
Estimation of Query-Result Distribution and its Application in
Parallel- Join Load Balancing

Viswanath Poosala Yannis E. Ioannidis*
poosala@cs.wisc.edu yannis@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53705

Abstract

Many commercial database systems use some
form of statistics, typically histograms, to summa-
rize the contents of relations and permit efficient
estimation of required quantities. While there has
been considerable work done on identifying good
histograms for the estimation of query-rest&sizes,
little attention has been paid to the estimation of
the data distribution of the result, which is of im-
portance in query optimization. In this paper, we
prove that the optimal histogram for estimating
the size of the result of a join operator is optimal
for estimating its data distribution as well. We
also study the effectiveness of these optimal his-
tograms in the context of an important application
that requires estimates for the data distribution of
a query result: load-balancing for parallel Hybrid
hash joins. We derive a cost formula to capture
the effect of data skew in both the input and out-
put relations on the load and use the optimal his-
tograms to estimate this cost most accurately. We
have developed and implemented a load balanc-
ing algorithm using these histograms on a simula-
tor for the Gamma parallel database system. The
experiments establish the superiority of this ap-
proach compared to earlier ones in handling all
kinds and levels of skew while incurring negligi-
ble overhead.

*Partially supported by the National Science Fhndation under Grants
IRI-9113736 and IRI-9157368 (PYI Award) and by grants from DEC.
IBM, HP, AT&T, Informix, and Oracle.

Permission to copy withoutfee all or part @this material is grantedpro-
vided that the copies are not made or distributedfor direct commercial ad-
vantage. the VLDB copyright notice and the title of the publication and its
date appear; and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, requires
a fee and/or specialpermis$mfrom the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

Several aspects of query processing in a database man-
agement system (DBMS) depend on the distribution of at-
tribute values in the input relations to the query operators.
For example, selectivities of operators, which are used by
query optimizers in choosing the most efficient access plan
for a query, are dependent on the data distribution in the in-
put relations. Computing and maintaining accurate knowl-
edge about the distributions can be prohibitively expen-
sive for data with high cardinality. Hence, most commer-
cial database systems maintain some statistics to approxi-
mate the data distributions of the relations in the database,
and make estimates based on these statistics. In several
cases, such as query optimization and approximate query
processing, the data distributions of intermediate query re-
sults in a query may themselves be of importance. For ex-
ample, in a query in which the result of an operator opi is
used as the input to an operator 0~2, the data distribution of
opl ‘s result is required to estimate 0~2’s selectivity. None
of the current systems, however, permit good estimates of
the distributions of intermediate relations. The resulting es-
timates are often inaccurate and may undermine the validity
of the particular application using these estimates. For ex-
ample, earlier work has shown that errors in selectivity esti-
mates may increase exponentially with the number of joins
[IC91]. This result, in conjunction with increasing com-
plexity of queries, demonstrates the critical importance of
statistics that provide better estimates.

In this paper, we will be studying the importance of accu-
rately estimating the data distributions of query results and
database relations and demonstrating its application in the
context of parallel DBMSs. For more than a decade, mul-
tiprocessor database systems have been held as viable al-
ternatives to traditional mainframe computers for process-
ing large transactions. A few implementations of paral-
lel database systems (e.g., [DGS+90, B+90]) based on the
shared-nothing hardware architecture [Sto86] have verified
that among multiprocessor systems, this architecture offers

448

the most dramatic scale-up and speed-up performance. This
high performance is achieved mainly because, the most ex-
pensive operator in query processing, namely join, can be
parallelized very efficiently. Research has shown that hash
join algorithms can be very effectively parallelized, offer-
ing almost linear speed-up [SD89, DGG+86]. While this
claim is true in the ideal case, skew in the underlying data
introduces load imbalances in parallel join execution that
can have a devastating effect on performance [LY88]. Dif-
ferent kinds of skew have been identified, each affecting
the parallel hash join at different stages. The skew in the
distribution of the join attribute in the input relations (at-
tribute value skew) affects the amount of join processing on
each node, while the skew in the distribution of the join at-
tribute in the result relation Cjoin product skew) affects the
amount of work done by each node after join processing,
e.g., for storing or transferring the result tuples [WDJ91].
Also, skew in the distribution of any attribute in the join re-
sult (not necessrarily the join attribute) that participates in
the next operator’s processing affects the load distribution
during that operator’s processing.

Most load-balancing algorithms use estimates of the
skew in the input data distributions in order to distribute
load among processors. When the input is a relation in
the database, its attribute value skew can be estimated ef-
ficiently using precomputed statistics or sampling tech-
niques, before the join processing begins. But, no effi-
cient techniques exist to precompute the skew in the at-
tributes in the result relation. Nearly all the earlier efforts to
load balancing in the shared-nothing architecture have fo-
cused on handling attribute value skew in the build relation
[KO90, HL91, DNSS92]. As we show later, attribute value
skew in the probe relation and join product skew can have
significant impact on the performance of parallel join exe-
cution. The algorithm due to Shatdal and Naughton [SN93]
handles join product skew as well as attriubute value skew
in the build and probe relations in the context of a shared
virtual memory architecture by dynamically distributing tu-
pies to idle nodes during join processing.

From the above discussion it appears that, query result
distribution plays an important role in obtaining general so-
lutions to the problems of load balancing and selectivity es-
timation. In this paper, we propose histogram-based tech-
niques to approximate the distributions of data in the base
relations and the query result. Histograms use a small num-
ber of buckets to approximate the data distribution of each
attribute, and are usually precomputed for the relations in
a database. Due to their typically low-error estimates and
low costs, they are the most commonly used form of statis-
tics in practice (e.g., DB2, Informix, Ingres, Sybase) and
are the focus of this paper. While there has been consid-
erable work on identifying good histograms for estimating
the result sizes of various query operators with reasonable
accuracy [PIHS96, IP95b, IP95a, MD88, PSC84], we are
not aware of any work on estimation of query result distri-

butions using any kind of statistics. In our earlier work on
histograms [IP95a], we have identified the optimal class of
histograms (serial histograms) for minimizing errors in se-
lectivity estimation of of selections and equi-joins. A tax-
onomy of histograms, several efficient construction algo-
rithms, and accurate histograms for selectivity estimation of
range queries are published in [PIHS96].

In this paper, we identify the optimal histograms in ap-
proximating the data distributions of query results, and ap-
ply them in balancing load during parallel Hybrid hash joins
[Sha86]. The following are the primary novel contributions
of our work:

A theorem that, among all possible histograms requir-
ing the same storage space, identifies the optimal ones
for approximating the distribution of data in the at-
tributes of database relations as well as in the results
of equi-joins. We show that the same serial histograms
on the input relations are optimal for estimates of the
data distributions of both input and output relations. A
very important aspect of this result is that these opti-
mal histograms are the same histograms that are opti-
mal for selectivity estimation, thus showing their uni-
versality.

A new and efficient algorithm for load balancing that
is based on a cost formula for the join execution. The
formula is expressed in terms of the data distributions
of the input relations and the join result and captures
the effects of various kinds of skew on performance.

The idea of using the optimal histograms on the input
relations to approximate all three necessary frequency
distributions. The main benefit of this is that the load
balancing algorithm mentioned above incurs minimal
runtime overhead, since histograms are precomputed.

We have conducted experiments demonstrating the im-
portance of using optimal histograms for result distribution
estimation by comparing them with traditional histograms.
In the context of load-balancing, we have also implemented
a conventional algorithm, a sampling-based algorithm, our
histogram-based algorithm, and the basic Hybrid hash join
algorithm without load balancing in a simulator for the
Gamma parallel database system [Bro94] and have studied
their performance under various inputs. For the histogram-
based algorithm, we use end-biased histograms, a sub-class
of serial histograms, which can be constructed and stored
very inexpensively and have proved very effective in selec-
tivity estimation. The results of our experiments show that
our overall approach, using optimal end-biased histograms,
deals with all kinds and levels of skew most effectively
while requiring negligible runtime overhead.

All theorems in this paper are given without proof due to
lack of space. The full proofs, as well as the results of some
more experiments, can be found in a longer version of this
paper [PI96].

449

2 Definitions and Problem Formulation

The query operators that we consider are equi-join predi-
cates of the form R.A = S.B, where A and B are real or
integer-valued attributes in relations R and S respectively.

2.1 Data Distributions

Let 2) = { dk] 1 5 Ic 5 I< for some integer K} be the domain
of the join attribute Q in some relation X. The frequency
fx(&) of value dk is the number of tuples in X with dk
in a~‘. Consider an equi-join query of relations R and S on
attribute cr. It is easy to see that the frequency of dk in the
join result J is given by

fJ(dk) = h(b) X fs(dk).

2.2 Histograms

In a histogram on cr, the set V is partitioned into buckers and
a uniform frequency distribution is assumed within each
bucket. That is, for any bucket b in the histogram, if dk E b
then f(dk) is approximated by the average of the frequen-
cies of all the values in that bucket. Note that any arbitrary
subset of V may form a bucket, e.g., bucket {dl , dy}. For
brevity of notation, we sometime refer to the histogram on
the join attribute of a relation simply as the histogram on
that relation. In general a histogram can be constructed on
multiple attributes of a relation.

The example in Figure 1 illustrates the above by listing
two different histograms on an attribute of relation with two
buckets in each. The frequencies of all the attribute values
are listed in Figure 1 a. Figures 1 b and 1 d show the grouping
of frequencies into buckets for the two histograms. Figures
lc and le show the resulting approximate frequencies.

Next we define a class of histograms that is important to
the problem at hand.

Definition 2.1 [Ioa93] A histogram for attribute 0 of a re-
lation is serial, if for all pairs of buckets 61, ba, either tldk E
bl, dl E ba, the inequality f(dk) 2 f(dl) holds, or Vdk E
bl, dl E bz, the inequality f(dk) < f(dl) holds.

Note that the buckets of a serial histogram group fre-
quencies that are close to each other with no interleaving.
For example, in Figure 1, Histogram- 1 is a serial histogram
while Histogram-2 is not. This is in contrast to the tradi-
tional equi-width and equi-deprh histograms which group
contiguous ranges of attribute values into buckets.

A histogram bucket whose domain values are associated
with equal frequencies is called univalued. Otherwise, it is
called multivalued. Univalued buckets characterize the fol-
lowing important classes of histograms.
Definition 2.2 [Ioa93] A histogram with p - 1 univalued
buckets and one multivalued bucket is called biased. If

1 We often denote the frequency simply as f (dk) when the name of the
relation is clear from the context.

these univalued buckets correspond to the domain values
with the p - 1 highest and lowest frequencies, then it is
called end-biased.

Note that end-biased histograms are serial.

3 Histogram Optimality

Let R and S be two relations participating in the equi-join
on attribute cr, and J be the resulting relation. We estimate
the data distributionof & in J from the histograms on R and
sas:

f;(d) = fkb-4 x f;(d).

where, J$ (d) is the approximate frequency of d in relation
X, obtained from a histogram.

An important issue to be addressed is the accuracy of
these estimations. For this purpose, we first define the er-
ror incurred in using an approximate frequency distribution.
The following metric is a standard measure of the deviation
between two distributions.

Definition 3.1 The error of a histogram in approximating
the frequency distribution of an attribute (Y of relation X is
defined as the squared deviation of the actual and approxi-
mate distributionsover all the attribute values in the domain
V of o, i.e,

E(X) = ~(fx(d) - fkW2.

Since the number of histogram buckets is determined by
the available catalog space, accuracy depends only on how
the domain values are grouped into buckets in the two his-
tograms. In the next few sections, we present the results
identifying the optimal histograms on the input relations
R and S, which minimize the errors in estimating the fre-
quency distributions of R, S, and the join result J.

3.1 V-optimal histograms

In this section, we characterize an important class of his-
tograms, which are relevant to our optimality results. First
some useful notation:

bi The i-th bucket in the histogram, 1 5 i 2 p
(numbering is in no particular order).

Pi The number of frequencies in bucket bi.

x The variance of the frequencies in bucket bi .2

Define the variance of a histogram to be

Y=&pjv,.
i=l

(1)

2v, = c , dE6 (f(4--d2
Pi

, ai is the average of frequencies in b,.

450

150 120 90 60 30

a. Actual Frequency Distribution

b. Buckets in Histogram-l

i 12i) (90 i
-* -*

d. Buckets in Histogram-2

c. Approximate Frequencies in Histogram-l
_- -

(,105 I 1105i
-

f$g&j

e. Approximate Frequencies in Histogram-2 .

Figure 1: Example Histograms.

Definition 3.2 The v-optimal histogram on an attribute is
the histogram with the least variance among all the his-
tograms using the same number of buckets.

In our earlier work, we have shown that the v-optimal
histogram on any relation R is serial and is optimal (on the
average) for estimating the result sizes of equality join and
selection queries in which R participates [IP95a]. In the
taxonomy of histograms presented in [PIHS96], these his-
tograms are called v-optimal-serial(~ F) histograms. In the
next two sections, we prove that the v-optimal histogram
plays a very important role in estimating the data distribu-
tion of database relations and join results.

3.2 Optimal Histograms for Estimating the Frequency
Distributions of the Input Relations

Histogram optimality in estimating the frequency distribu-
tions of R and S is defined as follows:

Definition 3.3 For relation Y E {R, S}, let 31~ be a col-
lection of histograms of interest. The histogramHy E 3cy
is optimal for Y within 31y, if it minimizes E(Y) (Defini-
tion 3.1).

The following theorem identifies the optimal histograms
on the input relations. Its proof is given in [P196].

Theorem 3.1 Consider a database relation Y E {R, S}
and a given number of buckets /3. The optimal histogram
for estimating the frequency distribution of Y is serial and
is the same as the v-optimal histogram with /3 buckets.

3.3 Optimal Histograms for Estimating the Frequency
Distribution of the Join Relation

In this section, we define histogram optimality in estimat-
ing the frequency distribution in any attribute of the join re-
sult J. It turns out that the histogram on the join attribute
of R that is optimal for estimating the distribution of the
attributes in J also depends on the distribution of the join
attribute in S and vice versa. Taking the other join rela-
tion into account results in histograms that may be very poor
for other joins. Also, using extensive information about the
database contents results in histograms whose optimality is

very sensitive to changes in the database. We thus inves-
tigate histogram optimality when the set of frequencies of
both the input relations are available, but it is not known
which frequencies correspond to the same attribute value.
This is the typical scenario in real systems, where statistics
are collected independently for each relation, without any
cross references. Using this knowledge, the goal is to iden-
tify the optimal histograms for the average case, i.e., taking
into account all possible permutations of the frequency sets
of the input relations over their corresponding join domains.

The above discussion is formalized below. We ‘use the
prefix j in “j-optimal” to emphasize that optimality is de-
fined over reduced information and for the join result.

Definition 3.4 For relations R and S, let %R and 7i.s be
two collections of histograms respectively. The histograms
HR E ‘h!~, Hs E 31s are j-optimal for J within %~,‘?ts
respectively, if they minimize the expected value of E(J)
(definition 3.1) over all permutations of the frequency sets
of R and S.

The following theorem precisely identifies the j-optimal
histograms on R and S. Its proof is given in [PI96].

Theorem 3.2 Consider relations R and S and two corre-
sponding numbers of buckets PR and p.s. The j-optimal his-
tograms for R and S for estimating the frequency distribu-
tion of any attribute in J are serial and are the same as the
v-optimal histograms with /!IR and ps buckets, respectively.

3.4 Discussion

It should be noted that, although the same histogram turned
out to be optimal for both query result size and data dis-
tribution estimations, the error formulas and the proofs for
the theorems identifying them are very different. Since the
optimal histogram for estimating the distribution of an in-
put relation (Theorem 3.1) is the same as the j-optimal his-
togram on that relation (Theorem 3.2), henceforth we drop
the suffixj and simply refer to both of them as the optimal
histograms.

There are several important implications of the above
two theorems:

451

1. A single precomputed histogram on each input relation
is sufficient for estimating the data distributions of the
input as well as the result relations most accurately.

2. The optimal histogram on R is independent of S and
vice versa. Each can therefore be identified by focus-
ing on the frequency set of that relation alone. This
histogram will be optimal for any query where the re-
lation is joined on the same attribute with any relation
of any contents.

3. Since the optimal histogram on a relation is the same
as the v-optimal histogram, algorithms for identifying
the latter can be applied to precisely identify the opti-
mal histogram for result distribution estimation. This
is also very significant in practice because the same
histograms can be used for multiple purposes.

4 Construction, Storage, and Effectiveness
of Optimal Histograms

In this section, we deal with the efficiency of construc-
tion and maintenance of optimal serial and end-biased
histograms. Algorithms for constructing both these his-
tograms require computing the frequency distributionof the
attribute, which involves a scan of the relation and exces-
sive CPU costs. In practice, the desired frequencies can
be estimated quite accurately from a small random sample
(ti 2000 tuples) obtained using reservoir sampling [Vit85].
The estimated frequency of a value di is simply niN/n,
where ni is the number of tuples in the sample with attribute
value di, n and N are the total number of tuples in the sam-
ple and the relation respectively.

4.1 Serial Histograms

Construction (Algorifhm OptHist)[IP95a]: The algorithm
identifies the optimal serial histogram with ,L3 buckets on a
relation R as follows. The frequency set of R is sorted and
then partitioned into /3 contiguous sets in all possible ways.
Each partitioning corresponds to a unique serial histogram
with the contiguous sets as its buckets. The error corre-
sponding to each histogram is computed using definition 3.1
and the histogram with the minimum error is returned as op-
timal. In our earlier work we had shown that this.algorithm
is exponential in /? [IP95a].

Storage and Maintenance: Since there is usually no
order-correlation between attribute values and their fre-
quencies, for each bucket in the histogram we need to store
the average of the frequencies in it and a list of the attribute
values mapped to the bucket. Clearly, for a high cardinality
attribute, this structure requires too much space. By storing
the boundaries of buckets instead of the entire set of val-
ues, the space requirements become easily manageable, at
the expense of losing optimality.

4.2 End-Biased Histograms

In our earlier work [Ioa93], we have proved that the v-
optimal biased histogram for a relation R is end-biased.
End-biased histograms are important in practice because
they are inexpensive to compute and maintain as we show
below.

Construction (Algorihn OptBiasHist)[IP95a]: The al-
gorithm works by enumerating all possible end-biased his-
tograms on the chosen attribute and picking one with the
least variance (Definition 3.1). They can be efficiently gen-
erated by using a heap tree to pick the highest and low-
est p - 1 frequencies and enumerating the combinations of
placing them in univalued buckets. Fortunately, the num-
ber of end-biased histograms is approximately equal to the
number of buckets ,0. It can be shown that, given the fre-.
quency set B of a relation R and an integer ,0 > 1, this algo-
rithm finds the optimal end-biased histogram with ,0 buck-
ets in O(M+(P- 1)ZogM) time, where A4 is thecardinality
ofB.

Storageand Maintenance: In order to store an end-
biased histogram, all the univalued buckets (<domain
value, frequency> pairs) need to be stored in some cata-
log structure. By assuming that all other domain values fall
in the multi-valued bucket, we only need to store the fre-
quency corresponding to the multi-valued bucket in the cat-
alog. Since the number of buckets tends to be quite small in
practice (5 20), the space requirement is small and sequen-
tial search of the buckets will be sufficient to access the in-
formation efficiently.

4.3 Database Updates
After any update to a relation, the corresponding histogram
may need to be updated as well. Delaying the propagation
of database updates to the histogram, which is the usual
approach taken by systems, can introduce errors. We are
currently studying appropriate schedules of database update
propagation. Any proposals in that direction do not affect
the results presented here, so this issue is not discussed any
further.

4.4 Comparison of Costs
The above algorithms were implemented on a SUN-SPARC
workstation with a 10 MIPS CPU and their execution times
were observed for varying cardinalities of frequency sets
and numbers of buckets. Table 1 illustrates the difference
in construction costs between the two algorithms. It does
not include the cost for obtaining the frequencies. For end-
biased histograms, the numbers presented are for p = 10
buckets, and are very similar to what was observed for /3
ranging between 3 and 200. The times increase drastically
for the algorithms for the optimal serial histograms. We did
not compute the remaining entries for the serial histograms
because that would take take too much time and the results
obtained already convey the construction cost differences
between the two histograms.

452

z=l , M=lOO (Result Size = 60760)

. _ --- 5000 v +- * ‘.“,, _ --._ + ..____ _.--

5
5 4000-
z
E
‘Z 3000 -
‘5
d
E d 2000-

5
* lOOO-

Uniform
Equi-Width

Equi-Height
End-S:;;:

04
0 5 10 Num&Tof bu%ts 25 30 35 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

(b) Zipf skew (z)

Figure 2: d as a function of the number of buckets. Figure 3: u as a function of skew (z parameter of Zipf).

5 Parallel Joins

Table 1: Construction cost for optimal serial and end-biased
histograms

Time taken (XX)
Number of Serial 1 End-biased

attribute values P=Sl p=51 B= 10

4.5 Effectiveness of Optimal Histograms in Result-
Distribution Estimation

We studied the performance of various histograms with
varying number of buckets and skew in the data. We used
five types of histograms: trivial, optimal serial, optimal
end-biased, equi-width and equi-depth histograms, with the
number of buckets p ranging from 1 to 30. The trivial his-
togram is the usual uniform distribution assumption over
the entire column,. In an equi-width histogram, the num-
ber of attribute values associated with each bucket is the
same; in an equi-depth (or equi-height) histogram, the to-
tal number of tuples having the attribute values associated
with each bucket is the same. The frequency sets of the
relations follow the Zipf distribution, since it presumably
reflects reality [Chr84, Zip49]. Its t parameter takes val-
ues in the range [0 - 51, which allows experimentation with
varying degrees of skew and the number of frequencies (M)
was kept at 100. Figures 2 and 3 show the square root of
variance (Eq. 1) generated by the five types of histograms
as ,B and z are varied respectively [IP95a]. In almost all
cases, the histograms can be ranked in the following order
from lowest to highest error: optimal serial, optimal end-
biased, equi-depth, equi-width, and trivial (uniformity as-
sumption). We can see that the serial and end-biased his-
tograms handle all levels of skew quite satisfactorily and in-
creasing the number of buckets beyond a point adds little to
their accuracies.

2oooc

b
b 15OOa

‘ii
s ‘Z
2 10000
9”
E
$
5 5000
cn

M=lOO, Number of buckets=5

Uniform -
Equi-Width -+----

Equi-Height -‘EL
End-Biased I-

Serial -.A-.-.

I-

l-

I-

‘k.
‘..,

‘..,
‘...

‘h.
‘.,.

‘._,
“R,,

.._,
‘.__

Q...,.

1

In the remainder of the paper, we study an application of our
optimality results to load balancing during parallel Hybrid
hash joins. We assume a shared-nothing environment con-
sisting of several nodes connected by a fast network, simi-
lar to the Gamma system [DGG+86]. Each node consists of
a single CPU with reasonably large memory and two disks
attached to it. All relations are assumed to be partitioned
across all the disks. The exact partitioning algorithm used
is not relevant to our discussion below. More details about
the Gamma system can be.found elsewhere [DGG+86].

5.1 Description of Parallel Hybrid Hash Join Algo-
rithm (P%‘?L~O~JV)

In this section we describe a typical parallel execution of the
Hybrid hash join algorithm [DGS+90]. In the rest of the pa-
per, R and S denote the build and probe relations, respec-
tively. Usually, the smaller relation is chosen as the build
relation. Some of important steps in the algorithm are listed
below. We omit some issues such as hash bucket overflows
in this discussion.

1. Split Table Computation: The split table contains
mappings of attribute values to nodes, which are used
in distributing the tuples below. In Gamma, its compu-
tation is a trivial step, involving mapping the attribute
values to various nodes using a hash function. In gen-
eral, this step may involve more complicated load-
balancing algorithms (to be discussed later).
Next, all the processors execute the following steps:

2. Redistribution: Scan R and S in succession from the
local disk and use the split table to direct the tuples to
the nodes.

3. Build: As the R tuples are being received, build a hash
table using a hash function h. The number of hash
buckets is determined from the amount of available

453

memory and the size of R [Sha86]. The first bucket
is retained in memory, while others are stored on disk.

4. Probe: As the S tuples are being received, hash them
using h. If they map to the first hash bucket, they are
joined with the tuples from the first hash bucket of h!.
Otherwise, they are stored in the corresponding hash
bucket of S on disk. After all the S tuples have been
received, corresponding hash buckets of R and S are
read from the disk and their tuples are joined.

5. Postprocess: The tuples resulting from joining the in-
put relations in the previous step are possibly redis-
tributed across the nodes using another split table, ei-
ther to be stored on disk or to participate in the next
operator in the query.

Next, we present various kinds of skew that affect the
performance of QU’K?c?Z~/.

5.2 Data Skew

Like most parallel operations in a shared-nothing environ-
ment, parallel hash joins also perform poorly under data
skew. Data skew can lead to imbalances’in the number of
tuples processed by each node. This causes problems in re-
alizing high performance because the total runtime of a par-
allel algorithm is determined by the busiest node. We de-
scribe the two most important kinds of skew identified in
the literature [WDJ91], which cause load imbalances dur-
ing join execution.

1. Attribute Value Skew (AVS): It arises due to non-
uniform data distributions in the join attribute in the
input relations. It may result in biased distributions of
data among the nodes when the split table maps values
to nodes without taking their frequencies into account.
This causes different workloads across nodes during
join processing, bucket overflows when nodes are al-
located very large hash buckets, and network hot spots
because few of the nodes may receive a large number
of tuples.

2. Join Product Skew (JPS): It arises due to differences
in the join selectivities of data processed by different
nodes. It can occur even if R and S have no AVS and
is one of the subtler kinds of skew to detect. It mainly
affects the postproces.s phase of join execution, by re-
quiring a node with large output to do more work dis-
tributing the result tuples.

5.3 Cost Model

The goal of a load-balancing algorithm is to equalize load
(the amount of CPU and I/O work) done by various nodes
participating in the parallel execution. In this section, we

’ develop a numerical measure to capture the effects of AVS
and JPS on the load on each node duringQ‘MgC32N. We

first develop a cost formula W(d) to measure the load con-
tributed by an attribute value d to the node processing tuples
with that value. The notation used in deriving the formula
for W(d) is listed in Table 5.3.

Clearly, W(d) consists of contributions from the CPU
and disk costs:

W(d) = CPU(d) + IO(d).

Each of the terms above is given by the following formulas:

CPU(d) = (build x fR(d)) + (probe x fs(d))

+(s$it x fJ(d)) + (mcv x fR(d))
+(recv x fs(d)) + (send x fJ(d))

IW4l IO(d) 2: disk x (1 - - JR(d),) (‘R(d)’ + ‘S(d)‘)

We do not include the costs of scanning and sending the
build and probe tuples because these costs neither depend
on nor affect the load-balancing technique. The I/O cost due
to d depends on the type of the hash bucket to which d is
mapped (i.e, the first bucket or overflow bucket or one of
the other buckets). This, in turn, partially depends on the
frequencies of other values in the relation as well as the fre-
quencies of all values mapping into that bucket of d. Hence,
in general the I/O cost due to d depends on other attribute
values as well. For our load balancing algorithm, however,
it is necessary to capture IO(d) in terms of the frequency
of d alone. We thus approximate IO(d) by the I/O cost of
executing a join with fR(d) and fs (d) tuples in its build
and probe relations, respectively. 1 Ro(d) 1 is the number of
pages in the first hash bucket of the build relation for this
join. The term (1 - l/$$$) is the fraction of the build re-
lation that needs to be written to disk. The value of (Ro (d) 1
given below is taken from [Sha86]:

IRo(= IMI - “T$rl’“’

Using this in the formula for IO(d), we obtain the follow-
ing:

IO(d) 21 disk x ([R(d)1 + IS(d

WI2
‘(’ - IR(d)l (IMI - 1) + ,Mr- 1)

= disk x (IWI + IS(- lMl (I+ ,R(d), IS())

Using the values in Table 3 (given in section 7.1) for the.
cost parameters in the above formulas, we obtain the fol-
lowing formula for W(d) (in milliseconds):

W(d) N 243.4 [R(d)1 + 297.0 IS(d)(+ 327.6 jJ(d)l

IS(d) I
-25 i”i ci + lR(d)l) (2)

454

J
fx (4
IV) I

PI
F

build
probe
split
send
recv
disk

Table 2: Description of terms used in the cost model
Result of joining relations R and S
Frequency of d in relation X, X E {R, S, J}
Number of pages necessary to hold the tuples with value d in relation X (i.e., IX(d) (
Number of main memory pages
“Fudge factor” to take into account space overheads of a hash table (2 1.4) [Sha86]
Cost of inserting a tuple in the build hash table
Cost of probing the hash table for a single tuple
Cost of hashing a tuple using a split table
Cost of writing a tuple into the output buffer
Cost of reading a tuple from the input buffer
Disk I/O cost for a page after the redistribution phase

The load on a node is simply the sum of the costs W(d)
of all the values d mapped to that node by the split table,
where W(d) is computed using (2). Note that, despite our
attempts to choose a reasonable model for the execution en-
vironment, the parameter values in the cost formula (or the
cost formula itself) may be different in any given real sys-
tem. In that case, the cost formula must be approppriately
updated.

5.4 Histogram Optimality in Load Balancing

In section 5.3, we introduced thecost formula for W, which
depends only on the frequency distributions of the join at-
tribute Q in the two input relations R, S and in thejoin result
J. We have developed a load balancing algorithm, called
‘HZS’H, that makes use of this formula in creating a split
table, so that the loads on all the nodes in the system are ap-
proximately equal, thus achieving load balancing. In order
to estimate the cost formula most accurately, we need rea-
sonably accurate approximations of these three data distri-
butions. This is precisely what we achieved in Theorems
3.1 and 3.2, which show that the v-optimal histograms con-
structed on rr in R and S identify the data distribution of a
in R, S, and J most optimally. Next, we present describe
our algorithm for load balancing.

5.5 Histogram-Based Algorithm for Skew Handling
(%ZS31)

Let HA and Hg be the optimal histograms on the join at-
tribute of two input relations A and B, respectively, pre-
computed using algorithm OptBiasHist (section 4). The
first phase of ‘liZS’?i below analyzes the input relations to
make some important decisions for join execution3. The
second phase computes the split table for load balancing.
Some of the techniques presented in the second phase were
originally proposed by Dewitt et al. in [DNSS92].

Analysis Phase: The histograms HA and HB are ana-
lyzed to detect the levels of AVS in the input relations. We

3 In practice, this step will be performed by the optimizer w~hile choos-
ing the optimal query plan.

use the variance of the frequencies in the approximate dis-
tributions as a measure of skew. Next, the build and probe
relations are chosen from A and B for the best join perfor-
mance. Let A be the smaller relation. If the level of skew
in both the relations is very small, exit from this algorithm
and execute P?i?tJOZN without load balancing, with A
as the build relation R and B as the probe relation S. If A
is much smaller than B or fits in memory, choose A as the
build relation R and B as the probe relation S. Otherwise,
choose the relation with the highest skew as the probe rela- .
tion S and the other relation as the build relation R. This
choice is justified in our experiments (Section 7.4).

Partition Phase: The cost formula W (Eq. 2) is eval-
uated for the attribute values in the histograms using their
frequencies from the approximate frequency distributions
of R, S and J. Next, the attribute values are divided into a
fixed number of partitions, which are assigned to the nodes
in a round robin scheme, such that the sum of W over all
values in the partitions are approximately equal. Values not
occurring in the histogram are assumed to be mapped to the
nodes using a static hash function, similar to Gamma. In
order to avoid large hash buckets that arise when the same
value occurs with very high frequency, an attribute value
may be mapped to multiple nodes [DNSS92]. In this case,
the fraction of W(d) assigned to each node is also recorded
in the split table. During the redistribution phase of thejoin,
tuples from one of the relations having’d in their join at-
tribute are sent to various nodes in proportion of these frac-
tions. For correctness all the tuples from the other rela-
tion with this attribute value should be sent to each such
node (i.e., multicast), incurring some additional overhead.
In our algorithm, tuples from the relation with the smaller
frequency of d are multicast in order to minimize the num-
ber of tuples processed. The results of our experiments on
handling skew in the probe relations (section 7.4) justify
this decision.

The number of partitions is chosen as k x v, where k is
the number of nodes and v is the fixed number of virtual

455

processors per node [DNSS92]. The number 21 is chosen so
that there are small partitions and an attribute value d occur-
ring with high frequency is mapped to multiple partitions.

5.51 cost of 312sx

Since the histograms on the base relations are usually pre-
computed, their construction does not add to the cost of
XZS7i which is run at join execution time. %!cZSX incurs
no additional I/OS other than reading the small histogram
structures from the catalogs, which are usually present in
main memory. The CPU costs during the two phases are
also negligible because the number of buckets in the his-
tograms is very small (typically 20). The only significant
cost is incurred during join processing because some of the
attribute values may be mapped to multiple nodes, thus in-
creasing the size of the split tables and hence the search
time. But, our results show that this cost is insignificant
compared to the savings in the execution time overhead
from load balancing.

6 Earlier Approaches to Load Balancing

Most of the earlier approaches can be classified into two cat-
egories - Conventional and Sampling-Based. Based on ear-
lier analyses of these algorithms [HY95] and our own stud-
ies, we have identified the best proposed solutions in both
classes. Their split table computation phases are described
below.

6.1 Conventional : Extended Adaptive Load Balanc-
ing Parallel Hash Join (ABP)

This algorithm was proposed in [HL91]. Each node scans
and partitions its local portion of build relation into hash
buckets and stores them back on the disk. All nodes re-
port the sizes of their portions of the hash buckets to a pre-
designated coordinator. The coordinator creates a split ta-
ble by mapping the hash buckets to the nodes so that ap-
proximately the same number of tuples are allocated to each
node.

This approach incurs an additional read and write of the
relation if the local partitions of relations do not fit in mem-
ory. Also, since alltuples with the same attribute value are
sent to a single node, some nodes may end up with a very
large hash bucket in case of skewed distributions and the al-
gorithm fails to balance load. Finally, the algorithm ignores
AVS of the probe relation and JPS.

6.2 Sampling-Based : Virtual Processor Partitioning
WPP)

This algorithm was proposed in [DNSS92]. A small sample
of the relations is collected and the relation with the highest
skew is chosen as the build relation. The sampled attribute
values are sorted and partitioned into (k x v) equal sized
partitions, where k is the number of nodes and w is a fixed

number of virtualprocessors per node. These partitions are
assigned to the nodes using a simple round robin scheme,
resulting in a split table.

Compared to d&7+, this approach replaces a complete
scan of the relations by an inexpensive sampling phase.
Like %ZS’?t, this algorithm also maps a frequent value to
multiple nodes, thus handling AVS better than d&T'+. But,
this algorithm ignores AVS in the probe relation (once the
build and probe relations are chosen) and JPS. Also, page
level sampling can introduce errors when the tuples in a
page are correlated on the join attribute, e.g, when the re-
lation is clustered on that attribute.

7 Experiments

In this section, we study the performance of the four
load balancing algorithms: BASIC (no load balancing),
dBJ+, VPP, and 3cZS31, under various inputs and sys-
tem parameters.

7.1 Execution Environment

All our experiments were conducted on a simulator for the
Gamma parallel database system. The basic simulator was
written in the CSIM/C++ process-oriented machine lan-
guage and accurately captures the algorithms and costs of
Gamma [Bro94]. The simulator assumes uniform data, so
its use of split tables is trivial. Hence, we enhanced it with
the capability to operate on non-uniform data and to use a
split table computed by the load balancing algorithms. We
describe some relevant parts of the simulator below.

Query Processing: The query is submitted by a simu-
lated terminal to the scheduler process. A thread is created
for every simulated node for each operator to be executed.
The scheduler sets up communication channels with these
threads and broadcasts the split table and the operator to be
executed. Each thread executes the operator on the tuples
from a simulated disk corresponding to its node. Resulting
tuples are redistributed using the split table. This process is
repeated for every operator in the query plan.

Hardware Environment: The simulator models la-
tency in the interconnection network but assumes a very
large bandwidth. This is in agreement with most real sys-
tems (iPSC/2 Hypercube, CM-5, Paragon). Communica-
tion between threads is in units of 8 KByte messages. The
disk is modeled based on the Fujitsu Model M2266 (1 GB,
5.25”) disk drive. The CPU is scheduled using a round-
robin policy and the page replacement in the buffer pool is
based on LRU with love/hate [Ht90] hints. The instruction
counts for various operations in the validated simulator are
taken from [SN93] and are listed in Table 3.

7.2 Experiment Testbed

Algorithms: The following algorithms are used to compute
the split table in ‘P’?KU~c1Z~. All the experiments com-
pute the time taken by PW?L?OZN using the split table

456

CPU Cost Parameter
Table 3: Simulation Parameter Settings

] No. Instr.)I Configuration/NodeParameter 1 Value

____ _- r-- ----- - -- I--- ------ , ___ - ____ __-_- ___.. ___.. - _ -.--. --.I--

Probe Hash Table 200 I] Disk Settle Time 2.0 msec
Insert Tuple in Hash Table I

I
100 11 Disk Transfer Rate

II --~~ ----~~---~
3.09 MB/set

HashTuple ~_ I usine Solit Table 1 I 500 II Disk CacheC II ~~~~ ontext Size 4 pages
ADOIV a Predicate 100 11 Disk Cache Size 8 contexts

I. .

Copy 8K Message to Memory
Message Protocol Costs

10000 Disk Cylinder Size
1000 Sampling Overhead

83 pages
0.6 set

resulting from these schemes, including the time taken by of unique values was chosen, up to 1 million, depending on
the split table computation step. the skew such that the lowest frequency equals 1.

l BdSZC: No load balancing. For this algorithm, we
obtained the split table by mapping equal number of
attribute values to the nodes.

7.3 Effect of Virtual Processors on the Performance of
?-US31

l d&7+: Extended adaptive load balancing (section
6.1).

l VPP: Sampling-based virtual processor partitioning
(section 6.2). The number of virtual processors per
node was fixed at 60 as recommended in [DNSS92].
Sample size was fixed at 14400 tuples.

l 7iZS’X: Histogram-based skew handling (section
5.5). In order to study the effects of AVS in the probe
relation, the Analysis Phase of ‘liZS%! was not exe-
cuted in any of the experiments. All experiments were
conducted using the optimal end-biased histograms
obtained from a sample of 14400 tuples from the data.
The number of buckets in the histogram was fixed at
20, because accuracy is not very sensitive to the num-
ber of buckets beyond this. The number of virtual pro-
cessors per node was varied from 1 to 100 in the first
experiment (section 7.3) and fixed at a single value of
60 for all the subsequent experiments.

In section 5.5, we briefly described the role of the number of
virtual processors (v) in ‘l-lZS%. While higher values of w
ensure that a value with high frequency is mapped to mul-
tiple nodes, they also incur overheads due to multicasting
tuples to many nodes. We conducted experiments to mea-
sure this trade-off in terms of the time taken for join execu-
tion for different values of 21 ranging from 1 to 100. Build
relation’s skew was varied from z = 0 to 2 = 5 and probe
relation was chosen to be uniform. Based on the results we
decided to use n = 60 for all our remaining experiments
[PI96]. The same value was arrived at in [DNSS92] also.

Resources: The number of nodes participating in the
join was fixed at 16, except for the speed-up experiments.
Scheduling and other administrative operations were run on
a separate node. Values of other resources are given in Ta-
ble 3.

7.4 Effect of Attribute Value Skew

The first experiment studies the effect of AVS in the build
relation’s join attribute. The skew is varied from t = 0 to
,z = 5. The probe relation is chosen to have a uniform dis-
tribution. The results are plotted in Figure 4. It can be seen
that as skew increases, dBJ’+ fails to balance load, be-
cause it does not distribute the large join buckets containing
the most frequent values. On the other hand, both ?lZS’Jf
and YPP handle AVS in the build relation satisfactorily be-
cause they split these large hash buckets.

m: All the input relations consisted of 220 (approx-
imately 1 million) tuples of 100 bytes each. Frequencies
of the join attribute values are taken from the Zipf distri-
bution [Zip49, Chr84]. Skew is modeled by varying the z
parameter of the Zipf distribution from 0 to 5. The number

The second experiment studies the effect of AVS in the
probe relation, while the build relation is chosen to be uni-
form, and the results are plotted in Figure 5. For this case,
V’PP will choose the skewed relation as the build relation
and have the same performance as in the previous experi-
ment. For comparison purposes, we are including the re-
sult of running YPP by forcing it to use the skewed rela-
tion as the probe relation. We call this modified algorithm
VPP’. d&7+ performs the worst because it totally ig-

451

2500 , A

2000 -

g 1500.

2
I=
.c lOOO-
4

~ BASIC +
, ABJ+ .d....

VPP --a-
HISH -*---

0 1 2 3 4 5
skew (z)

Figure 4: Effect of Build Relation Skew.

nores the skew in the probe relation. It is clear that 31ZSX
almost completely eliminates the effect of probe relation’s
skew on join performance, because it distributesvalues with
high frequency in the probe relation across multiple nodes.
Note that all algorithms perform significantly better than in
the previous experiment, justifying our decision to use the
most skewed relation as the probe relation.
7.5 Effect of join product skew

In this experiment, we restricted the attribute value skews of
both the build and probe relations to be very small (0 - 0.8).
Even these low AVS values can still result in significant
JPS. The performance results shown in Figure 6 demon-
strate that ?&!GJf achieves significantly better load balanc-
ing. This is because its cost formula W takes JPS into ac-
count, while other schemes fail to detect it.

8 50000-

.E 40000 -
I-

5 3OOoo-

20000 -

10000-I
/ ,A
,’ 0 __

0 0.2 0.4 0.6 0.8 1
skew (z)

Figure 6: Effect of Join Product Skew.

7.6 Speed-up Performance

Load imbalances have significant adverse effects on the
speed-up of a parallel system. Hence, we studied the behav-
ior of various load balancing algorithms as system config-
uration is varied. To study speed-up, the number of nodes
was varied from 1 to 19. Data in both the inputrelations was
moderately skewed (.z = 0.6). The join costs for various

220- BASIC *
ABJ+ -+---

200- vpp’ ..B...
180- HISH -*

160-

140-

-I
0 1 2

eke: (z)
4 5 6

Figure 5: Eflect of Probe Relation Skew.

algorithms are plotted in Figure 7. The curve IDEAL cor-
responds to a hypothetical algorithm with linear speed-ups
and is included for comparison purposes. It is clear that all
the load balancing algorithms (d&7+, VPP, and ‘KZS%)
have very good speed-ups, with 312831 having almost lin-
ear speed-up. Referring back to Figure 6, it becomes clear
that for higher skews 31ZS31 will perform much better than
the other two algorithms. -

5OGQ
r

4500 -

4000-

3500-

3 3000.

E 2500 -
I=
.c 2OOQ-
3

1500-

iooo-

BASIC -
ABJ+ ---- “pp ..o....
HISH -n --

IDEAL ----

5 10 15
Number of Nodes

Figure 7: Speed-Up Performance.

8 Conclusions

Estimation of result distributions plays an important role in
several components of a DBMS. Using precomputed his-
tograms is a feasible technique in practical systems. A
major result of the paper is that the same histograms on
database relations are optimal for estimating the distribu-
tion of those relations as well as the results of equi-joins,
and are independent of all other relations in the database.
These histograms were also shown earlier to be optimal for
join selectivity estimation, thus establishing their univer-
sality. As a special application, we also developed an effi-
cient solution for load balancing in parallel DBMSs by han-
dling all kinds of skew in the data. We derived a cost for-

458

mula for the load on a machine which captures the effects
of various kinds of skew. We presented a load balancing
algorithm which uses histograms on the base relations to
estimate the cost formula and balances the load across all
the nodes. Experimental comparison with the current state-
of-the-art approaches demonstrated that our algorithm bal-
ances load most effectively under all levels and kinds of
skew.
Acknowledgements: The idea of using optimal histograms
in the context of load-balancing was suggested to us by
Sridhar Chandrasekharan. The authors are also grateful to
Minos Garofalakis, Joe Hellerstein, Navin Kabra, and Dha-
rani Nandakuru for carefully reviewing the paper, and to
Prof. David Dewitt for correcting some of our citations to
work in parallel databases.

References
[B+ 901

[Bro94]

[Chr84]

[DGG+ 861

[DGS+ 901

[DNSS92]

[H+90]

[HL91]

[HY95]

[IC91]

[Ioa93]

H. Boral et al. Prototyping Bubba: A highly paral-
lel database system. IEEE Knowl. Data Engineering,
2(l), March 1990.
Kurt Brown. Zetasim user’s guide. Unpublished
Manuscript, Univ of Wisconsin, Madison, 1994.
S. Christodoulakis. Implications of certain assump-
tions in database performance evaluation. ACM
TODS, 9(2): 163-186, June 1984.
David J. Dewitt, R. H. Gerber, Goetz Graefe, M. L.
Heytens, K. B. Humar, and M. Mu-
ralikrishna. GAMMA - a high performance dataflow
database machine. Proc. of the 12th Int. Conf: on Very
Large Databases, August 1986.
David J. Dewitt, S. Ghandeharizadeh, D. A. Schnei-
der, A. Bricker, H. I. Hsiao, and R. Rasmussen. The
Gamma database machine project. IEEE Trans. on
Knowledge and Data Eniineering, 2(l), 1990. .

David J. Dewitt, J. F. Naughton, D. A. Schneider,and
S. Seshadri. Practical skew handling in parallel joins.
Proc. of the 18th Int. Cor$ on Very Large Databases,
August 1992.
Laura Haas et al. Starburst mid-flight: As the dust
clears. IEEE Trans. Knowledge Data Eng., 2(l),
1990.
Kien A. Hua and Chiang Lee. Handling data skew
in multiprocessor database computers using partition
tuning. Proc. of the 17th Int. Conj on Very Large
Databases, September 199 1.
Kien A. Hua and Honesty C. Young. A performance
evaluation of load balancing techniques for join oper-
ations on multicomputer database systems. Proc. of
IEEE Con$ on Data Engineering, 1995.
Yannis Ioannidis and Stavros Christodoulakis. On the
propagation of errors in the size of join results. Proc.
of ACM SIGMOD ConA pages 268-277,199l.
Yannis Ioannidis. Universality of serial histograms.
Proc. of the 19th Int. Con5 on Very Large Databases,
pages 256-267, December 1993.

[IP95a]

[IP95b]

[K090]

[LY88]

[MD881

[PI961

[PIHS96]

[PSC84]

[SD891

[Sha86]

[SN93]

[St0861

[Vit85]

[WDJ91]

[Zip491

Yannis Ioannidis and Viswanath Poosala. Balancing
histogram optimality and practicality for query result
size estimation. Proc. of ACM SIGMOD Conf, pages
233-244, May 1995.

Yannis Ioannidis and Viswanath Poosala. Histogram-
based solutions to diverse database estimationprob-
lems. IEEE Data Engineering Bulletin, 18(3):10-18,
December 1995.

Masaru Kitsueregawa and Yasushi Ogawa. Bucket
spreading parallel hash: A new, robust, parallel hash
join method for data skew in the super databasecom-
puter (SDC). Proc. of the 16th Int. Cons on Very
Large Databases, 1990.

S. Lakshmi and P. S. Yu. Effect of skew on join
performance in parallel architectures. Proc. of In-
ternational Symp. on Databases in Parallel and Dis-
tributed Systems, December 1988.

M. Muralikrishna and David J Dewitt. Equi-
depth histograms for estimating selectivity factors for
multi-dimensional queries. Proc. of ACM SIGMOD
Conf, pages 28-36,1988.

Viswanath Poosala and Yannis Ioannidis. Estima-
tion of query-result distribution and its application in
parallel-join load balancing. Unpublished technical
report, University of Wisconsin-Madison, July 1996.

Viswanath Poosala, Yannis Ioannidis, Peter Haas,
and Eugene Shekita. Improved histograms for selec-
tivity estimation of range predicates. Proc. of ACM
SIGMOD Con$ pages 294-305, June 1996.

Gregory Piatetsky-Shapiro and Charles Connell. Ac-
curate estimation of the number of tuples satisfying a
condition. Proc. of ACM SIGMOD Conf, pages 256-
276,1984.

Donovan A. Schneider and David J. Dewitt. A
performance evaluation of four parallel join algo-
rtihms in a shared-nothing multiprocessor environ-
ment. Proc. ofACMSIGMOD Conf, June 1989.

Leonard D. Shapiro. Join processing in database
systems with large main memories. ACM Transac-
tions on Database Systems, 11(3):239-264, Septem-
ber 1986.

Ambuj Shatdal and Jeffrey F. Naughton. Using
shared virtual memory for parallel join processing.
Proc. of ACM SIGMOD ConJ May 1993.

Michael Stonebraker. The case for shared nothing.
Database Engineering, 9(l), 1986.

J. S. Vitter. Random sampling with a reservoir. ACM
Trans. Math. Sojware, 11:37-57,1985.

C. B. Walton, A. G. Dale, and R. M. Jenevin. A tax-
onomy and performance model of data skew effects
in parallel joins. Proc. of the 17th Int. Con5 on Very
Large Databases, April 199 1.

G. K. Zipf. Human behaviour and the principle of
least effort. Addison-Wesley, Reading, MA, 1949.

459

