
Multiple-View Self-Maintenance in Data Warehousing
Environments

Nam Huyn *
Stanford University

huyn@cs.stanford.edu

Abstract

A data warehouse materializes views derived
from data that may not reside at the ware-
house. Maintaining these views efficiently in
response to base updates is difficult, since it
may involve querying external sources where
the base data reside. This paper considers
the problem of view self-maintenance, where
the views are maintained without using all the
base data. Without full use of the base data,
however, maintaining a view unambiguously
is not always possible. Thus, the two critical
questions that must be addressed are to de-
termine, in a given situation, whether a view
is maintainable, and how to maintain it.

We provide algorithms that answer these ques-
tions for a general class of views, and for an
important subclass, generate SQL queries that
test whether a view is self-maintainable and
update the view if it is. We improve signifi-
cantly on previous work by solving the view
self-maintenance problem in the presence of
multiple views, with optional access to a sub-
set of the base data, and under arbitrary mixes
of insertions and deletions. We provide bet-
ter insight into the problem by showing that
view self-maintainability can be reduced to
the problem of deciding query containment.

Work supported by AR0 grant DAAH04-95-1-0192.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997

1 Introduction

Data warehouses have gained importance in recent
years ([RED, IK93, Z*95]). A data warehouse is a col-
lection of materialized views derived from data that
may not reside at the warehouse. As a benefit, user
queries can often be evaluated much more cheaply
using these stored views than using the base rela-
tions. The problem, however, is that the views must
be updated to reflect changes made to the base re-
lations. While maintaining these views incrementally
is often significantly more efficient than recomputing
them from scratch (as done in most current data ware-
houses), it can still be expensive. For instance, in re-
sponse to an update to a base relation, incremental
maintenance of views defined as a join may involve
looking up the non-updated base relations, which may
reside in external sources.

Thus, in data warehousing environments where
maintenance is performed locally at the warehouse, an
important incremental view-maintenance issue is how
to minimize external base data access. The idea of
avoiding base access to speed up view maintenance is
illustrated in Figure 1. We take the following approach
to reduce maintenance costs. In response to a base up-
date, we try to maintain the views using information
that is strictly local to the warehouse. This informa-
tion includes the view definitions and the contents of
all the views. Only when we fail to do so do we resort
to accessing the base relations.

As a result of not using all the base relations, there
may be situations where there is not enough informa-
tion to maintain a view unambiguously, even if we are
given the specific contents of the views, a subset of
the base relations, and the base update. Such sit-
uations never arise in traditional work on material-
ized view maintenance ([GM95, Kuc91, GMS93, SJ96])
where all the base data is usually assumed to be avail-
able. Thus, an important question (originally consid-
ered in [TB88, Hu96]), which was never raised in tradi-
tional view-maintenance work, is to determine whether

26

Figure 1: Saving Base Access in View Maintenance.

a view is maintainable, that is, guaranteed to have a
unique new state, given an update to the base rela-
tions, an instance of the views, and an instance of a
subset of the base relations. As a shorthand, such a
view is said to be self-maintainable 1 in the given situ-
ation. A second question, the main question in tradi-
tional view-maintenance work, is how to bring the view
up to date using only the given information. Together,
these two questions define the view self-maintenance
problem.

Previous work on view self-maintenance specific to a
given situation ([TB88, GB95, Hu96]), however, only
considered the special case where no other material-
ized views and no base relations are used to main-
tain a given view. We call this case single-view seZf-
maintenance. Applying these methods to maintain a
warehouse that contains several views, i.e., by main-
taining the views separately from each other, often
fails to maintain the warehouse when actually the
views are self-maintainable collectively. The follow-
ing example illustrates the need to use all the views to
maintain a warehouse.

Example 1.1 Consider a data warehouse with two
materialized views VI (X, Y, 2) and VZ (Y, Z), each de-
fined in terms of the base relations R(X, Y), S(Y, Z),
and T(Z) as follows:

CREATE VIEW Vl(X,Y,Z) AS
SELECT R.X, R.Y, S.Z FROM R,S,T
WHERE R.Y = S.Y AND S.Z = T.Z

CREATE VIEW V2(Y,Z) AS SELECT * FROM S

That is, VI is the natural join of R, S, and T, while V2
is a copy of S. Suppose we would like to maintain the
warehouse in response to the insertion of tuple (a, b)
into R, without using either R, S, or T.

First, consider the view instance where VI =
{(al,bl,cl)} ad V, = {(h,s), (he)}. While we can

lThe terms “self-maintainable” and “self-maintenance” have
been used in the literature with quite different meanings, de-
pending on the amount of information available. We will more
precisely define our notion of self-maintainability later.

infer the contents of S, since Vz is just a copy of it, we
cannot determine the contents of R and T exactly. In
fact, it could be that R = {(al, b,)} and T = {(cl)), in
which case view VI is not affected by the insertion of
(a, b) into R. But it could also be that R = {(al, bl)}
and T = {(cd,(c2)), in which case (a, b, cs) must be
added to view VI to keep it consistent with the base
relations. Thus, we cannot unambiguously maintain
view VI. VI is not self-maintainable under the inser-
tion in this view instance.

Consider another instance where VI = {(al, bl, cl),
(al, bl,cz)} and v2 = {(bl,cl), (b,cz), (bl,cz)}. This
time, however, we can infer enough about T to be able
to precisely determine the effect of the insertion on
VI. In fact, to evaluate the effect of the insertion on
view VI, we look for tuples from S and T that join
with the new tuple (a, b) from R. On the one hand,
only one tuple from S qualifies: (b, ~2). On the other
hand, to explain the presence of (al, bl, ~2) in VI, it
must be case that T contains (~2). Thus, we know
exactly how to maintain VI without even looking at
the base relations: add (a, b, cz) to VI. While VI ‘is
clearly self-maintainable under the insertion of (a, b)
into R in this view instance, ([TB88, Hu96]) would
fail to detect this situation because they attempt to
maintain V-1 in isolation from V2. If I4 were not avail-
able, they would have concluded correctly that VI can-
not be unambiguously maintained, since the following
two base instances, while both consistent with VI, de-
rive Waent states of VI &ex GE insertk~~ OS r(a, b):
R = {(al,&), S = {(bl,cl),(bl,c2j,(b,c2)}, ad
T = UcMc2)) on the one hand, and R = {(al,bl},
S = {(bl,cl),(bl,c2)}, and T = {(c~),(cz)} on the
other hand. But in light of V2, the latter base instance
is clearly not possible. I

Thus, to maximize the chance of maintaining the
views successfully, we must take full advantage of all
the information available, namely, not only the con-
tents of the view to maintain, but also the contents of
all the other views. Further, if a base update consists
of a set of individual updates to several base relations,
it is very important to consider the set of updates as
a whole instead of considering each individual update
separately. In fact, there are situations where the for-
mer approach succeeds to maintain a view but the
latter fails. For instance, consider a view that com-
putes whether or not two base relations (with iden-
tical schemas) have a tuple in common. Consider a
situation where the view is empty and where the same
tuple is to be inserted into both relations. Clearly, the
new state of the view can only be “true”. But if we
consider the two insertions independently, we cannot
unambiguously update the view.

Our work focuses on the multiple-view self-

27

maintenance problem where again, the two critical
questions are maintainability and maintenance of a
view as a function of a given base update, a given
instance of all the views, and a given instance of a
particular subset of the base relations. Our work is
mainly motivated by the desire to speed up view main-
tenance in WHIPS ([H*95]), a data warehousing sys-
tem prototype developed at Stanford University that
performs on-line update to views. Also, view self-
maintenance is an effective approach to avoid asyn-
chronous update anomalies ([Z*95]) inherent in any
data warehousing environment, by limiting access to
base relations that do no change, for instance. Fi-
nally, the self-maintenance approach is also important
in any environment where source access is expensive
for a variety of reasons: the required base data may
be archived; the data source may be temporarily dis-
connected or even permanently destroyed.

The contributions of this paper are as follows:

l We solve the view self-maintenance problem in the
presence of a wide variety of information that is
available in practice: multiple views, partial ac-
cess to the base relations, partial base copies, ar-
bitrary mixes of base insertions and deletions.

l We provide new insight into the view self-
maintenance problem by showing that self-
maintainability can be reduced to the problem of
deciding query containment.

l We show that for conjunctive-query views with
no projection, not only efficient (polynomial-time)
solutions to the view self-maintenance problem
exist but also they can be generated at view-
definition time in the form of SQL queries.

Related Work on Self-Maintenance

Self-maintenance generally refers to the problem of
maintaining views without full use of the base rela-
tions. [GM951 gave an excellent classification of dif-
ferent notions of self-maintenance, baaed on what in-
formation is available for view maintenance. A ma-
jor distinction is what we call compile-time vs. run-
time. Even though both approaches share the goal of
maintaining a view using only the information given
(namely the instance of the views, the update instance,
and perhaps the instance of some subset of the base
relations), they differ in the way they guarantee a view
can be maintained. In the compile-time approach, this
guarantee is made independently of the instance of the
views, the instance of the base relations, and the in-
stance of some update type. “Compile-time” alludes to
the fact that these instances are not known at compile-
time, but only the view definitions and the update

type. In the runtime approach, maintainability of a
view is guaranteed on an instance basis: for a par-
ticular instance of the views, a particular instance of
a subset of the base relations, and a particular up-
date instance. Note that this approach is the more
aggressive one, since it may succeed in maintaining a
view where the compile-time approach fails. In this pa-
per, we take the runtime approach to self-maintenance,
even though ‘?untime” is not explicitly mentioned.

Within the realm of runtime self-maintenance, we
are not aware of any work that addresses the ques-
tion of self-maintainability with respect to an instance
of more than one view or base relation, or under an
arbitrary mix of insertions and deletions to the base
relations. [TB88] and more recently [GB95] gave self-
maintainability conditions (they called conditions for
Autonomously Computable Updates) for views that are
SPJ queries with no self-joins and for updates that are
either insertions or deletions to a single base relation.
Their method cannot be extended easily to take advan-
tage of multiple views or the base relations, or to han-
dle updates that mix insertions with deletions. [Hu96]
addressed the single-view strict self-maintenance prob-
lem and solved it more efficiently than [GB95], but
only for views that are SPJ queries with no self-joins
and for updates that are single insertions. Again, their
method cannot be generalized easily. In the realm of
compile-time self-maintenance, [GJM96] addressed the
single-view self-maintenance for views defined as SPJ
queries and under either insertions, deletions, or up-
dates. More recently, [&*96] solved a different but
related problem, namely that of making a view self-
maintainable by introducing a minimal set of auxiliary
views to materialize. However, how to make more than
one view self-maintainable was not addressed.

Outline of the Paper

In Section 2, we define the multiple-view self-
maintenance problem. Sections 3 through 5 deal with
strict self-maintenance. Sections 3 and 4 consider
the special subclass of SPJ views with no projec-
tion. Section 3 shows an algorithm that generates the
view maintenance queries for a self-maintainable view.
Section 4 shows an algorithm that generates queries
that test self-maintainability, based on reducing self-
maintainability to a query-containment problem. Sec-
tion 5 shows how to extend the previous results to
other classes of views. In Section 6, we show how to
extend the results for strict self-maintenance to gen-
eralized self-maintenance, which can be used to define
a strategy for efficient warehouse maintenance. The
paper concludes in Section 7. Throughout this paper,
results are stated without their proof, which can be
found in [Hu97].

28

2 Defining the Multiple-View Self-
Maintenance Problem

Throughout this paper, the warehouse consists of ma-
terialized views VI, VZ, . . . , V, derived from base rela-
tions Rl,Rz,..., R,,. This collection of base relations
is referred to as database D. Each Vi is defined by
a query Qi over database D, written as Vi = &i(D).
A database D is said to be consistent with view Vi if
&i(D) = Vi. We assume the existence of a database
consistent with all the given views but whose content
is not known a priori. We use U to denote a ground
update to the base relations and U(D) to denote the
updated database. We model U as dR,, tSRf , 6R;,
sR.$, dR;, 6R$, where 6R; (resp. CURT) is the
set of tuples to be deleted from (resp. inserted to) re-
lation Rj. Updates are assumed to be self-consistent,
i.e., 6RT and 6RT have no tuples in common for any
j.

Strict and Generalized Self-Maintenance

In strict self-maintenance, no base relations are used
for maintaining a view. Thus, given an instance of
vl,..., V, and an update instance U, view Vk is said
to be self-maintainable under U if its new state (i.e.,
the state of Vk that is consistent with the updated
database) does not depend on the database, as long as
the database is consistent with all the views prior to
the update. That is, for every pair D and D’:

[i Qi(D)=Qi(D’)=K] * Qk(U(D))=Qk(U(D’))
i=l

(1)
Self-maintainability is a function of U and VI,. . . , V,
(it is also a function of the view definitions Qi, but
that is understood). Note the requirement that D and
D’ be consistent with all the views, and not just the
view to maintain as in single-view self-maintainability.
Only when Vk is self-maintainable does it make sense
to maintain it, and a maintenance expression is a func-
tionofUandVi,... , vm (not just vk as in single-view
self-maintenance).

We generalize strict self-maintenance by also al-
lowing access to some of the base relations. Thus,
in generalized self-maintenance, given an instance of
vl,..., V,,,, an update instance U, and the instance of
a subset S of the base relations, view Vk is said to
be self-maintainable (under U and with respect to S)
if its new state does not depend on the database, as
long as the database is consistent with all the views
and the given base relation instances in S prior to
the update. In generalized self-maintenance, both
self-maintainability and maintenance expression are a
function of U, VI,. . . , VA, and the base relations in S.

Notation

In this work, we assume a relational database frame-
work in which views are defined by relational queries
over base relations. Set semantics is also assumed.
Thus, the answer to a query is a set of tuples. We
will use the notation of Datalog (ref. [Ull89]) for all
the queries involved in our algorithms. This choice
is by convenience, even though any other relational
languages could be used. Thus, the view definition
for view VI from Example 1.1 is written as a Datalog
query Qi with the single rule:

211 (X, Y, 2) :- r(X, Y) 82 s(Y, 2) & t(z)

where s(X, Y, 2) is called the rule’s head, and
r(X, n SK a and t(2) the rule’s subgoals. By con-
vention, relation names are written in upper case (e.g.,
VI, S, and 6R-) and their predicate in lower case (e.g.,
~1, s, and ar-). The &en&on of a predicate is the
instance of the relation for the predicate. In general,
a predicate is called an IDB predicate if it appears in
the head of some rule, an EDB predicate otherwise. A
particular IDB predicate that is used to return the an-
swers to the query is called the query predicate. Thus,
in query Qi, predicates r, s, and t are the EDB predi-
cates, and ~1 the query predicate. Qi is an example of
a Datalog query with only one rule whose body con-
tains only EDB subgoals. Such a query is called a
conjunctive query (abbreviated CQ) or an SPJ query
with only equality comparisons.

For the most part (except Section 5), the queries Qi
that define the views in the warehouse (in terms of the
base relations Rj) are assumed to be conjunctive. In
rule notation, we write Qi as Hi :- Gil & . . . & Gini,
where the head Hi uses predicate vi for view Vi and
each subgoal Gij uses predicate rl for some relation
amongRl,Rz,... , R,. Constant symbols may appear
anywhere in a rule. We also assume that the variables
in Qi’s body all appear in Qi’s head. Such a query is
said to have no projection. For a description of other
classes of Datalog queries, see [Ull89].

Query Containment

The main technique used in solving (1) is based on re-
ducing it to an implication problem known in the lit-
erature as the query containment (abbrev. QC) prob-
lem (see [UllSS]). Given two Datalog queries P and
Q that use EDB relations El, . . . , E, as input, we say
that P C Q if the answer to P is a subset of the an-
swer to Q, for every instance of Er , . . . , E,. Instance-
specific QC is a variation of the QC problem where
the instance of some of the input EDB relations is
fixed. Given two queries P and Q using EDB relations
El ,..., E,,Fl)... , F, as input, and given an instance
of&,... , F,,,, we say that P C& ,..., F,,, Q if the answer

29

to P is a subset of the answer to Q for all instances
of El,..., En. The EDB predicates fi, whose exten-
sion is fixed, are called constant predicates. The EDB
predicates ei are called variable predicates. When the
extension of the constant predicates is known, we can
always reformulate an instance-specific QC problem
to a QC problem by eliminating any constant pred-
icate f as follows: replace any subgoal -f(a) with
A,(J? # 2) and any subgoal f(x) with VZ(X = %),
where 2 ranges over the tuples in f’s extension. How-
ever, when the extension of the constant predicates is
not known, we would like to find a condition on these
predicates that expresses P ~F~,...,F, Q. Whether or
not such condition always exists is still an open ques-
tion. In the rest of this paper, we will simply use
P C Q to denote P CF *,..., F,,, Q, as it will be clear
from the context which input predicate is constant.

3 Generating Queries to Maintain the
Views

In this section, we address the question of how to
bring a view up to date if the view is known to be
self-maintainable. Note that if a view is not self-
maintainable, there is no unambiguous way to main-
tain the view correctly without using additional in-
formation, such as querying some of the base rela-
tions (see Section 6). However, if the view is self-
maintainable, we do not need to know what the actual
database really is to maintain the view, since we can
use any database that is consistent with all the views
to propagate the update to the view. But how can we
find such a database? The answer lies in the canonical
database. Note that the canonical database is defined
relative to an instance of the views.

Definition 3.1 Canonical Database: Let VI, . . . , V,
be views, and for i = 1,. . . ,m, let Qi be a CQ with
no projection that defines Vi over relations RI, . . . , Rn.
The canonical database, denoted D, consists of all the
tuples obtained as follows: for each view Vi, every tu-
ple in Vi that matches Qi’s head provides a substitu-
tion that grounds all the a!oms in Qi’s body; include
all these ground atoms in D. I

Example 3.1 Consider views VI and Va defined by:

Vl (X, Y, 2) :- r(X, Y) & s(Y, 2) & t(2)
v2(Y,Z) :- s(Y,Z)

Suppose VI = {(al,bl,cl),(al,bl,c2)) ad Vz = .
{(bl,c~),(b,ca),(bl,ca)}. The canonical database D
in this view instance consists of R = {(al, bl)}, S =
{(h,s), (h,cz), (b,cz>), and T = {(cd,(c2))- I

Intuitively, we are trying to reconstruct the base re-
lations minimally from all the given views. When each

Qi has no projection, there is a unique minimal recon-
struction, which is the canonical database fi. The fol-
lowing lemma states the key property of fi that allows
us to use it to maintain the views.

Lemma 3.1 fi is consistent with all the views. 1

The following example illustrates how to maintain
the views using the canonical database.

Example 3.2 Continuing from Example 3.1, now
consider inserting (a, b) to relation R. If VI is self-
maintainable under the insertion (and with respect to
the given view instance), we know we can obtain the
same result for the new state of VI no matter which
database we use to propagate the insertion and that
is consistent with the views. We can use D in par-
ticular. So to compute the tuples gained by VI, we
simply join r(a,b) with S = {(b1,q),(b1,ca),(b,ca)}
and T = {(cl), (~2)) to obtain (a, b, 4. I

The following theorem formalizes the use of B to
reduce the problem of maintaining a view without us-
ing any base relation to a view maintenance problem
with unrestricted use of the base relations.

Theorem 3.1 Let VI,. . . ,V, be views, and for i =
1 , . . . , m, let Qi be a CQ with no projection that defines
& over some database D. Let U be an update to D. If
Vk is self-mamtainable under U, then the new state for
Vk is Qk(U(D)), where D is the canonical database. 1

Theorem 3.1 provides us with the following algo-
rithm that computes the incremental view mainte-
nance expressions.

Algorithm 3.1 Generate Maintenance Query

Input: Ql,...,Qm, where each Qi is a CQ with no
projection that defines vi using r-1, . . . , r,, as input.

Output: Queries for incrementally maintaining Vk,
using ~1, . . . ,v,, ar[, 6rr,. . . ,6r;, ar,+ as input.

Method:
1.

2.

3.

4.

I

For i = 1,. . . ,m and j = 1,. . . ,ni, generate rule
(Aij) : L’ij :- Hi, where Hi is the head of Qi
and &‘ij is the subgoal Gij in Q~‘s body whose
predicate rl is replaced by predicate $1. These
rules define the predicates ii ,...,i, for the canon-
ical database fi.
Generate queries that incrementally maintain
vk, using predicates Vk, rl,. . . ,rn, 6r,,6rf,
. . ..&-.,6r,+ as input. Call this set of rules M.
Let M be obtained from M where every occur-
renceofrjisreplacedby+j,forj=l,...,n.
Return MU{(&),i = l,...,m,j = l,...ni}.

30

Step 1 in Algorithm 3.1 essentially computes the
canonical database D. Step 2 generates queries that
incrementally maintain view Vk, i.e., that update Vk
to the new state Qk(U(D)) using Vk and all the base
relations Ri’s (the instance of these base relations is
actually taken from the canonical database, which is
the purpose of Step 3). Many algorithms exist in the
view-maintenance literature ([KucSl, SJ96]) that can
generate queries for incrementally maintaining a view
using both the view and all the base relations, for ex-
ample based on algebraic techniques for differentiat-
ing query expressions. Using for instance [SJ96] in
Step 2, Algorithm 3.1 generates the queries that com-
pute the required insertions to and deletions from a
view, in time linear in the size of the view definitions.
The size of these queries is also linear. In practice, if
these queries are optimized, we may not need to actu-
ally construct the entire canonical database as Step 1
would suggest.

Example 3.3 Consider the view definitions for VI
and V2 from Example 3.1 and consider the insertion
of r(u, b). Let &.$ be the predicate for the set of net
insertions to VI. Algorithm 3.1 generates the following
query for 6~::

qY,z) :- Vl(X,Y, 2)
i(Y,Z) :- us(Y, 2) .

t(z) :- Ul(X,Y, 2)
6u,+(a, b, 2) :- iqb, 2) & t^cz> & -ml (a,b, 2)

which can be simplified further to

&$(a,b,Z) :- v~(-,b,Z)&v~(-,-,Z)&lu~(a,b,Z)
dvl+(a,b,Z) :- 44 2) & u1(-, -, 2) & -v1(a,b, 2)
I

If a view is not self-maintainable, applying the
maintenance queries generated by Algorithm 3.1 may
update the view incorrectly. Thus, before applying
them to maintain a view, it is important to make sure
the view is self-maintainable. The next section pro-
vides a decision method.

4 Generating Queries to Test View
Self-Maintainability

To determine whether or not a view is self-
maintainable under a given update, we compare the
effect of the update on the view under different under-
lying databases: (1) any database consistent with all
the views; (2) the canonical database. The following
example illustrates this reduction.

Example 4.1 Consider views VI and V-2 as de-
fined in Example 3.1 and consider the insertion of
r(a,b). First consider the view instance where VI =

{(dw4,(01,c2)} and v2 = {(h,c1),(b2),

(br , 4). Vl is self-maintainable in this view instance
because inserting ~(a, b) into any consistent database
exactly causes (a, b, 4 to be added to VI, which is
precisely the same effect as the insertion into fi has
on VI (as determined in Example 3.2). Now con-
sider another view instance where VI = {(al, bl, cl)}
and VZ = { (bi, cl), (b, ~2)). D in this case consists of
R = {hbd), S = {(h,s),(hcz)}, and T = {(cl)}.
VI is not self-maintainable in this view instance, since
the insertion into B has no effect on VI but there is
a consistent database, namely R = {(al, bl)}, S =
{(h,s),(b,c2)}, and T = {(cl),(c~)}, where the in-
sertion of r(a, b) causes VI to gain (a, b, ~2). I

Thus, self-maintainability of a view under a given
update can be characterized completely as the follow-
ing implication problem: for every database D, if D is
consistent with all the views before the update, then
D derives the same view as fi after the update. In an
equivalent query-containment formulation, we need to
decide DIFF c INCON, where DIFF is the boolean
query that D and h derive differently after the up-
date, and INCON is the boolean query that D is in-
consistent with some view before the update. Due to
space limitation, the details of DIFF and INCON are
not shown here but can be found in [Hu97]. Each of
these queries is a union of conjunctive queries with
negation and # comparisons. Wbik containment of
such queries can be decided using known aIgorithms
such as [LS93J, whether or not it can be decided in
time polynomial in the size of the view instance is still
an open question, since negation applies to the queries’
variable input predicates.

In the following, we give a more refined reduction
that avoids this undesirable type of negation, thus al-
lowing more efficient containment checking algorithms
to be used and, most importantly, self-maintainability
to be decided in polynomial time. The key observation
here is that instead of considering all possible under-
lying database;, we only need to check those that are
a superset of D, simply because a database that does A
not contain D cannot be consistent with the views, as
formalized in the following lemma.

Lemma 4.1 Let VI,. . . , V, be views, and for each i =
1 ,*-*, m, let &i be a CQ with no projection that defines
Vi over some database D. If D is consistent with all
the views, then D contains the canonical database fi.
I

The following theorem formalizes the improved re-
duction, where D U D represents an arbitrary superset
of D. The use of “set union” makes sense since a
database is a set of tuples. Note that to represent a
superset of D, we did not use an arbitrary database

31

D subject to the constraint D > fi, precisely to avoid
the undesirable type of negation mentioned above.

Theorem 4.1 Let VI,. . . , V, be views, and for i =
1 . . , m, let Qi be a CQ with no projection that defines
ci’ over some database D. Let U be an update to D.
Then Vk is self-maintainable under U if and only if
Qk(U(D U 6,)) $Z Q&V(B)) implies ViQi(D U D) $Z
Vi, for every D, where fi is the canonical database. 1

Theorem 4.1 reduces self-maintainability to the
problem of deciding DIFF s INCON, where DIFF is a
query that represents the condition Qk (U(D $J B)) g
Qk(U(fi)), and INCONrepresents Vi Qi(DUD) g vi.
The rules that define these queries are listed in Ta-
ble 1. Note that while negation is still used in DIFF
and INCON, it only applies to constant predicates.
The rules shown in Table 1 relate to Theorem 4.1 as
follows: rules (Aij) compute D; (Kj) defines predi-
cate $’ for relation Rj in D U fi; (Bi) represent the

fact that Qi(D U 6) g Vi; (0;) defines predicate T$
for relation Rj in U(D U fi); (Fj) defines predicate
‘5 for relation Rj in U(B); (Hk) defines predicate 6;

for Qk(U(@), th e new state of view v& that derives
from i?) after the update; (I&) expresses the fact that
Qk(U(D U fi)) # Qk(U(6)). Based on the reduction
from Theorem 4.1, the following algorithm generates
a query that tests self-maintainability of view v&.

Algorithm 4.1 Generate Self-Maintainability Test

Input: &I, . . . , Qm, where each Qi is a CQ with no
projection that defines vi using ~1, . . . , T, a~ input.

Output: A query that decides whether v& is self-
maintainable under U, using predicates ~1, . . . , v,,,
and 6~;) a~:, . . . ,6~;, 6~: as input.

Method:
1.

2.

I

Generate rules for queries DIFF and INCON as
shown in Table 1. Both queries use the 0-ary
predicate panic for their query predicate.
Generate a query TEST that decides whether
DIFF c INCON. Return TEST.

Note that instead of generating a query test as
Step 2 of Algorithm 4.1 indicates, we could have solved
DIFF c INCON directly by using known algorithms
in the literature ([G*94, Klu88J) for deciding contain-
ment of unions of CQ’s with arithmetic comparisons.
Even though these algorithms are more efficient than
those for deciding containment of CQ’s with negation,
a naive way of applying them would require eliminat-
ing all constant EDB predicates (as Section 2 shows
how). Unfortunately, the resulting complexity would
still be exponential in the size of the views, because the

expanded queries have exponential size. To show that
DIFF C INCON (and thus self-maintainability) can
be decided in polynomial time, we show the existence
of a nonrecursive query that can test DIFF c INCON
completely. In [Hu97], we show that this approach is
possible precisely because negation used in DIFF and
INCON only applies to constant predicates. Here are
the key steps:

1.

2.

Translate DIFF c INCON to a logical expression
that involves the constant predicates used in the
queries, rather than their extension.

Rewrite this (generally unsafe) expression to an
equivalent safe expression which can be easily
translated to a query (TEST in Algorithm 4.1)
in safe, nonrecursive Datalog with negation +d
comparisons, or alternatively in SQL .

The supporting theorems and the algorithms that im-
plement these steps are not shown here due to space
limitation but can be found in [Hu97].

Using Algorithm 4.1, we can generate, at
view-definition time, queries that test view self-
maintainability at runtime. The time to generate these
query tests does not depend on the instance of the
views and update, but is generally exponential in the
size of the view definitions. This complexity is not
surprising, in light of the NP-completeness of checking
query containment [CM77]. Evaluating the query tests
obviously takes time polynomial in the size of the view
instance and base update. However, it is important to
optimize these tests further using compile-time query
optimization techniques.

Example 4.2 Consider the definition of views VI and
Vz from Example 3.1 and consider the problem of test-
ing self-maintainability of VI under the insertion of
r(a, b). Algorithm 4.1 generates a test which simpli-
fies to the following query (using the 0-ary predicate
maintainable as the query predicate):

P(Z) :- VI (X, y, .q
q(Z) :- vz(Y, 2) AZ Vl(X, y, 2’)

depend :- vz(b,Z) Jz -p(Z) & -q(Z)
maintainable :- -depend

or equivalently in SQL:

NOT EXISTS
(SELECT * FROM v2 wmm v2.Y = b
AND NOT EXISTS (SELECT * FROM VI

WHERE V1.Z = V2.Z)
AND NOT EXISTS (SELECT * FROM V2 as V3, Vl

WHERE V3.Z = V2;Z

I
AND V2'.Y = V1.Y))

32

Table 1: Rules generated for the queries to compare in the reduction from Theorem 4.1.

I Rules I Ranee
1 (Aij) 1 i = 1,. . . ,m, j = 1,. . . , ni 1 Gij :- Hi 1 6ij :- Hi

p’: ;- rj, f! :- fj r’! ;- rj, f! :- fj

panic :- G’i; & . . . & G’i’,. &-Hi
r; :- I-; lz +rr, r; :- dr+

(F;‘I i=l.....n i: :- i; AZ -hr. i: :- art , \-,I I -I > J 1 , 3

(Hk)
H; :- k;, & . . : & G)knh

(Id panic :- G)kl 8z . . . & G;,, & ‘Hi

Notation: Hi :- Gil & . . . & Gini is the rule that defines view vi; Gij is the subgoal Gij whose predicate
rl is replaced by predicate +l; Gs is Gij whose rl is replaced by rr; Hi is Hk whose vk is replaced by &;
&j is Gkj whose rl is replaced by ii; G& is Gkj whose I-1 is replaced by ri.

5 Maintaining Other Classes of Views

The techniques developed in the previous sections
for maintaining a special class of views (defined by
conjunctive queries without projection) have, in fact,
much wider applicability. In this section, we show how
to extend them to conjunctive-query views with pro-
jection and partial copies. Other extensions are pos-
sible (e.g., for queries with arithmetic comparisons,
unions of conjunctive queries, and queries over base
relations constrained by dependencies) but are not de-
scribed here due to space limitation.

5.1 Views with Projections

Consider views defined by conjunctive queries where
some variables used in a rule’s body do not appear in
the rule’s head. A view where some attributes have
been projected out looses information, and from an
instance of the view, there is no unique way of “recon-
structing” a minimal database. The notion of canoni-
cal database from Section 3 must be revised to capture
this nonuniqueness. So, we redefine our new canonical
database fi as follows: for each vi, since each tuple in
Vi that matches Qi’s head provides a substitution for
only some of the variables in Qi’s body, this substitu-
tion is extended to the remaining variables by bind-
ing each of them to a new symbol; the ground atoms
obtained after making this extended substitution into
Qi’s body are included in fi.

A tuple in b that contains a new symbol represents
a fact involving some object whose value is not known.
This value could be any of the known constants from
the instance of the views or the update instance, or
could be some constant not in any of those instances.
Thus, if we consider all the symbol mappings h that
map each of the new symbols to either one of them-
selves or a known constant, then fi represents not a
single database but a class of possible databases, each
of which is obtained by applying some substitution
h to fi. We can show that there is always a map-

ping h such that database h(B) is consistent with all
the views. Such a mapping is said to be consistent.
The following example illustrates the nonuniqueness
of minimal databases due to projections in views.

Example 5.1 Consider the view defini-
tion v(X, 2) :- s(X, Y) & s(Y, 2) where Y has been
projected out. Consider the instance V = {(d, c)} and
the insertion of (a,b) to S. The canonical database
fi, obtained as S = {(d, y), (y, c)} where y is a new
symbol, actually can be interpreted in five possible
ways (by mapping y to either y, a, b, d, or c): S =
{MY), (YJ>h s = {(44, bw>h s = {Mb), (441,
S={(d,d),(d,c)},orS={(d,c),(c,c)}. Thelasttwo
databases are not consistent with V, since they respec-
tively derive tuples (d, d) and (c, c), which are not in
the view. Among the remaining consistent databases,
after the insertion, the second one derives tuple (d, b)
not derived by the first one. Thus, view V is not self-
maintainable under the insertion of (a, b) to S. I

Once a consistent database h(h)) is found, we can
apply the same idea as in Section 3 to maintain a
view if the view is self-maintainable: propagate an up
date to the view using h(D) as the actual database.
Similarly, the self-maintainability question is settled
by extending the reduction from Section 4 to take
into account the nonuniqueness of a minimal consis-
tent database. We can now informally state a theorem
analogous to Theorem 4.1: Vk is self-maintainable un-
der U if and only if (1) the new state of,& does not
depend on which consistent database h(D) we use_as
the actual database, and (2) for each consistent h(D),
every database that contains h(D) and that is consis-
tent with all the views must derive the same state for
Vk after the update, as h(B).

To sum it up, we obtain algorithms similar to Al-
gorithms 3.11and 4.1 except that they use a minimal
database h(D) ,that is consistent with all the views,
instead of just D. While the use of projection in views
seems to make the problem considerably harder since

33

the number of consistent mappings h can be expo-
nential in the worst case, results from [Hu96] suggest
that it does not have to be so. For example, [Hu96]
showed that even with projection, self-maintainability
of a single conjunctive-query view with no self-join can
be efficiently decided with a simple query. Thus, an
important future direction is to further refine our tech-
niques and identify restrictions on the view that allow
the problem to be solved efficiently.

5.2 Partial Copies

Suppose a log of the most recent updates on a base
relation R is kept at the warehouse. Unlike a full copy
of R stored at the warehouse, the most the log can
tell us about R is that R must include certain tuples
(say represented by set R+) but exclude others (say
R-). We call th’ 1s information about relation R a par-
tial copy. Thus, given R+ and R-, the question is how
to take full advantage of the additional information in
view self-maintenance. A solution can be obtained by
simply revising both Definition 3.1 of the canonical
database to additionally include R+ and Theorem 4.1
to use R n R- # 0 as another inconsistency condition
on the right hand of the implication. Algorithms simi-
lar to Algorithms 3.1 and 4.1 can be obtained the obvi-
ous way. Furthermore, the solutions can be extended
in a straightforward manner to logs that contain the
most recent updates on more than one base relation.
View self-maintenance with partial copies has the same
complexity as with regular materialized views.

6 Maintaining Views with Partial Ac-
cess to the Base Relations

As stated, the main motivation behind self-
maintenance is in maintaining a warehouse efficiently
by minimizing the use of base relations. Thus, in strict
view self-maintenance, we attempt to maintain the
views using information that can be obtained strictly
locally from the warehouse, namely the materialized
views and the update. When a view is not self-
maintainable in the strict sense, an obvious strategy is
to fall back to the “normal” but expensive view main-
tenance mode with unrestricted access to the base re-
lations, as depicted in Figure 2(a). However, instead
of switching to the normal maintenance mode immedi-
ately, we may be able to use some (but not necessarily
all) of the base relations to successfully maintain the
view. In fact, there are many cases where a view is not
self-maintainable in the strict sense but can be main-
tained using some of the base relations. Thus, a more
refined strategy based on generalized self-maintenance
can be used instead, as illustrated in Figure 2(b). Note
that in this strategy, the choice of which subset base

without using
any Rj ‘S

Maintain Vh
using

all the Rj’s

(a) Under strict self-maintenance

using only
relations in S

Maintain v,
using

all the Rj’s

(b) Under generalized self-maintenance

Figure 2: Strategies for Efficient Maintenance.

relations to use next is left open. How to make the op-
timal choice is an important area for future research.

In the following, we show how to solve the gener-
alized self-maintenance problem. There is a close re-
semblance between allowing access to a base relation
and having a copy of the base relation materialized at
the warehouse. In fact, if we assume that:

l The materialized views are simultaneously up-
dated, that is, the required updates to each view
are determined prior to updating any view, and

l The base relations are accessed in a state that
reflects update U but no other later updates (as-
suming that the warehouse received updates in
the order they are applied to the database),

then, the generalized self-maintenance problem can be
treated as a strict self-maintenance problem where a
copy of the given base relations is available at the ware-
house, with the exception that the actual base rela-
tions and the copy only differ by the update.

Example 6.1 Consider a warehouse with a single
view VI defined as in Example 3.1. Assume we can
access base relation S but not R or T. Consider an up-
date with 6R-, 6R+, SS-, @I’+, 6T-, and 6T+. The
maintenance expression and maintainability test for
this generalized self-maintenance problem can be ob-
tained as follows. Consider the strict self-maintenance
problem with both view VI and a view VZ that is a copy
of S. The solutions to this problem use predicates ir
and v2 as input. Replace every occurrence of 212 with
a new predicate s’ defined by the following rules:

34

s'(Y, 2) :- s(Y, 2) & 4s+(Y, 2)
s'(Y, 2) :- 6s-(Y, 2)

Predicate s’ represents the state of relation S prior to
the given update. I

Thus, results for the strict self-maintenance prob-
lem can be carried over by simply replacing every ref-
erence to the “copy” of a base relation by a reference
to its “before image”. In practice, allowing access to
a base relation when maintaining a materialized view
must be handled carefully. When a base relation is
asynchronously updated by the source, it may be read
by the warehouse in a different state than what is as-
sumed by the warehouse. This situation may lead to
erroneous updates to the warehouse, as reported in
[Z*95]. Thus, a warehouse system that uses general-
ized self-maintenance must either allow access only to
base relations that change in lock step with the ware-
house, or combine our techniques with the compensa-
tion techniques developed in [Z*95].

7 Conclusion and Future Work

We have given algorithms that test view maintainabil-
ity and incrementally maintain a view in response to a
base update, based on the current state of all the views
in the warehouse and of a specified subset of the base
relations. We improve significantly on previous work,
because our methods allow us to take full advantage
of all the views stored at the warehouse and to handle
base updates that consist of arbitrary mix of insertions
and deletions. The techniques used in obtaining the
algorithms are applicable to a wide variety of views,
and in some cases, allow us to generate tests and main-
tenance expressions in the form of SQL queries. We
intend to use these algorithms as the basis for main-
taining a warehouse efficiently. The practicality of our
approach can be enhanced with a better ability to opti-
mize the queries generated by the algorithms, a better
strategy for selecting which subset of the base relations
to access if a view turns out to be not maintainable,
and by extending our techniques to deal with multi-set
semantics.

Acknowledgements

We thank Jeff Ullman for his valuable comments re-
garding the presentation of this material.

References

[CM771 A. K. Chandra and P. M. Merlin. Optimal imple-
mentation of conjunctive queries in relational databases.
In Proc. 9th ACM Symp. on Theory of Computing, pp.
77-90, 1977.

[GB95] A. Gupta and J. A. Blakeley. Using Partial Infor-
mation to Update Materialized Views. In Information
Systems, 20(8), pp. 641-662, 1995.

[GJM96] A. Gupta, H. V. Jagadish and I. S. Mumick. Data
Integration Using Self-Maintainable Views. In EDBT,
Avignon, France, March 1996.

[GM951 A. Gupta and I. S. Mumick. Maintenance of Ma-
terialized Views: Problems, Techniques, and Applica-
tions. In IEEE Data Engineering Bulletin, Special Issue
on Materialized Views & Data Warehousing, 18(2), pp.
3-18, June 1995.

[GMS93] A. Gupta, I. S. Mumick, and V.S. Subrahma-
nian. Maintaining Views Incrementally. In SIGMOD,
pp. 157-166, Washington D. C., May 1993.

[G*94] A. Gupta, Y. Sagiv, J. D. Ullman and J. Widom.
Constraint Checking with Partial Information. In
PODS, pp. 45-55, Minneapolis, Minnesota, May 1994.

[H*95] J. Hammer, H. Garcia-Molina, J. Widom, W.
Labio, and Y. Zhuge. The Stanford Data Warehous-
ing Project. In IEEE Data Engineering Bulletin, 18(2),
pp. 4148, June 1995.

[Hu96] N. Huyn. Efficient View Self-Maintenance. In Proc.
Workshop on Materialized Views: Techniques and Ap-
plications, pp. 17-25, Montreal, Canada, June 1996.

[Hu97] N. Huyn. Multiple-View Self-Maintenance in
Data Warehousing Environments. Technical Report, in
http://wvw-db.stanford.edu/pub/papers/awam.ps.

[IK93] W. H. Inmon and C. Kelley. Rdb/VMS: Developing
the Data Warehouse. QED Publishing Group, Boston,
Massachusetts, 1993.

[Klu88] A. Klug. On Conjunctive Queries Containing In-
equalities. In J. ACM 35:1, pp. 146-160, 1988.

[KucSl] V. Kuechenhoff. On the Efficient Computation of
the Difference Between Consecutive Database States. In
DOOD, pp. 478-502, Munich, Germany, 1991.

[LS93] A. Levy and Y.Sagiv. Queries Independent of Up-
dates. In VLDB, pp. 171-181, Dublin, Ireland, August
1993.

[&*96] D. Quass, A. Gupta, I. Mumick and J. Widom.
Making Views Self-Maintainable for Data Warehousing.
In PDIS, pp. 158-169, Miami Beach, Florida, Dec. 1996.

[RED] Red Brick Systems. Red Brick Warehouse, 1995.

[SJ96] M. Staudt and M. Jarke. Incremental Maintenance
of Externally Materialized Views. In VLDB, pp. 75-86,
Mumbai, India, Sept. 1996.

[TB88] F. W. Tompa and J. A .Blakeley. Maintaining Ma-
terialized Views Without Accessing Base Data. In In-
formation Systems, 13(4), pp. 393-406, 1988.

[U1189] J. D. Ullman. Principles of Database and
Knowledge-Base Systems, Volumes 1 and 2. Computer
Science Press, Rockville, MD, 1989.

[Z*95] Y. Zhuge, H. Garcia-Molina, J. Hammer and J
Widom. View Maintenance in a Warehousing Environ-
ment. In SIGMOD, pp. 316-327, San Jose, CA, May
1995.

35

