
Loading the Data Warehouse Across Various Parallel Architectures 

Vij ay Raghavan 
Red Brick Systems (USA) 

Overview 

Loading data is one of the most critical operations in any 
data warehouse, yet it is also the most neglected by the 
database vendors. Data must be loaded into a warehouse 
in a fixed batch window, typically overnight. During this 
period, we need to take maximum advantage of the machine 
resources to load data as efficiently as possible. A data 
warehouse can be on line for up to 20 hours of a day, which 
can leave only a window of 4 hours to complete the load. 
The Red Brick loader can validate, load and index at up to 
12GB of data per hour on an SMP system. 

Operations Involved in Loading 

The loader should not only load raw data, but should also 
perform the following critical operations efficiently and in 
parallel: 

Aggregation: The loader should be able to build aggre- 
gations based on preexisting data. For example, the loader 
should be able to update data based on the SUM of an input 
value and a column value. 

Filtering of Data: The loader should be able to clean and 
filter incoming data based on user-supplied instructions. A 
simple example would be to accept or reject records based 
on specific column values. 

Integrity Checking: The loader should ensure the data 
loaded meets all integrity constraints, including referential 
integrity. 

Index Building: All indexes associated with the data 
need to be built during the load to ensure the minimal 
elapsed time before both the index creation and data loading 
are completed. 

Modes Required in Loading 

In addition to a fresh load where all the preexisting data 
is replaced, many users require that loading be supported 
in a incremental manner. Therefore, the loader needs to 
support modes such as APPEND, UPDATE, and MODIFY 
in addition to just replacing the data. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributedfor direct commercial 
advantage, the VLDB copyright notice and the title of the publication and 
its date appear; and notice is given that copying is by permission of the 
Very Large Data Base Endowment. To copy otherwise, or to republish, 
requires a fee and/or special permission from the Endowment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

In order to perform these tasks efficiently, the Red Brick 
loader is optimized for the following architectures: 

0 Single-processor systems 

l SMP systems 

l MPP systems 

Outline 

This presentation describes the Red Brick loader architec- 
ture and illustrates how Red Brick optimizes its loader ar- 
chitecture across these different hardware configurations. 

Task Architecture 
This section explains the various components of the Red 
Brick loader architecture and their functions: 
Input task: The input task reads the input from various 
storage devices including disk, tape, optical storage, stan- 
dard input, etc. 
Conversion tasks: Conversion tasks convert data from an 
external representation to an internal format. In addition, 
they are responsible for functionality such as RI checking 
etc. 
Data tasks: Data tasks load data into tables. 
Index tasks: Index tasks build and load indexes. 
Coordination tasks: Coordination tasks coordinate the 
entire load operation. 

Parallelism in the Red Brick Loader 
Parallelism in the Red Brick loader is at two levels: 
Task-based parallelism: Tasks operate in parallel, divid- 
ing the work among themselves based on the load. This type 
of parallelism is used by the conversion tasks where records 
are handled independent of the destination data/index seg- 
ments. 
Data-based parallelism: Tasks operate by partitioning the 
work based on the data. This type of parallelism is used 
by the index and data tasks. Segments of the table and its 
indexes are split among the different tasks. 

SMP Parallelism Topics 

Pipeline processing, shared-memory data flow, scalability, 
constraints 

MPP Parallelism Topics 

High-speed protocol-based architecture, non-pipelined, 
scalability, constraints 

597 


