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Abstract 

To speed up multidimensional data analysis, 
database systems frequently precompute ag- 
gregates on some subsets of dimensions and 
their corresponding hierarchies. This improves 
query response time. However, the decision of 
what and how much to precompute is a diffi- 
cult one. It is further complicated by the fact 
that precomputation in the presence of hier- 
archies can result in an unintuitively large in- 
crease in the amount of storage required by the 
database. Hence, it is interesting and useful 
to estimate the storage blowup that will re- 
sult from a proposed set of precomputations 
without actually computing them. We propose 
three strategies for this problem: one based on 
sampling, one based on mathematical approx- 
imation, and one based on probabilistic count- 
ing. We investigate the accuracy of these al- 
gorithms in estimating the blowup for different 
data distributions and database schemas. The 
algorithm based upon probabilistic counting is 
particularly attractive, since it estimates the 
storage blowup to within provable error bounds 
while performing only a single scan of the data. 
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1 Introduction 

Multidimensional data analysis, as supported by OLAP 
systems, requires the computation of several large ag- 
gregate functions over large amounts of data. To meet 
the performance demands imposed by these applica- 
tions, virtually all OLAP products resort to some de- 
gree of precomputation of these aggregates. The more 
that is precomputed, the faster queries can be an- 
swered; however, it is often difficult to say a priori how 
much storage a given amount of precomputation will 
require. This leaves the database administrator with a 
difficult problem: how does one predict the amount of 
storage a specified set of precomputations will require 
without actually performing the precomputation? In 
this paper we propose and evaluate a number of tech- 
niques for answering this question. 

To further clarify the problem we are considering, we 
begin with an example’. Consider a table of sales with 
the schema 

Sales(ProductId, StoreId, quantity> 

with the intuitive meaning that each tuple represents 
some quantity of some product sold in some store. Fur- 
thermore, assume that we have some information about 
products captured in a table 

Products(ProductId, Type, Category) 

capturing for each product to which Type it belongs, 
and for each Type to which Category it belongs. Fi- 
nally, suppose we have an additional table 

Stores(StoreId, Region) 

which captures for each store to which region it belongs. 
This data set can be viewed conceptually as a two- 

dimensiorial array with hierarchies on the dimensions, 
as shown in Figure 1 (a). 

‘This example first appeared in [AGSSB] 
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Figure 1: Three sample multi-dimensional data sets. 
S,‘s represent Stores and Pi’s represent Products. 
Stores Sl - S5 are in California, and so roll up into 
the region California, while S6 - SlO are in Wisconsin, 
and roll up into the region Wisconsin. Products Pl - 
P3 are of type Soap, while products P4 - P8 are of type 
Shampoo. Soap and Shampoo are further grouped into 
the cat,egory Personal Hygiene. The x’s are sales vol- 
umes; entries that, are blank correspond to (product, 
store) combinatibns for which there are no sales. (b) 
and (c) are sample multi-dimensional data sets which 
are used in an example. 

There are a number of queries that can be asked of 
this data. For example, one may wish to know sales 
by product; or sales by type; or sales by product and 
region; or sales by store and type; and so forth. Each 
of these queries represents an aggregate computation. 
For example, sales by product in SQL is just: 

select ProductId, SUM(Quantity) 
from sales 
group by ProductId; 

If the sales table is large, this query will be slow. How- 
ever, if this aggregate is precomputed, the query (and 
queries derived from it) can be answered almost in- 
stantly. Therefore, the task the DBA faces is to choose 
a set of queries to precompute and store. In this paper, 
we first consider the problem of estimating how much 
storage will be required if all possible combinations of 
dimensions and their hierarchies are precomputed. Fur- 
thermore, once we have described how to estimate this 
full precomputation the extension to precomputation of 
a subset is trivial. 

A useful way to describe the full precomputation 
problem is to use the framework proposed by Gray et 
al. [GBLP96]: the cube operator. The cube operator 
is the n-dimensional generalizatidn of the SQL group 
by operator. The cube on n attributes computes the 
group by aggregates for each possible subset of these 
dimensions. In our example, this is: 0, (ProductId), 
(StoreId), (ProductId, StoreId). The SQL for these 
four group bys (in the above order) is: 

select SUM(Quantity) 
from sales; 

select ProductId, SUM(Quantity) 
from sales 
group by ProductId; 

select StoreId, SUM(Quantity) 
from sales 
group by StoreId; 

select ProductId, StoreId, SUM(Quantity) 
from sales 
group by ProductId, StoreId; 

When we consider t,he possibility of aggregating 
over hierarchies, we get a generalization of the cube, 
which we will refer to as the cube from here on. The 
cube as defined by [GBLP96], will be referred to as 
a cube without hierarchies. Again returning to our 
example, the cube with hierarchies will compute ag- 
gregates for 0, (ProductId), (StoreId), (Type), (Cat- 
egory), (Region), (ProductId, StoreId), (ProductId, 
Region), (Type, StoreId), (Type, Region), (Category, 

523 



Table 1: The variation in the size of the cube with the 
data distribution. Figures 1 (b) and (c) show DB 1 and 
DB 2 respectively. 

Groun bv 

0 - y 
(Products) 
Cbw) 
(Category) 
(Stores) 
(Regions) 
(Products, Stores) 
(Type, Stores) 
(Category, Stores) 
(Product, Region) 
(Type, Region) 

DB 1 DB 2 

(Category, Region) 

Size of Cube 

1 
3 
1 
1 
5 
1 
15 
5 
5 
3 
1 
1 

42 

1 
8 
2 
1 
10 
2 
15 
15 
10 
14 
4 
2 

84 

StoreId), and finally (Category, Region). It is the pres- 
ence of hierarchies in the dimensions that in general 
make the storage requirements of cubes with hierar- 
chies far worse than that of cubes without hierarchies. 
Note that on this small example of only two dimensions 
the cube computed on the 16 tuples in Figure 1 (a) re- 
sults in 73 tuples, while the cube without hierarchies 
has 34 tuples. 

Furthermore, for a given database schema and a 
fixed number of data elements, the resulting size blowup 
on computing a cube can vary dramatically. Figure 1 
(b) and (c) show two databases which illustrate the 
range of blowups that can occur. Each database has 
the same number of tuples (15), the same number of 
dimensions (a), and the same hierarchy on the dimen- 
sions. As the computation in Table 1 shows, even for a 
small database, and a small number of dimensions, the 
sizes of the cubes for the databases are very different. 

Estimating the size of these blowups without com- 
puting the cube is the problem we are attacking in this 
paper. Computing the cube is a very expensive oper- 
ation. For example, computing the cube for a schema 
of 5 dimensions each with two levels of hierarchies is 
equivalent to computing over 200 distinct SQL “group 
by” queries. One of the algorithms we propose, the one 
based on probabilistic counting, is especially attractive 
in that it estimates the cube size to within a provable er- 
ror bound while only scanning the input data set once. 
The remainder of this paper is organized as follows. 
Section 2 discusses solutions to this problem. An eval- 
uation of how well our algorithms work in practice is 
presented in section 3. Section 4 discusses extensions of 
the algorithm based on probabilistic counting. Finally, 
section 5 concludes and discusses future work. 

2 Approximating the size of the Cube 

This section presents three solutions that approximate 
the size of the cube. 

2.1 An Analytical Algorithm 

If the data is assumed to be uniformly distributed, we 
can mathematically approximate the number of tuples 
that will appear in the result of the cube computation 
using the following standard result. Feller [Fel57]: 

If T elements are chosen uniformly and at 
random from a set of n elements, the ex- 
pected number of distinct elements obtained 
is n - n(1 - l/n)‘. 

This can be used to quickly find the upper bound on 
the size of the cube as follows. 

To apply the uniform-assumption method, we need 
to know the number of distinct values for each attribute 
of the relation. Such statistics are typically maintained 
in the system catalog. Using the above result, we can 
estimate the size of a group by on any subset of at- 
tributes. For example, consider a relation R having 
attributes A, B, C, D. Suppose we want to estimate 
the size of the group by on attributes A and B. If the 
number of distinct values of A is ni and that of B is 
n2, then the number of elements in A x B is ni * n2. 
Thus n = ni * n2 in the above formula. Let T be the 
number of tuples in the relation. Using these values we 
can estimate the size of the group by. This is similar to 
what is done in relational group by estimation. 

A cube is a collection of group bys on different sub- 
sets of attributes. If we are computing a cube on k 
dimensions where dimension i has a hierarchy of size h, 
then the total number of group bys to be computed is: 

k 

n(hi + 1) (1) 
a=1 

This figure is obtained by observing that in any group 
by at most one of the attributes in each hierarchy should 
be present. We can estimate the size of each of the 
group bys and add them up to give the estimated size 
of the cube. 

Any skew in the data tends to reduce the size of the 
group bys reducing the size of the cube. Hence the uni- 
form assumption tends to overestimate the size of the 
cube, and there is of course no way to know how far 
off it might be, since this method does not consult the 
database other than to gather crude cardinalities. It 
also requires counts of distinct values, without which it 
cannot be used. However, this method has the advan- 
tage that it is simple and fast. 
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2.2 A Sampling - Based Algorithm 

In this section, we consider a simple sampling-based 
algorithm. The basic idea is as follows: take a random 
subset of the database, and compute the cube on that 
subset. Then scale up this estimate by the ratio of the 
data size to the sample size. To be more precise, we 
have the following. Let D and s be the database and 
a sample obtained from the database respectively. If 
(s( is the sample size, IDI the size of the database, and 
CUBE(s) is the size of the cube computed on the sample 
s, then the size of the cube on the entire database D is 
approximated by: 

CUBE(s) * M 
I4 

This is admittedly very crude. The approach of esti- 
mating the size of an operation by computing the oper- 
ation on a subset of the data and then linearly scaling 
produces an unbiased estimator for some common re- 
lational algebraic operations such as join and select. 
Unfortunately, in this case, the estimate produced is 
biased, as estimating the size of the cube is more akin 
to estimating the size of a projection than it is to es- 
timating the size of a join. However, once again the 
computation is simple, and has the potential advantage 
over the uniform assumption estimate of examining a 
statistical subset of the database (instead of just using 
cardinalities.) As we will see in Section 3, on many data 
sets, this simple biased estimator produces surprisingly 
good estimates. 

2.3 An Algorithm Based on Probabilistic 
Counting 

The key idea of the solution we propose in this section is 
based on an interesting observation made from Figure 1 
(a). To compute the number of tuples formed by group- 
ing Product type by Stores, we essentially group tu- 
ples along the Product dimension (to generate Product 
type), and count the number of distinct stores which are 
generated by this operation (See Figure 2). Hence, by 
estimating the number of distinct elements in a particu- 
lar grouping of the data, we can estimate the number of 
tuples in that grouping. We use this idea to construct 
an algorithm that estimates the size of the cube based 
on the following probabilistic algorithm which counts 
the number of distinct elements in a multi-set. 

2.3.1 The Probabilistic Counting Algorithm 

Flajolet and Martin [FM851 propose a probabilistic al- 
gorithm that counts the number of distinct elements in 
a multi-set. It makes the estimate after a single pass 
through the database, and using only a fixed amount 
of additional storage. We present a description of their 
algorithm below. 

For a non-negative integer y with L bits, bit(y, Ic) is 
defined to be the kth bit in the binary representation 
of y, such that y = Ck,e bit(y, /~)2~. The function p(y) 
represents the position-of the least significant l-bit in 
the binary representation of y. 

p(y) = minc_>c bit(y, Ic) # 0 if y > 0 
IZ L ify=O 

hash is a hashing function that transforms records into 
integers uniformly distributed over the set of binary 
strings of length L. That is, the range of hash is 
0.. . 2L - 1. BITMAP[O.. . L - l] is a bit vector. If A4 
is the multi-set whose cardinality is sought, the basic 
algorithm comprises of the following sequence of oper- 
ations: 

for i := 0 to L - 1 do BITMAP[i] := 0; 
for all 2 in M do 
begin 

index := p( hash(x)); 
if BITMAP[indez] = 0 then 

BITMAP[indez] := 1; 
end 

If the values returned by hash(z) are uniformly dis- 
tributed, the pattern O”1 appears with probability 
2-(“+‘). The algorithm hinges on recording the occur- 
rence of such patterns in the vector BITMAP[O. . . L- 11. 
Therefore, BITMAP[i] = 1 iff after execution, a pattern 
of the form Oil has appeared among the hashed val- 
ues of the data records. If n is the number of distinct 
elements, BITMAP[O] is accessed approximately n/2 
times, BITMAP[l] approximately n/4 times, . . . Thus, 
at the end of an execution, BITMAP[i] will almost cer- 
tainly be zero if i > log, n and one if i < log, n. The 
estimate formed from the above will ‘typically within a 
factor of 2 from the actual size. 

The simplest way to improve the accuracy of the es- 
timate is to use a set H of m hashing functions, and 
computing m different BITMAP vectors. If R repre- 
sents the position of the leftmost zero in the BITMAP, 
using m hashing functions we can obtain m estimates 
R<l> R<2> Rem’, where Rci’ is obtained from 
hashing func\iol i. We consider the average 

A= 
R<l’ + Rc2’ + . . + Rem’ 

m (2) 

When n distinct elements are present in a file, the ran- 
dom variable A has an expectation that satisfies 

E(A) x log, cpn, cp = 0.77351 

Thus, 2A can be expected to provide an estimate of 
n. The same effect can be achieved using stochastic 
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Figure 2: Grouping Stores by Product Type. (a) Before grouping, (b) after grouping. 

Table 2: Parameters to the Probabilistic Counting Al- 
gorithm 

averaging. The idea is to use the hashing function to 
distribute each record into one of m lots, computing 

cy = h(x) mod m (3) 

Only the corresponding BITMAP vector at address a 
is updated with the rest of the information contained 
in h(x). At the end, we determine the R<J”s and 
compute their average A as before. Hoping for the dis- 
tribution of records into lots to be even enough, we may 
thus expect that about n/m elements fall into each lot 
so that (l/(p)aA should ‘be a reasonable estimate for 
n/m. Therefore, the estimate for n, the number of dis- 
tinct values, is: 

n=mzA 
cp 

(4) 

With the number of BITMAPS, m = 64, the standard 
error is about lo%, and with m = 256, the error de- 
creases to about 5%. The parameters we used are sum- 
marized in Table 2. 

2.3.2 Approximating the Size of the Cube 

The following algorithm uses probabilistic counting to 
estimate the number of tuples resulting from computing 
the cube on the base data. 

(0) Initialize the bitmaps to 0. 

(1) for each tuple T in the database do 

;t; 
for each combination C of hierarchies do 

T’ := PC(T) 
(4) bitset(C, cy(T’), bit(T’)) 
(5) count := 0 
(6) for each combination C of hierarchies do 
(7) Add the estimate from C to count. 

The function PC takes a tuple and projects it on the 
combination of hierarchies C. Q(T) is defined in equa- 
tion 3, and bit(T) returns an integer representing the 
bit in the bitmap to be set. The bitmap update 
strategy is discussed in section 2.3.1. The function 
bitset(C, BM, b) sets the bth bit in the BMth bitmap 
for the combination of hierarchies C. 

Example: To illustrate the working of the algorithm, 
consider a tuple (Pl, S7, 1.0000) in the sample database 
shown in Figure 1 (a). This represents sales of 10,000 
units of product Pl at store S7. From Figure 1 (a), 
product Pl is a Soap, and store S7 is in the region 
“Wisconsin”. The combinations of hierarchies C, and 
the corresponding tuple generated are shown in Table 3. 
The bitmap associated with each of these combinations 
is updated in step (4) of the algorithm. 0 

The estimate of the number of distinct elements is 
given by equation 4. We now prove that if the bound 
on the error for a particular combination of dimensions 
is 5 Ic, then the error of the sum of two different com- 
binations of hierarchies is also 5 k. 

Lemma 1 The error in the sum of two estimates 1:s < 
the error in a single estimate. 

Proof. Suppose that the two estimates have errors 5 k. 
Suppose estimate 1 and estimate 2 respectively have er- 
rors ri and r2, they predict that the number of distinct 
values are El and Es, and the actual number of distinct 
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Table 3: The combinations of hierarchies for a tuple. 
Since quantity is the data being aggregated upon, it 
is always projected out. 

Group by 

\!‘roducts) 
(Type) 
(Category) 
(Stores) 
(Regions) 
(Products, Stores) 
(Type, Stores) 
(Category, Stores) 
(Product, Region) 
(Type, Region) 
(Category, Region) 

Projected tuple 

(Pl(i 
(Sow) 

(Personal Hygiene) 
(S7) 

(Wisconsin) 
PI, S7) 

(Sow, S7) 
(Personal Hygiene, S7) 

(P 1, Wisconsin) 
(Soap, Wisconsin) 

(Personal Hygiene, Wisconsin) 

elements are respectively Ni and Nz. 

El - Nl E2 - N2 
T] = 

NI 
;rr2 = 

N2 
(5) 

The error in the combination of the two estimates is: 

(EI + Ez) - (Nl + N2) 

NI + N2 

This can be rewritten as: 

(El - Nl) + (~732 - N2) 

Nl + N2 

From Equation 5, 

NITI + NC-Z 
TfF (6) 

Since r1 < k; ~2 5 k, Equation 6 is: 

< k(Nl+ N2) 
- Nl +jv2 

which is 5 k. Hence we have proved that the error 
in the sum is bounded by the same constant k as the 
errors in the component estimates. 0 

Note that this algorithm, unlike the uniform es- 
timate blowup and the simple sampling-based esti- 
mate, actually guarantees an error bound on its esti- 
mate. This comes at the cost of a complete scan of 
the base data table; however, even this scan is much 
cheaper than actually computing the cube, which in 
general requires multiple scans and sorts of the input 
table [AAD+96]. 

Table 4: The number of distinct elements in each of 
the dimensions. The total member of tuples in the base 
data = 60,000 [Schema l] 

Dimension num. Dimension Hierarchy 
1 2 

0 1000 200 50 
1 10,000 500 - 

Table 5: The number of distinct elements in each of 
the dimensions. The total number of tuples in the base 
data = 50,000 [Schema 21 

Dimension num. Dimension Hierarchy 
1 2 

0 1000 20 - 
1 100 4 - 
2 2000 50 ~ 
3 10,000 500 10 
4 750 250 25 

3 Evaluating the Accuracy of the Esti- 
mat es 

In this section we compare the accuracy of the three 
approaches by comparing their estimates of the size of 
the cube with its actual size. Tables 4 and 5 contain the 
schemas and the number of distinct values of the dimen- 
sions and hierarchies of the two databases we used. For 
example, the data in Table 4 means that the database 
has two dimensions. Dimension 0 has a two level hierar- 
thy, and dimension 1 has a one level hierarchy. Dimen- 
sion 0 has 1000 distinct values, and its hierarchies have 
200 and 50 values respectively, while dimension 1 has 
10,000 distinct values, and its hierarchy has 500 values. 
The database is a combination of distinct values of all 
dimensions. A Zipfian distribution [Zipf49] was used to 
generate the database from the distinct values of each 
dimension. A Zipf value of 0 means that the data is 
uniformly distributed. By increasing Zipf, we increase 
the skew in the distribution of distinct values in the 
database. The mapping from the distinct values in a 
dimension to its hierarchies uses a uniform distribution. 

Figure 3 shows for varying degrees of skew, the ac- 
tual size of the cube, and estimates made by the prob- 
abilistic counting algorithm, by an analytical estimate 
using an uniform approximation, and by the sampling 
algorithm with three sample sizes (100, 500 and 1000 
samples). Figure 4 provides a different perspective of 
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Figure 3: Estimates vs. the actual size of the cube 
for Schema 1. 

Figure 5: Estimates vs. the actual size of the cube 
for Schema 2. 

Figure 4: The error in the estimates from the actual 
size of the cube for Schema 1. 

Figure 6: The error in the estimates from the actual 
size of the cube for Schema 2. 
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the data. For each degree of skew, we scale the actual 
size of the cube to 100, and then scale the other values 
relative to the actual cube size. Figures 5 and 6 present 
the same information for database schema 2. 

The analytical algorithm based on the assumption 
that the data is uniformly distributed, provides an es- 
timate that is very close to the actual size when the 
data is indeed uniformly distributed. However, when 
the skew in the data distribution increases, the size of 
the cube decreases. Since the estimate by the analyt- 
ical algorithm is independent of the underlying data 
distribution, its prediction becomes more and more in- 
accurate. Hence, it tends to over-estimate the size of 
the cube. 

The algorithm based on sampling picks tuples ran- 
domly from the database. It over-estimates the size of 
each group since it doesn’t see enough duplicates. How- 
ever, we expected it to do much worse, since applying 
the same algorithm to a single dimensional cube with 
a single level hierarchy is just estimating the size of a 
projection. This sampling algorithm is known to per-. 
form very poorly in general in that case. The reason 
the algorithm fails for projection estimation in general 
is that it is highly unlikely to see enough duplicates for 
an accurate estimate. Suppose, for example, we have a 
table of l,OOO,OOO tuples, with 500,000 distinct values. 
Then any reasonable sample size will be unlikely to see 
any duplicates, hence it will generate an estimate closer 
to l,OOO,OOO distinct values rather than 500,000. How- 
ever, if the table in question in fact consists of all dis- 
tinct values, the simple blowup sampling estimator we 
are using estimates the size perfectly! Now back to the 
cube, most of what we are estimating is for combina- 
tions of two or three attributes. Even if each attribute 
itself contains a large number of duplicates, these higher 
dimensional combinations contain very few duplicates. 
For these, the algorithm is close to correct, hence the 
overall estimate is not bad. To verify this, we car- 
ried out another set of experiments on a database with 
two dimensions, DO and Dl. Each dimension had 100 
unique values, and the database consisted of 50,000 tu- 
ples. There was no hierarchy on either dimension. Let 
us call this schema 3. The number of distinct values was 
small, resulting in a lot of duplicates in the database. 
Now, the sampling based approach over-estimates the 
size of the cube by orders of magnitude (see Figures 7 
and 8). Hence, we can conclude that the sampling 
based approach was performing well on the data sets 
associated with schemas 1 and 2 because the number 
of duplicates was too small. 

The algorithm based on probabilistic counting esti- 
mates the size of the cube to within a theoretically pre- 
dicted bound. The values of the parameters we used 
are shown in Table 2. The estimate is accurate under 
widely varying data distributions, ranging from uniform 

to highly skewed. It scans the database only once. It 
maintains storage proportional to the number of group 
bys that will be performed in order to compute the 
cube. The number of group bys is given by Equation 1. 
Therefore, using memory proportional to nf=, (h, + I), 
and a single scan of the database we can accurately 
estimate the size of precomputed aggregates. 

4 Extensions to the PCSA-based algo- 
rithm 

In this section we look at how to estimate the size of a 
sub-cube. Estimation of the cube size after the addition 
or deletion of data is also discussed. 

4.1 Estimating sub-cube sizes 

The PCSA based algorithm in section 2.3.2 considers 
all combinations of hierarchies in order to generate an 
estimate of the cube. If the size of a sub-cube is desired, 
we can generate those combinations of hierarchies which 
make up the desired sub-cube. For example, in the 
cube computation presented in Table 1, if we compute 
the sub-cube which includes “Products” as one of the 
group by attributes, the following set S of group bys 
will be computed: 

S = {(Products), (Products, Stores)} 

and lines (2) and (6) of the algorithm now read: 

(2) for each C E S do 

(6) for each C E S do 

Since we estimate the size of each group by in order 
to estimate the cube size, we can trivially estimate the 
size of a single group by. 

4.2 Incremental estimation 

Data warehouses typically batch updates to the 
database. For example, loading weekly sales data into 
the warehouse can be done once a week. The addition 
of new data may changes the sizes of some of the group 
bys, and hence change the size of the new cube. This 
change in group by sizes can be estimated by updat- 
ing the bitmaps used by the previous estimation. The 
estimate of the size of a’group by is made from the cor- 
responding bitmap array. So, the changes in the size of 
a group by can be captured by storing the bitmap array 
corresponding to a group by and updating it using the 
new data. To estimate the cube size, the bitmaps cor- 
responding to every combination of group bys have to 
be stored. All additions of data to the database must 
also update these bitmaps. 

The changes to the algorithm in section 2.3.2 are 
minimal. Step (0) becomes: 
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Figure 7: Estimates vs. the actual size of the cube 
for Schema 3. 

01234567 
~1~1~1~0)1~0~0~0) 

Bitmap 

Count array 

Figure 9: A bitmap array and itp corresponding count 
array. Bits 0, 1, 2 and 4 of the bitmap are Is. From 
the count array, the number of “hits” to these bits are 
5, 3, 1 and 1 respectively. ’ 

(0) Load the bitmaps from disk. 

If (Cl is the number of group bys in the cube, L is the 
length of each bitmap and m is the number of bitmaps 
per group by, the storage needed for the bitmaps is: 
ICI*L*m. 

4.3 Estimation after data removal 

Business may want to keep data that is fairly recent in 
its database (older data can be moved from to tertiary 
storage). For example, a business will want to keep 
sales data from the last 65 weeks (5 quarters) in its 
database. Usually blocks of data are discarded at the 
same time. 

It is not sufficient to maintain bitmaps to estimate 
cube sizes with removal of data. For each bitmap, we 
have to store the number of “hits” for each bit (see 
Figure 9). Corresponding to a bitmap, we have an array 
of integers, the nth element of which is the number of 
times tuples tried to set the nth bit of the bitmap to 1. 
The algorithm is: 

(0) Load the counter arrays from disk. 
(1) for each tuple T being deleted do 

Figure 8: The error in the estimates from the actual 
size of the cube for Schema 3. 

(2) for each combination C of hierarchies do 

(3) T’ := PC(T). 

(4) Dedrement(C, cr(T’), bit(T’)) 

The function Decrement takes three arguments as in- 
put, the combination of hierarchies, the number of the 
counter array, and the index into the counter array re- 
spectively, and decrements the specified element of the 
counter array. Q: is defined in equation 3. The estimate 
can be formed using the count-arrays. 

If ICI is the number of group bys in the cube, L is 
the length of each count-array (equal to the length of 
a bitmap), m is the number of count-arrays per group 
by (equal to the number of bitmaps per group by), and 
the size of an integer is I, the storage needed for the 
count-arrays is: ICI * L * m * I. 

5 Conclusions 

Precomputing aggregates on some subsets of dimen- 
sions and their corresponding hierarchies can substan- 
tially reduce the response time to a query. However, 
precomputation in the presence of hierarchies results in 
a large increase in the amount of storage required to 
store the database. In this paper, we presented three 
strategies to estimate this blowup. 

Comparing the algorithms based on their accuracy, 
we find that the algorithm based on sampling over- 
estimates the size of the cube, and the estimate is 
strongly dependent on the number of duplicates present 
in the database. The algorithm based on assuming the 
data is uniformly distributed works very well if the 
data is uniformly distributed, but as the skew in the 
data increases, the estimate (which is independent of 
the skew) becomes inaccurate. In the experiments we 
carried out, the analytical estimate was more accurate 
than the sampling based estimate for widely varying 
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skew in the data. The algorithm based on probabilis- 
tic counting performs very well under various degrees 
of skew, always giving an estimate with a bounded er- 
ror. Hence it provides a more reliable, accurate and 
predictable estimate than the other algorithms. 

Analyzing the amount of work performed by the dif- 
ferent algorithms we can see that the analytical ap- 
proximation does not look at the data, and hence the 
amount of work done is dependent only on the schema, 
and not on the data. The algorithm based on sam- 
pling needs to see only a small subset of the database. 
Sampling may be relatively expensive depending on the 
page access pattern of the sampling strategy. Each tu- 
ple may need a page access, making the algorithm ex- 
pensive. The algorithm based on probabilistic counting 
scans the entire database once and performs work pro- 
portional to the number of group bys for each tuple. 

Which algorithm is best depends upon the desired 
accuracy, the amount of time available for the estima- 
tion, and the degree of skew in the underlying data. 
But in most cases, the algorithm of choice for a reason- 
ably quick and accurate estimate of the size of the cube 
is the algorithm based on probabilistic counting. 
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