods for manipulating or querying values of the type. 
For example, an ADT for images might provide methods 
Sharpen(I), Clip@, Region), and Overlay(Il,I2). Complex 
data types like images usually define a large number ofprim- 
itive methods, that can be composed to form meaningful ex- 
pressions. For example, Overlay(Sharpen(II), Clip(I2, { 0, 
0, IOO,200})) is an expression over images II and 12. Such 
expressions can be embedded within an SQL query, thereby 
providing an expressive query capability over image data. 
Libraries of primitive methods for each ADT are sometimes 
called “datablades” (Informix), “data extenders” (IBM), or 
“data cartridges” (Oracle). 

There are two characteristics of the current support for 
ADTs that we should note. (1) Each ADT, along with its 
methods, is built modularly, so that it can be added to or 
removed from the OR-DBMS without affecting the rest of 
the system. In other words, each ADT is a “blackbox”. 
(2) The DBMS understands minimal semantics about each 
method of the ADT. The method is merely a name and type 
signature for a function, often written in C or C++’ . Existing 
systems also allow some simple semantics about methods 
to be defined: does it have side effects or not?, what is the 
cost of the method?, etc. Beyond this, each ADT method is 
a “blackbox” to the DBMS. This is the current state-of-the- 
art, which we refer to in this paper as the “blackbox” ADT 
approach. The proposed E-ADT paradigm eliminates the 
second cbaract&stic (blackbox methods) while retaining 
the first characteristic (modular ADTs). 

Several commercial database systems are adding support 
for blackbox ADTs. In practice, while many simple ADTs 
are added by database users, the important complex ADTs 
(like images) and their method libraries are usually written 
by experienced system developers. As the standardization 
of methods on these complex ADTs occurs2, one can expect 
more efforts to be directed at building efficient implemen- 
tations of them. 

Two important issues not dealt with in this work are 
search and indexing techniques for complex data types, and 
delivery systems for continuous media types. These are 
topics of ongoing and future work. 

2 Motivation 
E-ADTs are motivated by a simple observation: meth- 
ods on complex ADTs can be expensive (for example, 
Sharpen(‘mage)). In fact, the cost of ADT methods of- 
ten dominates the overall execution cost of a query. Clearly, 

‘SQL-3 will allow functions to be written using SQL too 
*The SQL3 Multi-Media standards group is currently defining meth- 

ods for full-text, spatial data and general mathematical data. Future data 
types to be standardized include still-images, still-graphics, animation, 
full-motion video, audio, seismic data, and music. 

query processing and optimization should attempt to reduce 
the cost of ADT methods. There are two issues to con- 
sider: 
l What are possible optimizations on ADT methods? 

l How can the optimizations be applied systematically? 

2.1 Possible Optimizations 

Consider an OR-DBMS based on blackbox ADTs, and as- 
sume that an image ADT has been added with the methods 
Sharpen(l) and Clip(I, Region). While image data is stored 
on disk in a compressed format (like JPEG), the ADT meth- 
ods are implemented on an uncompressed main-memory 
image data structure (like an RGB array). Consequently, 
the image argument of any method is converted to its main- 
memory uncompressed form before an method is invoked 
on it. 

An earth scientist maintains a table of geographic data, 
each entry having a satellite photograph and several other 
columns. An SQL query posed against this database may 
include an expression over the photographs: 

SELECT Clip(Sharpen(G.Photo), 0, 0, 100,200) 
FROM GeoData G 
WHERE G.Region = ‘arctic’ 

The query asks for a sharpened portion of each photograph 
of the arctic region. The cost of this cpler)8 is dominated by 
the methods on the images. We now describe the evaluation 
of this query using the biackbox ADT approach. For every 
data entry corresponding to the arctic region, the Photo 
attribute is retrieved from disk and decompressed into a 
main-memory image. The Sharpen method is then applied 
to it, and the resulting image is written to a compressed 
disk-resident form. The CZip method is then applied with 
the intermediate result image as its input. This input image 
is decompressed to a main-memory form, it is clipped to 
the desired dimensions, and the resulting image is written 
out to disk. Current OR-DBMSs like Illustra [I11941 and 
Paradise [DKL+94] use essentially this approach with some 
individual modifications; we mention these variations at 
length in Section 5. 

One could improve this execution strategy as follows: 
l It is unnecessary for Sharpen to compress and write its re- 
sult to disk. Instead, it could be passed directly in memory 
to Clip. This requires that the methods not be evaluated in 
isolation; instead, the system should recognize that these 
methods are part of a larger image query expression. This 
is a change to the blackbox ADT approach, which treats 
methods as isolated black-boxes3. 

l Sharpen is an expensive method, whose cost depends on 
the size of the image. It would be cheaper to evaluate the 
equivalent expression Sharpen(Clip(G.Photo, (0, 0, 200, 

3Section 5 describes how Paradise uses caching to support this without 
visibly changing the ADT approach. 
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100))). By performing Clip early, there can be signifi- 
cant reductions in the cost of Sharpen. This requires the 
entire image query expression to be “optimized”. The op- 
timizations could be applied heuristically, but preferably 
in a cost-based manner. To the best of our knowledge, 
no existing OR-DBMS can apply such optimizations in a 
heuristic manner, let alone in a cost-based manner. An 
obvious question might be: why not require that the user 
write the query in an efficient manner? The answer is 
two-fold: (1) the choice of the most efficient expression 
may depend on costs and statistics that users may not 
be aware of, (2) queries are often created automatically, 
through GUIs, involving the merging of several views. It 
is, therefore, quite likely that inefficient E-ADT method 
expressions will exist in queries. 

l If Clip is applied before Sharpen, the entire image does 
not need to be retrieved from disk. Only the appropriate 
portion of the image is needed4. Performing such opti- 
mizations requires a further enhancement to the system: 
the ADT methods should control the retrieval of the un- 
derlying ADT values. 
The blackbox ADT approach violates a basic principle 

of database systems: queries should be declarative. The 
textual representation of an expression should not specify 
an evaluation plan. When the expression is treated declara- 
tively, the combination of these optimization strategies can 
lead to performance improvements of an order of magnitude. 
Similar improvements can be applied to ADT expressions 
involving other complex data types. The actual optimiza- 
tions are drawn from the semantics of the data type. When 
we apply these semantics in a database environment, we can 
identify four broad categories of optimizations: 
l Algorithmic: Using different algorithms for each method 
depending on the data characteristics. For example, the 
best algorithm to use for the Multiply method on two ma- 
trices depends on the sizes of the matrices and the amount 
of memory available. 

l Transformational: Changing the order of methods. The 
motivating example shows how Clip can be applied before 
Sharpen. In fact, the entire equational theory of the data 
type can be augmented with cost information to specify 
transformational optimizations. 

l Constraint: Pushing physical constraints through the ex- 
pression. The constraints may involve selecting a portion 
of the data, specifying a certain data resolution, or requir- 
ing a particular physical property. Consider the expres- 
sion on images: ChangeResolution(Sharpen(l), Res). The 
knowledge of the desired resolution can be used to ensure 
that Sharpen is applied to a low resolution image. 

4When compression is used in storing the images, it is not always 
possible to retrieve a random portion of an image. For example, with the 
popular JPEG compression technique, the entire image needs to be retrieved 
sequentially. There are other compression techniques and variants ofJPEG 
that allow a selective portion ofthe image to be retrieved and decompressed. 
[DKL+94] discusses these issues in more detail. 

l Pipelining: Pipelining execution of methods to avoid 
materializing intermediate results. This is crucial for large 
data types like audio and video. It may not be possible to fit 
an entire uncompressed audio (or video) object in memory. 
The only reasonable way to access the data is to iterate over 
it (i.e. to treat it as a stream). When a sequence of methods 
has to be applied to such a large object (for example, 
IncrTreble(DecrVolume(Audio))), pipelining the methods 
is clearly better than generating entire intermediate results 
for each method. 
As an analogy, consider how a “Relation” ADT would be 

supported. The relational algebra primitives would be the 
ADT methods. Queries on relations would be formed syn- 
tactically as relational algebra expressions and executed in 
the order specified, without any query optimization! Yet it is 
accepted today that relational queries should be declarative. 
The choice of join algorithms is an Algorithmic optimiza- 
tion. The choice of join order, and selection pushdown 
are Transformational optimizations. The use of “interest- 
ing order” in join optimization is a Constraint optimization. 
Pipelined join execution is a Pipelining optimization. We 
know that these query optimizations can greatly improve 
performance. Likewise, in next-generation applications, 
ADT expressions that dominate query execution cost should 
be treated declaratively and optimized. 

2.2 A Framework to Apply the Optimizations 

It is not sufficient to observe that these optirnizations are 
possible. There must also be an architectural framework to 
specify and apply them in a correct and cost-based manner. 
At the same time, the type system should remain extensible, 
so that new types can be added incrementally. Continuing 
with the example using images, we note that: 
l The best algorithms used for each method can depend 
on the size of the input image, the amount of memory 
available, the storage format of the image, and the values 
of arguments to the method. 

l For any complex expression involving multiple image 
methods, there are several possible evaluation plans. 

l Deciding between different plans requires cost-based op- 
timization of the image expression. 

l The image expression may be evaluated several times 
during the course of the query. Its evaluation plan should 
be chosen before the query starts executing, because it is 
unreasonable to repeatedly explore the options at runtime. 

l The cost of the chosen plan is used by the SQL optimizer 
to “place” the evaluation of the expression at the appro- 
priate position in the join evaluation tree [He195, CS96]. 

l In order to perform compile-time optimization, collec- 
tive meta-information like the storage formats and size 
statistics need to be maintained over all the pertinent im- 
ages (in this case, over all photographs in the GeoData 
table). 
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l The me&information maintained and the optimizations 
to be applied are specific to each individual ADT. 
Current OR-DBMSs do not perform such optimizations; 

further, they lack the structural framework to do so. In 
contrast, Predator is a practical demonstration of an archi- 
tectural framework in which E-ADT optimizations may be 
applied. While the low-level implementation details are 
described in [SLR97], this paper describes the high-level 
system design. 

3 Predator and E-ADTs 

An Enhanced Abstract Data Type (E-ADT) enhances the 
concept of blackbox ADTs in database systems to improve 
the performance of query processing. The E-ADT paradigm 
has the following components: 
l The methods of every E-ADT should be declarative 
(rather than procedural) expressions. 

l The combinations of E-ADT methods should be declar- 
ative expressions. 

l The optimization and execution of these declarative ex- 
pressions should involve the semantics of the E-ADT. 

l The modularity and extensibility of the database type 
system should not be compromised. 

The last criterion (modularity) leads to a design requirement 
that the new capabilities or enhancements for complex data 
types be encapsulated behind standard interfaces. Specifi- 
cally, in addition to providing the standard ADT functional- 
ity, each E-ADT may support one or more of the following 
enhancements through a uniform internal interface. 
a Query Operators and Optimization: An E-ADT can pro- 
vide an optimization interface that will translate a method 
expression into a query evaluation plan in its own evalua- 
tion algebra. 

l Query Evaluation: An E-ADT can provide routines to 
execute the optimized plan. 

l Catalog Management: An E-ADT can provide catalog 
routines so that schema information can be stored and 
statistics maintained on values of that E-ADT . 

l Storage Management: An E-ADT can provide multiple 
physical implementations of values of its type. Some 
existing OR-DBMS systems already support this feature. 
PredatoG is a client-server OR-DBMS in which the 

server is a loosely-coupled system of E-ADTs. A detailed 
description of the system is presented in [SLR97]. The 
high-level picture of the system is shown in Figure 1. The 
core of the system is a main-memory table in which E- 
ADTs are registered. The server is built on top of a layer 
of common database utilities that all E-ADTs can use. An 
important component of the utility layer is the SHORE Stor- 
age Manager [CDF+94] library, which provides facilities for 

‘Predaror stands for the PRedator Enhanced DAta Type Object Rela- 
tional DBMS 
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Figure 1: Predator System Architecture 
persistent storage, concurrency control, recovery and buffer 
management. 

Some of the basic types like integers do not support 
any enhancements. The figure shows two E-ADTs that do 
support enhancements: relations and images. Note that 
relations are also modeled as just another E-ADT! Several 
other E-ADTs including audio, polygon and raster have been 
added. A complex value like an image can be a field within 
a relational tuple. Since the type “relation” is also modeled 
as an E-ADT, nested relations can be supported. Object- 
oriented concepts like identity and inheritance are mostly 
orthogonal to the issues addressed by this research. 

Queries are processed by one of a collection of query 
processing engines, that use the E-ADTs. In this paper, we 
focus on the SQL query processing engine. An important 
feature of the system design is that E-ADTs are modular, 
with all E-ADTs presenting an identical internal interface. 
This serves a dual purpose: 
l The development of optimizations for each E-ADT can 
proceed independently. The extensibility of the system 
would be compromised if each E-ADT had to be aware of 
all the other E-ADTs in the system. 

l The interaction between the E-ADTs (especially between 
the SQL query processing engine and the individual E- 
ADT expressions) is crucial. Because of the uniform 
internal interface of E-ADTs, the design of this interaction 
is independent of the details of each E-ADT. 

3.1 Interaction between Data Types in Predator 

Let us revisit the example query: 

SELECT Clip(Sharpen(G.Photo), 0, 0, 100,200) 
FROM GeoData G 
WHERE G.Region = ‘arctic’ 
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This query has an image expression embedded in the SE- 
LECT clause. How is this image expression handled? We 
present a simplified discussion. When the SQL engine 
parses the query, it passes the image expression to the im- 
age E-ADT , which performs type checking and returns an 
opaque parse structure (ParseStruct). 

Query Optimization: The optimization of an SQL 
query uses cost-based techniques to search for a cheap eval- 
uation plan from a large space of options. Typically, all 
sub-expressions need to be optimized before the SQL query 
can be optimized. To optimize the image sub-expression, 
the following interface of the image E-ADT is invoked: 

Optimize(in: ParseStruct, in: ArgPlans, out: PlanStruct); 

Optimize0 takes the ParseStruct generated by parsing the 
image expression, and evaluation plans for its arguments, 
and returns a generic PlanStruct that represents an evalua- 
tion plan for that expression. The PlanStruct will only be 
interpreted by the image E-ADT. The PlanStruct has a well- 
known Cost0 interface. The SQL optimizer uses this cost 
estimate to help determine the best plan for evaluating the 
SQL query. If the image expression is very expensive, it 
may be preferable to apply it as few times as possible. 

Query Evaluation: The SQL query is evaluated based 
on its execution plan. While executing the SELECT clause, 
the image expression is evaluated through the following 
interface of the image E-ADT : 

Evaluate(in: PlanStruct, in: ArgValues, out: ReturnValue); 

Evaluate0 is passed the plan for the image expression and 
the value of its argument (G.Photo). The image E-ADT ex- 
ecutes the optimized image expression, and the return value 
is used to continue with the computation of the SQL query. 

To summarize, the query is broken into components that 
correspond to method expressions of each E-ADT. Each 
method expression is treated as a declarative query and is 
optimized, and executed by its own E-ADT . 

3.2 Opportunities for Optimization 

Where do opportunities for E-ADT optimizations arise? As 
in the example, E-ADT method expressions in the SELECT 
and WHERE clauses of SQL queries are obvious candidates 
for optimization. Several commonly used data types have 
libraries of methods that form an algebra. Consequently, 
opportunities to optimize method expressions often exist. 

There are two other cases where E-ADT optimizations 
can be beneficial. 
l Aggregates: Aggregate methods are very important 
in “summarization” queries involving multi-media data 
types. For example, the Sequoia benchmark [SFGM93] 
includes a query that computes a weighted average of a 
number of clipped raster images. The query might equiva- 
lently be have been expressed as computing the average of 
the entire images, followed by a clip of the desired region 
of the averages. 

l Function Path Indexing: Indexes in object-relational 
systems are often created on complex “paw expressions 
involving composed functions. The creation time for the 
index depends on the cost of computing the indexing ex- 
pression. E-ADT optimizations enable the expression to 
be executed efficiently, thereby accelerating index cre- 
ation. 

4 Initial Performance Results 

The purpose of this section is to demonstrate the orders of 
magnitude ofperformance improvements that arise from the 
E-ADT paradigm. While the results are not unexpected, it 
is nonetheless interesting to observe the dramatic effects of 
simple optimizations. We use an image E-ADT as the pri- 
mary example to demonstrate performance improvements. 

We use a simple data set containing 74 images of cars, 
compressed using JPEG. A Curs relation is created, with a 
name assigned to each image. Each image column value 
contains an Id for the image and its bounding box infor- 
mation. The size of the compressed images ranges from 
23K to 266% with an average of 65K. This is a relatively 
small amount of data, but it serves to demonstrate the issues 
involved. The average size of the uncompressed images 
in memory is 0.8MB representing more than a lo-fold in- 
crease from the size on disk. Standard JPEG libraries are 
used to perform compression and decompression. Experi- 
ments were run on a Sparc20 machine with 8 ME! used as 
a database buffer pool (a small size to match the small data 
set). The buffer space was sufficient to hold the compressed 
data, and each individual uncompressed image easily fit in 
physical memory. The system is CPU-bound in all these 
experiments, since the image methods are expensive. The 
queries were chosen to be the simplest possible demonstra- 
tions of different optimizations. Real queries are likely to 
be more complex than these. All queries were run several 
times and average execution times were recorded. 

Experiment 1: The fhst experiment examines the effects 
of the Pipelining optimizations. We noted in Section 2 that in 
the ADT approach, each method reads (and decompresses) 
its input from a disk-based representation, and writes (and 
compresses) its output. We call this strategy DISK. An 
improvement is to pass intermediate results in their main- 
memory form. We call this strategy MEM. Finally, if there 
is a sequence of methods, we could pipeline their execution 
by establishing an image row iterator. We call this strategy 
PIPE. We expect PIPE to be significantly better than MEM 
only when the intermediate results are larger than main- 
memory. This is not the case for these images. 

SELECT Height(Negative(C.picture)) 
FROM Cars C; 

In the query above, Negutiveo, which inverts the pixel val- 
ues, is a relatively cheap method. For all three strategies, 
C.picture must be read and decompressed. The DISK strat- 
egy compresses and writes the result out, whereas the MEM 
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strategy does not. The Height method is applied so that 
the display time for the result does not distort the mea- 
surements. The height is obtained from the image bound- 
ing box, so the actual image is not required. We disable 
any optimizations that move Height ahead of other meth- 
ods. We gradually vary the query by introducing addi- 
tional invocations of Negative(). For instance, SELECT 
Height(Negative(Negative(C.picture))) requires one addi- 
tional compression and decompression using the DISK strat- 
egy. The results are shown in Figure 2. Along the X-axis 
is the number of Negative methods in the SELECT clause. 
The Y-axis shows the execution time. 

As the number of methods in the image expression in- 
creases, the effect of the compression and decompression at 
the image boundaries dominates. Consequently, the MEM 
strategy which avoids these unnecessary costs is signifi- 
cantly cheaper than DISK. PIPE performs only marginally 
better than MEM, since the intermediate results fit easily in 
memory. For the rest of the image experiments, the MEM 
strategy has been used as the default. 

Experiment 2: The second experiment examines the 
effects of Transformational and Constraint optimizations. 
The following query is used: 

400 
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- MEM 
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Figure 2: Effect of Pipelining 

? 

FROM Cars C; 
SELECT Height(Clip(Blur(C.picture, <radius>), <region>)) 

The result of a Blur method is an image in which every 
pixeI’s vahte is the average of the pixels within radius of it 
in the input image. Blur is an expensive method, especially 
when radius is large. In the standard ADT approach, the 
images will first be blurred, then clipped to the appropriate 
region. We call this the STD strategy. Using the transforma- 
tional optimization of reordering, Clip could be performed 
before Blur. We call this the ORD strategy. Finally, if Cl@ 
is being performed first, it can use the region to constrain 
the retrieval and decompression of the images. We call this 
the ORD+ strategy. 

-- ORD+ 

. 
.- 

. , ’ I ’ I , 1 

0 20 40 60 80 100 
clip % 

Figure 3: Effect of Varying Clip Size 
4oo ! -.- STD 
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Figure 3 shows how these strategies perform when the 
Blur radius is fixed at 2 and the size of the Clip region is 
varied as a percentage of the image size. Since blurring 
an image is expensive, both ORD and ORD+ perform very 
much better than STD when a small region needs to be 
clipped. Further, it is evident that ORD+ is also significantly 
better than ORD because it requires a smaller portion of 
each image to be retrieved an decompressed. As the size of 
the Clip region increases, the absolute difference between 
ORD and ORD+ decreases because the savings due to the 
Constraint optimization are reduced. The relative difference 
also decreases because Blur starts to dominate the cost. 

Figure 4 fixes the Clip region at 10% of the image size, 
and varies the Blur radius from 1 to 5. As the radius 
increases, the cost of the blurring grows quadratically. For 
the STD strategy, since this is the dominant cost, the overall 
execution time also grows quadratically. In comparison, 
in ORD and ORD+, the clips are performed early. The 

,-c--- e-- ------ 
I 1 I 

0 2 4 6 
blur radius 

Figure 4: Effect of Varying Blur Radius 
Without Optimization With Optimization 
79.5 sets 0.58 sets 

Figure 5: Effect of Optimization 
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difference between ORD and ORD+ is the difference in 
the retrieval costs; it is evident that the execution time of 
ORD is dominated by the retrieval and decompression time. 
Consequently, the exponential change in the Blur cost is not 
apparent. 

Experiment 3: The third experiment demonstrates a 
very simple optimization. Consider the query below: it 
needs to find the area of overlap between pairs of images. 
There is really no physical requirement to compute the actual 
overlap of the images; their bounding boxes contain the 
necessary information to find the area of overlap. This 
can be thought of as either a Transformational optimization 
(changing Overlap to a different function), or a Constraint 
optimization (pushing the physical requirements into the 
computation of Overlap). The result is greatly improved 
performance. Figure 5 shows the difference. 

SELECT Area(Overlap(C 1 .picture, C2.picture)) 
FROM Cars C 1, Cars C2 
WHERE CZ.name = “Alfa-RomeoSC-2300”; 

Summary of Experiments: Each of the demonstrated 
optimizations can result in very significant improvements. 
Their combination clearly leads to orders of magnitude in 
performance gains. It is clear that even for these extremely 
simple queries, the E-ADT optimizations are radically more 
effective than the blackbox ADT approach. In practice, 
queries tend to be more complex than our examples, and the 
effects of optimization are even greater. 

5 Discussion of the E-ADT Paradigm 
We now conduct a short discussion of the proposed E- 
ADT paradigm. There are several complex data types 
that are amenable to optimizations. We are in the pro- 
cess of building E-ADTs for several of them. Prominent 
among these are the multi-media types like images, audio 
and video, and the geographic types like points, polygons 
and rasters. Optimization opportunities also exist for math- 
ematical data types like matrices, financial types like time- 
series, and chemical structures like molecules. Due to lack 
of space, we do not describe them in further detail. 

Creating a New E-ADT : An important concern is that 
the new enhancements might require a deep understanding 
of the workings of the DBMS, the internal interfaces, the 
cost metrics, etc. We have pushed much of this complex- 
ity into the Utility layer of Predator, and present suitable 
templates for data type developers. A developer takes the 
following steps to build a new data type like Image in Preda- 
tor: 
l Start with a template for a new E-ADT. The template 
contains a C++ header file with the appropriate class defi- 
nition and member function declarations. There is also a 
C++ source file with stubs for all the member tinctions. 

l Define Read0 and Write0 interfaces. This determines 
how the data wil be stored in the database, and involves 
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very little actual new code. With images, the entire image 
would be loaded into the storage manager, and a handle to 
it (its OID) would be stored within a record. 

0 Specify the structure of me&information, if any, that 
this E-ADT requires. 

l Write code for each of the actual methods that will be 
supported on Images. This is usually the most time- 
consuming component, but existing libraries can often 
be used (for example, free JPEG libraries exist). 

l Ensure that the method code is “registered” with the E- 
ADT ; this requires one line of code for each method. 

l Specify individual optimization rules. Each rule has a 
precondition and an action. Existing rule templates pro- 
vide the rule structure for the common categories of rules. 
Often, all that needs to be changed is the names of the 
methods that the rules match. More complex optimiza- 
tions require that new rules be written. 

l Register the rules with a rule engine. The utility layer 
pre-defines a simple rule engine class, so all that the E- 
ADT developer must do is register each rule (1 line of 
code each), and choose a search strategy (1 line of code). 

l Add the new E-ADT to the Makefiles and register it in the 
system-wide table of E-ADTs. The system must then be 
recompiled. We could extend Predator to allow dynamic 
loading of the E-ADTs instead. 

Of course, there are some other details involved, but they are 
not very significant or time-consuming. As class projects at 
Cornell in Fall 96, students built several E-ADTs using the 
image E-ADT as a template. One of our ongoing efforts is 
to build an E-ADT toolkit or “wizard” that will make it even 
simpler to develop new data types. The gdal is that most 
of the specification must happen through a point-and-click 
interface. Currently, a data type like Image uses a standard 
template and requires a few hundred lines of code (in ad- 
dition to the purely image-related algorithm code). All of 
the E-ADT enhancements are purely optional. The effort 
required to add a traditional ADT (with no E-ADT enhance- 
ments) to Predator is just the same as the effort required to 
add an ADT to a standard OR-DBMS. 

Postgres, Illusfra, and Informix: The issue of sup- 
port for ADTs in relational database systems was first ex- 
plored in [SRG83] and [Sto86]. This led to the devel- 
opment of the Postgres research DBMS [SRI-I901 and its 
commercial version, Illustra [11194]. The Postgres project 
explored issues dealing with the storage and indexed re- 
trieval of ADTs. It also stressed that functions associated 
with ADTs could be expensive, and that special relational 
optimization techniques are necessary when such dictions 
are present [Hel95]. The basic ADT approach described in 
Section 2 corresponds closely to Illustra’s support for ADTs. 
The results of every ADT method are written to disk, and no 
inter-method optimizations are considered [Ols96]. While 
Illustra does have a rule engine, it is not used to apply op- 
timization rules. Currently, Illustra’s technology has been 



integrated with the Informix Universal Server and extended 
to exploit parallelism. Several modifications are being made 
to improve the evaluation of ADT expressions [Ols96]. The 
main improvements allow functions to retain the results in 
main-memory, or to present an iterator interface that helps 
pipelined execution as well as parallel execution. Tmnsfor- 
mational and Constraint optimizations are not supported. 

The Paradise System: Among current research systems, 
the Paradise client-server DBMS [DKL+94] is developing 
ADT extensions for the parallel execution of methods on 
spatial, geographic, and scientific data. This work concen- 
trates on issues of scalable parallelism and the use of tertiary 
storage for large ADTs. The importance of parallelism for 
ADTs arises from the large size of complex data types, and 
the high cost of methods on them. The approach used is 
to partition large objects into “tiles” and define frmctions 
to work on one tile at a time. From the E-ADT viewpoint, 
parallelism is yet another benefit of declamtive ADT expres- 
sions. Paradise also reduces the overhead of passing results 
between functions by allowing each ADT to manage its own 
main-memory buffer of data; temporary results do not have 
to be written to disk. This approach has limitations for large 
data types like audio and video that do not fit in memory. 
Paradise does not support the re-ordering of ADT methods 
in either a heuristic or a cost-based manner. However, the 
tiling of objects allows a Clip function to simply retrieve the 
appropriate tiles rather than the whole image. 

Object-Oriented Databases: Early work on semantic 
data models incorporated domain semantics into relational 
query optimization. More recently, the 00-DBMS com- 
munity has been exploring techniques to optimize queries 
involving complex objects. Much of the work in object- 
oriented query optimization has focused on issues like path 
expressions [CD921 and not on method expressions, al- 
though [CD921 recognizes that methods can be very ex- 
pensive and merit further attention. While the OQL query 
language [Cat941 for 00 databases does permit a method to 
have several implementations, it does not suggest a mech- 
anism for choosing between these implementations. We 
direct readers to [MDK+94] for an excellent survey of 
work on query optimization for complex data types in OO- 
DBMSs. Most closely related to E-ADTs is the REVE- 
LATION project wK+94] which correctly identifies that 
the semantics of methods should be revealed to the query 
optimizer. There is a notion of a common object algebra, 
and every complex type expands (or “reveals”) its methods 
into expressions in the common algebra. In contrast, E- 
ADTs can use individual algebras to represent query plans 
for their expressions, since there is no notion of a global 
query optimizer. In [AF95], the actual method code was 
analyzed to determine the “meaning” of the method, which 
was then used in query optimization. We believe that this 
approach is not viable; most complex data types will be 
developed in some imperative programming language like 
C++ or Java. Instead, we allow the E-ADT developer to 

explicitly specify the method semantics. 
Other Related Work: Rule-based query optimizers 

have received much attention recently [GM93, CZ96]. A 
common misconception is that a rule-based optimizer in- 
stantiated with the appropriate rules (in this case, with rules 
for E-ADT optimizations) provides all that E-ADTs do. This 
ignores several crucial aspects of E-ADTs - the mainte- 
nance of meta-information, the support for multiple algo- 
rithms for the same method, the ability to define multiple 
storage formats, etc. Rules provide one specific structuring 
mechanism for optimization semantics - in fact, Preda- 
tor uses a rule engine to actually execute the optimizations 
for each E-ADT . An important distinction is that we pro- 
mote local spheres of optimization for each E-ADT , with 
possibly different control strategies, different kinds of rules, 
etc. On the other hand, conventional rule-based optimizer 
proposals do not have such notions of optimization locality. 
The closest in spirit are the “region” architecture for query 
optimizers proposed in [MDZ93], the “module” architec- 
ture proposed in [SSSO], and other research on extensible 
search strategies [RH87, LV91]. Our work differs in that 
it is focused on complex data type expressions, rather than 
relational expressions. In fact, we can make the interesting 
case that the E-ADT paradigm provides an excellent argu- 
ment in favor of optimizer toolkits in general, and rule-based 
optimizer toolkits [GM931 in particular! Since the DBMS 
has several mini-optimizers, one in each E-ADT, a toolkit 
for optimizer generation is needed. 

[CS93] suggests that queries involving “foreign” rela- 
tions can be optimized by specifying the semantics of the 
foreign relations through high-level rules. The rules are 
syntactic, and cost-based optimization is performed after an 
exhaustive application of the rules. 

Several distributed object broker architectures like 
CORBA and OLE have recently emerged. The capabili- 
ties of distributed objects are described using a common 
interface. The OLE-DB standard being promoted by Mi- 
crosoft [Bla96] supports the notion of a component database 
system with well-defined interfaces between different mod- 
ular components. However, there is a distinction between 
exporting query capabilities, and exposing query optimiza- 
tion semantics (as E-ADTs do). 

We should note that method transformations of the kind 
suggested in this paper are common in the functional pro- 
gramming community. The pipelining optimizations are 
similar to the use of lazy evaluation [Jon87]. While the 
early work on ADTs [Gut771 did emphasize the equational 
theory of the methods, this aspect was not carried into the 
use of ADTs in database systems. Our work corrects this 
oversight, and focused on optimizations based on statistics 
and costs in a database environment. 

Local vs Global Approach?: In contrast to our loosely- 
coupled approach of E-ADTs , others have taken a holistic 
approach. Instead of breaking a query into many compo- 
nents with local query optimization on each E-ADT ex- 
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pression, these approaches try to find a global solution. 
This requires that the entire query be modeled in an in- 
tegrated framework. AQUA [SLVZ95] and KOLA [CZ96] 
are algebraic frameworks proposed for this purpose, while 
CPLKleisli [Won941 is a framework based on comprehen- 
sions as a query language and monadic operations. These 
are all frameworks for collection types (like sets, bags, lists, 
and arrays). However, many important complex data types 
including multi-media types do not fall in this category. 

In theory, an integrated framework is bound to find at 
least as good an evaluation strategy as the E-ADT ap- 
proach, if not a better one, because the space of possible 
evaluation plans is at least as large. A DBMS specially 
built for relations and images should be able to perform 
better than Predator. We have localized the optimizations 
to the E-ADT boundaries, purely in order to preserve the 
modularity of the data types. If we are willing to break 
this modularity (for instance, if we wish to have rules that 
span multiple data types), then this is a trivial extension 
of the E-ADT paradigm (in fact, the Predator implementa- 
tion does support such extensions). However, any practical 
OR-DBMS must establish type modularity at some bound- 
ary, whether it corresponds to a single data type or a group 
of them. Any truly holistic query optimization approach 
compromises the extensibility of the system. 

6 Future Work 

SQL Query Optimization with E-ADT expressions: We 
have seen that E-ADT expressions can dominate the cost 
of an SQL query. One category of research issues deals 
with mechanisms to exploit interactions between relational 
query optimization and E-ADT query optimization. The 
blackbox ADT approach for executing expensive methods 
in SQL is to execute them once for each new combination 
of arguments. As an example using images, oVerlap(Il, 
I2) and Overlap(Il,I3) would be executed separately. If it 
were possible to execute the overlap of I1 with both 12 and 
13 at the same time, we could exploit locality by reading 
II only once from disk. As a generalization of this idea, 
any function can be executed with individual arguments, 
or can be called on a set of argument instantiations. The 
blackbox ADT approach cannot exploit this set-at-a-time 
strategy because the semantics of the ADT functions are not 
known to the DBMS. However, with E-ADTs , this is indeed 
feasible. 

Since E-ADT expressions are expensive, where should 
they be placed in the SQL query evaluation plan? Expensive 
function placement has traditionally been studied purely 
in a tnple-at-a-time execution context [He195, CS96], with 
caching offunction results (an exception to this is [CDY95]). 
The assumption has been that every ADT function has a 
fixed cost specified in the system catalogs. This assumption 
is not valid when ADT expressions are being optimized. 
Since these expressions may be able to provide more details 
on their evaluation plans (for example, the main-memory 

requirements), the SQL optimizer should be able to find 
better overall execution strategies (possible requiring set- 
at-a-time evaluation). 

Optimization across E-ADTs: It is possible to im- 
prove the interaction between E-ADTs using a mechanism 
whereby each E-ADT specifies its query processing capabil- 
ity. For example, if an E-ADT specifies that it understands 
the notion of a boolean corrective (AND or OR), the ex- 
pression f(X) AND g(x) in the WHERE clause of an SQL 
query could be replaced by the expressionfand-gfl). This is 
more efficient because X is only accessed once. In general, 
constraints and other such information should flow across 
the query optimization interfaces. It is an open problem to 
design such a mechanism and the appropriate E-ADT inter- 
faces. 

Open Issues: While the basic E-ADT paradigm has 
been presented here, many implementation details of Predu- 
tor have been omitted. There are several unresolved issues 
with respect to the systems design- how are statistics main- 
tained on E-ADTs?, how should recursive nesting of E- 
ADTs work?, how is cost information generated?. While 
we do have some existing solutions, these are topics that we 
are currently exploring further. 

7 Conclusion 

The E-ADT paradigm is a novel yet simple approach to 
database systems design. Every data type is given the op- 
portunity to share the semantics of its methods with the 
DBMS. This allows several types of complex data to be ef- 
ficiently supported within a single general-purpose DBMS. 
This paper makes the case that the next-generation of object- 
relational database systems should be based on E-ADTs. 
The Predator database system has been built as a demon- 
stration of the E-ADT paradigm. Initial performance re- 
sults provide empirical evidence of an order of magnitude 
increase in performance. 

Acknowledgments 
Mike Zwilling and Nancy Hall helped greatly with details of 
SHORE. lllustra Information Technologies, Inc. give us a free 
version of their database and time-series datablade. Kurt Brown, 
Mike Carey, David Dewitt, Joe Hellerstein, Navin Kabra, Jignesh 
Patel, Kristin Tufte, and Scott Vandenberg provided useful discus- 
sions on the subject of E-ADTs . Fred Schneider commented ex- 
haustively on a large part of this material, and greatly improved its 
presentation. Mike Olson discussed the techniques used to support 

ADTs in Illustra and lnformix Universal Server. The implemen- 
tation of Predator has been greatly aided by Fabian Camargo, 
Ed Chao, Dave Koster, Chee-Keong Liau, Mark Paskin, Anil 
Sachdeva, Sunil Srivastava, and Sandeep Tamhankar. Praveen 
Seshadri was supported by an IBM Cooperative Fellowship and 
by NASA Research Grant NAGW-3921. Miron Livny and Raghu 
Ramakrishnan were supported by NASA Research Grant NAGW- 
3921. 

74 



References 

[AF95] Karl Aberer and Gisela Fischer. Semantic Query Opti- 
mization for Methods in Object Oriented Database Systems. In 
Proceedings of the Eleventh IEEE Conference on Data Engi- 
neering, Taipei, Taiwan, pages 70-79, 1995. 

[Bla96] Jose Blakeley. Data Access for the Masses through OLE- 
DB. In Proceedings of ACM SlGMoD ‘96 International Con- 

ference on Management of Data, Montreal, Canada, pages 
161-172, 1996. 

[Cat941 R.G.G. Cattell. The Object Database Standard:ODMB- 
93. Morgan-Kaufman, 1994. 

[CD921 S. Cluet and C. Delobel. A General Framework for the 
Optimization of Object-Oriented Queries. In Proceedings of 
ACM SIGMOD ‘92 International Conference on Management 
of Data, San Diego, CA, pages 383-392,1992. 

[CDF+94] M.J. Carey, D.J. Dewitt, M.J. Franklin, N.E. Hail, 
M. McAuliffe, J.F. Naughton, D.T. Schuh, M.H. Solomon, C.K. 
Tan, 0. Tsatalos, S. White, and M.J. Zwilling. Shoring Up Per- 
sistent Objects. In Proceedings of ACM SIGMOD ‘94 Interna- 
tional Conference on Management of Data, Minneapolis, MN, 
pages 526-54 I, I 994. 

[CDY95] Surajit Chaudhuri, Umeshwar Dayal, and Tak Yan. Join 
Queries with External Text Sources: Execution and Optimiza- 
tion Techniques. In Proceedings of ACM SIGMOD ‘95 Inter- 
national Conference on Management of Data, San Jose, CA, 
pages 41 w22, 1995. 

[CS93] Surajit Chaudhuri and Kyuseok Shim. Query Optimiza- 
tion in the Presence of Foreign Functions. In Proceedings ofthe 
Nineteenth International Conference on Vey Large Databases 
(VLDB). Dublin, Ireland, pages 526-541, 1993. 

[CS96] Surajit Chaudhuri and Kyuseok Shim. Optimization of 
Queries with User-Defined Predicates. In Proceedings of 
the Twenty Second International Conference on Very Latge 
Databases (VLDB). Bombay India, pages 87-98, September 
1996. 

[CZ96] Mitch Chemiak and Stanley Zdonik. Rule Languages and 
Internal Algebras for Rule-Based Optimizers. In Proceedings of 
ACM SIGMOD ‘96 International Conference on Management 
of Data. Montreal, Canada, 1996. 

[DKL+94] D.J. Dewitt, N. Kabra, J. Luo, J.M. Pate], and J. Yu. 
Client-Server Paradise. In Proceedings ofthe Twentieth Interna- 
tional Conference on Vey Large Databases (VLDB), Santiago, 
Chile, September 1994. 

[GM931 G. Graefe and W. J. McKenna. The Volcano optimizer 
generator: Extensibility and efficient search. In Proceedings 
of the Ninth IEEE Conference on Data Engineering, Taipei, 
Taiwan, 1993. 

[Gut771 J. Guttag. Abstract Data Types and the Development of 
Data Structures. Communications of the ACM, June 1977. 

[He1951 Joseph M. Hellerstein. Optimization and Execution Tech- 
niques for Queries With Expensive Methods. PhD thesis, Uni- 
versity of Wisconsin, August 1995. 

[11194] lllustra Information Technologies, Inc, I I 1 I Broadway, 
Suite 2000, Oakland, CA 94607. Illustra User S Guide, June 
1994. 

[Jon871 S.L. Peyton Jones. The Implementation of Functional 
Programming Languages. Prentice Hall, 1987. 

[LV9 I] R.S.G. Lanzelotte and P Valduriez. Extending the Search 
Strategy in a Query Optimizer. In Proceedings of the Sev- 
enteenth International Conference on Very Large Databases, 
pages 363-373, I99 I. 

[LZ74] B. Liskov and S. Zilles. Programming with Abstract Data 
Types. In SIGPLAN Notices, April 1974. 

[MDK+94] D. Maier, S. Daniels, T. Keller, B. Vance, G. Graefe, 
and W. McKenna. Challenges for Quey Processing in Object- 
Oriented Databases, chapter 12. Query Processing for Ad- 
vanced Database Systems. Morgan Kaufmann, 1994. Editor: 
Freytag, Maier and Vossen. 

[MDZ93] Gail Mitchell, Umeshwar Dayal, and Stanley Zdonik. 
Control of an Extensible Query Optimizer: A Planning-Based 
Approach. In Proceedings ofthe Nineteenth International Con- 
ference on Very Large Databases (VLDB). Dublin, Ireland, 
pages 5 I7-528,1993. 

[Ols96] Mike Olson, 1996. Personal Communication. 

[RH87] A. Rosenthal and P. Helman. Understanding and Extend- 
ing Transformation-Based Optimizers. Database Engineering, 
9(4):4&5 I, December 1987. 

[SFGM93] Michael Stonebraker, James Frew, Kenn Gardels, and 
Jeff Meredith. The Sequoia 2000 Storage Benchmark. In Pro- 
ceedings of ACM SIGMOD ‘93 International Conference on 
Management of Data, Washington, DC, pages 2-l I, 1993. 

[SLR97] Praveen Seshadri, Miron Livny, and Raghu Ramakrish- 
nan. The Case for Enhanced Abstract Data Types. Technical 
Report TR-97- I61 9, Cornell University, Computer Science De- 
partment, February 1997. 

[SLVZ95] Bharati Subramaniam, Theodore Leung, Scott Vanden- 
berg, and Stanley Zdonik. The AQUA Approach to Querying 
Lists and Trees in Object-Oriented Databases. In Proceedings 
of the Eleventh IEEE Conference on Data Engineen’ng, Taipei, 
Taiwan, March 1995. 

[SRG83] M. Stonebraker, B. Rubenstein, and A. Guttman. Ap- 
plication of Abstract Data Types and Abstract Indices to CAD 
Data Bases. In hvceedings of the Engineering Applications 
Stream of Database Week, San Jose, CA, May 1983. 

[SRH90] Michael Stonebraker, Lawrence Rowe, and Michael Hi- 
rohama. The Implementation of POSTGRES. IEEE Trans- 
actions on Knowledge and Data Engineering, 2( I ): 125-l 42, 
March 1990. 

[SS90] Edward Sciore and John Sieg. A Modular Query Opti- 
mizer Generator. In Proceedings of the Sixth IEEE Conference 
on Data Engineering, pages 146-l 53, 1990. 

[Sto86] Michael Stonebraker. Inclusion of New Types in Rela- 
tional Data Base Systems. In Proceedings of the Second /EEE 
Conference on Data Engineering, pages 262-269, 1986. 

[Won941 Limsoon Wong. Querying Nested Collections. PhD 
thesis, U.Pennsylvania, 1994. 

75 


