
Modeling Design Versions

R Ramakrishnant D Janaki R.am*

Distributed and Object Systems Group
Department of Computer Science and Engineering

Indian Inst.itute of Technology, Madras
India

trrama@bronto.iitm.ernet.in *djramcQ?iitm.ernet.in

Abstract

Due to the evolutionary nature of the design
process, engineering design databases need to
provide adequate support for versioning of
designs corresponding to their different st.ages
of evolution. Existing mechanisms of class and
object versioning in Object-Oriented Data-
bases fail to capture the design process as a
concept in its Fnt.irety. For instance, a new
class or object version does not always im-
ply that it is a new design. Further, semantic
information regarding each version of a com-
ponent needs to be captured. The versioning
mechanism must also capture the interdepend-
encies between the designs of various compon-
ents. In this paper, we propose a model to cap
ture versioning of designs in Object-Oriented
Databases based on the concepts of Design At-
tributes, Design Equivalences and Design Ver-
sions. The proposed model achieves Design
Versioning through Semantic Classes and Ver-
sion Reference Classes.

Keywords Design Versions, Engineering Design .4p-
plications, Object-Oriented Databases

Permission to copy without fee all or part of this material is
granted provided that the copies are not mode or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to npub;liah, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

Engineering design applications involve the manage-
ment of complex and evolutionary designs of the nu-
merous components in engineering artifacts. Ex-
amples of such artifacts include aircrafts, ships and
cars. Engineering Databases are hence needed to
aid in the design process of such artifacts. Object
orient,ed dat.abases, with their rich modeling power
through concepts of classification, inheritance, gen-
eralizat.ion and aggregation are well suited for such
applications[Spo86][Sri89].

.4 complex artifact consists of many components.
Each component may, in turn, consist of lower level
components. This consist-of(part-of) relationship is
recursive till the leaf level primitive component. Each
component evolves continuously during the design pro-
cess. Due to this evolutionary nature of the design pro-
cess, it is required to maintain different versions of the
component corresponding to its different stages of evol-
ution. As the design process is typically a multipath
one, wherein there exists several correct designs of a
component, the designer needs to keep track of these
versions of the component. Further, each version of
the component may use different versions of lower level
components. Hence, adequate support for versioning
is required for design applications[Cho88][KatSO].

Existing concepts define class versioning and object
versioning mechanisms[Kim89b][KimSO]. However,
these are inadequat.e for design applications as they do
not provide support to capture the design semantics.
A class or object version need not necessarily mean
that it is a new design. Further, the designer would
like to know more information about’the version, like
the necessity that led to its creation and the constraints
that govern the use of that version. In this paper, we
propose a new versioning mechanism based on Design
Attributes. Design Versions and Design Equivalences,
which overcomes these defects. Semantic Classes and

556

BOEING COMMEiClAL AIRCRAFTS

737 SERIES 747 SERIES

Some Of The Design Features Of
737-300 Series (Derived from -200)

(i) Fuselage is stretched

(ii) Wing aerofoil modified

(iii) Wing tip extended

(iv) Additional lateral contml spoilers

(v) New flap sections

Figure 1: Product \‘ersions

Version Reference Classes form the building blocks of
this model.

The rest of the paper is organized as follows: in
section 2, the versioning requirements for engineering
designs are discussed. Section 3 discusses the inad-
equacies of existing versioning mechanisms. Section 4
illustrat.es the concepts of Design Attributes, Design
Versions and Design Equivalences. Section 5 explains
Semantic Class and Version Reference Classes. Section
6 discusses the issues of inheritance, change propaga-
tion and configurations. Section 7 discusses the Design
Transaction Model and Section 8 has the Conclusions.

2 Versioning Requirements For Engin-
eering Designs

Engineering design applications involve the manage-
ment of complex and evolutionary designs of engineer-
ing artifacts such as aircrafts, ships and cars. These
artifacts are characterized by the numerous compon-
ents they constitute. These components are to be effi-
ciently stored and managed by the system. The design
task is characterized by .a set of rules of thumb, con-
straints and techniques. These are used by the de-
signer to design the various components of the arti-
fact. The designer often uses the knowledge of earlier
designs to solve the problem, referred to as design re-
use. Routine designing often involves modification of
existing designs to suit the additional requirements and
constraints. Due to this nature of the design process,
the system should provide adequate support for man-
aging the different versions of a component correspond-
ing to its different stages of creation and evolution.

2.1 Existence of Product Versions

Typically, in the industry, the design department is in-
volved in creating an improved design of its product(in

this paper, we use the term “product” to mean the fi-
nal product, t,he industry manufact.ures. For example,
in a car industry, the term Product refers to the car.
For producing the car, the indust.ry would also be pro-
ducing the sub-components: chassis, engine etc. These
sub-components are not referred t,o as Product). The
improvement may be, in terms of bett.er performance or
additional facilit,ies. or to suit different requirements.
Hence. for any industry, there will be several versions
of its product. gor instance, in the Boeing Commer- .
cial Aircraft. indust.ry, there exists several versions of
Boeing Commercial Aircrafts: the 737 series, the 747
series, the i57 series etc.(fig. la) In each series, there
exists different versions to suit customer requirements.
For instance, Boeing 747-200F is the freighter version
and 747-200C is the convertible passenger-cargo ver-
sion. Each series is derived from an existing series
with suitable modifications incorporat.ing the latest ad-
vances in technology. Fig. lb illustrates some of
the design features of B737-300, compared to 737-200
series[Jan95]. It is seen that the designer has taken
the version of the wing used in 737-200 and modified
it t,o suit the new requirements: he has modified the
aerofoil section and extended the wing tip. Further,
different versions of the aircraft may use same version
of a component. The system must efficiently manage
these versions. It must support queries such as “which
version of the component is used in a product version”.

2.2 Versioning.in Design Process

.4 complex artifact consists of many components. For
instance, an aircraft consists of fuselage, wings, power-
plant, landing gear, control surface etc. These com-
ponents may in turn consist of lower level components.
For example, fuselage consists of nosecone, frame etc.,
while wings are composed of aerofoil sections, ribs,

557

MILITARY AIRCRAFTS

TRAINERS FIGHTERS BOMBERS

(a) Class Hierarchy

(b) Composite Class Hierarchy

Figure 2: Organizat,ion Of Classes

stringers etc.[Kes93] Each component is normally de-
signed by a design engineer. The designer may use an
existing version of the component retrieved from the
database if he finds that it satisfies his requirements.
Else, he may modify an existing version to suit the re-
quirements. There may be several versions of the com-
ponent which would satisfy the requirements. Hence,
the designer may need to experiment with multiple ver-
sions of the design. When the designer retrieves a ver-
sion, he must be able to understand the following: the
necessity that led to its creation, its characteristics, the
constraints that governs its use, the differences from
other versions and the lower level component versions
used. This knowledge must be captured as a part of
the versioning mechanism to give full support to the
design process and also a meaning to the different ver-
sions of the component.

2.3 Interdependencies

Interdependencies between the versions of different
components exists in a product. For example, chan-
ging the version of wing may require that the tailplane

be modified or replaced by another version. This in-
t.erdependency between the designs of the wing and the
t.ailplane needs to be captured adequat.ely by the ver-
sioning mechanism t,o ensure correct design.

2.4 Support for Maintenance Department

When the designer retrieves a component version, he
may also be informed of the manufacture and mainten-
ance aspects of the component, so as to aid him in the
design process. Capturing these aspects of the com-
ponent would also help the maintenance department.
For instance, when a component arrives for mainten-
ance, the engineer must be able to identify the version
of the lower level components used in it. This is so
because different versions of the component may use
different versions of lower level components. For in-
stance, a passenger aircraft version and a freighter air-
craft version may use the same version of the wing,
but different versions of the fuselage. After identify-
ing the versions, the engineer needs to be informed of
the maintenance aspects of that version. thereby aiding
him in the process.

558

Figure 3: Key Attributes

3 Versioning In Object Oriented Data-
bases

Object-oriented databases are well suit,ed for engin-
eering design applications. The core object model
consists of classes, objects, messages and inheritance.
Real world entities are modeled as classes. The state
of the ent.ity is described using the attributes, and
its behavior using the met.hods in the class definition.
Schema refers t,o the hierarchical organization of all
the classes in the database and their interrelat.ionships.
The class hierarchy represents the generalization rela-
tionship among classes in terms of superclass(fig. 2a).
The composite class hierarchy represents the aggreg-
ation relationship between classes(fig. 2b). The com-
plex artifact can be represented as a set of components
using the part-of relationship[Kim89a][KimSO].

3.1 Class and Object Versioning

Due to the evolutionary nature of the design process,
changes to the schema are more as a rule than an ex-
ception. As the design evolves, the schema evolves by
changes to the class definition, changes to the class
hierarchy and changes to the composite class hierarchy
[Ban87][Ngu89]. A s explained in the earlier section,
versioning is an important requirement for design ap-
plications. S h c ema versioning refers to the creation
of a new version based on changes to the hierarchical
organization of the classes[Kim88]. Class versioning
refers to the creation of a new version of an existing
class definition[Mon93]. An object is stated as ver-
sioned when it changes its state, i.e. the attribute val-
ues are changed. The version derivation hierarchy can
be expressed in a version hierarchy graph.

A new Design Version

Design Attribute : x

A new Design Equivalent

(a)

(b)

Figure 4: Design Version and Design Equivalence

3.2 Inadequacy of Existing Versioning Mech-
anisms

Any component has certain charact,eristic attributes
associated with it,. These key attributes play an im-
port.ant role in the design of the component. For ex-
ample, consider the design of a stressed element. An
element, for example steel, has many properties associ-
ated with it, such as Young’s modulus. Poisson’s ratio,
yield stress, melting point and thermal conductivity.
Depending on the design characteristics, only few of
its properties are key to the design. For instance, if
the design is that of an elastically stressed element, its
Young’s modulus and yield stress may be key to the
design(fig. 3). Changes to the values of these key at-
tributes will result in a new design. In other words,
it is seen that a new object version does not necessar-
ily imply that it is a new design. Depending on the
design characteristics, object version may or may not
lead to a new design version. Hence, it is seen that
the existing versioning mechanisms fail to capture the

559

(a)Design Class A{ Component Version Reference Class{

Attributes:
x,y,...;
Component B +b;

Ilethods:
ml0;

. . ;

(b) Semantic Class A{

Design Attributes:
x,B

Interdependencies:
notify-to : Q

Cc) Semantic Class Wing{

Design Attributes:
aspect-ratio;
thickness-to-chordxatio . . .

Interdependencies:
notify-to : tailplane

Figure 5: Semantic Class Definition
design process as a concept. The versioning mechan-
ism should, rather. seamlessly integrate with the design
process. It should create new Design Versions based
on the functionality and the behavior of the component
rather than merely based on changing class definitions
or attribute values.

Further, when the design of a component is changed,
the design of another component may have to be
alt.ered. For instance. changing the design of the wing
in an aircraft may require that the tailplane design
also be changed. This is due t,o the interdependen-
ties between the wing and the tailplane. These inter-
dependencies need t.o be captured so as to ensure cor-
rect design of the artifact. In addition, as explained in
section 2.2, the versioning process should also capture
the semantics of each version, i.e. information regard-
ing the necessity for the creation of that version, con-
straints that govern the use of that version, differences
from other versions etc.

4 Modeling Primitives

As explained in the earlier section, the existing version-
ing mechanisms are inadequate for design applications.
\Ve propose a model which captures the design pro-
cess as a concept. It also captures the interdependen-
ties between the component designs and the semantic
information regarding the version, thereby providing
full support to the designer. The modei is based on

Attributes:
DarivedErom :
VersionedAttribute :
Designdquivalences:
Default-Retrieval :
Annotations:

lethods:
add-delete- annotationso;
set-default-retrievao;
updatedesign-equivalenceso;.
vieodesign_equivalancesO;

J

Figure 6: Component Version Reference Class
the concept of Design At,tribut.es. Design Versions and
Design Equivalences.

4.1 Design Attribute3 and Design Versions

In our model, versions are created based on the func-
tionality and behavior of the design component. This
is achieved by capt.uring the semantic knowledge of
the design through the concept of Design iittributes.
Changes to values of t.he Design Xttributes of a com-
ponent will lead t,o a new Design Iirsion of the com-
ponent.. The Design Attribut.e of a component can be
a characteristic property of the component or a lower
level component(in the composit.e hierarchy). For ex-
ample. for milit,ary aircrafts. the Design Attributes are
speed, rat.e of climb, combat radius. weapons system
etc. These Design Attributes are important charac-
teristics of military aircrafts. Versions of military air-
crafts are distinguished based on these Design Attrib-
utes. Also. certain lower level components can be iden-
tified as characteristics of the higher level component.
For example, in fig. 2b, which depicts the composite
hierarchy of an aircraft, the bulkhead can be identified
as the main component of the fuselage as it takes most
of the structural load and governs the design of the
fuselage. Hence, t.he bulkhead can be the Design At-
tribute of fuselage. Changes in the design of the bulk-
head would creat,e a new Design Version of the fuselage.
Changes in non-Design Attributes such as doors and
windows will not create a new Design Version. Hence,
it is seen that the concept of Design Attributes and
Design \.ersions capt.ures t.he design process. It avoids
unnecessary and meaningless versions.

4.2 Design Equivalence

Consider the composite object A(fig. 4). Its attributes
are x and y, x being the Design Attribute. Changing
the value of x will create a new Design Version of Al.
However. changing the value of y will not create a new

560

(b)

COMPONENT VERSION REFERENCE OBJECTS

create CVRO of A I ----------------

Al
I I

Derrved From

Versioned Attribute : null

Design Equtvnlences : 0

Annotations

A2 -

r-l

x: 20

v: 20

- INSTANTIATION

-------> message

Versioned Attribute

Design Equivalences : 0

Default Retneval

Annotations

Versioncd Attribute

Drsign Equivalences : 1

Default Retrieval

Annotations

Figure 7: CVRO Management.

Design \ersion as y is not a Design Attribut,e. Chan-
ging the value of a non-Design Attribute creates an
Equitdenf Design bkrsion. In other words, Equival-
ent Designs differ only in the value of non-Design At-
tribut.es. In the version hierarchy, Design Equivalences
are captured in the same plane. In fig. 4b, Al and A2
are two Design Versions. The horizontal plane at Al
captures the designs equivalent to Al. Similarly, the
horizontal plane at A2 captures the equivalent designs
of A2.

5 Design Version Management

In this se&ion, we focus on the issue of Design Ver-
sion management. hlanagement of Design Versions
and Design Equivalences is achieved through Semantic
Classes. The semantic information regarding each ver-
sion is capt.ured through the concept of Version Refer-
ence Classes.

5.1 Semantic Class

Each component is represented through its Design
Class(same as conventional class definitipn). Fig. 5a
gives the Design Class definition for a component A.
The component A has certain attributes x, y... and
lower level components B.C.. (lower level components

are specified using the keyword component). With
each Design Class, t.here is an associaeed Semantic
Class. The Semant.ic Class of A captures the Design
Attributes of the component. A in the Design Attribute
Interface and the int,erdependencies in the Interdepend-
encies Interface. Fig. 5b gives the Semantic Class for
the component A. It specifies x and B as the Design
Attribut,es. Changes to the values of x. B would lead
to a new Design Version. When y is changed, an Equi-
valent Design is created. Further, when a version Ai is
modified to create a new Design Version Aj, the com-
ponent Q which is interdependent with A is notified
through the “notify-to” construct in the Interdepend-
ency Interface. Thus, the semantics expressed in the
Semantic Class is used by t.he system to manage the
creation of new Design Versions.

Fig. 5c gives the Semantic Class for the wing in an
aircraft. The Design Attributes are aspect ratio, thick-
ness to chord ratio etc. The interdependency between
the wing and the tailplane design is captured in the
“notify-to” construct.

5.2 Component Version Reference Class

The Component b’ersion Reference Class captures
the information regarding version derivation, ver- \

561

COMPONENT VERSION REFERENCE OBJECT

FOR THE WING USED IN 737-300

Derived Fmm : wn~737-200

Vcrsioncd Aurihu~cs : ..__.

Dcsipn Equivalences : 2

Defaull Relreivul : I

Annotations

Allrihulc:

aspcct~laclo :: _
chord-length ::

. . .
Design:

[I] wing acmfoil modified hy 4.4%

121 new flap sections

[3] additional lateral conlml spoilcn

141 wing tip cxtendcd

Manufacture:

[I] materials

(21 tolerance

[3] mauracuring pmccss and cquipmcmr;...
Mainlcnancc:

Miscellaneous:

Figure 8: C\‘RO For Wing

sioned attributes, design equivalences and annot.a-
t.ions(fig. 6). This class also supports methods like
set-default-retrieval, updat.e-design-equivalences etc.

For a component object .41 instantiated from the
Design Class of A, the system creates the Compon-
ent I’ersion Reference Object (instance of Component
Version Reference Class) for Al. The values of De-
rived From and Versioned .4t,tribute is set to Null. The
object Al is referred, by default, as Design Equival-
ent O(DE0) of Al. The values of the Design Equi-
valences and the Default Retrieval are set to O(fig.
;a). When the designer retrieves Al from the dat,a-
base and changes the value of a Design Attribute x, a
new Design Version A2 is created. Automatically, the
CVRO(Component Version Reference Object) for A2
is created(fig. 7b). The new version A2 is by default
referred to as DEO, with the number of Design Equi-
valences being set to 0. \Vhen the designer retrieves
A2 from the database, and changes the value of a non-
Design Attribute y, an Equivalent Design is created,
and is referred to as DE1 of A2(Design Equivalent 1
of A2). The value of Design Equivalences in CVRO
of A2 is now incremented to l(fig. 7~). The designer
can explicitly retrieve the DE1 of A2 from the data-
base. However, if he specifies just “retrieve A2”, DE0
is retrieved as the value of Default Retrieval in CVRO
of A2 is DEO. If the designer changes the value of
Default Retrieval from DE0 to DEl, with the help of
update-design-equivalences method, the command “re-

(a) Product Design Class Aircraft{
speed, NY, range,
component Wing +P;
component Fuselage l f; .,.

1;

(b) Product Version Reference Class {
Annotations:
Nethods:

adddeleteannotations0;
.

1;

(c) Product Version Reference Object 1320:
Annotations:

Attribute:
speed :: . . .
AUY :: . . .
. . . .

Design:
Cl] centralized maintenance system

[21 new gust load elevation system

[3] fuselage cross section increased
['I] wider aisle for quick turnarounds
.

Manufacture:
Cl] assemblage details
.

Naintenance:
niscellaneous:

Cl] first subsonic commercial aircraft
to use Fly-by wire control throughout
normal flight . . .

Figure 9: Product Version Management

trieve A2” will retrieve A~DEI. The designer can also
view the design equivalents of Al with the help of the
view-design-equivalences method.

5.2.1 Annotations

The annotation is in the form of a text document giving
information specific to the version. [SciSl] discusses
the concept of annotated variables. In our model,
annotations are classified into 5 sections: Attributes,
Design, Manufacture, Maintenance and Miscellaneous
annotat.ions. The Attribute annotat,ion describes each
at.tribut,e of the component. The Design annotations
give information regarding the attributes and lower
level components corresponding to the version. The
information is regarding the necessity for the creation
of the version, characteristics of the version, and con-
straints that govern the use of the version. The Manu-
facture section gives information regarding the manu-
facture of the component vyrsion, like the machine tools
and equipments to be used. The Maintenance section
gives information regarding the maintenance aspects
of the version. The Miscellaneous section can hold any
other information the designer would like to specify.

562

COMPONENT VERSION
REFERENCE OBJECTS

PRODUCT VERSION

REFERENCE OBJECTS

Figure 10: Design Version Organization

Fig. 8 gives the Component Version Reference Ob-
ject for the wing used in B73’i-300 passenger ver-
sion. This encompasses all the details regarding that
version[Jan95]. When the designer retrieves the ver-
sion from the database, he is provided with all the ne-
cessary informat,ion to proceed with the design. The
incorporation of Manufacture annotations helps, in ad-
dition to the manufacturing engineer, the designer to
analyze the version from the viewpoint of manufactur-
ability. Similarly, the Maintenance annotations assist
the maintenance engineer.

5.3 Product Version Reference Class

There is a Product Design Class associated with the
product. Fig. 9a gives the Product Design Class for
an aircraft. There may be different versions of the
product. The Product Version Reference Class cap
tures the information regarding the product version in
the form of annotations(fig. 9b). As in the Compon-
ent Version Reference Class, the annotations are sub-

divided into 5 sect.ions, giving the attribute annota-
tions, design, manufacture, maintenance and miscel-
laneous annotations specific to that, product version.
Fig. 9c gives the Product Version Reference Object
for A320 aircrafts[Jan95].

5.4 Version Organization

The version organization is as shown in fig. 10. X de-
notes the product the company manufactures. A,B,C...
are the lower level components. Each of these compon-
ents is associated with a Semantic Class. The Compon-
ent Version Reference Object is for each version of the
lower level component. For example, Ai represents the
version i of A, for which there is a unique Version Ref-
erence Object, which is an instance of the Component
Version Reference Class. Ai can be either instantiated
directly from the Design Class of A or can be derived
from an existing version of A. Designs equivalent to
Xi are captured in the same plane. For each version
of the product 1 there is an associated Product Version

563

Figure 11: Change Propagation

Al Al Figure 13: Design Transaction

Al 0
B IDEI BI

0 0
Bl Cl AI Al

/

0
Cl oc

6.1 Inheritance Among Semantic Classes

\Vhen a Design Class inherits from another Design
Class, the Semantic Class remains the same for the
derived class also. In case some of the att.ributes of the
derived class is t.o be specified as Design Attributes, it
is done in a new Semantic Class that is defined for the
derived class.

6.2 Change Propagation

(a) Static (b) Dynamic Change propagation is one of the key issues involved in
version management.[I<at8i][Ska86]. The mechanism
needs to have a disambiguous path t,o limit the scope of
change propagation. Creating new versions all the way
till the root of the composite hierarchy consequent to
the creation of a new version of a component down the
hierarchy, is certainly undesirable as it would create
a large number of unnecessary meaningless versions.
However, it must also be ensured that necessary ver-
sions are not missed. By necessary, it is meant that the
changes caused must not be overlooked. This is pos-
sible only if the semantics of the versioning process is
taken into account.. In our model, the semantics of the
versioning mechanism involved in the design process-
is captured through the concept of Design Attributes.
Design Versions are created based on the changes to
these Design Attributes. As explained earlier, Design
Attributes for a component may be its characteristics
or lower-level components.

Figure 12: Configurations

R.eference Object which is an instance of the Product
Version Reference Class.

The designer can access each product version and its
associated components and annotations. For example,
he can say “retrieve the wing used in Product version
737-300”. Else, he can also directly access all the wing
design versions that exist in the database by specifying
“retrieve versions of wing”.

6 Issues In Version Management

In this section, we focus on the issues of inheritance
among semantic classes, change propagation and con-
figuration in version management.

r

Fig. 11 illustrates change propagation through the

564

L, 4 Y e Q R,
6) (ii)

Figure 14: Transient. State Propagation

concept of Design Versions and Design Attributes in
our model. An arrow with a dot mark from Bj to Ai
implies that B is a Design Attribute of A. The compos-
it.e object A1 is a version of A, and its Design Abtribute
is t,he lower level component Bl. For B, the Design At-
tribute is E. Similarly. G is the Design Attribut.e for
C. Fig. Ila gives the initial configuration of Al.

Suppose, if Gz is replaced by another version Gs, a
new Design Version of C is created, but the propaga-
tion ends as the link between A1 and C3 is not a Design
Attribute link. The resulting configuration is as’shown
in fig. lib. However, when Es is replaced by ES, a
new version of B is created. Further, as B is a Design
Attribute of A, a new version of A is created. This
propagation is atomic till a non-Design Attribute com-
posite link is encountered. The resulting configuration
in this case is as shown in fig. llc.

6.3 Configuration

Consider fig. 12. A is a component, which has lower
level components B and C. B is the Design Attribute
of A. The binding between a version of A and its lower
level component can be static or dynamic, depending
on whether the link is a Design Attribute link or not.

For the link between a version of A and B, which
is a Design Attribute link. the binding can be static
wherein a particular Design Equivalent of Bl is bound
to Al. Else, the binding can be dynamic, wherein A1 is
just bound to Bl. The designer must, at a later stage
specify which Design Equivalent of Bi he wishes to use
in the product.

For the non-Design Attribute link between A and
C. A1 can be statically bound to a particular version
of C, say C2. The designer. using his discretion can

decide which Design Equivalent of C2 he wants to use,
at a lat.er stage. Else, A1 can be dynamically bound to
C wherein the designer decides which version of C he
would like to use in t,he design.

7 Design Transaction Model

Consider fig. 13a. A1 is a component with lower level .
components Bl and CI, which are its Design Attrib-
ut.es. When the designer replaces Bl and Cl with B2
and C2, the issue arises whether the result.ing version
will be as shown in (i) or (ii). As is evident, it is
for the designer t.o specify which he wants. The de-
signer usually retrieves an existing version of a com-
ponent, makes all the changes required and then uses
it in the product. To capture t,his process, the Trans-
action Model must provide some sort of transient state
wherein the designer is permitted to make all the modi-
fications required as an atomic operation.

When the designer retrieves a version from the data-
base, it enters the Design State. The designer can use
the component version directly in the product. Else,
he can modify it to suit the requirements. In case he
modifies non-Design Attributes, a new Design Equival-
ent Version is created, and it enters the Released State,
whereby it can be used in the product, or stored back in
the database. In case the designer modifies Design At-
tributes, t,he version enters the Tmnsient Design State.
In this state, change propagation is done such that a
component is versioned only once. Foi example, in fig.
13a, when Bl and Cl are modified, A enters the Tran-
sient, Design state. In this state, change propagation
is done such that, a new version is created only once.
Hence, though Bl and Cl are modified. only one ver-
sion of A is created. The designer then promotes the

565

version to the Released state, wherein all the Interde-
pendencies are checked and Version Reference Objects
for the new Design Versions are creat.ed. Fig. 13b il-
lust,rates the Design Transact.ion model. Fig. 11 gives
an example. The initial configuration of A1 is a shown
in fig. 14(i). The designer modifies Ml, Fl. N1. Q1 and
RI. Though both Q and R are Design Att,ributes of I\.
when the designer versions &I and RI. Ii is versioned
only once, as the modifications are done in the Transi-
ent State. When the designer commits, the propagation
is done and the version of A enters the Released state.
The resulting configurat,ion is as shown in fig. 14(ii).

.fi Conclusion

In this paper.we have proposed a new model for cap-
turing Design Versions in Object.-Oriented Databases.
\Ve are currently looking at the query language sup-
port. for our model. \Ve plan to integrat,e this with a
collaborative design model[Ram97] so as to provide full
support for engineering design applications.

References

[Ban871 J. Banerjee, \V. Kim, H.J. Kim, and H.F.
Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. Ill

Proceedings of the .4Ch4 SlGhlOD International
Conference on Management of Data, pages 311-
322, San Fransisco. CA, May 1987

[Cl10881 H.T. Ch ou and W. Kim. A Unifying Frame-
work for Version Control in a CAD Environment.
In Proceedings of the 12th International Confer-
ence on Very Large Data Bases, pages 336-344,
Iiyot.0, Japan, August, 1986

[Jan951 Jane’s All The H’orld’s Aircrafts, Jane’s In-
formation Group, 1995

[Kat87] R.H. K t a z and E. Chary. Managing Change in
a CAD Database. In Proceedings of the 13th Inter-
national Conference on Very Large Data Bases,
pages 455-462, England, September 1987

[KatSO] R.H. Katz. Towards a Unified Framework
for Version Modeling in Engineering Databases.
.4CM Computing Surueys, Vol 22, No.4, pages
375-408, December 1990

[Iies93] S.C. K es h u and K.K Ganapathy. Aircmft Pro-
duction Technology and Management. Interline
Publishings, Bangalore, India, 1993

[Kim881 W. Kim and H. Chou. Versions of Schema
for Object-Oriented Databases. In Proceedings of
the 14th International Conference on Very Large
Data Bases, pages 148-159, September 1988

[IiimBSa] W. I i1m. E. Bertino. and J.F. Garza. Com-
posit,r Objects R.evisited. In Proceedings of
the AChl SIGAOD International Conference on
Management of Data, pages 337-347, Portland.
Oregon. .I unc 1989

[Iiim89b] Won Iiim and Lochovskg, edit.ors. Object
Oriented Concepts, Databases and Applications.
ACM Press, New York, 1989

[IiimSO] Won Kim. Introduction to Object Oriented
Databases. MIT Press, 1990

[hlon93] S. Monk and I. S ommerville. Schema Evolu-
tion in OODBs using Class Versioning. SIGMOD
RECORD, Vol.22, No.3, pages 16-22. September
1993

[Ngu89] G.T. Nguyen and D. Rieu. Schema evolution
in Object, Oriented Database Syst.ems. Data and
Iinourledge Engineering, Vol.4, No.1, pages 43-67.
1989

[RamSi] D. Janaki Ram, N. Vivekananda, Ch.
Srinivasa R.ao and N. Iirishna Mohan. Constraint
hlet,a-Object: A new model for Distributed Col-
laborat.ive Designing. To appear in IEEE Trans-
actions on Systems, h4an and Cybemitics, Vol.27,
Part, A, Issue 3, May 1997

[SciSl] E. Sciore. Using Annot.ations to Support Mul-
tiple Kinds of Versioning in a Object-Oriented
Database Syst.em. ACM Tmnsactions on Data-
base Systems, Vol. 16, No. 3, pages 417-438,
September 1991

[Ska86] A.H. Sh *arra and S.B. Zdonik. The Manage-
ment. of Changing Types in an Object-Oriented
Database. In Proceedings of the ACM Confer-
ence on Object-Oriented Progmmming Systems,
Languages and Applications, pages 483-495, Port-
land, September 1986

[Spo86] D.L Sp ooner, M.A. Milican and D.B. Fatz.
hlodeling Mechanical CAD Data with Data Ab-
straction and Object Oriented Techniques. In
Proceedings of the IEEE 2nd International Con-
ference on Data Engineering, pages 416-424,
Washington, 1986

[Sri891 D. Sriram, R. Logcher, A. Wong and S. Ahmed.
An Object oriented Framework for Collaborat-.
ive Engineering Design. In Computer Aided CO-
operative Product Development, Proceedings of
MIT-JSME Workshop in LNCS 49.2, pages 51-92,
Springer-Verlag, 1991

566

