
A Language for Manipulating Arrays

Arunprasad P. Marathe and Kenneth Salem
Department of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3Gl

Canada
{apmarath,kmsaJem}@uwaterloo.ca

Abstract

This paper describes the Array Manipulation
Language (AML), an algebra for multidimen-
sional array data. AML is generic, in the sense
that it can be customized to support a wide
variety of domain-specific operations on ar-
rays. AML expressions can be treated declara-
tively and subjected to rewrite optimizations.
To illustrate this, several rewrite rules that
exploit the structural properties of the AML
operations are presented. Some techniques
for efl’icient evaluation of AML expressions are
also discussed.

1 Introduction

It has become widely recognized that database sys-
tems should support non-traditional data types, such
as sequences, images, and video. Object-relational
database systems currently support such data through
user-defined data types and their associated methods.
These methods can be applied to selected data, or can
be used in selection or join conditions. For example,
suppose that Is-bit gray-scale images have been de-
fined as a database type and that two methods are de-
fined for this type: f is a thresholding function which
replaces each pixel value above a specified threshold
value with the threshold, and g is a clipping function

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

which removes the part of an image that lies outside
of a specified clip region. Expressions such as

select g(f (2, thresh&f), clipregion)
from <relation>
where <condition>

can be used to retrieve clipped, thresholded versions
of image attribute z from the specified relation.

Ideally, non-relational expressions such as the one
appearing in the select clause above would be
treated declaratively and optimized. For example,
f (g(z, clipregion), threshold) generates the same re-
sult as the original expression. The latter form may
be less costly to evaluate, since only the clip region,
rather than the entire image, needs to be thresholded.
Currently, most object-relational systems do not per-
form such optimizations, although there is certainly
interest in doing so [lo, 121. Such optimizations are
important because objects may be large, and their
methods may be expensive to evaluate. In fact, the
cost of a non-relational subexpression in a relational
query may easily dominate the cost of evaluating the
query.

To optimize such expressions, they must be written
in some language. In this paper, we propose a sim-
ple language for multidimensional array data, called
the Array Manipulation Language (AML). AML is an
algebra in the sense that the relational algebra is an
algebra. Its operators operate on arrays and generate
arrays.

Arrays are an important class of data. Obviously,
raster images are tw*dimensional arrays, and can be
manipulated by the AML operators. Arrays of three
or more dimensions are also very commonly found in
scientific data sets. For example, multi-spectral satel-
lite images can be treated as arrays with two spatial
and one spectral dimension. Video data can also be
thought of in terms of multi-dimensional arrays. One

46

indication of the importance of array data in the scien-
tific community is the proliferation of file-based data
management packages, such as CDF [9], NetCDF [ll]
and HDF [14], that support array data. These file-
based packages arose to fill a data-management vac-
uum that existed because of the inability of older
database management systems to handle bulky array
data.

In this paper, we define an array data model and a

nighttime array

daytime array

small set of AML operators based on this model. One
of the AML operators is APPLY, which applies a user- 1

I-

defined function to an array in a particular way. AML
is generic and customizable in the sense that its AP- dim. 1 BID

PLY operator can work with any user-defined function. dim. 0 - daily low-rcs array

Because there are so many possible array operations,
many of which are domain-specific, any general pur- Figure 1: Arrays in an Example Database
pose array language should have some facility for ex-
tension or customization. Thus, this is an important
feature of AML.

We also show that AML expressions can be treated
declaratively, and subjected to rewrite-based optimiza-
tions. To illustrate the possibilities, we define several
useful rewrite rules. These rules are very general, in
the sense that they exploit only the structure of ar-
rays, and “structural” properties of the AML opera-
tors, including APPLY. For example, if y = f(z), we
utilize the knowledge that a certain part of array y
is computed using data from certain part of array 2,
but we do not care about the computation itself; the
rules treat it as a black box. The advantage of this
approach is that a single rule can apply to any func-
tion with the same “structural” properties as f. Of
course, this does not preclude rewrite rules that uti-
lize knowledge of the computation being performed,
but such rules are specific to a particular function or
class of functions.

In Section 6 we discuss some of the issues that arise
in evaluating AML expressions. These issues include
pipelining of AML operators, limiting memory usage,
and reducing the costs associated with materializing
intermediate results. These are important issues be-
cause arrays may be very large.

2 An Illustrative Example

The simple array database illustrated in Fig. 1 will
be used as a running example throughout the remain-
der of the paper. The database includes several types
of two-dimensional arrays describing air temperature.
The dimensions of these arrays can be thought of as
longitude (dimension zero), and latitude (dimension
one). There are two arrays per day, one describing
nighttime temperatures, the other describing daytime
temperatures.

For each day/night pair of arrays, a daily tempera-

ture array is defined by taking the average of the day-
time and nighttime temperature at each point. We
also define a reduced-resolution version of the daily
array, obtained by dividing the daily array into non-
overlapping 4 x 4 chunks, and replacing each chunk
with a single value, the average of the values within
the chunk.

Using the AML operations to be defined in Sec-
tion 4, a daily array (C) can be defined in terms of a
nighttime array (A) and a daytime array (B) as

c = APPLY(MERGE+&10),f,(1,1,2))

where f is a user-defined function that maps two ar-
ray values to a single average value and (1, 1,2) is a
“shape” that helps determine how f is to be applied.
The “10” is a bit pattern that indicates that the merge
is to be performed by interleaving one slab of A fol-
lowed by one slab of B. In effect, MERGE operator
takes the nighttime and daytime arrays and stacks
them one atop the other (in dimension 2, as indicated
by the subscript of MERGE) to produce a single three-
dimensional array. The APPLY operator then applies f
to each 1 x 1 x 2 sub-array to produce the average tem-
perature values. Each such value becomes one element
of the resulting daily array C.

Similarly, the low-resolution array (D) can be de-
fined in terms of C as

D =TILED-APPLY(C,g, (4,4))

where g is a function that will be used to map 4 x 4 sub-
arrays of C to a single value, namely the average of the
sixteen values in the 4 x 4 array. The TILED APPLY op
eration breaks C into non-overlapping 4 x 4 sub-arrays
and applies g to each to produce one of the values in
D. The TILEDAPPLY operation is actually defined as
a special case of the more general AML APPLY opera-
tion.

47

The primary purpose of this simple example is to
illustrate the behavior of the AML operations. In gen-
eral, an almost limitless variety of array transforma-
tions can be imagined. For example, we might have
chosen a more sophisticated lossy compression tech-
nique, such as JPEG [15], with which to define the re-
duced resolution version of the daily array. The AML
APPLY operator makes it easy to do this.

AML describes logical relationships among arrays.
Fig. 1 can be seen as a sort of schema. In particu-
lar, the daily array can be seen as a view defined in
terms of the daytime and nighttime arrays. The view
definition is the AML expression, given above, which
maps the daytime and nighttime arrays to the daily
array. Similarly, the low-resolution array is a view of
the daily array. We have said nothing, at least at this
point, about the physical representations of these ar-
rays. It may be that the daily array is physically stored
by laying out its values in a file in row-major order, or
it may be stored in some more compact, compressed
form. Alternatively, it may not be materialized at all,
as it can be derived when necessary from the corre-
sponding daytime and nighttime arrays.

3 Data Model and Terminology

Throughout this paper we will use a vector arrow, as
in I, to denote infinite vectors of integers. The usual
notation Z[i] will refer to the element with index i.
Expressions involving operations on vectors, such as
z’ =]Z/y’J refer to element-by-element application of
the operation, i.e., qi] = [Z[i]/di]].

An array has a shape and a domain. We will con-
sider arrays to have an infinite number of dimensions,
numbered from zero. Each array dimension is indexed
by the non-negative integers, i.e., indexing starts at
zero. A shape is an infinite vector of non-negative
integers which defines the array’s length in each di-
mension. When it is necessary to write a particu-
lar shape, the shape’s elements will be parenthesized.
All elements not listed explicitly are assumed to be
ones. Thus, the shapes (1, 1,2) and (4,4) that were
used in the examples in Section 2 denote the infinite
vectors (1, 1,2,1,1,1, . ..) and (4,4,1,1,1, .. v), respec-
tively. The domain of an array is a set of possible
values, one of which is present at each indexed point
within the array.

Definition 3.1 An army A consista of a shape A’, a
tomain DA, and a mapping MA. The ith element of
A represents the length of the aTray in dimension i. A
vector 2 is defined to be in array A ia 0 5 z[i] < A[i]
for all i 2 0. The mapping, MA maps each vector
?! in A to an element of the array’s domain, Z)A. We
will use the standard array notation A[4 to denote the
domain value to which I is mapped.

XII

I
dim. 1 owl dim. O-

a subarray of a slab along
Aat r, dimension 0

h/

array A

Figure 2: Sub-arrays and Slabs

Definition 3.2 The dimensionality of away A, writ-
ten dim(A), is the smallest i such that ,$i] = 1 for all
j 2 i. If there is no such i, then dim(A) is undefined.

Definition 3.3 The size of array A, written IAI, is
nz, X[i].

We will restrict ourselves to arrays of finite size. How-
ever, it will sometimes be convenient for us to think of
arrays as having infinite length in all dimensions. For
this purpose, we define A[4 = NULL for all points
Z that are not in A, where NULL is some value not
found in z)A

An array having a length of zero in one or more di-
mensions is called a null array. Such arrays have zero
size and since there are no points in a null array, it
is considered to have the value NULL at every point.
We will also need a notion of sub-array. A sub-array
is simply an array that is wholly contained within an-
other, as shown in Fig. 2. We will identify the position
of the sub-array within the containing array by the po-
sition of its smallest point, as shown in the figure.

Definition 3.4 Let A and B be arrays, and let 5 be a
vector in A. Array B is called a subarray of A at I iff
z)B = DA, and for every point y’ in B, B[y7 = A[I+y7.

Finally, we define informally the notion of a slab of an
array along dimension i. A slab is simply a slice of unit
width through an array along the specified dimension.
This is also illustrated in Fig. 2.

4 The Array Manipulation Language

The Array Manipulation Language (AML) consists of
three operators which manipulate arrays. Each oper-
ator takes one or more arrays as arguments and pro-
duces an array as result. SUBSAMPLE is a unary opera-
tor which can delete data, i.e., the size of the result of
subsampling an array A is never larger than A. MERGE
is a binary operator which combines two arrays defined

48

over the same domain. APPLY applies a function to an
array, in a manner to be described below, to produce
a new array.

Neither SUBSAMPLE nor MERGE changes the values
found in its operands, i.e., every value found in the
result of these operations can be found in an operand.
The third operator, APPLY, may generate new values
as a result of applying the function.

4.1 An Introduction to Bit Patterns

All of the AML operators take bit patterns as param-
eters. A bit pattern is an infinite binary vector. As for
other vectors, indexing of bit patterns starts at zero.
The ith element of a pattern P is denoted by P[i].
When the context makes it clear that P’ is a pattern,
we will drop the explicit vector notation and simply
write P or P[i].

We will be interested only in those patterns that
consist of an infinite number of repetitions of some
finite vector, and we will use that finite vector to rep
resent the entire pattern. For example, we may write
P= 1010 to mean P = 1010101010 -a-. Note that
there is more than one finite representation of any
such bit pattern. For example, & = 10 represents the
same pattern as P. We will sometimes use a regular-
expression-like notation to describe patterns. For ex-
ample O’ljOL, for positive integers i, j and lc, repre-
sents a pattern in which j l’s are sandwiched between
i O’s on the left and k O’s on the right. The bit-wise
complement of a pattern P, obtained by replacing P’s
ones with zeros and vice versa, will be written P.

There are two pattern functions, index and count,
that we will make heavy use of.

Definition 4.1 If P is a bit pattern (P # 0) and k a
positive integer, index(P, k) ia the index of the k-th 1
in P. By definition, if k = 0 or P = 0, index(P, k) =
0.

Definition 4.2 Zf P is a bit pattern and k a non-
negative integer, count(P, k) is the number of onea in
the first k + 1 positions of P, i.e., j%orn P[O] to P[k],
inclusive.

Both functions are monotonically non-decreasing
in k. It should be obvious that for any k > 1,
count(P, index(P, k)) = k, unless P = 0.

4.2 The SUBSAMPLE Operator

The SUBSAMPLE operator takes an array, a dimension
number and a pattern as parameters and produces an
array. The dimension number will normally be written
as a subscript and SUBSAMPLE will be abbreviated as
SUB, as in

B=SUBi(A, P)

B=SUB,(A,IO)

dimetin I

dimmslm 0

Figure 3: Examples of the SUBSAMPLE Operation

where A is an array, P is pattern, and i is the dimen-
sion number.

The SUBSAMPLE operator divides A into slabs along
dimension i, and then keeps or discards slabs based on
the pattern P. If P[k] = 1, then slab k is kept and
included in B, otherwise it is not. The slabs that are
kept are concatenated to produce the result B. Several
applications of the SUBSAMPLB operator are illustrated
in Fig. 3.

Formally, if B = SUBi(A, P), then B is defined as
follows:

.nB=Z)A

l if A[i] > 0, then g[i] = count(P, i[i] - l), else
Z[i] = 0.

l for all j 2 0 except j = i, d/j] = AL]

l for all points 1 in B, B[. . . ,5[i - 11, qi], Z[i +
11,. . .] = A[. . . , S[i - 11, indez(P, $1 + l), qi +
11,. . .].

Note that subsampling a null array results in a null
array, regardless of the dimension number or the sub-
sampling pattern. Also, if P = 0, then G[i] = 0 and
B is a null array.

4.3 The MERGE Operator

The MERGE operator takes two arrays, a dimension
number, a pattern, and a default value as parameters.
It merges the two arrays to produce its result. As
was done for SUBSAMPLE, the dimension number will
normally be written as a subscript, as in

C=MERGEi(Ay B,P,6)

where A and B are arrays, P is the pattern, and 6
is the default value. The explicit reference to 6 will

49

array A

-Y B

bO1 bll q bO0 b10

dimension 1
I
I
dimnsion0

C=MERGE,,(A,B,l10.6)

f!$$gq

C = MERGE,,(A,B,1100101,6)

-1

C=MERGE,(A,B.llO,S)

Figure 4: Examples of the MERGE Operation

often be dropped if the default is not important. The
operation is defined only if DA = DDg and 6 E DA.

Conceptually, MERGE divides both A and B into
slabs along dimension i. The result is produced by
interleaving slabs from the two arrays according to the
pattern P. Each one in P corresponds to a slab from
the first array (A), and each zero to a slab from the
second (I?). For example, if P = 1001, then along the
i-th dimension, one slab from array A, two slabs from
array B and then a slab from array A are taken and
concatenated in that order. This process is repeated
until all slabs from both A and B have been used.
(Recall that P = 1001 denotes the infinite pattern
100110011001* * a.)

Fig. 4 illustrates the MERGE operation. The exam-
ples show that the default value 6 may be used for two
reasons. One is that the slabs from one array may be
exhausted while slabs remain in the other. This is the
case in the second example in Fig. 4. Another reason
is an array shape mismatch in some dimension other
than the merge dimension. In case of such a mismatch,
the shorter array is expanded using default values un-
til its length matches that of the longer array. This is
illustrated in the third example in Fig. 4.

It is convenient to formally define MERGE in two
steps. The first generates an array C’ by interleaving
slabs from A and B, as described above. Because of
shape mismatches between A and B, however, or be-
cause of the particular pattern P, some values in C’
may be NULL. The second step eliminates this prob
lem by transforming any such NULL values to the
default value 6. The result of this final step is indeed
an array, and is the result of the MERGE operation.
The intermediate array, C’, is defined as follows:

n2~ = DA U {NULL}

CF[i] = maz(indez(P, i[i]), indez(, IQ)) + 1

for all j 2 0 except j = i, ti’[i] = muz(X~],&])

for all points aC in C’:

- if P[Z[i]]= 1, then C’[...,Z[i- l],qi],Z[i+
11,. . .] = A[. . . , qi - l],coUnt(P, +I) -
1,Ic[i+l],...],

- otherwise C’[. . . , Z[i - l],Z[i], 4i + 11,. . .] =
B[...,+11, cmt(F, iqi]) - 1, qi + 11,. . .]

We then obtain C by removing any NULL values in-
side of C’: DC = DC, - {NULL}; for all i 2 0, &] =
@[iI; and for all points I in C, if @[q = NULL then
C[q = 6, otherwise C[Z’j = C’[Zj.

4.4 The APPLY Operation

The APPLY operator applies a function to an array to
produce a new array. In its most general form, it is
written as

where f is the fu_nction to-be applied, A is the array
to apply it to, Df and Rf are shapes, the Pi’s are
patterns, and d = dim(A). The parameters 6f and
R> are called the domain shape and the range shape.
We will often use a special case of APPLY, written

B= APPLY&~, D;,R;)

for which we assume that Pi = 1 for all 0 5 i < d. In
addition, either the range shape or both shapes may be
left unspecified when APPLY is written. These shapes
default to (l,l, 1, a. .) if they are not specified.

A simple way to define APPLY is to insist that f
map from arrays of A’s shape and domain to arrays of
B’s shape and domain. The operator would then sim-
ply compute B = f(A). H owever, many common ar-
ray functions have some structural locality: the value
found at a particular point in B depends only on the
values at certain points in A, not on the values at all
points in A. For example, if f is a smoothing func-
tion that maps each point in A to the average of that
point and its neighbors, then to determine the value
at some point in B, we need only look at that point
and its neighbors in A. Such information can be very
valuable for optimizing the execution of an expression
involving the array operators.

The APPLY operation is defined so that this kind of
structural relationship can be made explicit when it
exists. The APPLY operator requires_ that f be defined
to map sub-arrays of A of shape Dt to subarrays of

50

array A

:.w

0 12 3
B =APPLY(A, f, (2,2),(2.1),0110, 10)

t t tt
lTf lqf PO PI

Figure 5: An Illustration of the APPLY Operation

B of shape cj., We will use the notation f(A, 5) to
refer to the_ result of applying f to the sub-array of A
of shape Dj at Z. Thus, f (A, 5) is an array of shape

Rf*
The APPLY operator applies f to certain sub-arrays

of A, and concatenates the results to generate B. This
process is illustrated in Fig. 5. The pattern Pi can be
thought of as selecting slabs in dimension i, with the
selected slabs corresponding to the ones in the pattern.
The function f is applied at a point I only if that point
falls in selected slabs in all d dimensions of the array,
i.e., only if Pi[I[i]] = 1 for all 0 5 i < dim(A). In the
figure, the patterns select two slabs in each dimension,
leading to a total of four applications of the function
f. Several features of the application of f should be
noted. First, while the selected sub-arrays may over-
lap in A, the results of applying the function do not
overlap in the resulting array B. Second, the arrange-
ment of resulting sub-arrays in B preserves the spatial
arrangement of the selected sub-arrays in A. Finally,
the sub-arrays to which f is applied must be entirely
contained within A. In the example in Fig. 5, this
means that even if the point Ic’ = (3,3) was selected
by the patterns, f (A, 5) would not be evaluated, since
that subarray lies partia_lly _outside of A.

IfB =APPLY(A,f,Df,Rf,Po,..., p&m(A)-$9 ad

f is a function that maps from arrays of shape Dj over
domain z)A to arrays of shape <j over domain DDtonge,
then B is formally defined as follows:

l n3 = %nye

0 for all i > 0,

- if x[i] < D>[i] or Pi = 0, then @i] = 0

- otherwise g[i] = cant(Pi, A[i]-D;[i]).R>[i]

l for all I in B, B[ZJ = f (A, y3[3c’ MOD R;], where
$1 = iTldc?Z(Pi, [Z[i]/R;[i]J + 1) for all 0 5 i <
dim(A)

If tij[i] > i[*] f t or some i 2 0, then the definition
above implies that B will be a null array.

4.5 Additional Operations

In this section, we show a few useful special cases of
the AML operators, and give them names.

CONCAT: The CONCAT operator concatenates two
arrays along some dimension. Concatenation can be
defined using MERGE as follows:

CONCATi (APB, 6) E MERGEi(A, By l’li10Blil,6)

Since MERGE requires A and B to have a common do-
main, so does CONCAT. Note that if A and B have
length mismatches in dimensions other than i, the ar-
ray with the shorter length will be extended using the
default value S.

CLIP: CLIP clips an image along a specified dimen-
sion, keeping only those slabs within a clip region de-
fined by parameters z and y, where 0 2 z 5 y 5 x[i].
It can be implemented using SUBSAMPLE as follows:

CLIPi(A z y) = SUBi(A 9, - 9 OZIY-"OR"-r 1

TILBD~PPLY: Often, we will wish to apply a func-
tion to all non-overlapping sub-arrays of a particular
shape. In the example in Section 2, this is the case
when the low-resolution daily array (D) is being com-
puted from the daily array (C). Since this type of
function application is quite common, we can define
the TILED-APPLY operator to support it. Assuming
that A has dimensionality d, the definition is as fol-
lows:

TILEDAPPLY(A, f, ti;,R;) E APPLY(A, f,tio;,tij,P)

where P denotes the
loD;[O]-1 loddl]-1 , , . . . , IO&ld--ll-1.

patterns

4.6 More on Patterns and Shapes

We allow patterns and shapes appearing in AML ex-
pressions to be defined in terms of the array arguments
of their AML operators. _As an example, consider the
expression APPLY(A, f, (A[O], l)), in which f is applied
to each row of A. Aliases (as in SQL) can be used in
AML expressions when necessary to define names for
unnamed intermediate arrays. In the AML expression
APPLY(SUB~(B, P) A, f, (x[O], 1)) the alias A is used
to refer to the result of the inner SUB operation so
that the APPLY's shape argument can be defined. The
scope of such an alias is the AML operator in which

51

it is defined. In the case of the APPLY operator, it
is also possible to refer to the domain shape and the
range shape in the operator’s patterns. An example of
this can be seen in the definition of the TILEDAPPLY
operation in Section 4.5.

The shape of the result of an AML operation can
always be determined (without actually evaluating the
operator) if the shapes of its array arguments are
known. By induction we can show that the shape of
the result of an arbitrary AML expression can be de-
termined once the shapes of its “terminal” arrays are
known. This property is useful when AML expressions
are being evaluated, since it implies that the space re-
quired to implement an AML operation can be deter-
mined in advance.

5 Rewrite Rules

In many cases it will be possible to rewrite AML ex-
pressions into one or more equivalent forms. Often,
one form will have a more efficient implementation
than another, so rewriting is useful for query optimiza-
tion. In this section, we present several rewrite rules
for AML expressions. Many such rules are possible
and this presentation is not intended to be compre-
hensive. Instead, we hope to demonstrate by examples
that useful rewrite rules do exist.

The first rule shows that two successive SUBSAM-
PLEs along the same dimension can be combined into
a single SUBSAMPLE.

Theorem 5.1 SUBi(SUBi(A, P), Q) = SUBi(A, R)
where R[j] = Pb] A Q[count(P, j) - l] for all j 2 0.

Example 5.1

Applying the above rewrite rule to the ex-
pression SUBO(SUBO(A, lOOO), lo), we get R =
1000000010000000 * * a. So the expression gets simpli-
fied to su~o(A, 10000000). 0

The next rule shows that we can push SUB through
MERGE. Heuristically, this should be beneficial be-
cause the merge operation will be able to operate on
smaller subsampled images.

Theorem 5.2 SUBi (MERGEi (A, B, P), Q) =
MERGEi(SUBi(Ay R), SUBi(B, S)yT)
where for all j 2 0, R[j] = Q[indez(P,j + l)], S[j] =
Q[indez(p, j + l)], and T[j] = P[indez(Q,j + l)].

Example 5.2

Applying the above theorem to the expression
SUBO(MERGE~(A, B, lo), 101) yields R = 110, S = 011
and T = 1100. So the transformed expression is
MERGEo(SUBo(A, llO), sUBo(B, Oil), 1100). l?rom pat-
terns R and S we see that about one-third of arrays A

57

and B can be removed before they are merged, poten-
tially speeding up the merging step. 0

Example 5.3

An interesting situation arises in the following exam-
ple. Rewriting SUBi(MERGEi(A, B, OlOO), 100010) US-

ing Theorem 5.2 yields R = 0,s = 100110010 and
T = 0. So an equivalent form for the expression is

MERGEi(SUBi(A, O), SUBi(B, 100110010)~ 0).

Since MERGE with a pattern of 0 results in its second
argument, the above expression can be transformed to
SUBi(B, 100110010). From the original expression, it
is not immediately apparent that the whole of array
A gets subsampled out but the equivalent expression
makes this obvious. 0

The ability to push subsampling through function
application is also potentially very valuable. To sim-
plify our presentation, we consider a restricted version
of a rewrite rule that accomplishes this.

Theorem 5.3 If R;[i] = D>[i] = 1, Pi = 1, and
d = dim(A), then - M
SUBi(APPLY(A, f, ojv $j, J)o, - - - 7 pd-l), Q) =

APPLY(SUBi(A, Q), f, oj, Rj, PO, - - * 7 pd-1).

Example 5.4

Recall from Section 2 that the daily temperature array
C was defined as

c = APPLY(MERGEz(A, B,lO),f,(1,1,2)).

where cj = (1, 1,2) and I$ defaults to (1,&l,.--)
since it is not specified. Suppose we want to subsample
the array C in dimension 0 using the pattern P = 0616.
That is, we would like to evaluate

SUBo(APPLY(MERGE@, B, lo), f, (&I, 2)), P)

Using Theorem 5.3, this can be rewritten as

APPLY(SUBo(MERGEz(A, B,lO),P),f,(1,1,2))

We can optimize further by pushing SUB0 inside of
MERGES. This is trivial, since they operate in different
dimensions. This gives us

APPLY (MERGE2(SUB&i, P), SUB@, P), lo), f, (1, 1,2))

which indicates that to retrieve parts of the daily tem-
perature array, we need only retrieve parts of the day-
time and nighttime arrays, as expected. •I

There are situations in which the result of an APPLY
operation is being subsampled, but we cannot push the
SUB through the APPLY. This often happens when the

function is being applied to overlapping sub-arrays.
Consider the following AML expression:

B = SUBi(APPLY (A, f, (2,2), (2,2)), 110010)

in which f maps 2 x 2 sub-arrays from A to 2 x 2 sub-
arrays in the result. Note that if 1 is a point in slab
1 (i.e., the second slab) of dimension i of A, the result
of evaluating f at 5 will be completely discarded by
the SUB that follows APPLY. The results of such eval-
uations form slabs 2 and 3 in the resulting array, and
both P[2] and P[3] in the subsample pattern are zero.
In fact, because the subsampling pattern is an infinite
repetition of 110010, the result of evaluating f at any
2’ with Z[i] MOD 3 = 1 will be discarded. Clearly,
the function f should not be evaluated at such points.
These evaluations cannot be avoided by moving the
SUB before the APPLY however, since all of A is needed
to generate parts of B that are kept.

Although we cannot always push SUB through
APPLY, we may be able to, push SUB into APPLY. For
the special case in which Rf ha8 unit size, the following
rule shows this.

Theorem 5.4 If @I = 1 and d = dim(A), then
4

SUBi(APPLY(A_, f,-Dr,R~‘Po,...,Pi,.-.,Pd-l),S) =

APPLY(A,~,D~,R~,Qo,...,Q~,‘.‘,Q~-~),
where &j = Pj for all j # i, and &i[k] = Pi[H] A
S[COWlt(Pi, k) - l] f0T all k > 0.

Example 5.5

SUB1(APPLY(A, f,D’r, 11,101100,110),011)
gets transformed to APPLY(A, f, tit, ll,OOllOO, 110)
according to this rewrite rule. 0

6 Query Evaluation

Query processing involves the generation of a query
execution plan for a given AML expression.’ An n-
operator AML expression can be executed in n sequen-
tial steps in which each step generates an intermediate
result which is used a8 input by a subsequent step.

This straightforward approach ha8 several potential
disadvantages. First, it does not allow for pipelining of
steps. It should be possible for a step to begin execu-
tion even if its input ha8 only been partially generated.
Second, it may result in the generation of many large
intermediate results. For example, consider steps that
implement operations such as SUBi(A, 1111111110) or
MERGEi(A, B, 10). If the arrays A and B are large, so
too will be the output of these operations. An n-step

‘In fact, we may generate several candidate execution plans,
and then choose a good one using execution cost estimates.
Here, we will focus on some of the issues involved in execution
plan generation.

Figure 6: Multidimensional Synchronization for Ar-
rays.

query execution plan might generate n such interme-
diate results. This may be very time consuming, even
if the steps are implemented entirely in memory.

The first of these problem8 can be addressed by al-
lowing steps to execute concurrently. This requires
some mechanism for synchronizing access to arrays
that are simultaneously being produced by one step
and consumed by a subsequent step. Often, thii is
accomplished by treating the data passed from one
step to another as a linear stream. A stream can be
thought of as having a boundary point which indicate8
how much of the stream data has actually been gen-
erated by the first step. The subsequent step is forced
to wait if it ha8 consumed all of the stream data up to
the boundary. A direct application of this idea to mul-
tidimensional arrays would require that steps agree on
how an array is to be “linearized” to form a stream. An
alternative is to generalize the synchronization bound-
ary to accommodate multidimensional arrays. This is
illustrated for two-dimensional arrays in Fig. 6. This
approach divides each array into two regions. As the
first step runs, the region accessible to the second step
grows until it covers the entire array.

To address the second problem, we can choose an
array representation that permit8 steps to avoid creat-
ing new copies of large arrays. In particular, we may
be able to allow a step to simply modify its input array
and then use the modified array as its output. Fig. 7
illustrates an array representation that permits this
for SUBSAMPLE and MERGE steps. This array repre-
sentation has several features. One is a vector of valid
bits per array dimension. These bits can be cleared to
indicate that a particular slab of data is invalid, i.e.,
that it should be ignored by any subsequent step8 that
use the array. This provide8 an easy way to implement
a SUBSAMPLE operation, since valid bits can simply be
cleared according to the positions of the zeros in the
SUBSAMPLE pattern. Of course, the disadvantage of
this approach is that the size of the array represen-
tation is not actually reduced by subsampling. This
suggests that this mechanism should be used to im-
plement SUBSAMPLE steps that have low selectivity,
i.e., steps whose subsample patterns have a high ra-

53

valid bits

for dim. I

Lull 111 mTn
valid bits for dim. 0

Figure 7: An Array Representation Permitting Fast
SUBSAMPLE and MERGE

tio of ones to zeros. More selective SUBSAMPLES can
be implemented by generating a new, smaller array
representation. Note that invalid slabs will actually
be removed from the array representation by the first
“downstream” step that actually generates a new ar-
ray.

The array representation also incorporates indirec-
tion. The array data is divided into blocks, and
a multidimensional array of pointers refers to these
blocks. Indirection allows some MERGE steps to be
implemented without copying array data. For exam-
ple, consider the MERGE operation used to define the
daily temperature array (C) in Fig. 1. It concatenates
the daytime and nighttime arrays. This can be imple-
mented by generating a new, larger pointer array, and
then setting the pointers to point to the existing blocks
of the two arrays. Clearly, the existence of such a fast
implementation depends on the shape of the blocks of
the arrays to be merged, and on the merge pattern.
This creates an interesting opportunity for optimiza-
tion, since whenever a new array copy is created, we
can choose the parameters of its representation, e.g.,
the size and shape of the blocks.

In combination with multidimensional synchroniza-
tion, indirection can also help reduce the memory re-
quirements of a query execution plan. This is because
the space used by individual array blocks can be re-
leased as soon a8 that block is no longer needed. In
many cases, only a small part of a large array will need
to be represented at any time.

7 Related Work

A variety of database systems now provide support
for user-defined data types such as arrays. These in-
clude commercial systems [lo, l] and research systems
such as Postgres, Paradise, and others [7, 13, 3, 121.
As noted in the introduction, these systems may opti-
mize relational expressions in which user-defined func-
tions appear. However, they generally do not optimize

the user-defined expressions themselves. A notable re-
cent exception is P7?XDA70’R[12], which treats user-
defined expressions declaratively, and passes them to
an optimizer that can handle them.

Special purpose image database systems also handle
array data, at least in two dimensions. [2] is a survey
of work in this area. These systems focus on selec-
tion and retrieval of images, or parts of images, based
on image content. AML does not directly support re-
trieval based on image content. However, it can be
used in conjunction with content-based indexing and
retrieval techniques.

There have been several other proposals for query
languages for arrays, including [S] and [4]. Both of
these are based on calculi which can be used to express
array-related operations, a8 well as non-array opera-
tions. We will briefly describe the Array Query Lan-
guage (AQC) defined in [S]. dQ& is based on a calcu-
lus which provides four array-related primitives: two
are used to create arrays, one performs subscripting,
i.e., it extracts a value from an array, and one deter-
mines the shape of an array. Using these very low-level
constructs (plus such things a8 conditionals and arith-
metic operations), higher level operations can be con-
structed. For example, operations similar to the SUB-

SAMPLE, MERGE, and APPLY operations defined here
can be expressed in terms of those primitives. Opti-
mization of dQC expressions is performed at the level
of the primitive operations after replacing higher-level
operations with their definitions. Implementations of
each of the primitive operations are then used to eval-
uate the optimized queries. This is a very powerful
and flexible approach. For example, if new higher-
level operations are added, they are expressed using
the calculus. They can then be optimized, i.e., there
is no need to generate new rewrite rules “manually”
for the new operations.

Neither proposal suggests any particular set of high-
level operations for arrays. Rather, they show how
such operations can be defined and optimized. It
is not clear how effective such optimizations will be.
Whether an optimizer will find appropriate rewrite
rules, and how quickly it will find them, remain open
questions. The efficiency of execution of query plans
consisting of many small, primitive operation8 is also

a potential concern.

8 Summary and Conclusion

We have described the Array Manipulation Language,
an algebra for arrays. AML can be used as a query
language for array data, and as a view definition lan-
guage, to define new arrays in terms of existing ones.
AML’s APPLY operator can be customized to support
a wide variety of user-defined array functions. AML

54

expressions can also be optimized. Optimizations can
exploit the structural properties of the AML opera-
tions.

In [8], Maier and Vance claim that a reasonable al-
gebra for ordered types, such as arrays, should have a
small number of operators, should encapsulate a sig-
nificant fraction of the control structures used for file
processing, should possess non-trivial transformations
useful for query optimization, and should admit to rea-
sonably efficient implementation over large arrays. We
claim that AML has at least the first, third, and fourth
of these properties. The second property, expressive-
ness, is more difficult to pin down as it is very domain
dependent. However, we note that AML is at least
expressive enough to mimic the widely used file-based
data management packages, such as NetCDF, which
support multidimensional arrays.

Array data will be most useful in conjunction with
other types of data. In particular, we may wish to
associate various sorts of metadata with each array
to facilitate the selection of individual arrays from a
set. Thus, AML will be most useful if it can be imple-
mented as part of a system capable of integrating data
of various types. One promising approach is offered
by P’REDA’T0a [12], which views the world as an
integrated collection of data types, each of which sup
ports a dechrative, optimizable query language (such
as AML). A similar, but more Ioosdy coupled, ap
preach is taken by systems like Garlic [5] that attempt
to federate a collection of independent and heteroge-
neous data repositories. Extensible object-relational
systems, such as the Informix Universal Server [lo],
may also serve as useful platforms for implementation
of AML. We are currently considering these implemen-
tation alternatives.

References

PI

PI

PI

PI

F. Bancilhon and G. Ferran. ODMG-93: The
object database standard. Bulletin of the IEEE
Computer Society Technical Committee on Data
Engineering, 17(4):3-14, December 1994.

S.-K. Chang and A. Hsu. Image information
systems: Where do we go from here? IEEE
l’bansactions on Knowledge and Data Engineer-
ing, 4(5):431-442, October 1992.

D. J. Dewitt et al. Client-Server Paradise. In
Proc. of the 20th VLDB Conference, pages 558-
569, 1994.

L. Fegaras and D. Maier. Towards and Effective
Calculus for Object Query Languages. In Proc.
of the SIGMOD Conference, pages 47-58, 1995.

[51

PI

PI

PI

PI

WI

WI

P21

P31

WI

P51

L. M. Haas et al. An optimizer for heteroge-
neous systems with nonstandard data and search
capabilities. Bulletin of the ZEEE Computer So-
ciety Technical Committee on Data Engineering,
19(4):37-44, December 1996.

L. Libkin et al. A Query Language for Multidi-
mensional Arrays: Design, Implementation, and
Optimization Techniques. In Proc. of the SIG-
MOD Conference, pages 228-239, 1996.

V. Linnemann et al. Design and Implementation
of an Extensible Database Management System
Supporting User Defined Data Types and Func-
tions. In Proc. of the 14th VLDB Conference,
pages 294-305,1988.

D. Maier and B. Vance. A call to order. In Proe.
of the ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pages
1-16, 1993.

National Space Science Data Center, Greenbelt,
Maryland. CDF User% Guide, October 1996. Ver-
sion 2.6.

M. A. Olson et al. Query Processing in a Parallel
Object-Relational Database System. Bulletin of
the IEEE Computer Society Technical Committee
on Data Engineering, 19(4}:3-10, December 1996.

R. Rew et al. NetCDF Us&s Guide. Unidata
Program Center, Boulder, Colorado, February
1996. Version 2.4.

P. Seshadri et al. EADTs:turbo-charging com-
plex data. Bulletin of the IEEE Computer So-
ciety Technical Committee on Data Engineering,
19(4):11-l& December 1996.

M. Stonebraker et al. The implementation of
POSTGRES. IEEE !hnsactions on Knowledge
and Data Engineeting, 2(1):125-142, 1990.

University of Illinois at Urbana-Champaign.
NCSA HDF Calling Interfaces and Utilities, 3.1
edition, July 1990.

G. K. Wallace. The JPEG still picture com-
pression standard. Communications of the ACM,
34(4):30-44, April 1991.

55

