
A Language for Manipulating Arrays 

Arunprasad P. Marathe and Kenneth Salem 
Department of Computer Science 

University of Waterloo 
Waterloo, Ontario N2L 3Gl 

Canada 
{apmarath,kmsaJem}@uwaterloo.ca 

Abstract 

This paper describes the Array Manipulation 
Language (AML), an algebra for multidimen- 
sional array data. AML is generic, in the sense 
that it can be customized to support a wide 
variety of domain-specific operations on ar- 
rays. AML expressions can be treated declara- 
tively and subjected to rewrite optimizations. 
To illustrate this, several rewrite rules that 
exploit the structural properties of the AML 
operations are presented. Some techniques 
for efl’icient evaluation of AML expressions are 
also discussed. 

1 Introduction 

It has become widely recognized that database sys- 
tems should support non-traditional data types, such 
as sequences, images, and video. Object-relational 
database systems currently support such data through 
user-defined data types and their associated methods. 
These methods can be applied to selected data, or can 
be used in selection or join conditions. For example, 
suppose that Is-bit gray-scale images have been de- 
fined as a database type and that two methods are de- 
fined for this type: f is a thresholding function which 
replaces each pixel value above a specified threshold 
value with the threshold, and g is a clipping function 
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which removes the part of an image that lies outside 
of a specified clip region. Expressions such as 

select g(f (2, thresh&f), clipregion) 
from <relation> 
where <condition> 

can be used to retrieve clipped, thresholded versions 
of image attribute z from the specified relation. 

Ideally, non-relational expressions such as the one 
appearing in the select clause above would be 
treated declaratively and optimized. For example, 
f (g(z, clipregion), threshold) generates the same re- 
sult as the original expression. The latter form may 
be less costly to evaluate, since only the clip region, 
rather than the entire image, needs to be thresholded. 
Currently, most object-relational systems do not per- 
form such optimizations, although there is certainly 
interest in doing so [lo, 121. Such optimizations are 
important because objects may be large, and their 
methods may be expensive to evaluate. In fact, the 
cost of a non-relational subexpression in a relational 
query may easily dominate the cost of evaluating the 
query. 

To optimize such expressions, they must be written 
in some language. In this paper, we propose a sim- 
ple language for multidimensional array data, called 
the Array Manipulation Language (AML). AML is an 
algebra in the sense that the relational algebra is an 
algebra. Its operators operate on arrays and generate 
arrays. 

Arrays are an important class of data. Obviously, 
raster images are tw*dimensional arrays, and can be 
manipulated by the AML operators. Arrays of three 
or more dimensions are also very commonly found in 
scientific data sets. For example, multi-spectral satel- 
lite images can be treated as arrays with two spatial 
and one spectral dimension. Video data can also be 
thought of in terms of multi-dimensional arrays. One 
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indication of the importance of array data in the scien- 
tific community is the proliferation of file-based data 
management packages, such as CDF [9], NetCDF [ll] 
and HDF [14], that support array data. These file- 
based packages arose to fill a data-management vac- 
uum that existed because of the inability of older 
database management systems to handle bulky array 
data. 

In this paper, we define an array data model and a 

nighttime array 

daytime array 

small set of AML operators based on this model. One 
of the AML operators is APPLY, which applies a user- 1 

I- 

defined function to an array in a particular way. AML 
is generic and customizable in the sense that its AP- dim. 1 BID 

PLY operator can work with any user-defined function. dim. 0 - daily low-rcs array 

Because there are so many possible array operations, 
many of which are domain-specific, any general pur- Figure 1: Arrays in an Example Database 
pose array language should have some facility for ex- 
tension or customization. Thus, this is an important 
feature of AML. 

We also show that AML expressions can be treated 
declaratively, and subjected to rewrite-based optimiza- 
tions. To illustrate the possibilities, we define several 
useful rewrite rules. These rules are very general, in 
the sense that they exploit only the structure of ar- 
rays, and “structural” properties of the AML opera- 
tors, including APPLY. For example, if y = f(z), we 
utilize the knowledge that a certain part of array y 
is computed using data from certain part of array 2, 
but we do not care about the computation itself; the 
rules treat it as a black box. The advantage of this 
approach is that a single rule can apply to any func- 
tion with the same “structural” properties as f. Of 
course, this does not preclude rewrite rules that uti- 
lize knowledge of the computation being performed, 
but such rules are specific to a particular function or 
class of functions. 

In Section 6 we discuss some of the issues that arise 
in evaluating AML expressions. These issues include 
pipelining of AML operators, limiting memory usage, 
and reducing the costs associated with materializing 
intermediate results. These are important issues be- 
cause arrays may be very large. 

2 An Illustrative Example 

The simple array database illustrated in Fig. 1 will 
be used as a running example throughout the remain- 
der of the paper. The database includes several types 
of two-dimensional arrays describing air temperature. 
The dimensions of these arrays can be thought of as 
longitude (dimension zero), and latitude (dimension 
one). There are two arrays per day, one describing 
nighttime temperatures, the other describing daytime 
temperatures. 

For each day/night pair of arrays, a daily tempera- 

ture array is defined by taking the average of the day- 
time and nighttime temperature at each point. We 
also define a reduced-resolution version of the daily 
array, obtained by dividing the daily array into non- 
overlapping 4 x 4 chunks, and replacing each chunk 
with a single value, the average of the values within 
the chunk. 

Using the AML operations to be defined in Sec- 
tion 4, a daily array (C) can be defined in terms of a 
nighttime array (A) and a daytime array (B) as 

c = APPLY(MERGE+&10),f,(1,1,2)) 

where f is a user-defined function that maps two ar- 
ray values to a single average value and (1, 1,2) is a 
“shape” that helps determine how f is to be applied. 
The “10” is a bit pattern that indicates that the merge 
is to be performed by interleaving one slab of A fol- 
lowed by one slab of B. In effect, MERGE operator 
takes the nighttime and daytime arrays and stacks 
them one atop the other (in dimension 2, as indicated 
by the subscript of MERGE) to produce a single three- 
dimensional array. The APPLY operator then applies f 
to each 1 x 1 x 2 sub-array to produce the average tem- 
perature values. Each such value becomes one element 
of the resulting daily array C. 

Similarly, the low-resolution array (D) can be de- 
fined in terms of C as 

D =TILED-APPLY(C,g, (4,4)) 

where g is a function that will be used to map 4 x 4 sub- 
arrays of C to a single value, namely the average of the 
sixteen values in the 4 x 4 array. The TILED APPLY op 
eration breaks C into non-overlapping 4 x 4 sub-arrays 
and applies g to each to produce one of the values in 
D. The TILEDAPPLY operation is actually defined as 
a special case of the more general AML APPLY opera- 
tion. 
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The primary purpose of this simple example is to 
illustrate the behavior of the AML operations. In gen- 
eral, an almost limitless variety of array transforma- 
tions can be imagined. For example, we might have 
chosen a more sophisticated lossy compression tech- 
nique, such as JPEG [15], with which to define the re- 
duced resolution version of the daily array. The AML 
APPLY operator makes it easy to do this. 

AML describes logical relationships among arrays. 
Fig. 1 can be seen as a sort of schema. In particu- 
lar, the daily array can be seen as a view defined in 
terms of the daytime and nighttime arrays. The view 
definition is the AML expression, given above, which 
maps the daytime and nighttime arrays to the daily 
array. Similarly, the low-resolution array is a view of 
the daily array. We have said nothing, at least at this 
point, about the physical representations of these ar- 
rays. It may be that the daily array is physically stored 
by laying out its values in a file in row-major order, or 
it may be stored in some more compact, compressed 
form. Alternatively, it may not be materialized at all, 
as it can be derived when necessary from the corre- 
sponding daytime and nighttime arrays. 

3 Data Model and Terminology 

Throughout this paper we will use a vector arrow, as 
in I, to denote infinite vectors of integers. The usual 
notation Z[i] will refer to the element with index i. 
Expressions involving operations on vectors, such as 
z’ = ]Z/y’J refer to element-by-element application of 
the operation, i.e., qi] = [Z[i]/di]]. 

An array has a shape and a domain. We will con- 
sider arrays to have an infinite number of dimensions, 
numbered from zero. Each array dimension is indexed 
by the non-negative integers, i.e., indexing starts at 
zero. A shape is an infinite vector of non-negative 
integers which defines the array’s length in each di- 
mension. When it is necessary to write a particu- 
lar shape, the shape’s elements will be parenthesized. 
All elements not listed explicitly are assumed to be 
ones. Thus, the shapes (1, 1,2) and (4,4) that were 
used in the examples in Section 2 denote the infinite 
vectors (1, 1,2,1,1,1, . ..) and (4,4,1,1,1, .. v), respec- 
tively. The domain of an array is a set of possible 
values, one of which is present at each indexed point 
within the array. 

Definition 3.1 An army A consista of a shape A’, a 
tomain DA, and a mapping MA. The ith element of 
A represents the length of the aTray in dimension i. A 
vector 2 is defined to be in array A ia 0 5 z[i] < A[i] 
for all i 2 0. The mapping, MA maps each vector 
?! in A to an element of the array’s domain, Z)A. We 
will use the standard array notation A[4 to denote the 
domain value to which I is mapped. 

XII 

I 
dim. 1 owl dim. O- 

a subarray of a slab along 
Aat r, dimension 0 

h/ 

array A 

Figure 2: Sub-arrays and Slabs 

Definition 3.2 The dimensionality of away A, writ- 
ten dim(A), is the smallest i such that ,$i] = 1 for all 
j 2 i. If there is no such i, then dim(A) is undefined. 

Definition 3.3 The size of array A, written IAI, is 
nz, X[i]. 

We will restrict ourselves to arrays of finite size. How- 
ever, it will sometimes be convenient for us to think of 
arrays as having infinite length in all dimensions. For 
this purpose, we define A[4 = NULL for all points 
Z that are not in A, where NULL is some value not 
found in z)A 

An array having a length of zero in one or more di- 
mensions is called a null array. Such arrays have zero 
size and since there are no points in a null array, it 
is considered to have the value NULL at every point. 
We will also need a notion of sub-array. A sub-array 
is simply an array that is wholly contained within an- 
other, as shown in Fig. 2. We will identify the position 
of the sub-array within the containing array by the po- 
sition of its smallest point, as shown in the figure. 

Definition 3.4 Let A and B be arrays, and let 5 be a 
vector in A. Array B is called a subarray of A at I iff 
z)B = DA, and for every point y’ in B, B[y7 = A[I+y7. 

Finally, we define informally the notion of a slab of an 
array along dimension i. A slab is simply a slice of unit 
width through an array along the specified dimension. 
This is also illustrated in Fig. 2. 

4 The Array Manipulation Language 

The Array Manipulation Language (AML) consists of 
three operators which manipulate arrays. Each oper- 
ator takes one or more arrays as arguments and pro- 
duces an array as result. SUBSAMPLE is a unary opera- 
tor which can delete data, i.e., the size of the result of 
subsampling an array A is never larger than A. MERGE 
is a binary operator which combines two arrays defined 
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over the same domain. APPLY applies a function to an 
array, in a manner to be described below, to produce 
a new array. 

Neither SUBSAMPLE nor MERGE changes the values 
found in its operands, i.e., every value found in the 
result of these operations can be found in an operand. 
The third operator, APPLY, may generate new values 
as a result of applying the function. 

4.1 An Introduction to Bit Patterns 

All of the AML operators take bit patterns as param- 
eters. A bit pattern is an infinite binary vector. As for 
other vectors, indexing of bit patterns starts at zero. 
The ith element of a pattern P is denoted by P[i]. 
When the context makes it clear that P’ is a pattern, 
we will drop the explicit vector notation and simply 
write P or P[i]. 

We will be interested only in those patterns that 
consist of an infinite number of repetitions of some 
finite vector, and we will use that finite vector to rep 
resent the entire pattern. For example, we may write 
P= 1010 to mean P = 1010101010 -a-. Note that 
there is more than one finite representation of any 
such bit pattern. For example, & = 10 represents the 
same pattern as P. We will sometimes use a regular- 
expression-like notation to describe patterns. For ex- 
ample O’ljOL, for positive integers i, j and lc, repre- 
sents a pattern in which j l’s are sandwiched between 
i O’s on the left and k O’s on the right. The bit-wise 
complement of a pattern P, obtained by replacing P’s 
ones with zeros and vice versa, will be written P. 

There are two pattern functions, index and count, 
that we will make heavy use of. 

Definition 4.1 If P is a bit pattern (P # 0) and k a 
positive integer, index(P, k) ia the index of the k-th 1 
in P. By definition, if k = 0 or P = 0, index(P, k) = 
0. 

Definition 4.2 Zf P is a bit pattern and k a non- 
negative integer, count(P, k) is the number of onea in 
the first k + 1 positions of P, i.e., j%orn P[O] to P[k], 
inclusive. 

Both functions are monotonically non-decreasing 
in k. It should be obvious that for any k > 1, 
count(P, index(P, k)) = k, unless P = 0. 

4.2 The SUBSAMPLE Operator 

The SUBSAMPLE operator takes an array, a dimension 
number and a pattern as parameters and produces an 
array. The dimension number will normally be written 
as a subscript and SUBSAMPLE will be abbreviated as 
SUB, as in 

B=SUBi(A, P) 

B=SUB,(A,IO) 

dimetin I 

dimmslm 0 

Figure 3: Examples of the SUBSAMPLE Operation 

where A is an array, P is pattern, and i is the dimen- 
sion number. 

The SUBSAMPLE operator divides A into slabs along 
dimension i, and then keeps or discards slabs based on 
the pattern P. If P[k] = 1, then slab k is kept and 
included in B, otherwise it is not. The slabs that are 
kept are concatenated to produce the result B. Several 
applications of the SUBSAMPLB operator are illustrated 
in Fig. 3. 

Formally, if B = SUBi(A, P), then B is defined as 
follows: 

.nB=Z)A 

l if A[i] > 0, then g[i] = count(P, i[i] - l), else 
Z[i] = 0. 

l for all j 2 0 except j = i, d/j] = AL] 

l for all points 1 in B, B[. . . ,5[i - 11, qi], Z[i + 
11,. . .] = A[. . . , S[i - 11, indez(P, $1 + l), qi + 
11,. . .]. 

Note that subsampling a null array results in a null 
array, regardless of the dimension number or the sub- 
sampling pattern. Also, if P = 0, then G[i] = 0 and 
B is a null array. 

4.3 The MERGE Operator 

The MERGE operator takes two arrays, a dimension 
number, a pattern, and a default value as parameters. 
It merges the two arrays to produce its result. As 
was done for SUBSAMPLE, the dimension number will 
normally be written as a subscript, as in 

C=MERGEi(Ay B,P,6) 

where A and B are arrays, P is the pattern, and 6 
is the default value. The explicit reference to 6 will 
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array A 

-Y B 

bO1 bll q bO0 b10 

dimension 1 
I 
I 
dimnsion0 

C=MERGE,,(A,B,l10.6) 

f!$$gq 

C = MERGE,,(A,B,1100101,6) 

-1 

C=MERGE,(A,B.llO,S) 

Figure 4: Examples of the MERGE Operation 

often be dropped if the default is not important. The 
operation is defined only if DA = DDg and 6 E DA. 

Conceptually, MERGE divides both A and B into 
slabs along dimension i. The result is produced by 
interleaving slabs from the two arrays according to the 
pattern P. Each one in P corresponds to a slab from 
the first array (A), and each zero to a slab from the 
second (I?). For example, if P = 1001, then along the 
i-th dimension, one slab from array A, two slabs from 
array B and then a slab from array A are taken and 
concatenated in that order. This process is repeated 
until all slabs from both A and B have been used. 
(Recall that P = 1001 denotes the infinite pattern 
100110011001* * a.) 

Fig. 4 illustrates the MERGE operation. The exam- 
ples show that the default value 6 may be used for two 
reasons. One is that the slabs from one array may be 
exhausted while slabs remain in the other. This is the 
case in the second example in Fig. 4. Another reason 
is an array shape mismatch in some dimension other 
than the merge dimension. In case of such a mismatch, 
the shorter array is expanded using default values un- 
til its length matches that of the longer array. This is 
illustrated in the third example in Fig. 4. 

It is convenient to formally define MERGE in two 
steps. The first generates an array C’ by interleaving 
slabs from A and B, as described above. Because of 
shape mismatches between A and B, however, or be- 
cause of the particular pattern P, some values in C’ 
may be NULL. The second step eliminates this prob 
lem by transforming any such NULL values to the 
default value 6. The result of this final step is indeed 
an array, and is the result of the MERGE operation. 
The intermediate array, C’, is defined as follows: 

n2~ = DA U {NULL} 

CF[i] = maz(indez(P, i[i]), indez(, IQ)) + 1 

for all j 2 0 except j = i, ti’[i] = muz(X~],&]) 

for all points aC in C’: 

- if P[Z[i]]= 1, then C’[...,Z[i- l],qi],Z[i+ 
11,. . .] = A[. . . , qi - l],coUnt(P, +I) - 
1,Ic[i+l],...], 

- otherwise C’[. . . , Z[i - l],Z[i], 4i + 11,. . .] = 
B[...,+11, cmt(F, iqi]) - 1, qi + 11,. . .] 

We then obtain C by removing any NULL values in- 
side of C’: DC = DC, - {NULL}; for all i 2 0, &] = 
@[iI; and for all points I in C, if @[q = NULL then 
C[q = 6, otherwise C[Z’j = C’[Zj. 

4.4 The APPLY Operation 

The APPLY operator applies a function to an array to 
produce a new array. In its most general form, it is 
written as 

where f is the fu_nction to-be applied, A is the array 
to apply it to, Df and Rf are shapes, the Pi’s are 
patterns, and d = dim(A). The parameters 6f and 
R> are called the domain shape and the range shape. 
We will often use a special case of APPLY, written 

B= APPLY&~, D;,R;) 

for which we assume that Pi = 1 for all 0 5 i < d. In 
addition, either the range shape or both shapes may be 
left unspecified when APPLY is written. These shapes 
default to (l,l, 1, a. .) if they are not specified. 

A simple way to define APPLY is to insist that f 
map from arrays of A’s shape and domain to arrays of 
B’s shape and domain. The operator would then sim- 
ply compute B = f(A). H owever, many common ar- 
ray functions have some structural locality: the value 
found at a particular point in B depends only on the 
values at certain points in A, not on the values at all 
points in A. For example, if f is a smoothing func- 
tion that maps each point in A to the average of that 
point and its neighbors, then to determine the value 
at some point in B, we need only look at that point 
and its neighbors in A. Such information can be very 
valuable for optimizing the execution of an expression 
involving the array operators. 

The APPLY operation is defined so that this kind of 
structural relationship can be made explicit when it 
exists. The APPLY operator requires_ that f be defined 
to map sub-arrays of A of shape Dt to subarrays of 
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array A 

:.w 

0 12 3 
B =APPLY(A, f, (2,2),(2.1),0110, 10) 

t t tt 
lTf lqf PO PI 

Figure 5: An Illustration of the APPLY Operation 

B of shape cj., We will use the notation f(A, 5) to 
refer to the_ result of applying f to the sub-array of A 
of shape Dj at Z. Thus, f (A, 5) is an array of shape 

Rf* 
The APPLY operator applies f to certain sub-arrays 

of A, and concatenates the results to generate B. This 
process is illustrated in Fig. 5. The pattern Pi can be 
thought of as selecting slabs in dimension i, with the 
selected slabs corresponding to the ones in the pattern. 
The function f is applied at a point I only if that point 
falls in selected slabs in all d dimensions of the array, 
i.e., only if Pi[I[i]] = 1 for all 0 5 i < dim(A). In the 
figure, the patterns select two slabs in each dimension, 
leading to a total of four applications of the function 
f. Several features of the application of f should be 
noted. First, while the selected sub-arrays may over- 
lap in A, the results of applying the function do not 
overlap in the resulting array B. Second, the arrange- 
ment of resulting sub-arrays in B preserves the spatial 
arrangement of the selected sub-arrays in A. Finally, 
the sub-arrays to which f is applied must be entirely 
contained within A. In the example in Fig. 5, this 
means that even if the point Ic’ = (3,3) was selected 
by the patterns, f (A, 5) would not be evaluated, since 
that subarray lies partia_lly _outside of A. 

IfB =APPLY(A,f,Df,Rf,Po,..., p&m(A)-$9 ad 

f is a function that maps from arrays of shape Dj over 
domain z)A to arrays of shape <j over domain DDtonge, 
then B is formally defined as follows: 

l n3 = %nye 

0 for all i > 0, 

- if x[i] < D>[i] or Pi = 0, then @i] = 0 

- otherwise g[i] = cant(Pi, A[i]-D;[i]).R>[i] 

l for all I in B, B[ZJ = f (A, y3[3c’ MOD R;], where 
$1 = iTldc?Z(Pi, [Z[i]/R;[i]J + 1) for all 0 5 i < 
dim(A) 

If tij[i] > i[*] f t or some i 2 0, then the definition 
above implies that B will be a null array. 

4.5 Additional Operations 

In this section, we show a few useful special cases of 
the AML operators, and give them names. 

CONCAT: The CONCAT operator concatenates two 
arrays along some dimension. Concatenation can be 
defined using MERGE as follows: 

CONCATi (APB, 6) E MERGEi(A, By l’li10Blil,6) 

Since MERGE requires A and B to have a common do- 
main, so does CONCAT. Note that if A and B have 
length mismatches in dimensions other than i, the ar- 
ray with the shorter length will be extended using the 
default value S. 

CLIP: CLIP clips an image along a specified dimen- 
sion, keeping only those slabs within a clip region de- 
fined by parameters z and y, where 0 2 z 5 y 5 x[i]. 
It can be implemented using SUBSAMPLE as follows: 

CLIPi(A z y) = SUBi(A 9, - 9 OZIY-"OR"-r 1 

TILBD~PPLY: Often, we will wish to apply a func- 
tion to all non-overlapping sub-arrays of a particular 
shape. In the example in Section 2, this is the case 
when the low-resolution daily array (D) is being com- 
puted from the daily array (C). Since this type of 
function application is quite common, we can define 
the TILED-APPLY operator to support it. Assuming 
that A has dimensionality d, the definition is as fol- 
lows: 

TILEDAPPLY(A, f, ti;,R;) E APPLY(A, f,tio;,tij,P) 

where P denotes the 
loD;[O]-1 loddl]-1 , , . . . , IO&ld--ll-1. 

patterns 

4.6 More on Patterns and Shapes 

We allow patterns and shapes appearing in AML ex- 
pressions to be defined in terms of the array arguments 
of their AML operators. _As an example, consider the 
expression APPLY(A, f, (A[O], l)), in which f is applied 
to each row of A. Aliases (as in SQL) can be used in 
AML expressions when necessary to define names for 
unnamed intermediate arrays. In the AML expression 
APPLY(SUB~(B, P) A, f, (x[O], 1)) the alias A is used 
to refer to the result of the inner SUB operation so 
that the APPLY's shape argument can be defined. The 
scope of such an alias is the AML operator in which 
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it is defined. In the case of the APPLY operator, it 
is also possible to refer to the domain shape and the 
range shape in the operator’s patterns. An example of 
this can be seen in the definition of the TILEDAPPLY 
operation in Section 4.5. 

The shape of the result of an AML operation can 
always be determined (without actually evaluating the 
operator) if the shapes of its array arguments are 
known. By induction we can show that the shape of 
the result of an arbitrary AML expression can be de- 
termined once the shapes of its “terminal” arrays are 
known. This property is useful when AML expressions 
are being evaluated, since it implies that the space re- 
quired to implement an AML operation can be deter- 
mined in advance. 

5 Rewrite Rules 

In many cases it will be possible to rewrite AML ex- 
pressions into one or more equivalent forms. Often, 
one form will have a more efficient implementation 
than another, so rewriting is useful for query optimiza- 
tion. In this section, we present several rewrite rules 
for AML expressions. Many such rules are possible 
and this presentation is not intended to be compre- 
hensive. Instead, we hope to demonstrate by examples 
that useful rewrite rules do exist. 

The first rule shows that two successive SUBSAM- 
PLEs along the same dimension can be combined into 
a single SUBSAMPLE. 

Theorem 5.1 SUBi(SUBi(A, P), Q) = SUBi(A, R) 
where R[j] = Pb] A Q[count(P, j) - l] for all j 2 0. 

Example 5.1 

Applying the above rewrite rule to the ex- 
pression SUBO(SUBO(A, lOOO), lo), we get R = 
1000000010000000 * * a. So the expression gets simpli- 
fied to su~o(A, 10000000). 0 

The next rule shows that we can push SUB through 
MERGE. Heuristically, this should be beneficial be- 
cause the merge operation will be able to operate on 
smaller subsampled images. 

Theorem 5.2 SUBi (MERGEi (A, B, P), Q) = 
MERGEi(SUBi(Ay R), SUBi(B, S)yT) 
where for all j 2 0, R[j] = Q[indez(P,j + l)], S[j] = 
Q[indez(p, j + l)], and T[j] = P[indez(Q,j + l)]. 

Example 5.2 

Applying the above theorem to the expression 
SUBO(MERGE~(A, B, lo), 101) yields R = 110, S = 011 
and T = 1100. So the transformed expression is 
MERGEo(SUBo(A, llO), sUBo(B, Oil), 1100). l?rom pat- 
terns R and S we see that about one-third of arrays A 
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and B can be removed before they are merged, poten- 
tially speeding up the merging step. 0 

Example 5.3 

An interesting situation arises in the following exam- 
ple. Rewriting SUBi(MERGEi(A, B, OlOO), 100010) US- 

ing Theorem 5.2 yields R = 0,s = 100110010 and 
T = 0. So an equivalent form for the expression is 

MERGEi(SUBi(A, O), SUBi(B, 100110010)~ 0). 

Since MERGE with a pattern of 0 results in its second 
argument, the above expression can be transformed to 
SUBi(B, 100110010). From the original expression, it 
is not immediately apparent that the whole of array 
A gets subsampled out but the equivalent expression 
makes this obvious. 0 

The ability to push subsampling through function 
application is also potentially very valuable. To sim- 
plify our presentation, we consider a restricted version 
of a rewrite rule that accomplishes this. 

Theorem 5.3 If R;[i] = D>[i] = 1, Pi = 1, and 
d = dim(A), then - M 
SUBi(APPLY(A, f, ojv $j, J)o, - - - 7 pd-l), Q) = 

APPLY(SUBi(A, Q), f, oj, Rj, PO, - - * 7 pd-1). 

Example 5.4 

Recall from Section 2 that the daily temperature array 
C was defined as 

c = APPLY(MERGEz(A, B,lO),f,(1,1,2)). 

where cj = (1, 1,2) and I$ defaults to (1,&l,.--) 
since it is not specified. Suppose we want to subsample 
the array C in dimension 0 using the pattern P = 0616. 
That is, we would like to evaluate 

SUBo(APPLY(MERGE@, B, lo), f, (&I, 2)), P) 

Using Theorem 5.3, this can be rewritten as 

APPLY(SUBo(MERGEz(A, B,lO),P),f,(1,1,2)) 

We can optimize further by pushing SUB0 inside of 
MERGES. This is trivial, since they operate in different 
dimensions. This gives us 

APPLY (MERGE2(SUB&i, P), SUB@, P), lo), f, (1, 1,2)) 

which indicates that to retrieve parts of the daily tem- 
perature array, we need only retrieve parts of the day- 
time and nighttime arrays, as expected. •I 

There are situations in which the result of an APPLY 
operation is being subsampled, but we cannot push the 
SUB through the APPLY. This often happens when the 



function is being applied to overlapping sub-arrays. 
Consider the following AML expression: 

B = SUBi(APPLY (A, f, (2,2), (2,2)), 110010) 

in which f maps 2 x 2 sub-arrays from A to 2 x 2 sub- 
arrays in the result. Note that if 1 is a point in slab 
1 (i.e., the second slab) of dimension i of A, the result 
of evaluating f at 5 will be completely discarded by 
the SUB that follows APPLY. The results of such eval- 
uations form slabs 2 and 3 in the resulting array, and 
both P[2] and P[3] in the subsample pattern are zero. 
In fact, because the subsampling pattern is an infinite 
repetition of 110010, the result of evaluating f at any 
2’ with Z[i] MOD 3 = 1 will be discarded. Clearly, 
the function f should not be evaluated at such points. 
These evaluations cannot be avoided by moving the 
SUB before the APPLY however, since all of A is needed 
to generate parts of B that are kept. 

Although we cannot always push SUB through 
APPLY, we may be able to, push SUB into APPLY. For 
the special case in which Rf ha8 unit size, the following 
rule shows this. 

Theorem 5.4 If @I = 1 and d = dim(A), then 
4 

SUBi(APPLY(A_, f,-Dr,R~‘Po,...,Pi,.-.,Pd-l),S) = 

APPLY(A,~,D~,R~,Qo,...,Q~,‘.‘,Q~-~), 
where &j = Pj for all j # i, and &i[k] = Pi[H] A 
S[COWlt(Pi, k) - l] f0T all k > 0. 

Example 5.5 

SUB1(APPLY(A, f,D’r, 11,101100,110),011) 
gets transformed to APPLY(A, f, tit, ll,OOllOO, 110) 
according to this rewrite rule. 0 

6 Query Evaluation 

Query processing involves the generation of a query 
execution plan for a given AML expression.’ An n- 
operator AML expression can be executed in n sequen- 
tial steps in which each step generates an intermediate 
result which is used a8 input by a subsequent step. 

This straightforward approach ha8 several potential 
disadvantages. First, it does not allow for pipelining of 
steps. It should be possible for a step to begin execu- 
tion even if its input ha8 only been partially generated. 
Second, it may result in the generation of many large 
intermediate results. For example, consider steps that 
implement operations such as SUBi(A, 1111111110) or 
MERGEi(A, B, 10). If the arrays A and B are large, so 
too will be the output of these operations. An n-step 

‘In fact, we may generate several candidate execution plans, 
and then choose a good one using execution cost estimates. 
Here, we will focus on some of the issues involved in execution 
plan generation. 

Figure 6: Multidimensional Synchronization for Ar- 
rays. 

query execution plan might generate n such interme- 
diate results. This may be very time consuming, even 
if the steps are implemented entirely in memory. 

The first of these problem8 can be addressed by al- 
lowing steps to execute concurrently. This requires 
some mechanism for synchronizing access to arrays 
that are simultaneously being produced by one step 
and consumed by a subsequent step. Often, thii is 
accomplished by treating the data passed from one 
step to another as a linear stream. A stream can be 
thought of as having a boundary point which indicate8 
how much of the stream data has actually been gen- 
erated by the first step. The subsequent step is forced 
to wait if it ha8 consumed all of the stream data up to 
the boundary. A direct application of this idea to mul- 
tidimensional arrays would require that steps agree on 
how an array is to be “linearized” to form a stream. An 
alternative is to generalize the synchronization bound- 
ary to accommodate multidimensional arrays. This is 
illustrated for two-dimensional arrays in Fig. 6. This 
approach divides each array into two regions. As the 
first step runs, the region accessible to the second step 
grows until it covers the entire array. 

To address the second problem, we can choose an 
array representation that permit8 steps to avoid creat- 
ing new copies of large arrays. In particular, we may 
be able to allow a step to simply modify its input array 
and then use the modified array as its output. Fig. 7 
illustrates an array representation that permits this 
for SUBSAMPLE and MERGE steps. This array repre- 
sentation has several features. One is a vector of valid 
bits per array dimension. These bits can be cleared to 
indicate that a particular slab of data is invalid, i.e., 
that it should be ignored by any subsequent step8 that 
use the array. This provide8 an easy way to implement 
a SUBSAMPLE operation, since valid bits can simply be 
cleared according to the positions of the zeros in the 
SUBSAMPLE pattern. Of course, the disadvantage of 
this approach is that the size of the array represen- 
tation is not actually reduced by subsampling. This 
suggests that this mechanism should be used to im- 
plement SUBSAMPLE steps that have low selectivity, 
i.e., steps whose subsample patterns have a high ra- 
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valid bits 

for dim. I 

Lull 111 mTn 
valid bits for dim. 0 

Figure 7: An Array Representation Permitting Fast 
SUBSAMPLE and MERGE 

tio of ones to zeros. More selective SUBSAMPLES can 
be implemented by generating a new, smaller array 
representation. Note that invalid slabs will actually 
be removed from the array representation by the first 
“downstream” step that actually generates a new ar- 
ray. 

The array representation also incorporates indirec- 
tion. The array data is divided into blocks, and 
a multidimensional array of pointers refers to these 
blocks. Indirection allows some MERGE steps to be 
implemented without copying array data. For exam- 
ple, consider the MERGE operation used to define the 
daily temperature array (C) in Fig. 1. It concatenates 
the daytime and nighttime arrays. This can be imple- 
mented by generating a new, larger pointer array, and 
then setting the pointers to point to the existing blocks 
of the two arrays. Clearly, the existence of such a fast 
implementation depends on the shape of the blocks of 
the arrays to be merged, and on the merge pattern. 
This creates an interesting opportunity for optimiza- 
tion, since whenever a new array copy is created, we 
can choose the parameters of its representation, e.g., 
the size and shape of the blocks. 

In combination with multidimensional synchroniza- 
tion, indirection can also help reduce the memory re- 
quirements of a query execution plan. This is because 
the space used by individual array blocks can be re- 
leased as soon a8 that block is no longer needed. In 
many cases, only a small part of a large array will need 
to be represented at any time. 

7 Related Work 

A variety of database systems now provide support 
for user-defined data types such as arrays. These in- 
clude commercial systems [lo, l] and research systems 
such as Postgres, Paradise, and others [7, 13, 3, 121. 
As noted in the introduction, these systems may opti- 
mize relational expressions in which user-defined func- 
tions appear. However, they generally do not optimize 

the user-defined expressions themselves. A notable re- 
cent exception is P7?XDA70’R[12], which treats user- 
defined expressions declaratively, and passes them to 
an optimizer that can handle them. 

Special purpose image database systems also handle 
array data, at least in two dimensions. [2] is a survey 
of work in this area. These systems focus on selec- 
tion and retrieval of images, or parts of images, based 
on image content. AML does not directly support re- 
trieval based on image content. However, it can be 
used in conjunction with content-based indexing and 
retrieval techniques. 

There have been several other proposals for query 
languages for arrays, including [S] and [4]. Both of 
these are based on calculi which can be used to express 
array-related operations, a8 well as non-array opera- 
tions. We will briefly describe the Array Query Lan- 
guage (AQC) defined in [S]. dQ& is based on a calcu- 
lus which provides four array-related primitives: two 
are used to create arrays, one performs subscripting, 
i.e., it extracts a value from an array, and one deter- 
mines the shape of an array. Using these very low-level 
constructs (plus such things a8 conditionals and arith- 
metic operations), higher level operations can be con- 
structed. For example, operations similar to the SUB- 

SAMPLE, MERGE, and APPLY operations defined here 
can be expressed in terms of those primitives. Opti- 
mization of dQC expressions is performed at the level 
of the primitive operations after replacing higher-level 
operations with their definitions. Implementations of 
each of the primitive operations are then used to eval- 
uate the optimized queries. This is a very powerful 
and flexible approach. For example, if new higher- 
level operations are added, they are expressed using 
the calculus. They can then be optimized, i.e., there 
is no need to generate new rewrite rules “manually” 
for the new operations. 

Neither proposal suggests any particular set of high- 
level operations for arrays. Rather, they show how 
such operations can be defined and optimized. It 
is not clear how effective such optimizations will be. 
Whether an optimizer will find appropriate rewrite 
rules, and how quickly it will find them, remain open 
questions. The efficiency of execution of query plans 
consisting of many small, primitive operation8 is also 

a potential concern. 

8 Summary and Conclusion 

We have described the Array Manipulation Language, 
an algebra for arrays. AML can be used as a query 
language for array data, and as a view definition lan- 
guage, to define new arrays in terms of existing ones. 
AML’s APPLY operator can be customized to support 
a wide variety of user-defined array functions. AML 
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expressions can also be optimized. Optimizations can 
exploit the structural properties of the AML opera- 
tions. 

In [8], Maier and Vance claim that a reasonable al- 
gebra for ordered types, such as arrays, should have a 
small number of operators, should encapsulate a sig- 
nificant fraction of the control structures used for file 
processing, should possess non-trivial transformations 
useful for query optimization, and should admit to rea- 
sonably efficient implementation over large arrays. We 
claim that AML has at least the first, third, and fourth 
of these properties. The second property, expressive- 
ness, is more difficult to pin down as it is very domain 
dependent. However, we note that AML is at least 
expressive enough to mimic the widely used file-based 
data management packages, such as NetCDF, which 
support multidimensional arrays. 

Array data will be most useful in conjunction with 
other types of data. In particular, we may wish to 
associate various sorts of metadata with each array 
to facilitate the selection of individual arrays from a 
set. Thus, AML will be most useful if it can be imple- 
mented as part of a system capable of integrating data 
of various types. One promising approach is offered 
by P’REDA’T0a [12], which views the world as an 
integrated collection of data types, each of which sup 
ports a dechrative, optimizable query language (such 
as AML). A similar, but more Ioosdy coupled, ap 
preach is taken by systems like Garlic [5] that attempt 
to federate a collection of independent and heteroge- 
neous data repositories. Extensible object-relational 
systems, such as the Informix Universal Server [lo], 
may also serve as useful platforms for implementation 
of AML. We are currently considering these implemen- 
tation alternatives. 
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