
Supporting Periodic Authorizations and Temporal
Reasoning in Database Access Control

Elisa Bertino Claudio Bettini Elena Ferrari Pierangela Samarati
Dipartimento di Scienze dell’hformazione

UniversitB di M&no, Italy

{bertino,bettini,ferrarie,samarati}Qdsi.unimi.it

Abstract

Several formal models for database access con-
trol have been proposed. However, little at-
tention has been paid to temporal issues like
authorizations with limited validity or ob-
tained by deductive reasoning with temporal
constraints. We present an access control
model in which authorizations contain peri-
odic temporal intervals of validity. An author-
ization is automatically granted in the time in-
tervals specified by a periodic expression and
revoked when such intervals expire. Deductive
temporal rules with periodicity and order con-
straints are provided to derive new authoriza-
tions based on the presence or absence of other
authorizations in specific periods of time. We
prove the uniqueness of the set of implicit au-
thorizations derivable at a given instant from
the explicit ones, and we propose an algorithm
to compute the global set of valid authoriza-
tions. The resulting model provides a high
degree of flexibility and allows to express sev-
eral protection requirements that cannot be
expressed in traditional access control models.

1 Introduction

As an increasing number of applications entrust their
data to database systems, the need for access con-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and ita date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or apecial permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

trol mechanisms increases. Most commercial DBMS
provide an authorization mechanism by using which
users are given access authorizations to objects under
different modes, such as read or write. Upon a data ac-
cess request from a user, the authorization mechanism
checks whether the user is authorized for the access.

Authorization mechanisms, such as the ones sup-
ported by commercial DBMS, are not yet able to fully
meet many application needs. An important require-
ment derives from the temporal dimension that per-
missions have in many real-world situations, Permis-
sions are usually limited in time or may hold only for
specific periods of time. Because a typical commercial
DBMS does not provide any temporal authorization
mechanism, implementing authorization management
at application program level is the only solution for
supporting temporal authorizations. However, such a
solution is largely inadequate because it makes author-
ization specification and management very difficult, if
at all possible.

Even more crucial is the need for periodic authoriz-
ations. Indeed, in many organizations, authorizations
given to users must be tailored to the pattern of their
activities within the organization. Therefore, users
must have access authorizations only for the time peri-
ods in which they are expected to need the data. As
an example of periodic authorization, consider part-
time staff that should be authorized to read a given
file only each working day between 9 a.m and 12 a.m.
Periodic authorizations are also very important when
dealing with execution authorizations for application
programs, Controlling the time periods during which
specific application programs can be invoked is very
useful for optimizing resource usage. Programs, whose
execution is very resource-expensive, could be assigned
specific time periods in which other programs are not
likely to be executed. Periodic authorizations are,
however, even more difficult to handle than simple,
non-periodic temporal authorizations. Therefore, also

472

for periodic authorizations, the solution of implement-
ing them as part of application programs is not viable.

When developing a temporal authorization model
several issues must be addressed, including the defini-
tion of a formal semantics for the model, the develop-
ment of strategies for efficient access control, and tools
for authorization administration. Some of those issues
have been addressed as part of the development of a
temporal authorization model, presented in [2]. Under
that model, authorizations contain temporal intervals
of validity; an authorization is automatically revoked
when the associated temporal interval expires. The
model also provides rules for the automatic deriva-
tion of new authorizations from those explicitly spe-
cified. A formal semantics has been defined for tem-
poral authorizations and derivation rules, based on the
semantics of logic programs with negation. Moreover,
strategies have been developed, based on view materi-
alization approaches, to support efficient authorization
checking.

However, our previous model does not provide peri-
odic authorizations, which are - we believe - an es-
sential ingredient of a temporal access control mech-
anism. The current paper complements our previous
work with periodic access authorizations and rules.
This is a major extension, both for the practical rel-
evance of periodic expressions in specifying authoriza-
tions and for the involved theoretical and performance
issues. In particular, the formal semantics used in the
current extended model is based on Datalog programs
with negation and periodicity and order constraints.
The materialization strategy, proposed for the previ-
ous model, has been substantially extended to deal
with periodicity and order constraints. We have also
added new temporal operators (UPON and UPON-NOT)
to cover interesting protection requirements that were
not expressible in [2].

To the best of our knowledge, this authorization
model is the first one proposing features such as
temporal derivation rules and periodic authorizations.
Relevant related work has been carried out in the
framework of the Kerberos system [S]. Kerberos, based
on client-server architecture, provides the notion of
ticket, needed for requiring a service to the server, with
an associated validity time. The validity time is used
to save the client from the need to acquire a ticket for
each interaction with the server. The ticket mechanism
is not used to grant accesses to the resources managed
by the system. Rather, it is only used to denote that
a client has been authenticated by the authentication
server. Thus, the scope bf the temporal ticket mech-
anism is very different from our access control model.
From the side of logical formalisms for security spe-
cifications, Woo and Lam in [9] have proposed a very
general formalism for expressing authorization rules.

Their language does not have explicit const,raints to
deal with temporal information, but has almost the
same expressive power of first order logic. We believe
that for the sake of efficiency, it is important to de-
vise more restricted languages focusing only on relev-
ant properties. The temporal authorization model we
propose in this paper is a step in this direction.

The remainder of this paper is organized as follows.
Section 2 describes the formalisms we use to represent
periodic time. Section 3 introduces periodic author-
izations and derivation rules. Section 4 specifies the
semantics of our model and proves its main formal
properties. In Section 5 an algorithm for deriving the
set of implicit and explicit authorizations is presented.
Section 6 concludes the paper. Finally, Appendix A
illustrates the Datalog extension that we use to rep-
resent the semantics of our rules.

2 Preliminaries: Representation of
periodic expressions

To represent periodic authorizations we need a formal-
ism to denote periodic time. Our choice is to provide a
symbolic (user friendly) formalism for the user that has
to specify authorizations and an equivalent “mathem-
atical” formalism to describe the semantics of periodic
authorizations and rules, to prove formal properties of
our model, and to perform deductive reasoning.

The symbolic formalism is essentially the one pro-
posed by Niezette and Stevenne in [4], based on the
notions of calendars and periodic expressions.

A calendar is defined as a set of consecutive inter-
vals. Each interval of a calendar is numbered by a
natural number, called index of the interval, in such
a way that successive intervals are numbered by suc-
cessive natural numbers. Days, Months, and Years
are example of calendars representing respectively the
set of all the days, the months, and the years, start-
ing from a given time instant. Calendars can also be
finite. For instance, the calendar Years-from-1980-to-
1992 represents the set of all the years between 1980
and 1992. We use symbol T to denote the special cal-
endar having a single time interval (indexed by 1) and
including the whole time line. Given two calendars Ci
and Cz, we say that Ci is a subcalendar of C:!, (written
Cr & Cz), if each interval of C2 is exactly covered by
a finite number of intervals of Cr. New calendars can
be dynamically constructed from the existing ones.’
In our model, we postulate the existence of a set of
predefined calendars containing Hours, Days, Weeks,
Months, and Years.

Calendars can be combined to represent more gen-
eral sets of periodic intervals, not necessarily contigu-
ous, as, for instance, the set of Mondays or the set of

1 We refer to [4] for details of the construction.

473

The third hours of the first day of each month. Chn-

plex sets of periodic intervals, like the ones above, are
represented by means of periodic expressions, formally
defined as follows.

Definition 2.1 (Periodic expression) A periodic
expression is defined as P = cy=‘=, Oi.Ci D r.Cd, where

01 E qN U {all}, Oi E 2N i = 2,. . . , n, Ci and Cd
are calendars for i = 1,. . . , n, Cd C C,,, and r E IN.

In practice, 01 is omitted when its value is all, whereas
when Oi is a singleton it is represented by its unique
element. r.Cd is omitted when it is equal to l.C,,.
Table 1 illustrates a set of periodic expressions and
their meaning.

Each periodic expression P is a symbolic represent-
ation of a set of time intervals n(P).’ For example, if
P is the last expression in Table 1, then H(P) is the
set of time intervals starting with the tenth hour (9 to
10a.m.) of the second, third, fourth, fifth, and sixth
day of every week. Each interval has a duration of 3
hours.

Symbolic expressions, while convenient for the user,
are not easy to manipulate in the deductive process.
Hence, when an expression has been given by the user,
we translate it into a different formalism. This form-
alism is based on sets of periodicity constraints over
integer numbers and it is inspired by the work in [7].
Periodicity constraints denote infinite periodic sets of
integers.

Definition 2.2 (Simple Periodicity Constraint)
Let K be a finite set of natural numbers, x an integer
variable, k an element of K , and c E (0, . . . , k- 1). A
simple periodicity constraint is a formula of the form:
x Ek c.

Periodicity constraint x 3k c denotes the set of
integers of the form c + nk, with n ranging from
-oo to +oo in 2. In the following we use the nota-
tion 2 Ek (y + c)vy = 0,. . . , u aS a compact rep
resentation for the disjunction of simple constraints:
x~kCVx:kC+1V...Vt~kC+~.

Conjunction of simple periodicity constraints can
be represented by means of periodicity graphs [7], in
which each node represents a variable or the constant
0, and an edge labeled (k, c) exists between 0 and x iff
the constraint x Ek c belongs to the conjunction.

Another type of constraints will be useful to specify
periodic authorizations.

Definition 2.3 (Gap-order Constraint)
Let u, 1 be integers, c a non-negative integer, and x, y
integer variables. A gap-order constraint is a formula
of the form 1 < x, x < u, x = y, or x + c < y.

2 We refer tb [4] for the formal definition of n().

Conjun: ion of Gap-order constraints can be rep-
resented by means of gap graphs [5], that is, by means
of graphs where the nodes represent the variables and
the lower and the upper bound of the constraints, and
edges represent gaps. Equality constraints are repres-
ented by undirected edges labeled by “=“. For each
pair of nodes a single edge, either representing equal-
ity or a gap, is allowed. The operations of conjunction
(A) and complement (1) of gap graphs are defined
in [5], while the operation of conjunction of period-
icity graphs is defined in [7]. For lack of space we do
not report these definitions in the paper. However,
the complement of periodicity graphs has never been
defined and we do it here. Let G be a periodicity
graph representing n constraints. For each x Ek c rep
resented by G, consider the constraints x Ek r with
r=O,..., c-l,c+l,..., k - 1. -G, the complement
of G, is the disjunction of the n * (k - 1) periodicity
graphs representing these constraints. Operations on
gap graphs are analogous.

Example 2.1 Consider the sets of periodicity con-
straints Cr = {x ~7 1,y ~1s 1) and CZ = {x -14 1).
Ci can be represented by means of a periodicity graph
Gi with nodes x, y, 0, and with two edges: (0, x), with
label (7, l), and (0, y), with label (10,l). Similarly Cz
can be represented by a graph Gz with nodes x and
0 and with a unique edge (0,x), with label (14,l).
Gr A Gz is the graph with nodes x,y, and 0, and
the edges: (0,x) with label (14,l) and (0,~) with
label (10,l). 7G1 is the disjunction of the period-
icity graphs corresponding to the constraints: x ~7 0,
x E7 2, . . ., x -7 6, y =lo 0, y izlo 2, . . ., y q lo 9.

It is easily shown [l] that any symbolic periodic ex-
pression can be translated into a set of simple period-
icity constraints. Each constraint in that set will have
the form t --P~~wcQ,(P) c, where Periodicity(P) is the
number n of units of the basic granularity that iden-
tifies the periodicity with which the time intervals in
n(P) repeat themselves. For example, if Hours is the
basic granularity, the periodicity of the first, fourth,
and fifth expressions in Table1 is 168 (a week expressed
in hours). The constants c must be such that all pos-
sible solutions of the disjunction of the periodicity con-
straints in the set are equivalent to the instants in the
time intervals of II(P). For example, the expression
Weeks + 2.Days, identifying Mondays, is translated
into t ~~6s (y + 24) Vy = 0,. . . ,23. 168 is the number
of hours in a week (the periodicity of Mondays), 24 is
the distance in hours of the first Monday from the be-
ginning of the period (the displacement of Mondays),
and O,..., 23 are the 24 hours within each Monday
(the duration of each Monday).

Symbolic periodic expressions together with simple
gap-order constraints are used by users to specify peri-

414

Table 1: Example of periodic expressions
odic access authorizations and rules, while their “fully”
constraint counterpart is used to express the semantics
of authorizations and rules, as well as for proving
formal properties of the model and to perform access
control. For simplicity, in the following periodicity and
gap graphs will be denoted with the set of constraints
they represent.

3 Periodic authorizations and rules

Our model allows to express periodic authorizations,
that is, authorizations for a user to access an object
in specific time intervals specified by a periodic ex-
pression. Moreover, a time interval is associated with
each authorization, imposing lower and upper bounds
to the potentially infinite set of instants denoted by
t,he periodic expression. We refer to an authorization
together witli its time interval and periodic expression
as periodic authorization. In the following U denotes
the set of users, 0 the set of objects, and M the set of
access modes.

We start by introducing the definition of authoriz-
ation.

Definition 3.1 (Authorization) An authorization
is a 5-tuple (s,o,m,pn,g), with s, gE U, OE 0,
mu M, pn E {+,-}.

Tuple (s,o,m,pn,g) states that user s has been au-
thorized (if pn = ‘+‘) or denied (if pn = ‘-‘) for priv-
ilege m on object o by user g.

Definition 3.2 (Periodic Authorization) A peri-
odic authorization is a triple (time,period,auth),
where time is a time interval Cmin,maxl , such that
min and max denote respectiuely instants tb and te with
0 <tblt.$, period is a periodic expression, and auth
is an authorization.

Triple ([min,maxl ,P,(s,o,m,pn,g)), states that
user g had granted an authorization to user s for ac-
cess mode m on object o, that holds for each instant in
II(P) limited by the interval [tb, t,] , where tb and te
are the instants corresponding respectively to min and
max. The beginning and ending points of the inter-
val associated with an authorization can be specified
in one of the basic calendars. We use the notation
l/1/94:08 to represent 8a.m. on l/1/94. When l/1/94

is used as a minimum, it denotes the first instant of
the first day of January 1994, while, as a maximum, it
denotes the last instant of l/1/94. We use symbol 00
for max to denote a periodic authorization that spans
from the starting time of its interval to infinity.

For example, the periodic authorization
(C1/1/94,001 ,Nondays3, (Watt ,01 ,read,+,Bob)),
specified by Bob, states that Watt has the authoriz-
ation to read 01 each Monday starting from l/1/94.
Note that a non periodic authorization, that is, an au-
thorization that holds continuously for a specific set of
time instants can be expressed by a periodic authoriz-
ation using T as the period component.

The model also allows to specify derivation rules
from which other authorizations can be derived. The
derivation is based on temporal propositions, used as
rules, which allow new periodic authorizations to be
derived on the basis of the presence or the absence
of other periodic authorizations. Like authorizations,
derivation rules have an associated time interval and
a periodicity, representing the set of instants in which
the derivation rule can be applied.

Definition 3.3 (Derivation rule) A derivation
rule is defined as (time, period, Al (OP) Az),

where time=Cmin,maxl is the time interval associated
with the rule, such that min and max denote respect-
ively instants tb and te with 0 <tb<te, period is a
periodic expression, Al and A2 are authorizations, and
(OP) is one of the following operators: WHENEVER,

ASLONGAS, UPON, WHENEVER-NOT, UNLESS, UPON-

NOT.

Rule (Cmin,maxl, P, (s~,o~,m~,pn~,gl) (0~)
(92 ,02,m2,pn2,g2)) states that for each instant in4
fl(p)n{ [tb ,%I 1, user s1 is authorized (if pnl = ‘+‘)
or denied (if pnl = ‘-‘) for access mode ml on object 01
according to the presence or absence (depending on the
(0~)) of the authorization (92 ,oz ,m2 ,pnz ,g2). A de-
rivation rule in which P=T represents a rule which can

3Here and in the following we use intuitive names for peri-
odic expressions, assuming that they are defined with the syntax
shown above.

4We use a set of disjoint intervals T = ([ti, tj], . . . , [trr tS]}
as a compact notation for the set of natural numbers included
in these intervals. Hence, the intersection operation (Tl n ‘72)
has the usual semantics defined for sets.

415

be applied for each instant in [min , max] . A derivation
rule with max = 00 can be applied from the starting
time of its time interval up to infinity. A simple exten-
sion to the above syntax allows to use a special symbol
(*) instead of an authorization user, object or modifier
with the meaning that any value in the corresponding
domain can be used. This provides a compact form to
express a set of derivation rules [2]. For simplicity we
do not consider this extension in the rest of the paper.

Figure 1 illustrates an example of periodic author-
izations and derivation rules.
We now give the intuitive semantics of the different
kinds of derivation rules allowed by our model. The
formal semantics will be given in the next section. In
the following we assume all authorizations are granted
by the same user and we therefore do not consider the
grantor of authorizations in the discussion.

l (Cmin,maxl , P, A1 WHENEVER AZ). We can de-
rive Al for each instant in II(P)fl { [tb,t,]} for
which A2 is given or derived.
For instance, rule Ri in Figure 1 states that
summer-staff can read document for every in-
stant in Summer-time, from l/1/1995, in which
staff can do it.

l ([min ,max] , P , A1 ASLONGAS AZ > . We can derive
Ai for each instant t in II(P>fl { [tb,t,]} such that
A2 is either given or derived for each time instant
in II(P [tb,te]} from the first one up to t.
For instance, rule Rs in Figure 1 states that Jim
can read document in a working day starting from
7/20/95 if summer-staff has been authorized for
it for each working day from 7/20/95.

l ([min,max] ,P; Ai UPON AZ). We can derive Ai
for each instant t in II(P [tb,t,]} if there ex-
ists an instant t’ < t in II(P)fl{ Ctb, t,] } such that
A2 is either given or derived at time t’.
For instance, rule Rs in Figure 1 states that
technical-staff is forbidden to write report
for every instant from the first time in C95,ool
at which technical-staff is allowed to read
report-evaluation.

l ([min,max], P, A1 WHENEVER-NOT AZ). we
can derive A1 for each instant in n(P)fl { [tb, t,] }
for which A3 is neither given nor derived.
For instance, rule ~6 in Figure 1 states that Ann
can read pay-checks each working day in 1995
and 1996 in which Tom is not allowed to write
Pay-checks.

. ([min,max] , P, Al UNLESS AZ). We can derive
Ai for each instant t in II({ [tb, te] } such that
A2 is neither given nor can be derived for each in-
stant in rI(p)n{ [tb,t.$l} from the first one up to

t.
For instance, rule R2 in Figure 1 states that
temporary-staff can read document each work-
ing day starting from l/1/95 until the first work-
ing day summer-staff will be authorized for that.

(Cmin,maxl,P, Al UPON-NOT AZ). We can de-
rive Al for each instant’t in II(P { [tb, t,]}
such that there exists an instant t’ < t in
n(p)n{ hb &I } in which A2 is neither given nor
derived.
For instance, rule R4 in,. Figure 1 states that
technical-staff can write report each work-
ing day from the first working day in [95, co] in
which manager does not have the authorization to
write guidelines.

Example 3.1 Consider the authorizations and rules
in Figure 1. Among the authorizations that can be
derived are:

l

0

4

(temporary-staff,document,read,+,Sam) for
each working day in [i/1/95,6/30/95], from
rules R2 and Ri, and authorization Al.

(Jim,document,read,+,Sam) for each working
day in [7/20/95,10/30/95], from rules Rs and
Rr, and authorization Ai.

Formal semantics

In this section we formalize the semantics of peri-
odic authorizations and derivation rules. First, it
is necessary to point out that the possibility of ex-
pressing negative authorizations introduces potential
conflicts among authorizations. Indeed, a positive
authorization states that an access must be granted
whereas a negative authorization states that an ac-
cess should be denied. A conflict therefore exists every
time both a positive and a negative authorization ex-
ist for the same subject. We solve this conflict ac-
cording to the denials-take-precedence principle. For
instance, consider the authorizations and rules in Fig-
ure 1. From R4 and A2 we derive the authorization for
technical-staff to write report for each working
day in [5/21/95,oo]. From Rs and Ad, we derive a
negative authorization for the same access for all in-
stants in [iO/i/95,co]. Thus, technical-staff will
be allowed for the access only for the working days in
C5/21/95) 9EiO/951.

The formal semantics considers this fact.

Definition 4.1 (Temporal Authorization Base)
A Temporal Authorization Base (TAB) is a set of peri-
odic authorizations and derivation rules.

476

(Al) ([96,97] ,Yorking-days, (staff ,document ,read,+ ,Sam))

(Az) ([96.6/20/961, T , (manager ,guidelines ,urite ,+ ,%A)

(As) ([95,co], Pay-days, (Tore,pay-checks,urite,+,Sam))

(Ad) ([10/1/95,co], T ,(technical-staff ,report-evaluation,read,+,Sam))

(RI) ([95,co], Summer-time, (summer-staff ,document,read,+,Sam) WHENEVER (staff ,documsnt,read,+,Sam))

(Ez) ([95,co] , Working-days, (temporary-staff ,document ,read ,+ ,Sam) UNLESS
(summer-staff,document,read,+,Sam))

(Its) ([7/20/95,ool, Yorking-days, (Jim,document,read,+,Sam) ASLONGAS (summer-staff,document,read,+,Sam))

(Rd) ([95,.], Yorking-days, (technical-staff ,report ,arite,+,Sam) UPON-NOT
(manager,guidelines,write,+,Sam))

(Rs) ([95,co] , T, (technical-staff ,report ,write,- ,Sam) UPON
(technical-staff,report-evaluation,read,+,Sam))

(&) ([95,96] , Uorking-days, (Ann,pay-checks ,read,+,Sam) WHENEVER-NOT (Tom,pay-chacks,arite ,+,Sam))

Figure 1: An example of authorizations and derivation rules
The semantics of a TAB is given as i set of

clauses in a Datalognot~‘z~<z program corresponding
to TAB. Datalog”ot~Zz*<z is the extension of Datalog
with non-monotonic negation, periodicity, and gap-
order constraints on the integers (see Appendix A).
Programs corresponding to TABS will be actually a
very restricted class of Datalog”ot~Zz~<z programs:
the only predicate symbols are F(), FN(), Fp(), GO,
and CNSTR(), a limited set of non-temporal constants
(%ol,ml,+,-,P,. . .) is provided to denote users,
objects, access modes, sign of authorizations, and peri-
odic expressions.5 Periodicity and order constraints
only involve temporal variables and do not use the +
function.

We consider non-ground interpretations of our pro-
grams defined as sets of constrained atoms of the
form (B, e), where B is a predicate and S =
{(G, HI), . . . , (G, h-J) a set of constraints on the
temporal variables of B. Each Gi is a periodicity graph
and each Hi is a gap graph. E is a disjunction of these
pairs, i.e., it is satisfied if there exists i such that both
Gi and Hi are satisfied. Each constrained interpret-
ation has an equivalent (possibly infinite) Herbrand
interpretation containing only ground atoms.

Table 2 reports the clause/set of clauses in
Datajog”ot,fZ,<Z corresponding to each type of au-
thorization/rule allowed by our model.6 Intuitively,
the predicate F() is used to represent the authoriz-
ations at specific instants. The fact that (F(t, A), Z)

belongs to an interpretation means that A is valid ac-
cording to that interpretation at all instants t satisfy-

5Note that when P appears as a predicate argument it de-
notes a non-temporal constant that we associate with a periodic
expression.

6For brevity, we use the form tb < t It= as a shortcut for the
conjunction of the two gap-order constraints cl < t and t < c2
with cl =tb - 1 and c2 =te + 1. Similarly, constraint t” < t’ < t
is a shortcut for the disjunction (using two clauses) oft’ = t”
and t” < t’ < t.

ing Z. The predicates GO, FN() and Fp() are auxil-
iary predicates, used to avoid quantification. Intuit-
ively, G(t, s, o,m) is true in an interpretation if there
is at least one negative authorization, with the same
s,o,m, valid at instant t according to that interpreta-
tion. FN(t”, t, P,A) is true in an interpretation if there
is at least an instant t’ with t” < t’ < t and t’ in
the set denoted by P at which authorization A is not
valid according to that interpretation. FP(t”, t, P,A)

is true in an interpretation if there is at least an in-
stant t’ with t” 5 t’ < t and t’ in the set denoted by
P at which authorization A is valid according to that
interpretation.

We denote the Datalog”ot*~z~<z program corres-
ponding to a TAB with PTAB. We consider stable
model semantics of logic programs with negation [3]
to identify the models of PTAB. The notion of con-
strained interpretation presented above naturally ex-
tends to constrained (non-ground) stable models.

Definition 4.2 (Valid Authorization) Let M be a
model of PTAB. An authorization A is said to be valid
at time z with respect to M if (F(t, A), Z) is contained
in M with 1 satisfying E. If PTAB has a unique ground
model and M is one of its non-ground representations,
then we simply say that A is valid at time t.

4.1 Restrictions on rules

An important property that we require for our set of
periodic authorizations and rules is that we must al-
ways be able to derive a unique set of valid author-
izations. This means, for example, that each set of
rules together with a fixed set of explicit authorizations
should not derive different authorizations depending
on the evaluation order.

Example 4.1 Consider the following rules:
(RI) ([min, max], P, Al WHENEVER-NOT AZ)

411

Cmin, maxI, P, (s,o,m,-,g) :
F(t,s,o,m,-,g)t tt, < t <te, CNSTR(P,t)

bin, maxl,t,],P, (s.o,m,+,g) :
F(t,s,o,m,+,g)t tb 2 t <te, CNSTR(P,t), nd(l=(ho,m))

[min, maxl, P, (81+1,ml,--,gl) WHENEVER (s2,02,m2,pnrg2) :
F(t,sl,ol,ml,-,gl) t tb 5 t <te. CNSTR(P,t), F(h,oz,mz,pn,gz)

[min, meal, P, (sl,~~,ml,-t-,gi) WHENEVER (s2,02,m2,pn7g2) :
F(t,q,ol,ml,+,gl) t tb < t <te, CNSTR(P,t), F(trs2,02,m2,pn,g2), not(G(t,sl,ol,ml))

Cmin, maxl,P, (sl,ol,ml,-,gl) ASLONGAS (S2;02,m21Pnrg2):
F(t,sl,ol,ml,-,gl) t tb 5 t I%, CNSTR(p,t), F(t ,s2,02,m2,pnrgz), nOt(F~(tb,t,P,Sg,oz,m2, pn,gz))

[min, maxl ,P,(sl,o~,m~,+,g~) ASLONGAS (s2,02,m2,Pnrg2) :
F(t,sl,ol,ml,+,g1) t tb 5 t St,, CNSTR(P,t), F(t,s2,o2,m2,pn,g& nOt(F~(tb,t,P,82,02,mz, pn,gz)),

not(G(W,w,ml))

bin, mad, P, (sl,olm,-,gl) UPoN (~z~WJW~PW3d :
F(t,sI,o1,m1,-,g1) t tb 5 t <ter CNSTR(P,t), Fp(tbrt,P,s2,02,m2, pn,gz)

[min, maxl,P, (sl,ol,ml,+,gl) UPoN (s2,oz,m2,Pn,gz) :
F(t,slrolrmlr+,gl) t tb 5 t <te, CNSTR(p,t), Fp(tb,t,P,s2,02,mz, pn,gz), not(G(t,sl,ot,ml))

[min, max], P, (sl,~l,ml,--,gl) WHENEVER-NOT (82,02,m2,pn&!) :
F(t,sl,ol,ml,-,gl) t tb 2 t lte, CNSTR(P,~), Uot(F(t,sz,oz,mz,pU,gz))

[min, maxl,P, (sl,ol,ml,+,g1) WHENEVER-NOT (S2,02,m2,pnrg2) :
F(t,s~,o~,m~,-l-,gl) t tb 5 t <ter CNSTR(P,t), not(F(t,s2,02,m2,pn,g2)), not(G(t,sl,ol,w))

bin, maxl;P,(sl,ol,ml,-,gi) UNLESS (s2roz9m2,Pnvg2) :
F(t,sl,ol,ml,-,gl) t tb < t <te, CNSTR(P,t), not(F(t,sz,oz,mz,pn,gz)), not(Fp(tb,hPv QrWP2~ Pnvgz))

bin, mad, p, (sI,oI,~I,+,~I) UNLESS (w,o2,m2,Pn,gz) :
F(t,sl ,ol ,ml ,+,gl) t tb 5 t 5% CNS’I’R(P, t) , ncW(t rsww,m2,Pn,g2))r not(Fp(tbrt,P,s2,02,m2, Pnlgz)) ,

not((=(hsl ,olm))

Cmin, m=d,P, (sl,ol,ml,-,gl) UPON-NOT (w,%,m2,Pn,g2) :
F(t,sl,ol,ml,-,gl) t tb 5 t <tcr CNSTR(P,~), &V(tbrhP,sZr02rm2, pn,gz)

hin, mad,P, (slrOlrml,+,gl)UPON-NOT (Szvo2,m2vPn7gz) :
F(t,sl,ol,ml,+,g1) t tb 5 t <ter CN=‘R(P,t), ~N(tbrkP,sZrOZ,m2, Pnrgz) , not(G(&sl,ol,ml))

Auxiliary clauses:

G(h 3, o,m) t F(hs,o,m, -,g)

{CNSTR(Pvt) t t zperiodicity(P) YI

Vy such that t Gperiodi,-ity(P) y + t E n(P)

{Fp(t”,t,P,s;o,m,pn,g) et" 5 t' < t,CNSTR(P,t'),F(t',s,o,m,pn,g)}
V distinct P appearing in an UNLESS/UPON rule

{FN(~“, t,P,s,o,m,pn,g) t t" 5 t' < t, CNSTR(P,t'),not(F(t',s,o,m,pn,g)))
V distinct P appearing in an ASLONGAS/UPON-NOT rule

Table 2: Semantics of periodic authorizations and rules

478

(Rz) ([min, max], P, A2 WHENEVER-NOT Al)

Suppose that there are no explicit authorizations for
A1 or A2 in the TAB and these are the only rules. If
we consider first R1 we derive authorization Al for each
instant in { [tb,te]}NI(P), and we cannot derive Aa.

If we consider first Rz, we derive A2 for the same time
intervals and not Al. Hence, we have two different
sets of derived authorizations. In this case there is no
reason to give preference to one set or the other.

From the point of view of the semantics, the prop
erty of always having a unique set of valid authoriza-
tions is guaranteed only if all the models of the pro-
gram corresponding to the TAB identify the same set
of valid authorizations’at any instant (or equivalently,
there exists a unique ground stable model equivalent
to all the models of &B). In the rest of this section
we formally define restrictions on sets of rules in order
to guarantee a unique ground model for PTAB. We
also give an algorithm for checking the satisfaction of
these restrictions.

In the following, we use the term negatioe operator
toreferto WHENEVER-NOT,UNLESS, and past operator
(PASTOP) to refer to UNLESS, ASLONGAS, UPON-NOT
and UPON. Moreover, we use symbols Ai as a shortcut
for the 5-tuple (si , oi, rni, pni , gi) , while A+ forces pnj =
+ and AT forces pni = -.

A binary relation L) among the periodic authoriz-
ations appearing in TAB is defined as follows:

l if there is a rule ([min,max] , P, A,(oP) An) in
TAB, where (OP) is an arbitrary operator, then
An[t] L) Am[t] for each t E {Ctt,,t,l}nH(P). The
L) relation represents a dependency of A,,, at in-
stant t from A, at the same instant. When (OP)
is a negative operator we say that L) represents a
strict dependency.

l if there is a rule ([min,max], P, A, (PASTOP)
An) in TAB, then A, [t] L) A, [t’] for each t, t’ E
{ Ctb,t,l}nn(P), t < t’. If PAsToP is equal to
ASLONGAS, UNLESS or UPON-NOT then L) repres-
ents a strict dependency.

Using this relation we can define the more complex
notion of priority among periodic authorizations.

Definition 4.3 (Priority) An authorization A, at
time t has higher priority than an authorization Am
at time t’ (written An[t] > Am[t’]) if one of the follow-
ing conditions holds:

l a sequence An[t]=Al[t] L) . . . L)Ak-l[t”] 9

Ak[t’]=Am[t’] exists such that at least one of the
L) relationships is a strict dependency,

l two sequences A,[t]=Al[t] L) . . . qAF[t”]

and AG1 [t”] L) . . . vAk[t’]= A,[t’] exist

such that s(A~)=s(AT+~), o(A;)=o(AT+~), and

m(A;)=m(A&1),7

l an authorization Al and an instant t” exist such
that An[t] > Al[t”] and Al[t”] > A,,, [t’].

Note that the second condition in the above defin-
ition implies that each negative authorization* has
higher priority than its positive counterpart at the
same instant.

We are now ready to identify critical sets of deriv-
ation rules.

Definition 4.4 (Critical set) A TAB conkins a
critical set of rules if and only if an authorization A,

in TAB and an instant t exist such that A,,, at instant
t has priority over itself (A, [t] > A, [t]).

The CSD (Critical Set Detection) algorithm, de-
scribed in the next subsection, can be used to recog-
nize and reject a TAB containing a critical set.

4.2 The CSD algorithm

Before illustrating the CSD algorithm we need to in-
troduce some notions.

Given a TAB, we introduce its graph version, de-
noted as TAB’, as the set of pairs of the form (t, Z),
where x is either an authorization or rule in TAB and
E the set of pairs (G, H) representing the temporal
constraints associated with it in TAB. Essentially, a
temporal authorization ([tb,t,l , P, Am) is mapped
into the pair (A,, {(II, Gl), . . . , (H, Gk)}), where H
represents constraint {tb < t 5 te} and G1, . . . , Gk
represent the periodicity constraints corresponding to
P. If A, is specified more than once in TAB with differ-
ent temporal constraints the set E associated with A,

in TAB’ is the union of the sets corresponding to the
different constraints. Derivation rules are transformed
in an analogous way. In the following, given an au-
thorization A, in TAB, 8, denotes the constraints
associated with A,,, in TAB’. Analogously, Z:R denotes
the constraints associated with rule R in TAB’.

We introduce the operations of conjunction (A*)
and complement (7;) between sets of pairs (G, H).
Let 2 = {(G,~l),..., (Gm,H,,,)} and let E’ =
{(G{, Hi), . . . , (Gi, Hi)). E A* E’ is the disjunctive
normal form of the result obtained by the conjunc-
tion of the’ formulas corresponding to E and 2’. For
instance {(Gl, HI), (G2, ff2)) A* {(G',, Hi)) = (((2 A

‘We use the notation s(A),o(A),mU),pn(A) to denote re-
spectively the subject, the object, the privilege and the sign
in A.

479

G:, Hi A Hi), (G2 A G:, Hz A Hi)}. The operation of
complement (l*) can be defined in a similar way.

The algorithm for detecting critical sets receives as
input TAB’, i.e. the graph version of TAB. It returns
FALSE if either a critical set exists or the number of
levels exceeds a fixed upper bound. Otherwise, it re-
turns a sequence of levels (Lr, . . . , Lk) representing a
finite partition of the set of pairs (A, t) for each author-
ization A in TAB’ and l&i,, < t 5 t,,,, where t,,,i,,
and ha+ are respectively the minimum and maximum
constant (included oo) appearing in TAB’. Each level
Li is a set of pairs (Aj, Sj,i), where Ej,i denotes the
temporal constraints associated with Aj at level Li. In-
tuitively, authorizations appearing at lower levels for
a certain set of instants have higher priority for eval-
uation than authorizations appearing at higher levels
(for the same or for a different set of instants).

The algorithm starts by putting at level 1 all the
authorizations for all time instants between tmin and
t maz* Then, it considers the dependencies caused by
negative authorizations and rules and possibly moves
authorizations up in levels. Moving authorization A,,,
from a level h to a level k with constraints S means up-
dating &h to be E,,hA*T*E and updating z,,+ to be
%,k U E.8 The process is repeated until no changes to
the levels are necessary (i.e., all the priorities are sat-
isfied), or the number of levels becomes greater than
max-level. max-level is an upper bound chosen as
the number of authorizations in TAB’ multiplied by
(CA,, - Lin + pma, + l), where I&,,,, is the max-
imum finite constant appearing in TAB’ and P,,, is
the least common multiple (lcm) of all the periodicities
appearing in TAB’ (excluding T).

The algorithm guarantees that if a critical set exists,
it will be detected. Intuitively, in case of a critical set,
the algorithm cycles over some priority relationship
and soon it reaches the max-level upper bound.

When the algorithm reaches a fix-point before
reaching max-level, it returns the levels that have
been generated. These levels obey the priority rela-
tionship: If a dependency An[t] L) A,,,[?] exists in
TAB, then Am[t’] appears at a level higher than or
equal to A,[t]. The level is necessarily higher if the
dependency is strict. Moreover, a positive authoriz-
ation A,,, appears at level higher than any negative
authorization A,, with same subject, object, and ac-
cess mode for the, same time instant. The algorithm
guarantees also that for each authorization A,,,, each
instant t, t,in 5 t <tmal? satisfies the constraints
&,l of exactly one level 1. A detailed description of
the algorithm can be found in [l].

81f Am does not appear at level k before the operation, it is
inserted and E,,,,k initialized to 8.

Example 4.2 Consider a TAB containing the follow-
ing authorizations and rules:
([95,col, T, Ai)
(RI) ([i/20/97,981 , Mondays,AiUPONAf)
(Rs) ([SS, 971, Working-days ,A;~HENEVER-NOTA~)
The corresponding TAB’ contains the following pairs9
@17{({true~~{~/~/95 I tl)l>
(A~uPoNA~, {({t 37 I}, {i/20/97 5 t 5 i2/31/98})})
(ATWHENEVER-NOTA~, {({t -7 (y + 1)Vy = 0,. . .,4},
{l/i/96 5 t < 12/31/97})})

Authorizations Al, At, As, and Ai are initially in-
serted at level 1 with constraints {({true},{ I/1/95 5
w.

The algorithm then cycles moving authorizations
up in level as follows.
1st iteration:
For A2 at level 1: move (A~,{({true},{l/l/95 5 t})})
to level 2.
For rule Rr: move (Ar,{({t -7 l}, {l/20/97 5 t 5
12/31/98})}) to level 2.
For rule Rz: move (A;,{({t ~7 (y + 1)Vy = 0,. . . ,4},
{i/i/96 5 t 5 12/31/97})}) to level 2.
2nd itemtion:
For A; at level 2: move (Aa,{({t -7 (y + 1)Vy =
0 .‘, 4}, {l/l/96 5 t 5 12/31/97})}) to level 3.
Fkr rule Rr: move (Ar,{({t ~7 1}{1/20/97 < t 5
12/31/98})}) to level 3.
3rd iteration:
All dependencies are satisfied. No further changes to
the levels are necessary and the algorithm terminates
returning the levels illustrated in Figure 2.

For the purpose of determining the authorization
state of the system at a certain instant, the uniqueness
of the PTAB ground model at that instant is required.
The uniqueness of the model in absence of critical sets
is guaranteed by the following theorem.

Theorem 4.1 Given a TAB with no critical sets, the
corresponding logic program PTAB has a unique ground
model.

Note that more than one finite constrained non-
ground model of PTAB equivalent to the unique ground
model can exist, since the same set of instants can be
represented by different constraints.

5 Access Control

In our model, the control of whether an access request
can be authorized may require the evaluation of sev-
eral rules. For this reason we adopt a materialization
approach to enforce access control. Under such an

gFor simplicity, here and in the following examples we assume
Days as our finest granularity and Sunday 1/ 1/95 as our instant
zero.

480

Level 1:
(Al,(((true),(l/l/95I t <1/19/97)), ({t$7 1),{1/20/97< t 5 12/31/98}),({true},{1/1/99~t})})

(AZ,{({true),(i/i/95i t I l/31/95)), ({t$7 (Y+ l),v =O

p~\yl7w~/g5 5 9)))
,...,4},{1/1/96< t 5 12/31/97}), ({true},{1/31/97< t})})

(A;,{& (Y + l)Vy = 0 , . . . ,4},{1/1/96 5 t <_ 12/31/97})})
Level 3:
(h,{({t=7 1}{1/20/97<t 5

(A$,{({t37

12/31/98))))

(y+l)Vy=O,..., 4},{1/1/96 5 t 5 Q/31/97})})

Figure 2: An example of levels returned by the CSD algorithm
approach the system permanently maintains all the
valid authorizations, both explicit and derived. Upon
an access request, the system can immediately check
whether a valid corresponding positive authorization
exists.

In the following we illustrate how to compute, given
a TAB, the corresponding valid authorizations. We
start with the following definition.

Definition 5.1 (Temporal Authorization Base
Extent) The Temporal Authorization Base Extent
(TABExT) of TAB is the set of valid authorizations
derived from TAB.

Authorizations are maintained in TABEXT using a
compact representation similar to that of TAB’. Each
Ak is associated with a set of constraints Gb; (Ah, Rk) is
in TABEXT if authorization Ak is valid at each instant
t satisfying fik.

Given two sets of constraints Z and Z’, we say that
B is shift-equivalent to E’ (written 5 Z!* 2’), if the in-
stants denoted by 5 are a transposition of the instants
denoted by Z on the time axis. Formally:
=*-)*-I. u- z if 3’ E IN such that t +t’ satisfies E’ whenever
t satisfies E.

Figure 3 presents an algorithm to compute
TABExT. The algorithm is based on the model com-
putation for (locally) stratified Datalog”otl~z~<Z pro-
grams given in Appendix A. This computation is
represented in Algorithm 5.1 by an iteration of the
repeat-until cycle. The termination of each iteration
is guaranteed by using a finite constant as an upper
bound in constraints and computing TABEXT only up
to that value. The periodicity of our rules and their se-
mantics guarantee that a finite constant can always be
found, such that the computed TABEXT can be exten-
ded (Step 3 of Algorithm 5.1) to the actual TABEXT
(possibly including oo). This finite constant cannot be
easily determined before running the algorithm, and
this is the reason for the repeat-until cycle. In par-
ticular, the algorithm considers two contiguous time
intervals after &a=) of length equal to the maximum
periodicity in TAB (P,,,) and checks whether the con-
straints associated with the derived authorizations and
restricted to these intervals are shift-equivalent (Step

2.3)?If noi, it proceeds with another iteration of Step
2, generating a larger TABEXT using the constant of
the previous iteration incremented by P,,, (Step 2.1).
We have proved that for any TAB the algorithm ter-
minates.

Theorem 5.1 i) Algorithm 5.1 terminates and ii) an
authorization A is valid at time ? if and only if there
exists (A, Q) in TAB EXT such that t satisfies $2.

In practice, we expect the algorithm to terminate
at the first iteration in most cases.

Example 5.1 Consider the TAB in Example 4.2.
The levels computed by the CSD algorithm are il-
lustrated in: Figure 2. We now apply the algorithm
for TABEXT generation. At the first iteration of the
repeat-until cycle Ic = 2 and current_time=i/l4/99
(12/31/98 + 2 Weeks). Let TABg?T be the TABEXT
resulting from the evaluation of level Li. We have:

TAB&T = {(Al,{({true}, {l/1/95 _< t _< l/19/97}),
({t $7 11, {l/20/97 2 t 5 12/31/98)),
(ltrue3, {VU99 I t I ~/14/99~)~)~

TAB(&T = TAB;?,’ U {(Ai-,{({t 57 (Y+ 1)

vy = 0, . . . ,4), {1/W 5 t I WWg71)~)~
TABEL, = TAB& U {(AI, {({t ~7 l},

{l/20/97 5 t 5 12/31/98})})}

success is set to true and the repeat-until cycle ter-
minates.
The last step of the algorithm substitutes co to each
value i- such that i/7/99< Z <l/14/99. Hence:

TABEXT = {(Al,{({true},{1/1/95I t))}>,

(A;,{({t=7(y+ ~)VY= 0,...,4},

{W/96 L t 5 ww~)Hl

Once we have generated TABExT, an access re-
quest from user si to exercise access mode ml on ob-
ject 01 at time t will be allowed only if (A, a) exists
in TABEXT such that s(A)=si, o(A)=o~, m(A)=ml,
pn(A)= ‘+‘, and t satisfies R.

481

Algorithm 5.1
INPUT: The output (&, . . . , Lk) of the CSD Algorithm and TAB’.
OUTPUT: TABExT={(A~,Q) 1 Ai is a valid authorization for each instant satisfying ni}
METHOD:
1. k := 1; success := false
2. Repeat

2.1. k := /c + 1; current-max := t,,,+k. Pm,=
2.2. For each level Li:

Let X; c TAB’ containing all (A,,,,E,) and (R,=R) (R=Am (OP) An) such that Am appears in Li
Repeat

For each (I, E) E Xi:
(a) Let 0 be the conjunction of E, Z,,i and {(true, t 5 current-max)}
(b) If x = Am (OP) A,,:

If OP = WHENEVER: reassign to 0 the conjunction of 2, and 0
If OP = WHENEVER-NOT: reassign to @ the conjunction of -*E, and 0
If OP is a past operator:

Let t be the unique variable appearing in 0
Case 0P of:

UPON: reassign to 0 the conjunction of {(true, t > 7)) and 0,
where t is the first instant satisfying E and &

UPON-NOT: reassign to 0 the conjunction of {(true, t > t)} and 0,
where 7 is the first instant satisfying E and -*En

ASLONGAS: reassign to 0 the conjunction of ((true, t < t)} and 0,
where 7 is the first instant satisfying 6 and -*En

UNLESS: reassign to 0 the conjunct+ of ((true, t < 2)) and 0,
where 7 is the first instant satisfying Z and 3,

(c) If Am is a positive authorization: reassign to 0 the conjunction of 0 with the complement
of each element in the set {Z:k (pn(Ak)=‘-‘,s(Ak)=s(A,),o(Ak)-o(A,), m(Ak)=m(A,)}

(d) Discard the inconsistent pairs from 0
(e) Add (A,, 0) to TABJJXT

until TABEXT does not change
2.3. If V(A,CJ) in TABEXT

R A* {(true, t,,, +(rc - 2) * Pmoz < t 5 FVn,,,+(lc - 1). Pmaz)) t*
Cl A* ((true, t,,,+(k - 1) f Pmas < t 5 t,,,+k. Pmae)}:

success := true

3. For each (A,O) in TABExT: substitute with 00 each value i: such that &,,+(k - 1) . Pma, < 5 5 tma++/c . Pmar

I Figure 3: An algorithm for TABEXT generation
6 Conclusions References

In this paper we have presented an authorization
model where authorizations can be periodic and have a
limited time of validity. The model also allows users to
specify rules for the automatic derivation of new (peri-
odic) authorizations. The model results therefore very
flexible and powerful in terms of the kinds of protec-
tion requirements that it can represent. Obviously, the
flexibility provided to the users requires a non trivial
underlying formal model where time constraints, peri-
odicity constraints, and derivation rules can be rep-
resented. We have defined such a model in this paper,
and proved the main properties it, satisfies. Moreover,
we have given algorithms for controlling the consist-
ency of an authorization base and for determining all
authorizations derivable from it. Administrative oper-
ations to remove or add authorizations and derivation
rules can be easily defined based on [2]. Further work
includes the development of materialization strategies
for the incremental maintenance of TABEXT upon ex-
ecution of administrative operations.

[l] E. Bertino, C. Bettini, E. Ferrari, and P. Samar-
ati. Supporting periodic authorizations and tem-
poral reasoning in database access control. Tech-
nical report, DSI - University of Milano, Italy,
1996.

[2] E. Bertino, C. Bettini, E. Ferrari, and P. Samar-
ati. A temporal access control mechanism for
database systems. IEEE Trans. on Knowledge
and Data Engineering, 8(l), February 1996.

[3] M. Gelfond and V. Lifschitz. The stable model
semantics for logic programming. In Proc. 5th
Intl. Cqnf. on Logic Programming, pages 1070-
1080, Cambridge, Massachusetts, 1988.

[4] M. Niezette and J. Stevenne. An efficient sym-
bolic representation of periodic time. In Proc. It*
Intl. Conf. on Information and Knowledge Man-
agement, Baltimore, MD, November 1992.

482

PI

[61

171

PI

PI

A

D. Toman, J. Chomicki, and D.S. Rogers. Data-
log with Integer Periodicity Constraints. In Proc.
Intl. Logic Programming Symposium, pages 189-
203. MIT Press, 1994.

A. Van Gelder, K. Ross, and J. S. Schlipf.
The well-founded semantics for general logic pro-
grams. Journal of the ACM, 38(3):620-650, July
1991.

T.Y.C. Woo and S.S. Lam. Authorizations in dis-
tributed systems: A new approach. Journal of
Computer Security, 2(2 & 3):107-136, 1993.

In this paper we used Datalog”otl’z~<z to specify
the semantics of a set of periodic authorizations and
rules, and the algorithm to generate implicit authoriza-
tions mimics a fixpoint computation of the model of a
Dotolog”~t,=%<z program. Datalognot3EZ’<Z is a simple
extension of Datalog’zS<z [7J with non monotonic nega-
tion [8], however, to our knowledge, it was never considered
in the literature. Dotolog”ot~‘Z~<Z programs are defined
as follows.

Definition A.1 (Datalog”ot8’z~<z Program) A
Dotolog”~t,‘z& program P is 0 finite set of (function-
free) clauses of the form
B c Dl,. . . , D,,,,notD,,,+l,. . . ,notD,,,+,,, Cl,Cg
where B,Dl,..., Dm+n ore atoms, Cl is o satisfiableperi-
odicity constraint, Cz is a satisfiable gap-order constraint,
and not represents non monotonic negation.

. Bottom-up evaluation of Datalognot zzt<z programs re-
quires to perform operations on gap-graphs and periodicity
graphs. To this purpose we need the operations of conjunc-
tion (A*) and complement (7’) on sets of graphs illustrated
in Subsection 4.2. We also need the operations of subsump-
tion and projection (n), for periodicity graphs combined
with gap graphs defined in [7]. Intuitively, if 2, y, and z
are the nodes in both G and H, then nzy(G, H) returns
a set of pairs (Gi, Hi) obtained from (G, H) by dropping
node .z and all the edges ending in z, after computing all
the constraints (edge’s labels) implied by the edges to be
dropped. The r operation also discards any resulting pair
that is inconsistent. The subsumption operation has its in-
tuitive semantics: a pair (G1 , HI) is subsumed by (Gz, HZ)

P.Z. Revesz. A Closed Form Evaluation
for Datalog Queries with Integer (Gap)-Order
Constraints. Theoretical Computer Science,
116(1):117-149, 1993.

J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-
beros: An authentication service for open network
systems. In PTOC. USENIX Conf., pages 191-202,
Dallas, TX, 1988.

(having the same set of variables) if any assignment satis-
fying (Gl, HI) satisfies also (Gz, HZ). Operations of sub-
sumption and projection can be easily extended to sets of
pairs (G, H), similarly to A* and Y*.

Periodicity and gap graphs serve as a basis to define a
non-ground interpretation for Dotalog”ot+z~<z programs.
A (z, <) interpretation is any set of pairs of the form
(B, E), where B is a predicate symbol, and FZ is a set, of
pairs (G, H) denoting the disjunction of the corresponding
constraints.

Given a Datolog”ot~zz~<z program P we cati define an
operator TPnotprzt<z that maps (E, <) interpretations to
(2, <) interpretations. In the following we denote with a*
the projection operation on sets Z.

Definition A.2 (TPnotSrzl<z operator) Let P be a
Dotolog”~t,‘z><z program and I o (E, <) interpretation.

TP”ot~<z=z(Z) = I u { (B,Z) : I3 c Dl,. . , , D,,
notD,.+l,. . . ,n~tD,,,+~,
G,C2 E p

(Di,Z,) E I, Vi = 1,. . . ,m
0 = El/*. . . A’ =:,A*
A*-*&+I) A’. . . A* -I* Em+,, (1
A*t(Gc,>Hc,)l
‘;: - Gar(B) (0)
TBTE) is not subsumed by I }

where Gc, is o periodicity graph corresponding to Cl, Hc,
is o gap graph corresponding to Cz and Vor(B) denotes the
set of variables in atom B. The nodes of the periodicity
and gap graphs ore renamed using the variable names in
the associated atoms of the cla’uses.

If we restrict our attention to stratified (or locally strat-
ified) [8] Datalog”“t*‘z’<z programs the following proced-
ure based on the fixpoint iteration method can be used to
evaluate programs.

Algorithm A.1 (Naive Bottom-up evaluation of
stratified Datolog”ot~Ezl<z programs) Let P be a
Dotolog”ot~‘z~<z program, let PI,. . . , P,, be o strotifico-
tion of P.l”

I := 0
For i := 1 to n do

repeat
1 ;= TP”‘&“Z,<Z(~)

until I doe; not change
endfor
return I

Termination of algorithm A.1 is not guaranteed for any
stratified Datalognot”Z’<Z program, as Datalog”“tSSzS’z
programs can express any Turing computable function [5].
However, it is easily shown [I] that .if gap-order constraints
are on a finite subset of the integers, Algorithm A.1 termin-
ates returning a non-ground representation of the unique
(ground) model of the program.

loPi contains rules of strata i, i = 1,. . . ,12.

483

