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Abstract 

A data warehouse materializes views derived 
from data that may not reside at the ware- 
house. Maintaining these views efficiently in 
response to base updates is difficult, since it 
may involve querying external sources where 
the base data reside. This paper considers 
the problem of view self-maintenance, where 
the views are maintained without using all the 
base data. Without full use of the base data, 
however, maintaining a view unambiguously 
is not always possible. Thus, the two critical 
questions that must be addressed are to de- 
termine, in a given situation, whether a view 
is maintainable, and how to maintain it. 

We provide algorithms that answer these ques- 
tions for a general class of views, and for an 
important subclass, generate SQL queries that 
test whether a view is self-maintainable and 
update the view if it is. We improve signifi- 
cantly on previous work by solving the view 
self-maintenance problem in the presence of 
multiple views, with optional access to a sub- 
set of the base data, and under arbitrary mixes 
of insertions and deletions. We provide bet- 
ter insight into the problem by showing that 
view self-maintainability can be reduced to 
the problem of deciding query containment. 
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1 Introduction 

Data warehouses have gained importance in recent 
years ([RED, IK93, Z*95]). A data warehouse is a col- 
lection of materialized views derived from data that 
may not reside at the warehouse. As a benefit, user 
queries can often be evaluated much more cheaply 
using these stored views than using the base rela- 
tions. The problem, however, is that the views must 
be updated to reflect changes made to the base re- 
lations. While maintaining these views incrementally 
is often significantly more efficient than recomputing 
them from scratch (as done in most current data ware- 
houses), it can still be expensive. For instance, in re- 
sponse to an update to a base relation, incremental 
maintenance of views defined as a join may involve 
looking up the non-updated base relations, which may 
reside in external sources. 

Thus, in data warehousing environments where 
maintenance is performed locally at the warehouse, an 
important incremental view-maintenance issue is how 
to minimize external base data access. The idea of 
avoiding base access to speed up view maintenance is 
illustrated in Figure 1. We take the following approach 
to reduce maintenance costs. In response to a base up- 
date, we try to maintain the views using information 
that is strictly local to the warehouse. This informa- 
tion includes the view definitions and the contents of 
all the views. Only when we fail to do so do we resort 
to accessing the base relations. 

As a result of not using all the base relations, there 
may be situations where there is not enough informa- 
tion to maintain a view unambiguously, even if we are 
given the specific contents of the views, a subset of 
the base relations, and the base update. Such sit- 
uations never arise in traditional work on material- 
ized view maintenance ([GM95, Kuc91, GMS93, SJ96]) 
where all the base data is usually assumed to be avail- 
able. Thus, an important question (originally consid- 
ered in [TB88, Hu96]), which was never raised in tradi- 
tional view-maintenance work, is to determine whether 
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Figure 1: Saving Base Access in View Maintenance. 

a view is maintainable, that is, guaranteed to have a 
unique new state, given an update to the base rela- 
tions, an instance of the views, and an instance of a 
subset of the base relations. As a shorthand, such a 
view is said to be self-maintainable 1 in the given situ- 
ation. A second question, the main question in tradi- 
tional view-maintenance work, is how to bring the view 
up to date using only the given information. Together, 
these two questions define the view self-maintenance 
problem. 

Previous work on view self-maintenance specific to a 
given situation ([TB88, GB95, Hu96]), however, only 
considered the special case where no other material- 
ized views and no base relations are used to main- 
tain a given view. We call this case single-view seZf- 
maintenance. Applying these methods to maintain a 
warehouse that contains several views, i.e., by main- 
taining the views separately from each other, often 
fails to maintain the warehouse when actually the 
views are self-maintainable collectively. The follow- 
ing example illustrates the need to use all the views to 
maintain a warehouse. 

Example 1.1 Consider a data warehouse with two 
materialized views VI (X, Y, 2) and VZ (Y, Z), each de- 
fined in terms of the base relations R(X, Y), S(Y, Z), 
and T(Z) as follows: 

CREATE VIEW Vl(X,Y,Z) AS 
SELECT R.X, R.Y, S.Z FROM R,S,T 
WHERE R.Y = S.Y AND S.Z = T.Z 

CREATE VIEW V2(Y,Z) AS SELECT * FROM S 

That is, VI is the natural join of R, S, and T, while V2 
is a copy of S. Suppose we would like to maintain the 
warehouse in response to the insertion of tuple (a, b) 
into R, without using either R, S, or T. 

First, consider the view instance where VI = 
{(al,bl,cl)} ad V, = {(h,s), (he)}. While we can 

lThe terms “self-maintainable” and “self-maintenance” have 
been used in the literature with quite different meanings, de- 
pending on the amount of information available. We will more 
precisely define our notion of self-maintainability later. 

infer the contents of S, since Vz is just a copy of it, we 
cannot determine the contents of R and T exactly. In 
fact, it could be that R = {(al, b,)} and T = {(cl)), in 
which case view VI is not affected by the insertion of 
(a, b) into R. But it could also be that R = {(al, bl)} 
and T = {(cd,(c2)), in which case (a, b, cs) must be 
added to view VI to keep it consistent with the base 
relations. Thus, we cannot unambiguously maintain 
view VI. VI is not self-maintainable under the inser- 
tion in this view instance. 

Consider another instance where VI = {(al, bl, cl), 
(al, bl,cz)} and v2 = {(bl,cl), (b,cz), (bl,cz)}. This 
time, however, we can infer enough about T to be able 
to precisely determine the effect of the insertion on 
VI. In fact, to evaluate the effect of the insertion on 
view VI, we look for tuples from S and T that join 
with the new tuple (a, b) from R. On the one hand, 
only one tuple from S qualifies: (b, ~2). On the other 
hand, to explain the presence of (al, bl, ~2) in VI, it 
must be case that T contains (~2). Thus, we know 
exactly how to maintain VI without even looking at 
the base relations: add (a, b, cz) to VI. While VI ‘is 
clearly self-maintainable under the insertion of (a, b) 
into R in this view instance, ([TB88, Hu96]) would 
fail to detect this situation because they attempt to 
maintain V-1 in isolation from V2. If I4 were not avail- 
able, they would have concluded correctly that VI can- 
not be unambiguously maintained, since the following 
two base instances, while both consistent with VI, de- 
rive Waent states of VI &ex GE insertk~~ OS r(a, b): 
R = {(al,&), S = {(bl,cl),(bl,c2j,(b,c2)}, ad 
T = UcMc2)) on the one hand, and R = {(al,bl}, 
S = {(bl,cl),(bl,c2)}, and T = {(c~),(cz)} on the 
other hand. But in light of V2, the latter base instance 
is clearly not possible. I 

Thus, to maximize the chance of maintaining the 
views successfully, we must take full advantage of all 
the information available, namely, not only the con- 
tents of the view to maintain, but also the contents of 
all the other views. Further, if a base update consists 
of a set of individual updates to several base relations, 
it is very important to consider the set of updates as 
a whole instead of considering each individual update 
separately. In fact, there are situations where the for- 
mer approach succeeds to maintain a view but the 
latter fails. For instance, consider a view that com- 
putes whether or not two base relations (with iden- 
tical schemas) have a tuple in common. Consider a 
situation where the view is empty and where the same 
tuple is to be inserted into both relations. Clearly, the 
new state of the view can only be “true”. But if we 
consider the two insertions independently, we cannot 
unambiguously update the view. 

Our work focuses on the multiple-view self- 
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maintenance problem where again, the two critical 
questions are maintainability and maintenance of a 
view as a function of a given base update, a given 
instance of all the views, and a given instance of a 
particular subset of the base relations. Our work is 
mainly motivated by the desire to speed up view main- 
tenance in WHIPS ([H*95]), a data warehousing sys- 
tem prototype developed at Stanford University that 
performs on-line update to views. Also, view self- 
maintenance is an effective approach to avoid asyn- 
chronous update anomalies ([Z*95]) inherent in any 
data warehousing environment, by limiting access to 
base relations that do no change, for instance. Fi- 
nally, the self-maintenance approach is also important 
in any environment where source access is expensive 
for a variety of reasons: the required base data may 
be archived; the data source may be temporarily dis- 
connected or even permanently destroyed. 

The contributions of this paper are as follows: 

l We solve the view self-maintenance problem in the 
presence of a wide variety of information that is 
available in practice: multiple views, partial ac- 
cess to the base relations, partial base copies, ar- 
bitrary mixes of base insertions and deletions. 

l We provide new insight into the view self- 
maintenance problem by showing that self- 
maintainability can be reduced to the problem of 
deciding query containment. 

l We show that for conjunctive-query views with 
no projection, not only efficient (polynomial-time) 
solutions to the view self-maintenance problem 
exist but also they can be generated at view- 
definition time in the form of SQL queries. 

Related Work on Self-Maintenance 

Self-maintenance generally refers to the problem of 
maintaining views without full use of the base rela- 
tions. [GM951 gave an excellent classification of dif- 
ferent notions of self-maintenance, baaed on what in- 
formation is available for view maintenance. A ma- 
jor distinction is what we call compile-time vs. run- 
time. Even though both approaches share the goal of 
maintaining a view using only the information given 
(namely the instance of the views, the update instance, 
and perhaps the instance of some subset of the base 
relations), they differ in the way they guarantee a view 
can be maintained. In the compile-time approach, this 
guarantee is made independently of the instance of the 
views, the instance of the base relations, and the in- 
stance of some update type. “Compile-time” alludes to 
the fact that these instances are not known at compile- 
time, but only the view definitions and the update 

type. In the runtime approach, maintainability of a 
view is guaranteed on an instance basis: for a par- 
ticular instance of the views, a particular instance of 
a subset of the base relations, and a particular up- 
date instance. Note that this approach is the more 
aggressive one, since it may succeed in maintaining a 
view where the compile-time approach fails. In this pa- 
per, we take the runtime approach to self-maintenance, 
even though ‘?untime” is not explicitly mentioned. 

Within the realm of runtime self-maintenance, we 
are not aware of any work that addresses the ques- 
tion of self-maintainability with respect to an instance 
of more than one view or base relation, or under an 
arbitrary mix of insertions and deletions to the base 
relations. [TB88] and more recently [GB95] gave self- 
maintainability conditions (they called conditions for 
Autonomously Computable Updates) for views that are 
SPJ queries with no self-joins and for updates that are 
either insertions or deletions to a single base relation. 
Their method cannot be extended easily to take advan- 
tage of multiple views or the base relations, or to han- 
dle updates that mix insertions with deletions. [Hu96] 
addressed the single-view strict self-maintenance prob- 
lem and solved it more efficiently than [GB95], but 
only for views that are SPJ queries with no self-joins 
and for updates that are single insertions. Again, their 
method cannot be generalized easily. In the realm of 
compile-time self-maintenance, [GJM96] addressed the 
single-view self-maintenance for views defined as SPJ 
queries and under either insertions, deletions, or up- 
dates. More recently, [&*96] solved a different but 
related problem, namely that of making a view self- 
maintainable by introducing a minimal set of auxiliary 
views to materialize. However, how to make more than 
one view self-maintainable was not addressed. 

Outline of the Paper 

In Section 2, we define the multiple-view self- 
maintenance problem. Sections 3 through 5 deal with 
strict self-maintenance. Sections 3 and 4 consider 
the special subclass of SPJ views with no projec- 
tion. Section 3 shows an algorithm that generates the 
view maintenance queries for a self-maintainable view. 
Section 4 shows an algorithm that generates queries 
that test self-maintainability, based on reducing self- 
maintainability to a query-containment problem. Sec- 
tion 5 shows how to extend the previous results to 
other classes of views. In Section 6, we show how to 
extend the results for strict self-maintenance to gen- 
eralized self-maintenance, which can be used to define 
a strategy for efficient warehouse maintenance. The 
paper concludes in Section 7. Throughout this paper, 
results are stated without their proof, which can be 
found in [Hu97]. 
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2 Defining the Multiple-View Self- 
Maintenance Problem 

Throughout this paper, the warehouse consists of ma- 
terialized views VI, VZ, . . . , V, derived from base rela- 
tions Rl,Rz,..., R,,. This collection of base relations 
is referred to as database D. Each Vi is defined by 
a query Qi over database D, written as Vi = &i(D). 
A database D is said to be consistent with view Vi if 
&i(D) = Vi. We assume the existence of a database 
consistent with all the given views but whose content 
is not known a priori. We use U to denote a ground 
update to the base relations and U(D) to denote the 
updated database. We model U as dR,, tSRf , 6R;, 
sR.$, . . . . dR;, 6R$, where 6R; (resp. CURT) is the 
set of tuples to be deleted from (resp. inserted to) re- 
lation Rj. Updates are assumed to be self-consistent, 
i.e., 6RT and 6RT have no tuples in common for any 
j. 

Strict and Generalized Self-Maintenance 

In strict self-maintenance, no base relations are used 
for maintaining a view. Thus, given an instance of 
vl,..., V, and an update instance U, view Vk is said 
to be self-maintainable under U if its new state (i.e., 
the state of Vk that is consistent with the updated 
database) does not depend on the database, as long as 
the database is consistent with all the views prior to 
the update. That is, for every pair D and D’: 

[i Qi(D)=Qi(D’)=K] * Qk(U(D))=Qk(U(D’)) 
i=l 

(1) 
Self-maintainability is a function of U and VI,. . . , V, 
(it is also a function of the view definitions Qi, but 
that is understood). Note the requirement that D and 
D’ be consistent with all the views, and not just the 
view to maintain as in single-view self-maintainability. 
Only when Vk is self-maintainable does it make sense 
to maintain it, and a maintenance expression is a func- 
tionofUandVi,... , vm (not just vk as in single-view 
self-maintenance). 

We generalize strict self-maintenance by also al- 
lowing access to some of the base relations. Thus, 
in generalized self-maintenance, given an instance of 
vl,..., V,,,, an update instance U, and the instance of 
a subset S of the base relations, view Vk is said to 
be self-maintainable (under U and with respect to S) 
if its new state does not depend on the database, as 
long as the database is consistent with all the views 
and the given base relation instances in S prior to 
the update. In generalized self-maintenance, both 
self-maintainability and maintenance expression are a 
function of U, VI,. . . , VA, and the base relations in S. 

Notation 

In this work, we assume a relational database frame- 
work in which views are defined by relational queries 
over base relations. Set semantics is also assumed. 
Thus, the answer to a query is a set of tuples. We 
will use the notation of Datalog (ref. [Ull89]) for all 
the queries involved in our algorithms. This choice 
is by convenience, even though any other relational 
languages could be used. Thus, the view definition 
for view VI from Example 1.1 is written as a Datalog 
query Qi with the single rule: 

211 (X, Y, 2) :- r(X, Y) 82 s(Y, 2) & t(z) 

where s(X, Y, 2) is called the rule’s head, and 
r(X, n SK a and t(2) the rule’s subgoals. By con- 
vention, relation names are written in upper case (e.g., 
VI, S, and 6R-) and their predicate in lower case (e.g., 
~1, s, and ar-). The &en&on of a predicate is the 
instance of the relation for the predicate. In general, 
a predicate is called an IDB predicate if it appears in 
the head of some rule, an EDB predicate otherwise. A 
particular IDB predicate that is used to return the an- 
swers to the query is called the query predicate. Thus, 
in query Qi, predicates r, s, and t are the EDB predi- 
cates, and ~1 the query predicate. Qi is an example of 
a Datalog query with only one rule whose body con- 
tains only EDB subgoals. Such a query is called a 
conjunctive query (abbreviated CQ) or an SPJ query 
with only equality comparisons. 

For the most part (except Section 5), the queries Qi 
that define the views in the warehouse (in terms of the 
base relations Rj) are assumed to be conjunctive. In 
rule notation, we write Qi as Hi :- Gil & . . . & Gini, 
where the head Hi uses predicate vi for view Vi and 
each subgoal Gij uses predicate rl for some relation 
amongRl,Rz,... , R,. Constant symbols may appear 
anywhere in a rule. We also assume that the variables 
in Qi’s body all appear in Qi’s head. Such a query is 
said to have no projection. For a description of other 
classes of Datalog queries, see [Ull89]. 

Query Containment 

The main technique used in solving (1) is based on re- 
ducing it to an implication problem known in the lit- 
erature as the query containment (abbrev. QC) prob- 
lem (see [UllSS]). Given two Datalog queries P and 
Q that use EDB relations El, . . . , E, as input, we say 
that P C Q if the answer to P is a subset of the an- 
swer to Q, for every instance of Er , . . . , E,. Instance- 
specific QC is a variation of the QC problem where 
the instance of some of the input EDB relations is 
fixed. Given two queries P and Q using EDB relations 
El ,..., E,,Fl)... , F, as input, and given an instance 
of&,... , F,,,, we say that P C& ,..., F,,, Q if the answer 
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to P is a subset of the answer to Q for all instances 
of El,..., En. The EDB predicates fi, whose exten- 
sion is fixed, are called constant predicates. The EDB 
predicates ei are called variable predicates. When the 
extension of the constant predicates is known, we can 
always reformulate an instance-specific QC problem 
to a QC problem by eliminating any constant pred- 
icate f as follows: replace any subgoal -f(a) with 
A,(J? # 2) and any subgoal f(x) with VZ(X = %), 
where 2 ranges over the tuples in f’s extension. How- 
ever, when the extension of the constant predicates is 
not known, we would like to find a condition on these 
predicates that expresses P ~F~,...,F, Q. Whether or 
not such condition always exists is still an open ques- 
tion. In the rest of this paper, we will simply use 
P C Q to denote P CF *,..., F,,, Q, as it will be clear 
from the context which input predicate is constant. 

3 Generating Queries to Maintain the 
Views 

In this section, we address the question of how to 
bring a view up to date if the view is known to be 
self-maintainable. Note that if a view is not self- 
maintainable, there is no unambiguous way to main- 
tain the view correctly without using additional in- 
formation, such as querying some of the base rela- 
tions (see Section 6). However, if the view is self- 
maintainable, we do not need to know what the actual 
database really is to maintain the view, since we can 
use any database that is consistent with all the views 
to propagate the update to the view. But how can we 
find such a database? The answer lies in the canonical 
database. Note that the canonical database is defined 
relative to an instance of the views. 

Definition 3.1 Canonical Database: Let VI, . . . , V, 
be views, and for i = 1,. . . ,m, let Qi be a CQ with 
no projection that defines Vi over relations RI, . . . , Rn. 
The canonical database, denoted D, consists of all the 
tuples obtained as follows: for each view Vi, every tu- 
ple in Vi that matches Qi’s head provides a substitu- 
tion that grounds all the a!oms in Qi’s body; include 
all these ground atoms in D. I 

Example 3.1 Consider views VI and Va defined by: 

Vl (X, Y, 2) :- r(X, Y) & s(Y, 2) & t(2) 
v2(Y,Z) :- s(Y,Z) 

Suppose VI = {(al,bl,cl),(al,bl,c2)) ad Vz = . 
{(bl,c~),(b,ca),(bl,ca)}. The canonical database D 
in this view instance consists of R = {(al, bl)}, S = 
{(h,s), (h,cz), (b,cz>), and T = {(cd,(c2))- I 

Intuitively, we are trying to reconstruct the base re- 
lations minimally from all the given views. When each 

Qi has no projection, there is a unique minimal recon- 
struction, which is the canonical database fi. The fol- 
lowing lemma states the key property of fi that allows 
us to use it to maintain the views. 

Lemma 3.1 fi is consistent with all the views. 1 

The following example illustrates how to maintain 
the views using the canonical database. 

Example 3.2 Continuing from Example 3.1, now 
consider inserting (a, b) to relation R. If VI is self- 
maintainable under the insertion (and with respect to 
the given view instance), we know we can obtain the 
same result for the new state of VI no matter which 
database we use to propagate the insertion and that 
is consistent with the views. We can use D in par- 
ticular. So to compute the tuples gained by VI, we 
simply join r(a,b) with S = {(b1,q),(b1,ca),(b,ca)} 
and T = {(cl), (~2)) to obtain (a, b, 4. I 

The following theorem formalizes the use of B to 
reduce the problem of maintaining a view without us- 
ing any base relation to a view maintenance problem 
with unrestricted use of the base relations. 

Theorem 3.1 Let VI,. . . ,V, be views, and for i = 
1 , . . . , m, let Qi be a CQ with no projection that defines 
& over some database D. Let U be an update to D. If 
Vk is self-mamtainable under U, then the new state for 
Vk is Qk(U(D)), where D is the canonical database. 1 

Theorem 3.1 provides us with the following algo- 
rithm that computes the incremental view mainte- 
nance expressions. 

Algorithm 3.1 Generate Maintenance Query 

Input: Ql,...,Qm, where each Qi is a CQ with no 
projection that defines vi using r-1, . . . , r,, as input. 

Output: Queries for incrementally maintaining Vk, 
using ~1, . . . ,v,, ar[, 6rr,. . . ,6r;, ar,+ as input. 

Method: 
1. 

2. 

3. 

4. 

I 

For i = 1,. . . ,m and j = 1,. . . ,ni, generate rule 
(Aij) : L’ij :- Hi, where Hi is the head of Qi 
and &‘ij is the subgoal Gij in Q~‘s body whose 
predicate rl is replaced by predicate $1. These 
rules define the predicates ii ,...,i, for the canon- 
ical database fi. 
Generate queries that incrementally maintain 
vk, using predicates Vk, rl,. . . ,rn, 6r,,6rf, 
. . ..&-.,6r,+ as input. Call this set of rules M. 
Let M be obtained from M where every occur- 
renceofrjisreplacedby+j,forj=l,...,n. 
Return MU{(&),i = l,...,m,j = l,...ni}. 
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Step 1 in Algorithm 3.1 essentially computes the 
canonical database D. Step 2 generates queries that 
incrementally maintain view Vk, i.e., that update Vk 
to the new state Qk(U(D)) using Vk and all the base 
relations Ri’s (the instance of these base relations is 
actually taken from the canonical database, which is 
the purpose of Step 3). Many algorithms exist in the 
view-maintenance literature ([KucSl, SJ96]) that can 
generate queries for incrementally maintaining a view 
using both the view and all the base relations, for ex- 
ample based on algebraic techniques for differentiat- 
ing query expressions. Using for instance [SJ96] in 
Step 2, Algorithm 3.1 generates the queries that com- 
pute the required insertions to and deletions from a 
view, in time linear in the size of the view definitions. 
The size of these queries is also linear. In practice, if 
these queries are optimized, we may not need to actu- 
ally construct the entire canonical database as Step 1 
would suggest. 

Example 3.3 Consider the view definitions for VI 
and V2 from Example 3.1 and consider the insertion 
of r(u, b). Let &.$ be the predicate for the set of net 
insertions to VI. Algorithm 3.1 generates the following 
query for 6~:: 

qY,z) :- Vl(X,Y, 2) 
i(Y,Z) :- us(Y, 2) . 

t(z) :- Ul(X,Y, 2) 
6u,+(a, b, 2) :- iqb, 2) & t^cz> & -ml (a,b, 2) 

which can be simplified further to 

&$(a,b,Z) :- v~(-,b,Z)&v~(-,-,Z)&lu~(a,b,Z) 
dvl+(a,b,Z) :- 44 2) & u1(-, -, 2) & -v1(a,b, 2) 
I 

If a view is not self-maintainable, applying the 
maintenance queries generated by Algorithm 3.1 may 
update the view incorrectly. Thus, before applying 
them to maintain a view, it is important to make sure 
the view is self-maintainable. The next section pro- 
vides a decision method. 

4 Generating Queries to Test View 
Self-Maintainability 

To determine whether or not a view is self- 
maintainable under a given update, we compare the 
effect of the update on the view under different under- 
lying databases: (1) any database consistent with all 
the views; (2) the canonical database. The following 
example illustrates this reduction. 

Example 4.1 Consider views VI and V-2 as de- 
fined in Example 3.1 and consider the insertion of 
r(a,b). First consider the view instance where VI = 

{(dw4,(01,c2)} and v2 = {(h,c1),(b2), 

(br , 4). Vl is self-maintainable in this view instance 
because inserting ~(a, b) into any consistent database 
exactly causes (a, b, 4 to be added to VI, which is 
precisely the same effect as the insertion into fi has 
on VI (as determined in Example 3.2). Now con- 
sider another view instance where VI = {(al, bl, cl)} 
and VZ = { (bi, cl), (b, ~2)). D in this case consists of 
R = {hbd), S = {(h,s),(hcz)}, and T = {(cl)}. 
VI is not self-maintainable in this view instance, since 
the insertion into B has no effect on VI but there is 
a consistent database, namely R = {(al, bl)}, S = 
{(h,s),(b,c2)}, and T = {(cl),(c~)}, where the in- 
sertion of r(a, b) causes VI to gain (a, b, ~2). I 

Thus, self-maintainability of a view under a given 
update can be characterized completely as the follow- 
ing implication problem: for every database D, if D is 
consistent with all the views before the update, then 
D derives the same view as fi after the update. In an 
equivalent query-containment formulation, we need to 
decide DIFF c INCON, where DIFF is the boolean 
query that D and h derive differently after the up- 
date, and INCON is the boolean query that D is in- 
consistent with some view before the update. Due to 
space limitation, the details of DIFF and INCON are 
not shown here but can be found in [Hu97]. Each of 
these queries is a union of conjunctive queries with 
negation and # comparisons. Wbik containment of 
such queries can be decided using known aIgorithms 
such as [LS93J, whether or not it can be decided in 
time polynomial in the size of the view instance is still 
an open question, since negation applies to the queries’ 
variable input predicates. 

In the following, we give a more refined reduction 
that avoids this undesirable type of negation, thus al- 
lowing more efficient containment checking algorithms 
to be used and, most importantly, self-maintainability 
to be decided in polynomial time. The key observation 
here is that instead of considering all possible under- 
lying database;, we only need to check those that are 
a superset of D, simply because a database that does A 
not contain D cannot be consistent with the views, as 
formalized in the following lemma. 

Lemma 4.1 Let VI,. . . , V, be views, and for each i = 
1 ,*-*, m, let &i be a CQ with no projection that defines 
Vi over some database D. If D is consistent with all 
the views, then D contains the canonical database fi. 
I 

The following theorem formalizes the improved re- 
duction, where D U D represents an arbitrary superset 
of D. The use of “set union” makes sense since a 
database is a set of tuples. Note that to represent a 
superset of D, we did not use an arbitrary database 
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D subject to the constraint D > fi, precisely to avoid 
the undesirable type of negation mentioned above. 

Theorem 4.1 Let VI,. . . , V, be views, and for i = 
1 . . , m, let Qi be a CQ with no projection that defines 
ci’ over some database D. Let U be an update to D. 
Then Vk is self-maintainable under U if and only if 
Qk(U(D U 6,)) $Z Q&V(B)) implies ViQi(D U D) $Z 
Vi, for every D, where fi is the canonical database. 1 

Theorem 4.1 reduces self-maintainability to the 
problem of deciding DIFF s INCON, where DIFF is a 
query that represents the condition Qk (U(D $J B)) g 
Qk(U(fi)), and INCONrepresents Vi Qi(DUD) g vi. 
The rules that define these queries are listed in Ta- 
ble 1. Note that while negation is still used in DIFF 
and INCON, it only applies to constant predicates. 
The rules shown in Table 1 relate to Theorem 4.1 as 
follows: rules (Aij) compute D; (Kj) defines predi- 
cate $’ for relation Rj in D U fi; (Bi) represent the 

fact that Qi(D U 6) g Vi; (0;) defines predicate T$ 
for relation Rj in U(D U fi); (Fj) defines predicate 
‘5 for relation Rj in U(B); (Hk) defines predicate 6; 

for Qk(U(@), th e new state of view v& that derives 
from i?) after the update; (I&) expresses the fact that 
Qk(U(D U fi)) # Qk(U(6)). Based on the reduction 
from Theorem 4.1, the following algorithm generates 
a query that tests self-maintainability of view v&. 

Algorithm 4.1 Generate Self-Maintainability Test 

Input: &I, . . . , Qm, where each Qi is a CQ with no 
projection that defines vi using ~1, . . . , T, a~ input. 

Output: A query that decides whether v& is self- 
maintainable under U, using predicates ~1, . . . , v,,, 
and 6~;) a~:, . . . ,6~;, 6~: as input. 

Method: 
1. 

2. 

I 

Generate rules for queries DIFF and INCON as 
shown in Table 1. Both queries use the 0-ary 
predicate panic for their query predicate. 
Generate a query TEST that decides whether 
DIFF c INCON. Return TEST. 

Note that instead of generating a query test as 
Step 2 of Algorithm 4.1 indicates, we could have solved 
DIFF c INCON directly by using known algorithms 
in the literature ([G*94, Klu88J) for deciding contain- 
ment of unions of CQ’s with arithmetic comparisons. 
Even though these algorithms are more efficient than 
those for deciding containment of CQ’s with negation, 
a naive way of applying them would require eliminat- 
ing all constant EDB predicates (as Section 2 shows 
how). Unfortunately, the resulting complexity would 
still be exponential in the size of the views, because the 

expanded queries have exponential size. To show that 
DIFF C INCON (and thus self-maintainability) can 
be decided in polynomial time, we show the existence 
of a nonrecursive query that can test DIFF c INCON 
completely. In [Hu97], we show that this approach is 
possible precisely because negation used in DIFF and 
INCON only applies to constant predicates. Here are 
the key steps: 

1. 

2. 

Translate DIFF c INCON to a logical expression 
that involves the constant predicates used in the 
queries, rather than their extension. 

Rewrite this (generally unsafe) expression to an 
equivalent safe expression which can be easily 
translated to a query (TEST in Algorithm 4.1) 
in safe, nonrecursive Datalog with negation +d 
# comparisons, or alternatively in SQL . 

The supporting theorems and the algorithms that im- 
plement these steps are not shown here due to space 
limitation but can be found in [Hu97]. 

Using Algorithm 4.1, we can generate, at 
view-definition time, queries that test view self- 
maintainability at runtime. The time to generate these 
query tests does not depend on the instance of the 
views and update, but is generally exponential in the 
size of the view definitions. This complexity is not 
surprising, in light of the NP-completeness of checking 
query containment [CM77]. Evaluating the query tests 
obviously takes time polynomial in the size of the view 
instance and base update. However, it is important to 
optimize these tests further using compile-time query 
optimization techniques. 

Example 4.2 Consider the definition of views VI and 
Vz from Example 3.1 and consider the problem of test- 
ing self-maintainability of VI under the insertion of 
r(a, b). Algorithm 4.1 generates a test which simpli- 
fies to the following query (using the 0-ary predicate 
maintainable as the query predicate): 

P(Z) :- VI (X, y, .q 
q(Z) :- vz(Y, 2) AZ Vl(X, y, 2’) 

depend :- vz(b,Z) Jz -p(Z) & -q(Z) 
maintainable :- -depend 

or equivalently in SQL: 

NOT EXISTS 
(SELECT * FROM v2 wmm v2.Y = b 
AND NOT EXISTS (SELECT * FROM VI 

WHERE V1.Z = V2.Z) 
AND NOT EXISTS (SELECT * FROM V2 as V3, Vl 

WHERE V3.Z = V2;Z 

I 
AND V2'.Y = V1.Y)) 
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Table 1: Rules generated for the queries to compare in the reduction from Theorem 4.1. 

I Rules I Ranee 
1 (Aij) 1 i = 1,. . . ,m, j = 1,. . . , ni 1 Gij :- Hi 1 6ij :- Hi 

p’: ;- rj, f! :- fj r’! ;- rj, f! :- fj 

panic :- G’i; & . . . & G’i’,. &-Hi 
r; :- I-; lz +rr, r; :- dr+ 

(F;‘I i=l.....n i: :- i; AZ -hr. i: :- art , \-,I I -I > J 1 , 3 

(Hk) 
H; :- k;, & . . : & G)knh 

(Id panic :- G)kl 8z . . . & G;,, & ‘Hi 

Notation: Hi :- Gil & . . . & Gini is the rule that defines view vi; Gij is the subgoal Gij whose predicate 
rl is replaced by predicate +l; Gs is Gij whose rl is replaced by rr; Hi is Hk whose vk is replaced by &; 
&j is Gkj whose rl is replaced by ii; G& is Gkj whose I-1 is replaced by ri. 

5 Maintaining Other Classes of Views 

The techniques developed in the previous sections 
for maintaining a special class of views (defined by 
conjunctive queries without projection) have, in fact, 
much wider applicability. In this section, we show how 
to extend them to conjunctive-query views with pro- 
jection and partial copies. Other extensions are pos- 
sible (e.g., for queries with arithmetic comparisons, 
unions of conjunctive queries, and queries over base 
relations constrained by dependencies) but are not de- 
scribed here due to space limitation. 

5.1 Views with Projections 

Consider views defined by conjunctive queries where 
some variables used in a rule’s body do not appear in 
the rule’s head. A view where some attributes have 
been projected out looses information, and from an 
instance of the view, there is no unique way of “recon- 
structing” a minimal database. The notion of canoni- 
cal database from Section 3 must be revised to capture 
this nonuniqueness. So, we redefine our new canonical 
database fi as follows: for each vi, since each tuple in 
Vi that matches Qi’s head provides a substitution for 
only some of the variables in Qi’s body, this substitu- 
tion is extended to the remaining variables by bind- 
ing each of them to a new symbol; the ground atoms 
obtained after making this extended substitution into 
Qi’s body are included in fi. 

A tuple in b that contains a new symbol represents 
a fact involving some object whose value is not known. 
This value could be any of the known constants from 
the instance of the views or the update instance, or 
could be some constant not in any of those instances. 
Thus, if we consider all the symbol mappings h that 
map each of the new symbols to either one of them- 
selves or a known constant, then fi represents not a 
single database but a class of possible databases, each 
of which is obtained by applying some substitution 
h to fi. We can show that there is always a map- 

ping h such that database h(B) is consistent with all 
the views. Such a mapping is said to be consistent. 
The following example illustrates the nonuniqueness 
of minimal databases due to projections in views. 

Example 5.1 Consider the view defini- 
tion v(X, 2) :- s(X, Y) & s(Y, 2) where Y has been 
projected out. Consider the instance V = {(d, c)} and 
the insertion of (a,b) to S. The canonical database 
fi, obtained as S = {(d, y), (y, c)} where y is a new 
symbol, actually can be interpreted in five possible 
ways (by mapping y to either y, a, b, d, or c): S = 
{MY), (YJ>h s = {(44, bw>h s = {Mb), (441, 
S={(d,d),(d,c)},orS={(d,c),(c,c)}. Thelasttwo 
databases are not consistent with V, since they respec- 
tively derive tuples (d, d) and (c, c), which are not in 
the view. Among the remaining consistent databases, 
after the insertion, the second one derives tuple (d, b) 
not derived by the first one. Thus, view V is not self- 
maintainable under the insertion of (a, b) to S. I 

Once a consistent database h(h)) is found, we can 
apply the same idea as in Section 3 to maintain a 
view if the view is self-maintainable: propagate an up 
date to the view using h(D) as the actual database. 
Similarly, the self-maintainability question is settled 
by extending the reduction from Section 4 to take 
into account the nonuniqueness of a minimal consis- 
tent database. We can now informally state a theorem 
analogous to Theorem 4.1: Vk is self-maintainable un- 
der U if and only if (1) the new state of,& does not 
depend on which consistent database h(D) we use_as 
the actual database, and (2) for each consistent h(D), 
every database that contains h(D) and that is consis- 
tent with all the views must derive the same state for 
Vk after the update, as h(B). 

To sum it up, we obtain algorithms similar to Al- 
gorithms 3.11and 4.1 except that they use a minimal 
database h(D) ,that is consistent with all the views, 
instead of just D. While the use of projection in views 
seems to make the problem considerably harder since 
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the number of consistent mappings h can be expo- 
nential in the worst case, results from [Hu96] suggest 
that it does not have to be so. For example, [Hu96] 
showed that even with projection, self-maintainability 
of a single conjunctive-query view with no self-join can 
be efficiently decided with a simple query. Thus, an 
important future direction is to further refine our tech- 
niques and identify restrictions on the view that allow 
the problem to be solved efficiently. 

5.2 Partial Copies 

Suppose a log of the most recent updates on a base 
relation R is kept at the warehouse. Unlike a full copy 
of R stored at the warehouse, the most the log can 
tell us about R is that R must include certain tuples 
(say represented by set R+) but exclude others (say 
R-). We call th’ 1s information about relation R a par- 
tial copy. Thus, given R+ and R-, the question is how 
to take full advantage of the additional information in 
view self-maintenance. A solution can be obtained by 
simply revising both Definition 3.1 of the canonical 
database to additionally include R+ and Theorem 4.1 
to use R n R- # 0 as another inconsistency condition 
on the right hand of the implication. Algorithms simi- 
lar to Algorithms 3.1 and 4.1 can be obtained the obvi- 
ous way. Furthermore, the solutions can be extended 
in a straightforward manner to logs that contain the 
most recent updates on more than one base relation. 
View self-maintenance with partial copies has the same 
complexity as with regular materialized views. 

6 Maintaining Views with Partial Ac- 
cess to the Base Relations 

As stated, the main motivation behind self- 
maintenance is in maintaining a warehouse efficiently 
by minimizing the use of base relations. Thus, in strict 
view self-maintenance, we attempt to maintain the 
views using information that can be obtained strictly 
locally from the warehouse, namely the materialized 
views and the update. When a view is not self- 
maintainable in the strict sense, an obvious strategy is 
to fall back to the “normal” but expensive view main- 
tenance mode with unrestricted access to the base re- 
lations, as depicted in Figure 2(a). However, instead 
of switching to the normal maintenance mode immedi- 
ately, we may be able to use some (but not necessarily 
all) of the base relations to successfully maintain the 
view. In fact, there are many cases where a view is not 
self-maintainable in the strict sense but can be main- 
tained using some of the base relations. Thus, a more 
refined strategy based on generalized self-maintenance 
can be used instead, as illustrated in Figure 2(b). Note 
that in this strategy, the choice of which subset base 

without using 
any Rj ‘S 

Maintain Vh 
using 

all the Rj’s 

(a) Under strict self-maintenance 

using only 
relations in S 

Maintain v, 
using 

all the Rj’s 

(b) Under generalized self-maintenance 

Figure 2: Strategies for Efficient Maintenance. 

relations to use next is left open. How to make the op- 
timal choice is an important area for future research. 

In the following, we show how to solve the gener- 
alized self-maintenance problem. There is a close re- 
semblance between allowing access to a base relation 
and having a copy of the base relation materialized at 
the warehouse. In fact, if we assume that: 

l The materialized views are simultaneously up- 
dated, that is, the required updates to each view 
are determined prior to updating any view, and 

l The base relations are accessed in a state that 
reflects update U but no other later updates (as- 
suming that the warehouse received updates in 
the order they are applied to the database), 

then, the generalized self-maintenance problem can be 
treated as a strict self-maintenance problem where a 
copy of the given base relations is available at the ware- 
house, with the exception that the actual base rela- 
tions and the copy only differ by the update. 

Example 6.1 Consider a warehouse with a single 
view VI defined as in Example 3.1. Assume we can 
access base relation S but not R or T. Consider an up- 
date with 6R-, 6R+, SS-, @I’+, 6T-, and 6T+. The 
maintenance expression and maintainability test for 
this generalized self-maintenance problem can be ob- 
tained as follows. Consider the strict self-maintenance 
problem with both view VI and a view VZ that is a copy 
of S. The solutions to this problem use predicates ir 
and v2 as input. Replace every occurrence of 212 with 
a new predicate s’ defined by the following rules: 
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s'(Y, 2) :- s(Y, 2) & 4s+(Y, 2) 
s'(Y, 2) :- 6s-(Y, 2) 

Predicate s’ represents the state of relation S prior to 
the given update. I 

Thus, results for the strict self-maintenance prob- 
lem can be carried over by simply replacing every ref- 
erence to the “copy” of a base relation by a reference 
to its “before image”. In practice, allowing access to 
a base relation when maintaining a materialized view 
must be handled carefully. When a base relation is 
asynchronously updated by the source, it may be read 
by the warehouse in a different state than what is as- 
sumed by the warehouse. This situation may lead to 
erroneous updates to the warehouse, as reported in 
[Z*95]. Thus, a warehouse system that uses general- 
ized self-maintenance must either allow access only to 
base relations that change in lock step with the ware- 
house, or combine our techniques with the compensa- 
tion techniques developed in [Z*95]. 

7 Conclusion and Future Work 

We have given algorithms that test view maintainabil- 
ity and incrementally maintain a view in response to a 
base update, based on the current state of all the views 
in the warehouse and of a specified subset of the base 
relations. We improve significantly on previous work, 
because our methods allow us to take full advantage 
of all the views stored at the warehouse and to handle 
base updates that consist of arbitrary mix of insertions 
and deletions. The techniques used in obtaining the 
algorithms are applicable to a wide variety of views, 
and in some cases, allow us to generate tests and main- 
tenance expressions in the form of SQL queries. We 
intend to use these algorithms as the basis for main- 
taining a warehouse efficiently. The practicality of our 
approach can be enhanced with a better ability to opti- 
mize the queries generated by the algorithms, a better 
strategy for selecting which subset of the base relations 
to access if a view turns out to be not maintainable, 
and by extending our techniques to deal with multi-set 
semantics. 
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