
Information Retrieval from an Incomplete Data Cube

Curtis Dyreson
Department of Computer Science

James Cook University
Townsville, Queensland, Australia

curtis@cs.jcu.edu.au

Abstract

A complete data cube is a data cube. in which
every aggregate value in the multidimensional
space is stored or can be computed. An in-
complete data cube is a data cube in which
points in the multidimensional space are miss-
ing and’cannot be computed. This paper de-
scribes an incomplete data cube design. An
incomplete data cube is modeled as a federa-
tion of cubettes. A cubette is a complete sub-
cube within the incomplete data cube. The
incomplete cube is built piecemeal by giving
a concise, high-level specification of each cu-
bette. An efficient algorithm to retrieve an ag-
gregate value from the incomplete data cube
is described. When a value cannot be re-
trieved because it is missing, alternatives at a
lower precision that can be retrieved are iden-
tified. When a value can be partially com-
Ruted (i.e., some of the values lower in the
hierarchy are missing, but some are present)
a measure of the completeness of the result is
supplied along with the partially aggregated
value. The design also includes an algorithm
that removes redundant cubettes and an al-
gorithm to increase the retrieval power of the
federation thr%ugh the creation of virtual cu-
bettes.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Vesy Large Data Base
Endowmeni. To copy otherwise, OT to Tepablish, requires a fee
and/or special pesmission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

People often depend on summary data to make de-
cisions. For instance, a regional sales officer will de-
cide on the effectiveness of an advertising campaign by
relying exclusively on summary data such as the vol-
ume of sales during the campaign. People also make
summaries to conserve limited storage capacities. For
example, once the sales data has been summarised,
the unsummarised data can be compressed, moved to
backup storage, or deleted.

A data cube is a popular organisation for summary
data. A data cube is a multidimensional space of ag-
gregate data.r Located ateach point in the cube is a
set of aggregate values. Each value in the set is the re-
sult of computing an aggregate function, such as max
or sum.

The aggregate values in the cube are organised in
a hierarchy. Values higher in the hierarchy are aggre-
gations of values lower in the hierarchy. At the base
of the hierarchy are aggregates computed on a sub-
set of data chosen from some underlying relation(s)
or view(s). The coordinates of points in the base are
precise units of measurement in each dimension. Typ-
ical dimensions are time and space. As the next level
higher-up in the hierarchy are points that have coor-
dinates which are less precise units of measurement.
A point in the hierarchy at this level depends upon
all the points in the base that represent more precise
measurements.

Example 1.1 [a sales data cube]
Consider a,data cube that summarises 1995 sales data
for a multinational corporation. The dimensions of the
cube are ‘time’ of sale and ‘location’ of sale. The time
dimension has coordinates for hours, days, months,
and years in 1995; while the location has coordi-
nates for stores, cities, states, countries, and

“Cube’ is a misnomer since the cube is actually an N-
dimensional space, but since ‘cube’ is the generally accepted
term we will continue to (mis)use it in this paper.

532

trade-zones where the corporation’s stores are lo-
cated. The aggregate data is the number of items sold
and the total amount paid for those items. In this
cube, the number of items sold in California in Jan-
uary 1995 and the total amount of those sales would be
located at the following coordinates: ‘time=January
1995, location=California’. Since the number of items
sold in California in January 1995 is a further aggre-
gation of the number of items sold in California from
1 January 1995 through 31 January 1995, this point
in the cube is higher in the hierarchy than the points
corresponding to any day in January.
I

The data cube is designed to support quick and
easy “drill-down” and “roll-up” on the summary data.
Drill-down is an operation that increases the precision
of the summary data being viewed, while roll-up de-
creases that precision. For instance, suppose that the
data manager is looking at monthly sales figures and
notices that sales in January were much lower than
those in the other months. To pinpoint the problem,
the manager drills-down to look at daily sales in Jan-
uary.

A cube can be implemented using an eager strategy
or a lazy strategy [Wid95]. The eager strategy pre-
computes and stores every point within the cube. In
database terms, the eager strategy ‘materialises’ a set
of aggregate views on the underlying relations. The
advantage of the eager strategy is that points can be
quickly fetched from the cube during query evalua-
tion. The primary disadvantage is high storage cost.
The size of the cube is the number of points in the
N-dimensional space. In the example sales cube, as-
suming that there are 3200 stores and that the data is
collected over a single year, the cube occupies nearly
two hundred megabytes. The lazy strategy defers com-
puting points in the cube to query evaluation time.
Points in the cube are computed entirely from the un-
derlying relations during query execution. The disad-
vantage of the lazy strategy is that it increases the
cost of query evaluation. There are also ‘semi-eager’
strategies that materialise ‘hot spots’ above the base
to improve query evaluation performance including a
‘near-optimal’ semi-eager strategy [HRU95].

Data cubes can be further classified as either com-
plete or incomplete. In a complete data cube, every
point in the cube is materialised (an eager strategy)
or can be computed (a lazy strategy). But in an in-
complete data cube, aggregate values .at some of the
points are not only missing, they cannot be computed
from the underlying relations or from other values in
the cube.

We conjecture that incomplete data cubes will be
useful in the following situations.

l A common use of a data cube is to summarise
historical data. Once the data is summarised it
can be archived. Most users have a “telescoping”
view of historical data. While historical data close
to the current perspective of the user needs to
be precise, summaries of data farther in the past
can be imprecise. For instance, the sales man-
ager needs an hourly breakdown of sales in the
current year, but for previous years, a less precise
daily summary will serve. If the historical data
is archived, the portion of the data cube below
“days” in previous years is absent, hence the data
cube is incomplete.

l Data cubes will be used to summarise data from
log files, flat files, and other sources that are ex-
pensive to summarise. When the cost of sum-
marising data is excessive, users will eschew lazy
strategies in favour of eager or semi-eager strate-
gies. And because fully materialised data cubes
occupy too much space, users will use semi-eager
strategies to materialise only the parts of a cube
that are of interest and leave the rest incomplete.
For example, suppose that the sales cube sum-
marises a log file of sales transactions instead of
a sales relation. To search this large log file and
retrieve data during query evaluation imposes a
heavy burden on system resources, so the data
cube administrators decide to use an incomplete
data cube and package requests for more data in
an overnight cron job.

,a A data warehouse collects data from a variety of
sources. It is reasonable to assume that not ev-
ery source records data using the same system of
measurements. For instance, when warehousing
data from different stores, one store might mea-
sure sales on each item by the hour while another
records only sales made each day. The same store
may even change how it measures data during its
lifetime. In a complete data cube, when the data
is integrated at the warehouse, the different sys-
tems of measurements must be combined to create
a unified view of the data. This process is some-
times called ‘data scrubbing’ [Wid95]. But in an
incomplete data cube, the data can be inserted,
unscrubbed and unchanged, at the appropriate lo-
cation in the cube. In the above example, for the
store that records only daily sales, the points in
the cube “below” days are missing.

l Incomplete data cubes can seamlessly integrate
several complete data cubes into a single larger
data cube. An incomplete data cube is effectively
just a collection of complete subcubes.

533

l Different security levels can be enforced in a data
cube by denying access to portions of a complete
cube, which results in the user viewing the cube
as an incomplete data cube.

This paper describes methods for retrieving infor-
mation from an incomplete data cube. Information
retrieval in an incomplete data cube differs from that
in a complete data cube in two ways. First, it requires
that a concise, high-level description of the informa-
tion in the cube exists and can be quickly searched
during query evaluation. We anticipate that incom-
plete data cubes will contain a large number of ma-
terialised views. An important problem, common to
semi-eager strategies in complete cubes, is how to de-
termine which materialised view or views can be used
to satisfy a query. This problem is complicated by the
fact that when a new materialised view is added to an
incomplete data cube, the increase in the amount of
complete information in the incomplete data cube is
greater than that contained in or derivable from the
materialised view alone. Second, when the requested
information is missing, mechanisms for helping the
user deal with the missing information are needed. For
instance, perhaps a partial answer could be returned
when available.

This paper describes an incomplete data cube de-
sign. The design treats an incomplete data cube as a
federation of cubettes. A cubette is a complete subcube
within the incomplete data cube. The first section of
the paper develops a realistic framework for systems
and units of measurement. The framework is used in
the following section to concisely specify the informa-
tion content of a cubette. We then present an algo-
rithm for retrieving information from the incomplete
data cube. The time and space cost of the algorithm
is analysed and shown to be reasonable. However, the
query mechanism does not utilise all the information
in the data cube, so we introduce a method to “ex-
tend” cubettes by creating virtual cubettes to support
more queries. We also show how redundant cubettes
can be eliminated resulting in modest space savings.
When information cannot be retrieved because it is
missing, alternatives at a lower precision that can be
retrieved are identified. When a query can be partially
answered (i.e., some of the values lower in the hierar-
chy are missing, but some are present) a measure of the
completeness of the result is supplied along with the
partially aggregated value. Finally, we discuss related
and future work.

2 Measures

This section develops a simple, but realistic framework
for the measurement of data that is used throughout

the paper. Much of the framework should be familiar
to most readers.

A measure is a system of measurement [Mer74]. We
use the term ‘measure’ instead of the similar terms
that are used by subdisciplines within the database
research community. For example, in the temporal
database community, measures are referred to as gran-
ularities [JCE+94], in the spatial database community
as subdivisions [KEG93], in the statistical. database
community as cluster, category, or classification at-

tributes [RS90, Sat91, S&3], and in SQL as scale
[MS93]. Although the data modelling requirements of
the various subdisciplines differ, the primary concept
is the same. To the wider scientific community, the
unifying concept is a system of measurement.

A unit (of measurement) is a subset chosen from
the domain of interest. In this paper, we will treat all
domains as sets of strings, without loss of generality.
For instance, although all times belong to the temporal
domain, we view each element in that domain as the
name of some time, rather than the time itself.

A set of disjoint units, chosen from the same do-
main, forms a measure. A measure sometimes par-
titions a domain, but not always since the measure
might not cover the domain. For example, the unit
'28/Mar/i995: 17:50: 24' belongs to the measure of
Universal Coordinated Time (UTC) seconds. UTC
seconds does not partition the underlying time-line
since UTC seconds are undefined prior to 1972. But
UTC seconds is a perfectly good system of measure-
ment since each second is disjoint, that is, each repre-
sents a unique portion of the time-line. In this paper,
we will denote a unit using the notation u,, where m
is the measure to which that unit belongs.

Measures are sometimes related in that a measure-
ment in one system is more precise than another. We
formalise this concept below.

Definition 2.1 [precision]
A measure, m, is at least as precise as another, m’, if

CUg’, ;; uJm)f0*
urn urn n (U m’) # 0) * (3~ [urn C wl>l

I

Precision is a relationship between non-disjoint mea-
sures. A measure is said to be at least as precise as
another when every unit in the more precise measure
is either part of a single unit in the less precise measure
or is not a part of any unit in the less precise measure.
We will use precision to rank measures in terms of how
finely they can locate objects in a domain. Consider
the pair of measures seconds and years. Seconds is
at least as precise as years since every second belongs
to some year. But years is not as precise as seconds

534

since each year is composed of a number of seconds. A
measurement in years less precisely locates an object
in the underlying (temporal) domain.

Not every measure is defined over the same portion
of the underlying domain. Cover relates systems of
measurements defined over the same portion of the
underlying domain.

Definition 2.2 [cover]
A measure, m, is said to cover another, m’, if

Um’cUm

I

In the spatial domain, the measure of countries covers
that of continents since every continent is composed of
some number of countries (we assume that Antarctica
is both a country and a continent).

The distinct concepts of cover and precision are re-
lated in the following definition.

Definition 2.3 [finer]
A measure, m, is a finer measure than a measure m’,
if m is not m’, m covers m’, and m is at least as precise
as m’.
I

So if a measure both covers and is at least as precise as
another, then the covering, precise measure is defined
to be finer than the other. Seconds is a finer measure
than years because it both covers the same portion of
the time-line as years and is more precise than years.

We note that a consequence of two measures being
in a finer than relationship is that every unit in one
measure can be decomposed into a set of units at the
finer measure. Said differently, every unit is the union
of some number of units at a finer measure, for every
finer measure.

The measure graph depicts the minimal set of “finer
than” relationships between measures. Each node in
the graph is a measdte. Each edge in the graph rep-
resents a finer than relationship, but not all such rela-
tionships are represented by edges. There is an edge
from measure m to measure m’ if m is finer than m’
and there is no other measure x such that m is finer
than x and x is finer than m’. The full set of finer
than relationships is obtained by taking the transitive
closure of the measure graph. The measure graph is a
directed, acyclic graph since the finer relation is asym-
metric and irreflexive.

An example graph for the measures in the ‘location’
domain is shown in Figure 1. The finest measure is
stores. It is finer than tradezones (e.g., NAFTA),
cities, states, and countries. Some measures,

such as cities and states, are unrelated since neither
is finer than the other (some cities span state borders
and cities do not cover states).

2.1 Units and measures in multidimensional
space

Units and measures in a data cube are chosen from
a domain in multidimensional space. If we assume
that the dimensions are independent (the standard
data cube assumption), then the framework does not
have to be changed to handle more than one dimension
since the multiple dimensions combine to form a single
domain that behaves exactly like any other measure-
ment domain. We adopt the following naming con-
vention for units and measures in a multidimensional
domain. The name of each unit is an ordered tuple of
unit names superscripted with the name of that do-
main, one chosen from each dimension. An example
unit in the sales cube domain is

(1995GXE > Calif orni&~~~T’oN).

When the context is clear we will drop the domain
names. Similarly, the name of a measure in the mul-
tidimensional domain is an ordered tuple of measure
names superscripted, with the name of that domain,
one chosen from each dimension, e.g.,

(Y earsTIM’, statesLoCAT1oN),

An easy method of,, determining whether a mea-
sure is finer than another is by checking whether
a finer relationship holds for every dimension. So
(months,states) is not finer than (days,countries),
since months are not,finer than days, but both mea-
sures are finer than (y’ears,countries).

3 Cubettes

An incomplete cube+ a federation of complete sub-
cubes, which we call cubettes. Unfortunately this
means we will continue to (mis)use the term ‘cube’
and perpetuate the m$th that a cubette is ‘cube-like.’
In fact, a cubette is a multidimensional hierarchy as
discussed in the next section.

3.1 Cubette specification

A cubette specification consists of a cubette unit and a
cubette measure. The cubette unit is the top node in
a multidimensional hierarchy. The hierarchy extends
from a base in the multidimensional plane given by
the cubette measure. Intuitively, the cubette unit is
the portion of the domain over which the aggregate
data in the cubette is maintained, while the cubette
measure is the precision of that data. We will denote

535

trade-zones

t
countries

t
cities states

stores

Figure 1: A spatial measure graph
a cubette with cubette unit, u,, and cubette measure,
m, as u,@m (literally, 21, at m). To be a valid cubette
specification m must either be the same as or more
precise than x! but m does not have to be finer than
2.

Example 3.1 [cubette specifications]
To create a sales data cube, the user might issue the
following cubette specifications:

(January 1995,United States)@(days,states)
(January 1995,Canada)Q(days,countries)
(1995,Canada)@(months,countries)
(1995,California)@(days,states)
(1995,United States)@(months,states)

#The specification (January 1995,United
States)@(days,states) is a cubette that has aggre-
gate values for every combination of day in January
1995 and state in the United States. The resulting in-
complete cube is shown in Figure 2. In the figure, the
cubettes are the regions enclosed by the dashed lines,
the base of each cubette is shaded dark grey, and the
other areas enclosed by a cubette are shaded light grey.
Incomplete areas are represented by a question mark.
Note that some of the cubettes overlap. We will ignore
the issue of overlapping specifications in this paper.
I

The cubette specifications are stored with the mea-
sure graph since the cubettes are typically accessed by
traversing the measure graph. The specification u,@m
would be stored in a list of specifications at node m in
the graph.

3.2 The cubette store
GROUP BY C.days, C.states;

The cubette store is the data collection, internal to a The table is created by first finding all the units
cubette, that stores the aggregate data in the cubette. in the measure of (hours,stores) that belong
At the logical level, a cubette supports the following to the unit (1995, California). All sales tuples
operations: in those units are retrieved from SALES and then

l new(u,@m) - Create and populate a cubette
with data drawn from some set of underlying re-
lation(s), view(s), or other source data.

l aggregate(u,@m) - Compute and return the ag-
gregate value(s) for the input cubette specifica-
tion.

l delete - Remove this cubette, freeing the associ-
ated space.

At the physical level, each cubette could be imple-
mented using a lazy strategy with only the base of the
cubette, those units that are in the multidimensional
plane of the cubette measure, materialised, or an eager
strategy, with every point within the cubette materi-
alised. Both eager and lazy cubettes can be mixed in
an incomplete data cube, resulting in a ‘semi-eager’
incomplete cube. Internal to the cubette, the materi-
alised data might be stored in an array, a sparse array,
a hash table, or any other appropriate data structure.
Since the physical implementation is hidden, the cu-
bettes could be distributed across a network. We do
not present protocols for handling distributed cubettes
in this paper, we only note that separating the func-
tionality permits this option.

Example 3.2 [a lazy SQL implementation]
A cubette can be implemented by mapping the oper-
ations to the appropriate SQL queries. Below we give
example operations and the corresponding SQL code.
We will assume that the cube is derived from a SALES
relation which records the id, hour, store, and amount
of each item sold, and that CONVERTm-to_x relations
that map units in measure m to measure x are avail-
able.

l new((i995,California)@(days,states))
maps to a table creation query.

CREATE TABLE 1995_CALJ3Y_DAYS_STATES(
days CHAR(20), states CHAR(20),
couut,NUMBER, sum NUMBER);

INSERT INTO 1995-CAL-BY-DAYS-STATES
SELECT C.days, C.states, COUNT(*), SUM(amount)
FROM SALES AS S,

CONVERT~HOURS~STORES~TO~DAYS~STATES as C,
CONVERT~YEARS~STATES~TO~HOURS~STORES as D

WHERE D.years = '1995' AND D.hours = S.hour
AND D.states = 'California' AND
D.stor,es = S.store AND S.hour = C.hours
AND S.stoie = C.stores

536

Location

NAFTA

Canada
Mexico

united states

AkiSka

Califo+ia

Wyoming

Figure 2: Cubettes in the sales data cube
“converted” to the measure of (days ,states),
where they are grouped and the appropriate ag-
gregates computed on the groups. Alternatively,
a materialised view could be used.

l aggregate((January
1995,California)@(months, states)) requests
the aggregate values for January 1995.

SELECT D.months, D.states, SUM(count),
SuMI(amount)

FROM 1995sCAL-BY-DAYS-STATES AS V,
CONVERT-MONTHS-STATES-TO-DAYS-STATES as D

WHERE D.months = 'January 1995' AND
D.states = 'California' AND
D.days = V.days AND
D.states = V.states

GROUP BY D.months, D.states;

In this query, the days in January are selected
from the materialised view, they are grouped into
months (there is only one group), and a sum ag-
gregate is used to compute both the count and
the amount for each group.

l delete simply drops the table.

DROP TABLE 1995sCAL-BY-DAYS-STATES;

I

3.3 Retrieval from an incomplete data cube

Although a cubette is created just once, it can be
queried many times. A query can be thought of as

? incomplete area

iI! extent of cubette

within cubette

n cubette base

Legend 1

a cubette that is computed by consulting the feder-
ation rather than the underlying data collection. A
query consists of a query unit and a query measure,
which are analogous to the cubette unit and measure.

The important semantic difference between a cu-
bette and a query is that a cubette is complete,
whereas only the data in the federation is available
to a query. Consequently, when a query is processed
it must be determined whether the query can be an-
swered from the store of information.

Definition 3.3 [query satisfiability]
A query, u,@m, can be satisfied if there exists a cu-
bette, u,l@m’, such that m’ is finer than or the same
as m and u, 2 U=I.
I

The definition states that a query can be satisfied if
there exists a cubette with a finer measure than the
query measure and a cubette unit that covers the query
unit. Intuitively, a cubette at a finer measure can al-
ways be aggregated to present the data at a coarser
measure. So if the cubette covers the same portion of
the domain as the query, then the query can be satis-
fied.

Example 3.4 [querying the sales cube]
The sales officer queries the data cube from Ex-
ample 3.1 to find data on sales in January 31 for
the United States. The query (January 31 ,United
States)@(days,countries) falls within a> cubette
that has a measure finer than the query measure,
(January 1995,United States)@(days,states),so
the query can be satisfied. But a similar query for

537

Mexico, (January,Mexico)@(days,countries), can
not be satisfied.
I

The above definition gives a sufficient condition
for query satisfiability, but not a necessary condition.
Some relationships exist between particular units that
are not captured by the general framework of units
and measures developed in Section 2. For example,
weeks are not finer than months since certain weeks
are in two different months, however there happens to
be exactly four weeks in the month of February 1987.
An incomplete data cube that stores weekly aggregate
data for those four weeks has enough information to
satisfy a query for monthly aggregate data for Febru-
ary 1987. This would not be detected using the defini-
tion given above since weeks are not finer than months.
We expect these accidental relationships to be rare in
practice, and expensive to detect, so we sacrifice com-
pleteness for query evaluation efficiency.

Below we give an efficient algorithm to satisfy a
query.

Algorithm 3.5 [query evaluation]
We assume that the query is u,@m.

1. Make a hash table, H, of all the units, uY such
that u, E I+, i.e., all the units above u, in the
multidimensional hierarchy.

2. Traverse the measure graph starting at m visiting
all finer measures. For each cubette specification
u,t@m’ at a visited node, do the following.

(a>

(b)

cc>

I

We know that m’ meets the query satisfiabil-
ity constraints, it is finer than or the same
as m.

If uZf E H then the query is satisfied by this
cubette, compute the query from the cubette
store and exit.

Otherwise, this cubette does not satisfy the
query, continue.

Overall, the algorithm has a time cost of O(E * G) +
O(N)+O(E)+C where N is the number of cubettes, E
is the number of edges in the measure graph, G is the
cost of “converting” u, to measure y, and C is the cost
of computing the query from the cubette store once
the appropriate cubette has been found. Traversing
the measure graph above m to build H costs O(E * G).
Traversing the measure graph below m costs O(E) to
visit each node. There are at most N specifications
distributed among the nodes so the loop costs O(N)
overall, assuming that the hash table lookup in H is

constant. In practice we expect N >> (E + G + C),
so the cost of computing a query is dominated by the
cost of iterating through the cubette specifications at
the measures below m.

The key to the algorithm’sefficiency is that the cu-
bette specification concisely describes a region in the
multidimensional hierarchy and that the test to deter-
mine whether the query falls within that region is just
a single hash table lookup.

3.4 Redundant cubettes

A redundant cubette is a cubette than can be com-
puted by another cubette in the federation. For ex-
ample, the cubette ‘1995rws @months’ is redundant if
the cubette ‘19% rears@days exists since the monthly
count for 1995 can be computed from the daily count.
Redundant cubettes waste space, but are easily de-
tected and eliminated. A redundant cubette can be
detected by removing the cubette from the list of cu-
bette specification& and posing it as a query. If the
query can be satisfied, then the cubette is redundant
and can be eliminated.

3.5 Virtual cubettes

A virtual cubette is a cubette in which the base ag-
gregate data is contained in other cubettes. A virtual
cubette can be thought of as a placeholder, a speci-
fication of how to aggregate data contained in other
cubettes. A virtual cubette supports the following op-
erations:

new(u,@m, {u,;@m~, . . . , u,;@m~}) - The base
of the virtual cubette is derived from the set of
cubette specifications.

aggregate(u,@m) - Compute and return the ag-
gregate value(s) for the input cubette specification
using the derived base.

delete - Remove this virtual cubette.

Like a cubette, a virtual cubette can be implemented
using either a lazy or an eager strategy.

Example 3.6 [a lazy SQL implementation]
A virtual cubette can be implemented by mapping the
operations to the appropriate SQL queries. This par-
ticular implementation maps the virtual cubette spec-
ification to a view. Below we give example operations
and the corresponding SQL code. We will assume that
CClNVERTm-to_x relations that map units in measure m
to measure x are available.

l new(Q, {VI,. , Ulz}) where
Q = (1995,California)@(months, states),
VI = (l/1995, California)@(months, states),

538

and
ill = (12/1995, California)@(months, states)
maps to the following view creation query.

The notion of extension is best explained by an exam-
ple.

CREATE VIEW 1995-CAL-BY-MONTHS-STATES AS
SELECT D.months, D.states,

SuM(count), SuM(amouIlt)
FROM 1_1995_CAL_BY_MONTHS_STATES AS JAN,

2_1995_CAL_BY_MONTHS_STATES AS FEB,
. . .

12~1995~CAL~BY~MONTHS_STATES AS DEC,
CONVERT-YEARS-STATES-TO-MONTHS-STATES as D

WHERE (D.years = ‘1995’ AND
D.states = ‘California’ AND
D.months = JAN.months AND
D.states = JAN.states) OR

Example 3.8 [cubette extension]
Suppose that we add the
cubette (January 1995,Mexico)@(days,countries)
to the sales data cube. This specification is extended
by the cubettes that cover the other countries for
days in January to cover the NAFTA trade zone for
days in January as shown in Figure 3. By extending
the cubette to cover NAFTA, a query for (January
1995, NAFTA)@(months , tradezones) can be satis-
fied. Without extending the cubette, this query could
not be satisfied.
I

. . .
(D.years = ‘1995’ AND
D.states = ‘California’ AND
D.months = DEC.months AND
D.states = DEC.states)

GROUP BY D.months, D.states;

So cubette extension is a method of increasing the
utilisation of the information in the federation of cu-
bettes. Below we give an algorithm to compute an ex-
tension when a new cubette, u,@m, is inserted. The
extension creates virtual cubettes.

The view is created by retrieving all the units in
the measure of (months,states) that belong to
the unit (1995, California) from the underly-
ing cubettes, grouping the units, and then com-
puting the appropriate aggregates on the groups.
This view could be materialised to improve per-
formance.

Algorithm 3.9 [cubette extension]

l The other operations, aggregate and delete, are
the same as those in the cubette SQL implemen-
tation.

I

Virtual cubettes are created when a cubette spec-
ification is added to the federation of cubettes. In
some cases, the specification allows the incomplete
data cube to compute more aggregate data than is
given by the new specification. When a new cubette
is added, it may be the case that the new cubette “ex-
tends” or is “extended by” other cubettes.

Definition 3.7 [cubette extension]
A cubette, uz@m, extends a set of cubettes,
{u,;@m;, , u5:@m~}, if there exists some specifi-
cation, uT@z, such that

l every measure in the set {m, rni, , m;} is finer
than or the same measure as Z,

l UT c (u+ u (U{uz;, . . . , UZ,,H),

l and, U,@Z $ {u,@ m,u,;@m~, ,u,pc?m:,}.

I

539

4.

5.

I

Compute all the measures that are coarser than
m,T={q ,..., 7,).

Compute all the units that cover uZ, UT =
{(ur, {u,@m}) 1 r E T A u, n u, # 0). Each ele-
ment in UT is an ordered pair consisting of a unit
and a set of cubette specifications such that the
cubette units intersect the unit and the cubette
measures are finer than or the same as the unit’s
measure. Initially, the set of cubettes contains
only uL,@m because it has yet to be determined
which other cubettes satisfy these requirements. 1

Repeat the following until all cubettes have been
tried.

(a) Choose an untried cubette, uk@m’.

(b)‘Determine which units this cubette could
possibly extend or be extended by. For each
(uT, S) in UT such that m’ is finer than or
the same -as r and u, n u(, # 0, add uL@m’
to the set S.

Now determine if the set of candidate cubettes ac-
tually extends a set of cubettes. For every (Us, S)
in UT such that u7 c (U{uy) uY@m’ E S}), add
the virt&l cubette u,@t where .z is the coarsest
cubette measure in S and S is the set of cubettes
from which the virtual cubette is constructed.

Eliminate redundant virtual cubettes.

Location

NAFTA

Canada
Mexico

united states

Alaska

Califo+ia

Wyoming

m?????? n ????? ?

The time cost of this algorithm is dominated by the
repeat loop which costs O(N * E * U) and the final step
to eliminate redundant virtual cubettes which costs
O(N * N), where N is the number of cubettes, E is
the number of edges in the measure graph, and U is the
sum of the sizes of all the units that are supersets of
UP. The expensive step in the algorithm is step (b) in
the repeat loop. We assume that this is implemented
by precomputing a table of all the units that are in
supersets of UP, a table of size U. If a cubette has a
finer measure and a cubette unit that is in the superset
table, we mark in the table that the corresponding unit
is covered. This step costs O(E * U). At most O(E)
virtual cubettes are created (one for every measure).

While the cost of creating virtual cubettes is sub-
stantial, the cost is incurred infrequently. Cubette ex-
tension happens only when a new cubette specification
is added. The payoff is that it keeps the cost of re-
trieving information low. The alternative is to extend
cubettes during query evaluation, but this would sub-
stantially raise the cost of retrieving information from
an incomplete data cube.

3.6 Removing or updating a cubette

A cubette can be updated or deleted at any time. How-
ever, when a cubette is either updated or deleted, all
the virtual cubettes that use that cubette must also be
updated or deleted. In the case of update, if the virtual
cubettes are not materialised then no changes need to
be made to any virtual cubette when updates are made
to the aggregate values in a cubette. But in general,
updating or deleting a cubette is an O(E + N) oper-
ation, since it requires a search through the measure

? incomplete area
~~ pan-icipafing cubetres

wifhin cubette

:

cubefte base

extended area

Legend

Figure 3: Extending the cubettes to cover NAFTA
graph and the list of cubette specifications to change
or delete the affected virtual cubettes.

4 Handling Unsatisfied Queries

When a query fails there are several mechanisms that
can be used to restructure the query so that some use-
ful information can be returned to the user.

4.1 Suggesting alternative queries

Most users will be unaware of all the data in an incom-
plete data cube. So when a user queries the cube, they
might request information that is not in the cube. To
improve the utility of a negative response to the re-
quest for information, an incomplete data cube has
the capacity to supply an ordered list of alternative
queries, which the cube can satisfy. An alternative
query is a query at a less precise measure with the
same query unit.

Below we give an algorithm to compute a list of al-
ternative queries. The algorithm is a variation of the
query evaluation algorithm which explores measures
coarser than the query measure rather than finer mea-
sures .

Algorithm 4.1 [alternative queries]
We assume that the query is u,@m.

1. Make a hash table, H, of all the units, uy such
that uZ C uY, i.e., all the units above U, in the
multidimensional hierarchy.

2. Traverse the measure graph starting at m visiting
all coarser measures. For each cubette specifica-
tion uz,@m’ at a visited node, do the following.

540

(a) We know that m’ is less precise than m.

(b) Ifuz I E H then the alternative query, u,@m’
can be satisfied. Add this query to the list
of alternative queries. Order the list by the
distance in the measure graph from m to m’
(assume that each edge has the same weight).

The cost of this algorithm is essentially the same as
that for query evaluation.

Example 4-2 [alternatives]
In the example sales data cube depicted in Fig-
ure 3, the query (1995, United States)@(days,
states) can not be satisfied. However, the

query can be answered at the coarser mea-
sures of (months,states), (months,countries),
(years ,states), and (years ,countries).
I

4.2 Partial query results

A query that requests aggregate data for a single point,
i.e., um@mr wants the result of an aggregate computed
over a subset of the multidimensional domain. But
it may be the case that only part of that subset is
contained in the incomplete data cube. Such a query
can be “partially satisfied” by aggregating over the
portion of the subset that is in the incomplete cube.

Definition 4.3 [partial query satisfiability]
A query, um@m, is partially satisfied if there exists
cubettes, u,;@m{, . . , U,I @m/, , such that every mea-
sure in the set {ml,, . . , ml} is finer than m and every
unit in the set { uI; , . . , ut;} intersects u,.

I

In addition to the capacity to partially satisfy a query,
an incomplete data cube has enough information to
quantify the. completeness of the partially computed
result.

Definition 4.4 [completeness of a partial result] ’
The completeness of a partial result for a query u,@m
is the percentage, with respect to the underlying do-
main(s), of u, that is covered by the partial result. . ,
I

For instance, information on January through June
1995 can satisfy approximately 50% of a request for
information on 1995 since one-half of the unit 1995 in
the temporal domain is covered by the first six months
of that year. Other notions of completeness, such as

the percentage of subunits used to compute the result,
could also be defined.

Below we give an algorithm for computing a partial
result from an incomplete data cube. The algorithm
does a breadth-first search on the multidimensional
hierarchy below the query. It computes as many sub-
points within that hierarchy as possible.

Algorithm 4.5 [partial results]
We assume that the query is u,@m.

1. Traverse the measure graph starting at m visiting
all finer measures using breadth-first search. For
each node visited do the following.

(a) Let m’ be the measure at current node. For
each u’, 2 u,.,,, p ose the query uA@m’.

(b) If the query is satisfied,

l include the result in a set of partial re-
sults,

l add the number of base units in u’~ to
the size of the partial result,

l and discontinue the search below this
point.

2. Once the search has terminated,

the final partial result is the appropriate ag-
gregate applied over the set of partial results,
and

l the completeness of the result is the percent-
age of the size of the partial result in relation
to the size of u,

The cost of this algorithm is essentially the same as
that for multiple query evaluations

Example 4.6 [a partial result]
In the example sales data cube depicted in
Figure 3, the query (31 December 1995,United
States)Q(days,states) can not be satisfied, how-
ever a partial answer can be given by aggregating
all the values below ‘time=31 December 1995, loca-
tion=United States’ in the multidimensional hierarchy.
Only one value, for California, is available. However,
if 90% of the stores are in California, then the answer
is 90% complete.

541

5 Related Work

The ideas in this paper are synthesised from research in
data warehouses, statistical databases, and temporal
databases.

Efficient implementation of complete data cubes is
a goal of the Stanford University Data Warehousing
Project. Gupta, Harinarayan, and Quass describe a
general SQL query rewriting technique to optimise ag-
gregate queries [GHQ95]. The result of the rewrite
is an efficient query execution plan that incorporates
materialised aggregate views, i.e., points in a data
cube, when those views are available. The focus of
our paper, on an efficient technique to recognise which
materialised views exist, is complementary and their
techniques can be used to optimise the SQL queries
generated by cubettes. Harinarayan, Rajaraman, and
Ullman describe a near-optimal strategy to determine
which parts of a data cube should be materialised to
obtain the best performance at the lowest space over-
head [HRU95]. When the strategy suggests that a ma-
terialised aggregate view is appropriate, a view at a
particular measure is created. Their system is based
on a lattice of measures only. Nevertheless, our paper
is complementary insofar as once a large set of ma-
terialised views is created it is important to quickly
identify whether that set satisfies a query.

Data cubes are a primitive statistical data model.
In the tradition of the early, but influential SUBJECT
data model [CS81], they support only two kinds of
nodes: cluster nodes (for units) and cross product
nodes (for combining domains). The greater sophisti-
cation in describing statistical data found in later sta-
tistical data models such as SAM* [Su83] and STORM
[RS90], is absent from data cubes because data cubes
do not have the same data modelling requirements.
Statistical data models are designed to model com-
plicated, nonstandardised, heterogeneous, real-world
data sets whereas data cubes create their own simple,
standardised, homogenised statistical data set, conse-
quently, a simpler data model suffices.

Semantic, statistical data models suggest that,
among other benefits, a meta-data or conceptual de-
scription of statistical data enables users to quickly
find desired data [S&91]. Cubette specifications are
simple conceptual descriptions of the data in the in-
complete data cube.

The statistical database aspect of data cubes is
best understood as an extension of the work done by
Malvestuto (and others) on data integration in sta-
tistical databases [Malgl]. Data integration is the
creation of a unified view on a set of different, but
homogeneous, statistical tables. In terms of the in-
complete data cube model, Malvestuto uses a data
model consisting only of units and shows how to de-

termine whether queries are satisfiable or unsatisfiable
given that the relationships between all the units are
known. We extend Malvestuto’s work by introducing
measures. Measures are a useful conceptual tool, as
evidenced by’their independent development in other
database subdisciplines [WJS93, WJLSl]. More im-
portantly, measures are the key to (relatively) fast
query evaluation and computation of cubette exten-
sions since measures quickly eliminate cubettes from
consideration. Without measures, deciding if a cu-
bette (partially) satisfies a query requires that all the
units in the cubette be tested for overlap with the units
in the query. In contrast, we have demonstrated that
the cost of our evaluation algorithms is reasonable.

6 Conclusion

A data cube is a useful tool for exploring aggregate
data because it enables users to view that data to any
desired precision. An incomplete data cube is a data
cube that supports all the precision control but which
lacks some of the data to examine. Incomplete data
cubes are useful in situations where the source data
from which the cube is derived is no longer available
or is too expensive to query frequently. Incomplete
data cubes change the nature of retrieving information
from a cube since the requested information may be
missing.

The most important challenge in retrieving infor-
mation from an incomplete data cube is to quickly
determine whether or not the information exists. To-
wards this end, an effective representation of the ag-
gregate data in the cube is essential. In this paper
we developed a concise high-level specification of the
information content of an incomplete data cube and
showed how this specification could be used to effi-
ciently retrieve information from the cube. We mod-
eled an incomplete data cube as a collection of com-
plete subcubes, which we called cubettes. Each cu-
bette specification consists of a unit and a measure.
The measure is the precision to which the aggregate
data in the cubette is stored while the unit describes
the extent of the available aggregate data. A request
for data from the incomplete cube consults each cu-
bette to determine if it can satisfy the request. The
query evaluation mechanism does not combine data
that is distributed over a number of cubettes, although
the cubettes can be “extended” through the creation
of virtual cubettes to synthesise data from a set of cu-
bettes. If the requested data is not found in the cube
we suggested several simple strategies to return some
useful information to the user. One strategy is to sug-
gest alternative nearby queries that can be satisfied.
Another is to compute a partial answer along with a
measure of the answer’s completeness.

542

In future, we hope to extend the incomplete data
cube design to permit more flexible management of
the size of the cube. We plan to incorporate rules for
‘vacuuming’ historical data to reclaim space through
automatic, timed roll-ups, an algorithm to find a mini-
mal cubette specification, and a modified specification
format to support partial specifications. The query
power can also be extended by supporting temporal
aggregates, moving window queries, and computing
min-max bounds on partial results.

Acknowledgements

We would like to thank Richard T. Snodgrass for help-
ful suggestions on the paper and co-development of the
units and measures, and also the comments made by
the anonymous referees.

References

[CS8 l]

WQ951

[HRU95]

[JCE+94]

P. Chan and A. Shoshani. SUBJECT: A
directory driven system for organizing and
accessing large statistical databases. In
Proceedings of the 7th Conference on Very
Large Databases, Los Altos, CA, September
1981.

A. Gupta, V. Harinarayan, and D. Quass.
Aggregate-query processing in data ware-
housing environments. In Proceedings of the
dlst Conference on Very Large Databases,
Zurich, Switzerland, September 1995.

V. Harinarayan, A. Rajaraman, and J. Ull-
man. Implementing data cubes efficiently.
Submitted for publication., 1995.

C. S. Jensen, J. ,Clifford, R. Elmasri, S. K.
Gadia, P. Hayes, and S. Jajodia [eds]. ‘A
Glossary of Temporal Database Concepts.
ACM SIGMOD Record, 23(1):52-64, March
1994.

[KEG931 Wolfgang Kainz, Max J. Egenhofer, and
Ian Greasley. Modelling spatial relations
and operations with partially ordered sets.
Int. J. Geographical Information Systems,
7(3):215-229, 1993.

[Ma1911 F. Malvestuto. Data Integration in Statis-
tical Databases. In Z. Michalewicz, editor,
Statistical and Scientific Databases, pages
201~232. Ellis Horwood Ltd., 1991.

[MS931

[RSSO]

[Sat911

[Su83]

[Wid95]

[WJLSl]

[WJS93]

J. Melton and A. R. Simon. Understand-
ing the New SQL: A Complete Guide. Mor-
gan Kaufmann Publishers, Inc., San Mateo,
CA, 1993.

M. Rafanelli and A. Shoshani. STORM:
a Statistical Object Representation Model.
IEEE CS Technical Committee on Database
Engineering Bulletin, 13(3), September
1990.

H. Sato. Statistical Data Models: from a
Statistical Table to a Conceptual Approach.
In Z. Michalewicz, editor, Statistical and
Scientific Databases, pages 167-200. Ellis
Horwood Ltd., 1991.

s. su. SAM*: A Semantic Associa-
tion Model for Corporate and Scientific
Databases. Inf. Sciences, 29:151, 1983.

J. Widom. Research problems in data ware-
housing. In Proceedings of the 4th Int’l
Conference on Information and Knowledge
Management (CIKM), November 1995.

G. Wiederhold, S. Jajodia, and W. Litwin.
Dealing with Granularity of Time in Tem-
poral Databases. In Proc. 3rd Nordic Conf.
on Advanced Information Systems Engi-
neering, Trondheim, Norway, May 1991.

X. Wang, S. Jajodia, and V. Subrahma-
nian. Temporal Modules: An Approach
Toward Temporal Databases. In Proceed-
ings of SIGMOD. Conference, pages 227-
236, 1993.

[Mer74] G. H. Merriam, editor. Webster’s New
Colligiate Dictionary. Merriam-Webster,
Springfield, Mass., 1974.

543

