
Storage Estimation for Multidimensional Aggregates in
the Presence of Hierarchies*

Amit Shukla Prasad M. Deshpande
Jeffrey F. Naughton Karthikeyan Ramasamy

{ amit,pmd,naughton,karthik}@cs.wisc.edu
Computer Sciences Department

University of Wisconsin - Madison

Abstract

To speed up multidimensional data analysis,
database systems frequently precompute ag-
gregates on some subsets of dimensions and
their corresponding hierarchies. This improves
query response time. However, the decision of
what and how much to precompute is a diffi-
cult one. It is further complicated by the fact
that precomputation in the presence of hier-
archies can result in an unintuitively large in-
crease in the amount of storage required by the
database. Hence, it is interesting and useful
to estimate the storage blowup that will re-
sult from a proposed set of precomputations
without actually computing them. We propose
three strategies for this problem: one based on
sampling, one based on mathematical approx-
imation, and one based on probabilistic count-
ing. We investigate the accuracy of these al-
gorithms in estimating the blowup for different
data distributions and database schemas. The
algorithm based upon probabilistic counting is
particularly attractive, since it estimates the
storage blowup to within provable error bounds
while performing only a single scan of the data.

*Work supported by an IBM CAS Fellowship, NSF grant IRI-
9157357, and a grant from IBM under the University Partnership
Program.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying 1:s by permission of the Very Large Data Base
Endowm.ent. To copy otherwise, 01‘ to republish, requires a fee
and/or special permission j~orn the En.do?ument.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

Multidimensional data analysis, as supported by OLAP
systems, requires the computation of several large ag-
gregate functions over large amounts of data. To meet
the performance demands imposed by these applica-
tions, virtually all OLAP products resort to some de-
gree of precomputation of these aggregates. The more
that is precomputed, the faster queries can be an-
swered; however, it is often difficult to say a priori how
much storage a given amount of precomputation will
require. This leaves the database administrator with a
difficult problem: how does one predict the amount of
storage a specified set of precomputations will require
without actually performing the precomputation? In
this paper we propose and evaluate a number of tech-
niques for answering this question.

To further clarify the problem we are considering, we
begin with an example’. Consider a table of sales with
the schema

Sales(ProductId, StoreId, quantity>

with the intuitive meaning that each tuple represents
some quantity of some product sold in some store. Fur-
thermore, assume that we have some information about
products captured in a table

Products(ProductId, Type, Category)

capturing for each product to which Type it belongs,
and for each Type to which Category it belongs. Fi-
nally, suppose we have an additional table

Stores(StoreId, Region)

which captures for each store to which region it belongs.
This data set can be viewed conceptually as a two-

dimensiorial array with hierarchies on the dimensions,
as shown in Figure 1 (a).

‘This example first appeared in [AGSSB]

522

Rqiott - California Wixonsln

III
Stores - Sl s2 s3 s4 s5 S6 Sl sx SY SIO

I I , I I I I I I I

TYP I
Product

x

(4

Product

(b) Database DB 1

Rqiou - Calilbmia Wisconsin

III
stores - SI s2 s3 s4 s5 Sh s7 SK SY Slrl

L P3

P4

PS

[I

P6

P7

P8

t

Product

x
x

x

(c) Database DB 2

Figure 1: Three sample multi-dimensional data sets.
S,‘s represent Stores and Pi’s represent Products.
Stores Sl - S5 are in California, and so roll up into
the region California, while S6 - SlO are in Wisconsin,
and roll up into the region Wisconsin. Products Pl -
P3 are of type Soap, while products P4 - P8 are of type
Shampoo. Soap and Shampoo are further grouped into
the cat,egory Personal Hygiene. The x’s are sales vol-
umes; entries that, are blank correspond to (product,
store) combinatibns for which there are no sales. (b)
and (c) are sample multi-dimensional data sets which
are used in an example.

There are a number of queries that can be asked of
this data. For example, one may wish to know sales
by product; or sales by type; or sales by product and
region; or sales by store and type; and so forth. Each
of these queries represents an aggregate computation.
For example, sales by product in SQL is just:

select ProductId, SUM(Quantity)
from sales
group by ProductId;

If the sales table is large, this query will be slow. How-
ever, if this aggregate is precomputed, the query (and
queries derived from it) can be answered almost in-
stantly. Therefore, the task the DBA faces is to choose
a set of queries to precompute and store. In this paper,
we first consider the problem of estimating how much
storage will be required if all possible combinations of
dimensions and their hierarchies are precomputed. Fur-
thermore, once we have described how to estimate this
full precomputation the extension to precomputation of
a subset is trivial.

A useful way to describe the full precomputation
problem is to use the framework proposed by Gray et
al. [GBLP96]: the cube operator. The cube operator
is the n-dimensional generalizatidn of the SQL group
by operator. The cube on n attributes computes the
group by aggregates for each possible subset of these
dimensions. In our example, this is: 0, (ProductId),
(StoreId), (ProductId, StoreId). The SQL for these
four group bys (in the above order) is:

select SUM(Quantity)
from sales;

select ProductId, SUM(Quantity)
from sales
group by ProductId;

select StoreId, SUM(Quantity)
from sales
group by StoreId;

select ProductId, StoreId, SUM(Quantity)
from sales
group by ProductId, StoreId;

When we consider t,he possibility of aggregating
over hierarchies, we get a generalization of the cube,
which we will refer to as the cube from here on. The
cube as defined by [GBLP96], will be referred to as
a cube without hierarchies. Again returning to our
example, the cube with hierarchies will compute ag-
gregates for 0, (ProductId), (StoreId), (Type), (Cat-
egory), (Region), (ProductId, StoreId), (ProductId,
Region), (Type, StoreId), (Type, Region), (Category,

523

Table 1: The variation in the size of the cube with the
data distribution. Figures 1 (b) and (c) show DB 1 and
DB 2 respectively.

Groun bv

0 - y
(Products)
Cbw)
(Category)
(Stores)
(Regions)
(Products, Stores)
(Type, Stores)
(Category, Stores)
(Product, Region)
(Type, Region)

DB 1 DB 2

(Category, Region)

Size of Cube

1
3
1
1
5
1
15
5
5
3
1
1

42

1
8
2
1
10
2
15
15
10
14
4
2

84

StoreId), and finally (Category, Region). It is the pres-
ence of hierarchies in the dimensions that in general
make the storage requirements of cubes with hierar-
chies far worse than that of cubes without hierarchies.
Note that on this small example of only two dimensions
the cube computed on the 16 tuples in Figure 1 (a) re-
sults in 73 tuples, while the cube without hierarchies
has 34 tuples.

Furthermore, for a given database schema and a
fixed number of data elements, the resulting size blowup
on computing a cube can vary dramatically. Figure 1
(b) and (c) show two databases which illustrate the
range of blowups that can occur. Each database has
the same number of tuples (15), the same number of
dimensions (a), and the same hierarchy on the dimen-
sions. As the computation in Table 1 shows, even for a
small database, and a small number of dimensions, the
sizes of the cubes for the databases are very different.

Estimating the size of these blowups without com-
puting the cube is the problem we are attacking in this
paper. Computing the cube is a very expensive oper-
ation. For example, computing the cube for a schema
of 5 dimensions each with two levels of hierarchies is
equivalent to computing over 200 distinct SQL “group
by” queries. One of the algorithms we propose, the one
based on probabilistic counting, is especially attractive
in that it estimates the cube size to within a provable er-
ror bound while only scanning the input data set once.
The remainder of this paper is organized as follows.
Section 2 discusses solutions to this problem. An eval-
uation of how well our algorithms work in practice is
presented in section 3. Section 4 discusses extensions of
the algorithm based on probabilistic counting. Finally,
section 5 concludes and discusses future work.

2 Approximating the size of the Cube

This section presents three solutions that approximate
the size of the cube.

2.1 An Analytical Algorithm

If the data is assumed to be uniformly distributed, we
can mathematically approximate the number of tuples
that will appear in the result of the cube computation
using the following standard result. Feller [Fel57]:

If T elements are chosen uniformly and at
random from a set of n elements, the ex-
pected number of distinct elements obtained
is n - n(1 - l/n)‘.

This can be used to quickly find the upper bound on
the size of the cube as follows.

To apply the uniform-assumption method, we need
to know the number of distinct values for each attribute
of the relation. Such statistics are typically maintained
in the system catalog. Using the above result, we can
estimate the size of a group by on any subset of at-
tributes. For example, consider a relation R having
attributes A, B, C, D. Suppose we want to estimate
the size of the group by on attributes A and B. If the
number of distinct values of A is ni and that of B is
n2, then the number of elements in A x B is ni * n2.
Thus n = ni * n2 in the above formula. Let T be the
number of tuples in the relation. Using these values we
can estimate the size of the group by. This is similar to
what is done in relational group by estimation.

A cube is a collection of group bys on different sub-
sets of attributes. If we are computing a cube on k
dimensions where dimension i has a hierarchy of size h,
then the total number of group bys to be computed is:

k

n(hi + 1) (1)
a=1

This figure is obtained by observing that in any group
by at most one of the attributes in each hierarchy should
be present. We can estimate the size of each of the
group bys and add them up to give the estimated size
of the cube.

Any skew in the data tends to reduce the size of the
group bys reducing the size of the cube. Hence the uni-
form assumption tends to overestimate the size of the
cube, and there is of course no way to know how far
off it might be, since this method does not consult the
database other than to gather crude cardinalities. It
also requires counts of distinct values, without which it
cannot be used. However, this method has the advan-
tage that it is simple and fast.

524

2.2 A Sampling - Based Algorithm

In this section, we consider a simple sampling-based
algorithm. The basic idea is as follows: take a random
subset of the database, and compute the cube on that
subset. Then scale up this estimate by the ratio of the
data size to the sample size. To be more precise, we
have the following. Let D and s be the database and
a sample obtained from the database respectively. If
(s(is the sample size, IDI the size of the database, and
CUBE(s) is the size of the cube computed on the sample
s, then the size of the cube on the entire database D is
approximated by:

CUBE(s) * M
I4

This is admittedly very crude. The approach of esti-
mating the size of an operation by computing the oper-
ation on a subset of the data and then linearly scaling
produces an unbiased estimator for some common re-
lational algebraic operations such as join and select.
Unfortunately, in this case, the estimate produced is
biased, as estimating the size of the cube is more akin
to estimating the size of a projection than it is to es-
timating the size of a join. However, once again the
computation is simple, and has the potential advantage
over the uniform assumption estimate of examining a
statistical subset of the database (instead of just using
cardinalities.) As we will see in Section 3, on many data
sets, this simple biased estimator produces surprisingly
good estimates.

2.3 An Algorithm Based on Probabilistic
Counting

The key idea of the solution we propose in this section is
based on an interesting observation made from Figure 1
(a). To compute the number of tuples formed by group-
ing Product type by Stores, we essentially group tu-
ples along the Product dimension (to generate Product
type), and count the number of distinct stores which are
generated by this operation (See Figure 2). Hence, by
estimating the number of distinct elements in a particu-
lar grouping of the data, we can estimate the number of
tuples in that grouping. We use this idea to construct
an algorithm that estimates the size of the cube based
on the following probabilistic algorithm which counts
the number of distinct elements in a multi-set.

2.3.1 The Probabilistic Counting Algorithm

Flajolet and Martin [FM851 propose a probabilistic al-
gorithm that counts the number of distinct elements in
a multi-set. It makes the estimate after a single pass
through the database, and using only a fixed amount
of additional storage. We present a description of their
algorithm below.

For a non-negative integer y with L bits, bit(y, Ic) is
defined to be the kth bit in the binary representation
of y, such that y = Ck,e bit(y, /~)2~. The function p(y)
represents the position-of the least significant l-bit in
the binary representation of y.

p(y) = minc_>c bit(y, Ic) # 0 if y > 0
IZ L ify=O

hash is a hashing function that transforms records into
integers uniformly distributed over the set of binary
strings of length L. That is, the range of hash is
0.. . 2L - 1. BITMAP[O.. . L - l] is a bit vector. If A4
is the multi-set whose cardinality is sought, the basic
algorithm comprises of the following sequence of oper-
ations:

for i := 0 to L - 1 do BITMAP[i] := 0;
for all 2 in M do
begin

index := p(hash(x));
if BITMAP[indez] = 0 then

BITMAP[indez] := 1;
end

If the values returned by hash(z) are uniformly dis-
tributed, the pattern O”1 appears with probability
2-(“+‘). The algorithm hinges on recording the occur-
rence of such patterns in the vector BITMAP[O. . . L- 11.
Therefore, BITMAP[i] = 1 iff after execution, a pattern
of the form Oil has appeared among the hashed val-
ues of the data records. If n is the number of distinct
elements, BITMAP[O] is accessed approximately n/2
times, BITMAP[l] approximately n/4 times, . . . Thus,
at the end of an execution, BITMAP[i] will almost cer-
tainly be zero if i > log, n and one if i < log, n. The
estimate formed from the above will ‘typically within a
factor of 2 from the actual size.

The simplest way to improve the accuracy of the es-
timate is to use a set H of m hashing functions, and
computing m different BITMAP vectors. If R repre-
sents the position of the leftmost zero in the BITMAP,
using m hashing functions we can obtain m estimates
R<l> R<2> Rem’, where Rci’ is obtained from
hashing func\iol i. We consider the average

A=
R<l’ + Rc2’ + . . + Rem’

m (2)

When n distinct elements are present in a file, the ran-
dom variable A has an expectation that satisfies

E(A) x log, cpn, cp = 0.77351

Thus, 2A can be expected to provide an estimate of
n. The same effect can be achieved using stochastic

525

Sl s2 s3 s4 s5 Sh s7 S8 S9SlO Sl S2 S3 S4 S5 S4 S7 S8 S9SlO

Shampoo

(4

Soap 11
Shampoo

(b)

Figure 2: Grouping Stores by Product Type. (a) Before grouping, (b) after grouping.

Table 2: Parameters to the Probabilistic Counting Al-
gorithm

averaging. The idea is to use the hashing function to
distribute each record into one of m lots, computing

cy = h(x) mod m (3)

Only the corresponding BITMAP vector at address a
is updated with the rest of the information contained
in h(x). At the end, we determine the R<J”s and
compute their average A as before. Hoping for the dis-
tribution of records into lots to be even enough, we may
thus expect that about n/m elements fall into each lot
so that (l/(p)aA should ‘be a reasonable estimate for
n/m. Therefore, the estimate for n, the number of dis-
tinct values, is:

n=mzA
cp

(4)

With the number of BITMAPS, m = 64, the standard
error is about lo%, and with m = 256, the error de-
creases to about 5%. The parameters we used are sum-
marized in Table 2.

2.3.2 Approximating the Size of the Cube

The following algorithm uses probabilistic counting to
estimate the number of tuples resulting from computing
the cube on the base data.

(0) Initialize the bitmaps to 0.

(1) for each tuple T in the database do

;t;
for each combination C of hierarchies do

T’ := PC(T)
(4) bitset(C, cy(T’), bit(T’))
(5) count := 0
(6) for each combination C of hierarchies do
(7) Add the estimate from C to count.

The function PC takes a tuple and projects it on the
combination of hierarchies C. Q(T) is defined in equa-
tion 3, and bit(T) returns an integer representing the
bit in the bitmap to be set. The bitmap update
strategy is discussed in section 2.3.1. The function
bitset(C, BM, b) sets the bth bit in the BMth bitmap
for the combination of hierarchies C.

Example: To illustrate the working of the algorithm,
consider a tuple (Pl, S7, 1.0000) in the sample database
shown in Figure 1 (a). This represents sales of 10,000
units of product Pl at store S7. From Figure 1 (a),
product Pl is a Soap, and store S7 is in the region
“Wisconsin”. The combinations of hierarchies C, and
the corresponding tuple generated are shown in Table 3.
The bitmap associated with each of these combinations
is updated in step (4) of the algorithm. 0

The estimate of the number of distinct elements is
given by equation 4. We now prove that if the bound
on the error for a particular combination of dimensions
is 5 Ic, then the error of the sum of two different com-
binations of hierarchies is also 5 k.

Lemma 1 The error in the sum of two estimates 1:s <
the error in a single estimate.

Proof. Suppose that the two estimates have errors 5 k.
Suppose estimate 1 and estimate 2 respectively have er-
rors ri and r2, they predict that the number of distinct
values are El and Es, and the actual number of distinct

526

Table 3: The combinations of hierarchies for a tuple.
Since quantity is the data being aggregated upon, it
is always projected out.

Group by

\!‘roducts)
(Type)
(Category)
(Stores)
(Regions)
(Products, Stores)
(Type, Stores)
(Category, Stores)
(Product, Region)
(Type, Region)
(Category, Region)

Projected tuple

(Pl(i
(Sow)

(Personal Hygiene)
(S7)

(Wisconsin)
PI, S7)

(Sow, S7)
(Personal Hygiene, S7)

(P 1, Wisconsin)
(Soap, Wisconsin)

(Personal Hygiene, Wisconsin)

elements are respectively Ni and Nz.

El - Nl E2 - N2
T] =

NI
;rr2 =

N2
(5)

The error in the combination of the two estimates is:

(EI + Ez) - (Nl + N2)

NI + N2

This can be rewritten as:

(El - Nl) + (~732 - N2)

Nl + N2

From Equation 5,

NITI + NC-Z
TfF (6)

Since r1 < k; ~2 5 k, Equation 6 is:

< k(Nl+ N2)
- Nl +jv2

which is 5 k. Hence we have proved that the error
in the sum is bounded by the same constant k as the
errors in the component estimates. 0

Note that this algorithm, unlike the uniform es-
timate blowup and the simple sampling-based esti-
mate, actually guarantees an error bound on its esti-
mate. This comes at the cost of a complete scan of
the base data table; however, even this scan is much
cheaper than actually computing the cube, which in
general requires multiple scans and sorts of the input
table [AAD+96].

Table 4: The number of distinct elements in each of
the dimensions. The total member of tuples in the base
data = 60,000 [Schema l]

Dimension num. Dimension Hierarchy
1 2

0 1000 200 50
1 10,000 500 -

Table 5: The number of distinct elements in each of
the dimensions. The total number of tuples in the base
data = 50,000 [Schema 21

Dimension num. Dimension Hierarchy
1 2

0 1000 20 -
1 100 4 -
2 2000 50 ~
3 10,000 500 10
4 750 250 25

3 Evaluating the Accuracy of the Esti-
mat es

In this section we compare the accuracy of the three
approaches by comparing their estimates of the size of
the cube with its actual size. Tables 4 and 5 contain the
schemas and the number of distinct values of the dimen-
sions and hierarchies of the two databases we used. For
example, the data in Table 4 means that the database
has two dimensions. Dimension 0 has a two level hierar-
thy, and dimension 1 has a one level hierarchy. Dimen-
sion 0 has 1000 distinct values, and its hierarchies have
200 and 50 values respectively, while dimension 1 has
10,000 distinct values, and its hierarchy has 500 values.
The database is a combination of distinct values of all
dimensions. A Zipfian distribution [Zipf49] was used to
generate the database from the distinct values of each
dimension. A Zipf value of 0 means that the data is
uniformly distributed. By increasing Zipf, we increase
the skew in the distribution of distinct values in the
database. The mapping from the distinct values in a
dimension to its hierarchies uses a uniform distribution.

Figure 3 shows for varying degrees of skew, the ac-
tual size of the cube, and estimates made by the prob-
abilistic counting algorithm, by an analytical estimate
using an uniform approximation, and by the sampling
algorithm with three sample sizes (100, 500 and 1000
samples). Figure 4 provides a different perspective of

527

Figure 3: Estimates vs. the actual size of the cube
for Schema 1.

Figure 5: Estimates vs. the actual size of the cube
for Schema 2.

Figure 4: The error in the estimates from the actual
size of the cube for Schema 1.

Figure 6: The error in the estimates from the actual
size of the cube for Schema 2.

528

the data. For each degree of skew, we scale the actual
size of the cube to 100, and then scale the other values
relative to the actual cube size. Figures 5 and 6 present
the same information for database schema 2.

The analytical algorithm based on the assumption
that the data is uniformly distributed, provides an es-
timate that is very close to the actual size when the
data is indeed uniformly distributed. However, when
the skew in the data distribution increases, the size of
the cube decreases. Since the estimate by the analyt-
ical algorithm is independent of the underlying data
distribution, its prediction becomes more and more in-
accurate. Hence, it tends to over-estimate the size of
the cube.

The algorithm based on sampling picks tuples ran-
domly from the database. It over-estimates the size of
each group since it doesn’t see enough duplicates. How-
ever, we expected it to do much worse, since applying
the same algorithm to a single dimensional cube with
a single level hierarchy is just estimating the size of a
projection. This sampling algorithm is known to per-.
form very poorly in general in that case. The reason
the algorithm fails for projection estimation in general
is that it is highly unlikely to see enough duplicates for
an accurate estimate. Suppose, for example, we have a
table of l,OOO,OOO tuples, with 500,000 distinct values.
Then any reasonable sample size will be unlikely to see
any duplicates, hence it will generate an estimate closer
to l,OOO,OOO distinct values rather than 500,000. How-
ever, if the table in question in fact consists of all dis-
tinct values, the simple blowup sampling estimator we
are using estimates the size perfectly! Now back to the
cube, most of what we are estimating is for combina-
tions of two or three attributes. Even if each attribute
itself contains a large number of duplicates, these higher
dimensional combinations contain very few duplicates.
For these, the algorithm is close to correct, hence the
overall estimate is not bad. To verify this, we car-
ried out another set of experiments on a database with
two dimensions, DO and Dl. Each dimension had 100
unique values, and the database consisted of 50,000 tu-
ples. There was no hierarchy on either dimension. Let
us call this schema 3. The number of distinct values was
small, resulting in a lot of duplicates in the database.
Now, the sampling based approach over-estimates the
size of the cube by orders of magnitude (see Figures 7
and 8). Hence, we can conclude that the sampling
based approach was performing well on the data sets
associated with schemas 1 and 2 because the number
of duplicates was too small.

The algorithm based on probabilistic counting esti-
mates the size of the cube to within a theoretically pre-
dicted bound. The values of the parameters we used
are shown in Table 2. The estimate is accurate under
widely varying data distributions, ranging from uniform

to highly skewed. It scans the database only once. It
maintains storage proportional to the number of group
bys that will be performed in order to compute the
cube. The number of group bys is given by Equation 1.
Therefore, using memory proportional to nf=, (h, + I),
and a single scan of the database we can accurately
estimate the size of precomputed aggregates.

4 Extensions to the PCSA-based algo-
rithm

In this section we look at how to estimate the size of a
sub-cube. Estimation of the cube size after the addition
or deletion of data is also discussed.

4.1 Estimating sub-cube sizes

The PCSA based algorithm in section 2.3.2 considers
all combinations of hierarchies in order to generate an
estimate of the cube. If the size of a sub-cube is desired,
we can generate those combinations of hierarchies which
make up the desired sub-cube. For example, in the
cube computation presented in Table 1, if we compute
the sub-cube which includes “Products” as one of the
group by attributes, the following set S of group bys
will be computed:

S = {(Products), (Products, Stores)}

and lines (2) and (6) of the algorithm now read:

(2) for each C E S do

(6) for each C E S do

Since we estimate the size of each group by in order
to estimate the cube size, we can trivially estimate the
size of a single group by.

4.2 Incremental estimation

Data warehouses typically batch updates to the
database. For example, loading weekly sales data into
the warehouse can be done once a week. The addition
of new data may changes the sizes of some of the group
bys, and hence change the size of the new cube. This
change in group by sizes can be estimated by updat-
ing the bitmaps used by the previous estimation. The
estimate of the size of a’group by is made from the cor-
responding bitmap array. So, the changes in the size of
a group by can be captured by storing the bitmap array
corresponding to a group by and updating it using the
new data. To estimate the cube size, the bitmaps cor-
responding to every combination of group bys have to
be stored. All additions of data to the database must
also update these bitmaps.

The changes to the algorithm in section 2.3.2 are
minimal. Step (0) becomes:

529

Figure 7: Estimates vs. the actual size of the cube
for Schema 3.

01234567
~1~1~1~0)1~0~0~0)

Bitmap

Count array

Figure 9: A bitmap array and itp corresponding count
array. Bits 0, 1, 2 and 4 of the bitmap are Is. From
the count array, the number of “hits” to these bits are
5, 3, 1 and 1 respectively. ’

(0) Load the bitmaps from disk.

If (Cl is the number of group bys in the cube, L is the
length of each bitmap and m is the number of bitmaps
per group by, the storage needed for the bitmaps is:
ICI*L*m.

4.3 Estimation after data removal

Business may want to keep data that is fairly recent in
its database (older data can be moved from to tertiary
storage). For example, a business will want to keep
sales data from the last 65 weeks (5 quarters) in its
database. Usually blocks of data are discarded at the
same time.

It is not sufficient to maintain bitmaps to estimate
cube sizes with removal of data. For each bitmap, we
have to store the number of “hits” for each bit (see
Figure 9). Corresponding to a bitmap, we have an array
of integers, the nth element of which is the number of
times tuples tried to set the nth bit of the bitmap to 1.
The algorithm is:

(0) Load the counter arrays from disk.
(1) for each tuple T being deleted do

Figure 8: The error in the estimates from the actual
size of the cube for Schema 3.

(2) for each combination C of hierarchies do

(3) T’ := PC(T).

(4) Dedrement(C, cr(T’), bit(T’))

The function Decrement takes three arguments as in-
put, the combination of hierarchies, the number of the
counter array, and the index into the counter array re-
spectively, and decrements the specified element of the
counter array. Q: is defined in equation 3. The estimate
can be formed using the count-arrays.

If ICI is the number of group bys in the cube, L is
the length of each count-array (equal to the length of
a bitmap), m is the number of count-arrays per group
by (equal to the number of bitmaps per group by), and
the size of an integer is I, the storage needed for the
count-arrays is: ICI * L * m * I.

5 Conclusions

Precomputing aggregates on some subsets of dimen-
sions and their corresponding hierarchies can substan-
tially reduce the response time to a query. However,
precomputation in the presence of hierarchies results in
a large increase in the amount of storage required to
store the database. In this paper, we presented three
strategies to estimate this blowup.

Comparing the algorithms based on their accuracy,
we find that the algorithm based on sampling over-
estimates the size of the cube, and the estimate is
strongly dependent on the number of duplicates present
in the database. The algorithm based on assuming the
data is uniformly distributed works very well if the
data is uniformly distributed, but as the skew in the
data increases, the estimate (which is independent of
the skew) becomes inaccurate. In the experiments we
carried out, the analytical estimate was more accurate
than the sampling based estimate for widely varying

530

skew in the data. The algorithm based on probabilis-
tic counting performs very well under various degrees
of skew, always giving an estimate with a bounded er-
ror. Hence it provides a more reliable, accurate and
predictable estimate than the other algorithms.

Analyzing the amount of work performed by the dif-
ferent algorithms we can see that the analytical ap-
proximation does not look at the data, and hence the
amount of work done is dependent only on the schema,
and not on the data. The algorithm based on sam-
pling needs to see only a small subset of the database.
Sampling may be relatively expensive depending on the
page access pattern of the sampling strategy. Each tu-
ple may need a page access, making the algorithm ex-
pensive. The algorithm based on probabilistic counting
scans the entire database once and performs work pro-
portional to the number of group bys for each tuple.

Which algorithm is best depends upon the desired
accuracy, the amount of time available for the estima-
tion, and the degree of skew in the underlying data.
But in most cases, the algorithm of choice for a reason-
ably quick and accurate estimate of the size of the cube
is the algorithm based on probabilistic counting.

References

[AAD+96] S. Agarwal, R. Agrawal, P.M. Deshpande,
A. Gupta, J.F. Naughton, R. Ramakrish-
nan, S. Sarawagi. On the Computation of,
Multidimensional Aggregates. Proc. of the
22nd Int. VLDB Conf., 1996.

[AGS95]

[CCS93]

[Fe1571

[FM851

[GBLP96]

R. Agrawal, A. Gupta, S. Sarawagi. Mod-
eling Multidimensional Databases. IBM Re-
search Report, IBM Almaden Research Cen-
ter, San Jose, California, 1995.

E.F. Codd, S.B. Codd, C.T. Salley. Provid-
ing OLAP (On-Line Analytical Processing)
to User-Analysts: An IT Mandate, E.F.
Codd. and Associates, 1993. Available from
http://www.arborsoft.com/papers/intro.html.

W. Feller. An Introduction to Probability
Theory and Its Applications, Vol. I, John
Wiley and Sons, pp 241, 1957.

P. Flajolet, G.N. Martin. Probabilistic
Counting Algorithms for Database Appli-
cations, Journal of Computer and System
Sciences, 31(2): 182-209, 1985.

J. Gray, A. Bosworth, A. Layman, H. Pira-
hesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals, Proc. of the 12th Int.
Conf. on Data Engg., pp 152-159, 1996.

[HNSS93]

[HNSS95]

[HRU96]

[KT95]

[Str95]

[Zipf49]

P.J. Haas, J.F. Naughton, S. Seshadri, A.N.
Swami. Selectivity and Cost Estimation for
Joins Based on Random Sampling. IBM Re-
search Report RJ9577, IBM Almaden Re-
search Center, San Jose, California, 1993.

P.J. Haas, J.F. Naughton, S. Seshadri, L.
Stokes. Sampling-Based Estimation of the
Number of Distinct Values of an Attribute,
Proc. of the 21st Int. VLDB Conf., 311-322,
1995.

V. Harinarayanan, A. Rajaraman, .J.D. Ull-
man. Implementing Data Cubes Eificiently,
Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 205-227, 1996.

Kenan Technologies. An Introduction to
Multidimensional Database Technology,
Available from http://www.kenan.com/

MicroStrategy Inc. The Case for Rela-
tional OLAP, A white paper available from
http://www.strategy.com/

G.K. Zipf. Human Behavior and the Princi-
ple of Least Effort, Addison-Wesley, Read-
ing, MA, 1949.

531

