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Abstract 

Many commercial database systems use some 
form of statistics, typically histograms, to summa- 
rize the contents of relations and permit efficient 
estimation of required quantities. While there has 
been considerable work done on identifying good 
histograms for the estimation of query-rest&sizes, 
little attention has been paid to the estimation of 
the data distribution of the result, which is of im- 
portance in query optimization. In this paper, we 
prove that the optimal histogram for estimating 
the size of the result of a join operator is optimal 
for estimating its data distribution as well. We 
also study the effectiveness of these optimal his- 
tograms in the context of an important application 
that requires estimates for the data distribution of 
a query result: load-balancing for parallel Hybrid 
hash joins. We derive a cost formula to capture 
the effect of data skew in both the input and out- 
put relations on the load and use the optimal his- 
tograms to estimate this cost most accurately. We 
have developed and implemented a load balanc- 
ing algorithm using these histograms on a simula- 
tor for the Gamma parallel database system. The 
experiments establish the superiority of this ap- 
proach compared to earlier ones in handling all 
kinds and levels of skew while incurring negligi- 
ble overhead. 
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1 Introduction 

Several aspects of query processing in a database man- 
agement system (DBMS) depend on the distribution of at- 
tribute values in the input relations to the query operators. 
For example, selectivities of operators, which are used by 
query optimizers in choosing the most efficient access plan 
for a query, are dependent on the data distribution in the in- 
put relations. Computing and maintaining accurate knowl- 
edge about the distributions can be prohibitively expen- 
sive for data with high cardinality. Hence, most commer- 
cial database systems maintain some statistics to approxi- 
mate the data distributions of the relations in the database, 
and make estimates based on these statistics. In several 
cases, such as query optimization and approximate query 
processing, the data distributions of intermediate query re- 
sults in a query may themselves be of importance. For ex- 
ample, in a query in which the result of an operator opi is 
used as the input to an operator 0~2, the data distribution of 
opl ‘s result is required to estimate 0~2’s selectivity. None 
of the current systems, however, permit good estimates of 
the distributions of intermediate relations. The resulting es- 
timates are often inaccurate and may undermine the validity 
of the particular application using these estimates. For ex- 
ample, earlier work has shown that errors in selectivity esti- 
mates may increase exponentially with the number of joins 
[IC91]. This result, in conjunction with increasing com- 
plexity of queries, demonstrates the critical importance of 
statistics that provide better estimates. 

In this paper, we will be studying the importance of accu- 
rately estimating the data distributions of query results and 
database relations and demonstrating its application in the 
context of parallel DBMSs. For more than a decade, mul- 
tiprocessor database systems have been held as viable al- 
ternatives to traditional mainframe computers for process- 
ing large transactions. A few implementations of paral- 
lel database systems (e.g., [DGS+90, B+90]) based on the 
shared-nothing hardware architecture [Sto86] have verified 
that among multiprocessor systems, this architecture offers 
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the most dramatic scale-up and speed-up performance. This 
high performance is achieved mainly because, the most ex- 
pensive operator in query processing, namely join, can be 
parallelized very efficiently. Research has shown that hash 
join algorithms can be very effectively parallelized, offer- 
ing almost linear speed-up [SD89, DGG+86]. While this 
claim is true in the ideal case, skew in the underlying data 
introduces load imbalances in parallel join execution that 
can have a devastating effect on performance [LY88]. Dif- 
ferent kinds of skew have been identified, each affecting 
the parallel hash join at different stages. The skew in the 
distribution of the join attribute in the input relations (at- 
tribute value skew) affects the amount of join processing on 
each node, while the skew in the distribution of the join at- 
tribute in the result relation Cjoin product skew) affects the 
amount of work done by each node after join processing, 
e.g., for storing or transferring the result tuples [WDJ91]. 
Also, skew in the distribution of any attribute in the join re- 
sult (not necessrarily the join attribute) that participates in 
the next operator’s processing affects the load distribution 
during that operator’s processing. 

Most load-balancing algorithms use estimates of the 
skew in the input data distributions in order to distribute 
load among processors. When the input is a relation in 
the database, its attribute value skew can be estimated ef- 
ficiently using precomputed statistics or sampling tech- 
niques, before the join processing begins. But, no effi- 
cient techniques exist to precompute the skew in the at- 
tributes in the result relation. Nearly all the earlier efforts to 
load balancing in the shared-nothing architecture have fo- 
cused on handling attribute value skew in the build relation 
[KO90, HL91, DNSS92]. As we show later, attribute value 
skew in the probe relation and join product skew can have 
significant impact on the performance of parallel join exe- 
cution. The algorithm due to Shatdal and Naughton [SN93] 
handles join product skew as well as attriubute value skew 
in the build and probe relations in the context of a shared 
virtual memory architecture by dynamically distributing tu- 
pies to idle nodes during join processing. 

From the above discussion it appears that, query result 
distribution plays an important role in obtaining general so- 
lutions to the problems of load balancing and selectivity es- 
timation. In this paper, we propose histogram-based tech- 
niques to approximate the distributions of data in the base 
relations and the query result. Histograms use a small num- 
ber of buckets to approximate the data distribution of each 
attribute, and are usually precomputed for the relations in 
a database. Due to their typically low-error estimates and 
low costs, they are the most commonly used form of statis- 
tics in practice (e.g., DB2, Informix, Ingres, Sybase) and 
are the focus of this paper. While there has been consid- 
erable work on identifying good histograms for estimating 
the result sizes of various query operators with reasonable 
accuracy [PIHS96, IP95b, IP95a, MD88, PSC84], we are 
not aware of any work on estimation of query result distri- 

butions using any kind of statistics. In our earlier work on 
histograms [IP95a], we have identified the optimal class of 
histograms (serial histograms) for minimizing errors in se- 
lectivity estimation of of selections and equi-joins. A tax- 
onomy of histograms, several efficient construction algo- 
rithms, and accurate histograms for selectivity estimation of 
range queries are published in [PIHS96]. 

In this paper, we identify the optimal histograms in ap- 
proximating the data distributions of query results, and ap- 
ply them in balancing load during parallel Hybrid hash joins 
[Sha86]. The following are the primary novel contributions 
of our work: 

A theorem that, among all possible histograms requir- 
ing the same storage space, identifies the optimal ones 
for approximating the distribution of data in the at- 
tributes of database relations as well as in the results 
of equi-joins. We show that the same serial histograms 
on the input relations are optimal for estimates of the 
data distributions of both input and output relations. A 
very important aspect of this result is that these opti- 
mal histograms are the same histograms that are opti- 
mal for selectivity estimation, thus showing their uni- 
versality. 

A new and efficient algorithm for load balancing that 
is based on a cost formula for the join execution. The 
formula is expressed in terms of the data distributions 
of the input relations and the join result and captures 
the effects of various kinds of skew on performance. 

The idea of using the optimal histograms on the input 
relations to approximate all three necessary frequency 
distributions. The main benefit of this is that the load 
balancing algorithm mentioned above incurs minimal 
runtime overhead, since histograms are precomputed. 

We have conducted experiments demonstrating the im- 
portance of using optimal histograms for result distribution 
estimation by comparing them with traditional histograms. 
In the context of load-balancing, we have also implemented 
a conventional algorithm, a sampling-based algorithm, our 
histogram-based algorithm, and the basic Hybrid hash join 
algorithm without load balancing in a simulator for the 
Gamma parallel database system [Bro94] and have studied 
their performance under various inputs. For the histogram- 
based algorithm, we use end-biased histograms, a sub-class 
of serial histograms, which can be constructed and stored 
very inexpensively and have proved very effective in selec- 
tivity estimation. The results of our experiments show that 
our overall approach, using optimal end-biased histograms, 
deals with all kinds and levels of skew most effectively 
while requiring negligible runtime overhead. 

All theorems in this paper are given without proof due to 
lack of space. The full proofs, as well as the results of some 
more experiments, can be found in a longer version of this 
paper [PI96]. 
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2 Definitions and Problem Formulation 

The query operators that we consider are equi-join predi- 
cates of the form R.A = S.B, where A and B are real or 
integer-valued attributes in relations R and S respectively. 

2.1 Data Distributions 

Let 2) = { dk ] 1 5 Ic 5 I< for some integer K} be the domain 
of the join attribute Q in some relation X. The frequency 
fx(&) of value dk is the number of tuples in X with dk 
in a~‘. Consider an equi-join query of relations R and S on 
attribute cr. It is easy to see that the frequency of dk in the 
join result J is given by 

fJ(dk) = h(b) X fs(dk). 

2.2 Histograms 

In a histogram on cr, the set V is partitioned into buckers and 
a uniform frequency distribution is assumed within each 
bucket. That is, for any bucket b in the histogram, if dk E b 
then f(dk) is approximated by the average of the frequen- 
cies of all the values in that bucket. Note that any arbitrary 
subset of V may form a bucket, e.g., bucket {dl , dy}. For 
brevity of notation, we sometime refer to the histogram on 
the join attribute of a relation simply as the histogram on 
that relation. In general a histogram can be constructed on 
multiple attributes of a relation. 

The example in Figure 1 illustrates the above by listing 
two different histograms on an attribute of relation with two 
buckets in each. The frequencies of all the attribute values 
are listed in Figure 1 a. Figures 1 b and 1 d show the grouping 
of frequencies into buckets for the two histograms. Figures 
lc and le show the resulting approximate frequencies. 

Next we define a class of histograms that is important to 
the problem at hand. 

Definition 2.1 [Ioa93] A histogram for attribute 0 of a re- 
lation is serial, if for all pairs of buckets 61, ba, either tldk E 
bl, dl E ba, the inequality f(dk) 2 f(dl) holds, or Vdk E 
bl, dl E bz, the inequality f(dk) < f(dl) holds. 

Note that the buckets of a serial histogram group fre- 
quencies that are close to each other with no interleaving. 
For example, in Figure 1, Histogram- 1 is a serial histogram 
while Histogram-2 is not. This is in contrast to the tradi- 
tional equi-width and equi-deprh histograms which group 
contiguous ranges of attribute values into buckets. 

A histogram bucket whose domain values are associated 
with equal frequencies is called univalued. Otherwise, it is 
called multivalued. Univalued buckets characterize the fol- 
lowing important classes of histograms. 
Definition 2.2 [Ioa93] A histogram with p - 1 univalued 
buckets and one multivalued bucket is called biased. If 

1 We often denote the frequency simply as f (dk ) when the name of the 
relation is clear from the context. 

these univalued buckets correspond to the domain values 
with the p - 1 highest and lowest frequencies, then it is 
called end-biased. 

Note that end-biased histograms are serial. 

3 Histogram Optimality 

Let R and S be two relations participating in the equi-join 
on attribute cr, and J be the resulting relation. We estimate 
the data distributionof & in J from the histograms on R and 
sas: 

f;(d) = fkb-4 x f;(d). 

where, J$ (d) is the approximate frequency of d in relation 
X, obtained from a histogram. 

An important issue to be addressed is the accuracy of 
these estimations. For this purpose, we first define the er- 
ror incurred in using an approximate frequency distribution. 
The following metric is a standard measure of the deviation 
between two distributions. 

Definition 3.1 The error of a histogram in approximating 
the frequency distribution of an attribute (Y of relation X is 
defined as the squared deviation of the actual and approxi- 
mate distributionsover all the attribute values in the domain 
V of o, i.e, 

E(X) = ~(fx(d) - fkW2. 

Since the number of histogram buckets is determined by 
the available catalog space, accuracy depends only on how 
the domain values are grouped into buckets in the two his- 
tograms. In the next few sections, we present the results 
identifying the optimal histograms on the input relations 
R and S, which minimize the errors in estimating the fre- 
quency distributions of R, S, and the join result J. 

3.1 V-optimal histograms 

In this section, we characterize an important class of his- 
tograms, which are relevant to our optimality results. First 
some useful notation: 

bi The i-th bucket in the histogram, 1 5 i 2 p 
(numbering is in no particular order). 

Pi The number of frequencies in bucket bi. 

x The variance of the frequencies in bucket bi .2 

Define the variance of a histogram to be 

Y=&pjv,. 
i=l 

(1) 

2v, = c , dE6 (f(4--d2 
Pi 

, ai is the average of frequencies in b,. 
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Figure 1: Example Histograms. 

Definition 3.2 The v-optimal histogram on an attribute is 
the histogram with the least variance among all the his- 
tograms using the same number of buckets. 

In our earlier work, we have shown that the v-optimal 
histogram on any relation R is serial and is optimal (on the 
average) for estimating the result sizes of equality join and 
selection queries in which R participates [IP95a]. In the 
taxonomy of histograms presented in [PIHS96], these his- 
tograms are called v-optimal-serial(~ F) histograms. In the 
next two sections, we prove that the v-optimal histogram 
plays a very important role in estimating the data distribu- 
tion of database relations and join results. 

3.2 Optimal Histograms for Estimating the Frequency 
Distributions of the Input Relations 

Histogram optimality in estimating the frequency distribu- 
tions of R and S is defined as follows: 

Definition 3.3 For relation Y E {R, S}, let 31~ be a col- 
lection of histograms of interest. The histogramHy E 3cy 
is optimal for Y within 31y, if it minimizes E(Y) (Defini- 
tion 3.1). 

The following theorem identifies the optimal histograms 
on the input relations. Its proof is given in [P196]. 

Theorem 3.1 Consider a database relation Y E {R, S} 
and a given number of buckets /3. The optimal histogram 
for estimating the frequency distribution of Y is serial and 
is the same as the v-optimal histogram with /3 buckets. 

3.3 Optimal Histograms for Estimating the Frequency 
Distribution of the Join Relation 

In this section, we define histogram optimality in estimat- 
ing the frequency distribution in any attribute of the join re- 
sult J. It turns out that the histogram on the join attribute 
of R that is optimal for estimating the distribution of the 
attributes in J also depends on the distribution of the join 
attribute in S and vice versa. Taking the other join rela- 
tion into account results in histograms that may be very poor 
for other joins. Also, using extensive information about the 
database contents results in histograms whose optimality is 

very sensitive to changes in the database. We thus inves- 
tigate histogram optimality when the set of frequencies of 
both the input relations are available, but it is not known 
which frequencies correspond to the same attribute value. 
This is the typical scenario in real systems, where statistics 
are collected independently for each relation, without any 
cross references. Using this knowledge, the goal is to iden- 
tify the optimal histograms for the average case, i.e., taking 
into account all possible permutations of the frequency sets 
of the input relations over their corresponding join domains. 

The above discussion is formalized below. We ‘use the 
prefix j in “j-optimal” to emphasize that optimality is de- 
fined over reduced information and for the join result. 

Definition 3.4 For relations R and S, let %R and 7i.s be 
two collections of histograms respectively. The histograms 
HR E ‘h!~, Hs E 31s are j-optimal for J within %~,‘?ts 
respectively, if they minimize the expected value of E(J) 
(definition 3.1) over all permutations of the frequency sets 
of R and S. 

The following theorem precisely identifies the j-optimal 
histograms on R and S. Its proof is given in [PI96]. 

Theorem 3.2 Consider relations R and S and two corre- 
sponding numbers of buckets PR and p.s. The j-optimal his- 
tograms for R and S for estimating the frequency distribu- 
tion of any attribute in J are serial and are the same as the 
v-optimal histograms with /!IR and ps buckets, respectively. 

3.4 Discussion 

It should be noted that, although the same histogram turned 
out to be optimal for both query result size and data dis- 
tribution estimations, the error formulas and the proofs for 
the theorems identifying them are very different. Since the 
optimal histogram for estimating the distribution of an in- 
put relation (Theorem 3.1) is the same as the j-optimal his- 
togram on that relation (Theorem 3.2), henceforth we drop 
the suffixj and simply refer to both of them as the optimal 
histograms. 

There are several important implications of the above 
two theorems: 
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1. A single precomputed histogram on each input relation 
is sufficient for estimating the data distributions of the 
input as well as the result relations most accurately. 

2. The optimal histogram on R is independent of S and 
vice versa. Each can therefore be identified by focus- 
ing on the frequency set of that relation alone. This 
histogram will be optimal for any query where the re- 
lation is joined on the same attribute with any relation 
of any contents. 

3. Since the optimal histogram on a relation is the same 
as the v-optimal histogram, algorithms for identifying 
the latter can be applied to precisely identify the opti- 
mal histogram for result distribution estimation. This 
is also very significant in practice because the same 
histograms can be used for multiple purposes. 

4 Construction, Storage, and Effectiveness 
of Optimal Histograms 

In this section, we deal with the efficiency of construc- 
tion and maintenance of optimal serial and end-biased 
histograms. Algorithms for constructing both these his- 
tograms require computing the frequency distributionof the 
attribute, which involves a scan of the relation and exces- 
sive CPU costs. In practice, the desired frequencies can 
be estimated quite accurately from a small random sample 
(ti 2000 tuples) obtained using reservoir sampling [Vit85]. 
The estimated frequency of a value di is simply niN/n, 
where ni is the number of tuples in the sample with attribute 
value di, n and N are the total number of tuples in the sam- 
ple and the relation respectively. 

4.1 Serial Histograms 

Construction (Algorifhm OptHist)[IP95a]: The algorithm 
identifies the optimal serial histogram with ,L3 buckets on a 
relation R as follows. The frequency set of R is sorted and 
then partitioned into /3 contiguous sets in all possible ways. 
Each partitioning corresponds to a unique serial histogram 
with the contiguous sets as its buckets. The error corre- 
sponding to each histogram is computed using definition 3.1 
and the histogram with the minimum error is returned as op- 
timal. In our earlier work we had shown that this.algorithm 
is exponential in /? [IP95a]. 

Storage and Maintenance: Since there is usually no 
order-correlation between attribute values and their fre- 
quencies, for each bucket in the histogram we need to store 
the average of the frequencies in it and a list of the attribute 
values mapped to the bucket. Clearly, for a high cardinality 
attribute, this structure requires too much space. By storing 
the boundaries of buckets instead of the entire set of val- 
ues, the space requirements become easily manageable, at 
the expense of losing optimality. 

4.2 End-Biased Histograms 

In our earlier work [Ioa93], we have proved that the v- 
optimal biased histogram for a relation R is end-biased. 
End-biased histograms are important in practice because 
they are inexpensive to compute and maintain as we show 
below. 

Construction (Algorihn OptBiasHist)[IP95a]: The al- 
gorithm works by enumerating all possible end-biased his- 
tograms on the chosen attribute and picking one with the 
least variance (Definition 3.1). They can be efficiently gen- 
erated by using a heap tree to pick the highest and low- 
est p - 1 frequencies and enumerating the combinations of 
placing them in univalued buckets. Fortunately, the num- 
ber of end-biased histograms is approximately equal to the 
number of buckets ,0. It can be shown that, given the fre-. 
quency set B of a relation R and an integer ,0 > 1, this algo- 
rithm finds the optimal end-biased histogram with ,0 buck- 
ets in O(M+(P- 1)ZogM) time, where A4 is thecardinality 
ofB. 

Storageand Maintenance: In order to store an end- 
biased histogram, all the univalued buckets (<domain 
value, frequency> pairs) need to be stored in some cata- 
log structure. By assuming that all other domain values fall 
in the multi-valued bucket, we only need to store the fre- 
quency corresponding to the multi-valued bucket in the cat- 
alog. Since the number of buckets tends to be quite small in 
practice (5 20), the space requirement is small and sequen- 
tial search of the buckets will be sufficient to access the in- 
formation efficiently. 

4.3 Database Updates 
After any update to a relation, the corresponding histogram 
may need to be updated as well. Delaying the propagation 
of database updates to the histogram, which is the usual 
approach taken by systems, can introduce errors. We are 
currently studying appropriate schedules of database update 
propagation. Any proposals in that direction do not affect 
the results presented here, so this issue is not discussed any 
further. 

4.4 Comparison of Costs 
The above algorithms were implemented on a SUN-SPARC 
workstation with a 10 MIPS CPU and their execution times 
were observed for varying cardinalities of frequency sets 
and numbers of buckets. Table 1 illustrates the difference 
in construction costs between the two algorithms. It does 
not include the cost for obtaining the frequencies. For end- 
biased histograms, the numbers presented are for p = 10 
buckets, and are very similar to what was observed for /3 
ranging between 3 and 200. The times increase drastically 
for the algorithms for the optimal serial histograms. We did 
not compute the remaining entries for the serial histograms 
because that would take take too much time and the results 
obtained already convey the construction cost differences 
between the two histograms. 
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Table 1: Construction cost for optimal serial and end-biased 
histograms 

Time taken (XX) 
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attribute values P=Sl p=51 B= 10 

4.5 Effectiveness of Optimal Histograms in Result- 
Distribution Estimation 

We studied the performance of various histograms with 
varying number of buckets and skew in the data. We used 
five types of histograms: trivial, optimal serial, optimal 
end-biased, equi-width and equi-depth histograms, with the 
number of buckets p ranging from 1 to 30. The trivial his- 
togram is the usual uniform distribution assumption over 
the entire column,. In an equi-width histogram, the num- 
ber of attribute values associated with each bucket is the 
same; in an equi-depth (or equi-height) histogram, the to- 
tal number of tuples having the attribute values associated 
with each bucket is the same. The frequency sets of the 
relations follow the Zipf distribution, since it presumably 
reflects reality [Chr84, Zip49]. Its t parameter takes val- 
ues in the range [0 - 51, which allows experimentation with 
varying degrees of skew and the number of frequencies (M) 
was kept at 100. Figures 2 and 3 show the square root of 
variance (Eq. 1) generated by the five types of histograms 
as ,B and z are varied respectively [IP95a]. In almost all 
cases, the histograms can be ranked in the following order 
from lowest to highest error: optimal serial, optimal end- 
biased, equi-depth, equi-width, and trivial (uniformity as- 
sumption). We can see that the serial and end-biased his- 
tograms handle all levels of skew quite satisfactorily and in- 
creasing the number of buckets beyond a point adds little to 
their accuracies. 
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In the remainder of the paper, we study an application of our 
optimality results to load balancing during parallel Hybrid 
hash joins. We assume a shared-nothing environment con- 
sisting of several nodes connected by a fast network, simi- 
lar to the Gamma system [DGG+86]. Each node consists of 
a single CPU with reasonably large memory and two disks 
attached to it. All relations are assumed to be partitioned 
across all the disks. The exact partitioning algorithm used 
is not relevant to our discussion below. More details about 
the Gamma system can be.found elsewhere [DGG+86]. 

5.1 Description of Parallel Hybrid Hash Join Algo- 
rithm (P%‘?L~O~JV) 

In this section we describe a typical parallel execution of the 
Hybrid hash join algorithm [DGS+90]. In the rest of the pa- 
per, R and S denote the build and probe relations, respec- 
tively. Usually, the smaller relation is chosen as the build 
relation. Some of important steps in the algorithm are listed 
below. We omit some issues such as hash bucket overflows 
in this discussion. 

1. Split Table Computation: The split table contains 
mappings of attribute values to nodes, which are used 
in distributing the tuples below. In Gamma, its compu- 
tation is a trivial step, involving mapping the attribute 
values to various nodes using a hash function. In gen- 
eral, this step may involve more complicated load- 
balancing algorithms (to be discussed later). 
Next, all the processors execute the following steps: 

2. Redistribution: Scan R and S in succession from the 
local disk and use the split table to direct the tuples to 
the nodes. 

3. Build: As the R tuples are being received, build a hash 
table using a hash function h. The number of hash 
buckets is determined from the amount of available 
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memory and the size of R [Sha86]. The first bucket 
is retained in memory, while others are stored on disk. 

4. Probe: As the S tuples are being received, hash them 
using h. If they map to the first hash bucket, they are 
joined with the tuples from the first hash bucket of h!. 
Otherwise, they are stored in the corresponding hash 
bucket of S on disk. After all the S tuples have been 
received, corresponding hash buckets of R and S are 
read from the disk and their tuples are joined. 

5. Postprocess: The tuples resulting from joining the in- 
put relations in the previous step are possibly redis- 
tributed across the nodes using another split table, ei- 
ther to be stored on disk or to participate in the next 
operator in the query. 

Next, we present various kinds of skew that affect the 
performance of QU’K?c?Z~/. 

5.2 Data Skew 

Like most parallel operations in a shared-nothing environ- 
ment, parallel hash joins also perform poorly under data 
skew. Data skew can lead to imbalances’in the number of 
tuples processed by each node. This causes problems in re- 
alizing high performance because the total runtime of a par- 
allel algorithm is determined by the busiest node. We de- 
scribe the two most important kinds of skew identified in 
the literature [WDJ91], which cause load imbalances dur- 
ing join execution. 

1. Attribute Value Skew (AVS): It arises due to non- 
uniform data distributions in the join attribute in the 
input relations. It may result in biased distributions of 
data among the nodes when the split table maps values 
to nodes without taking their frequencies into account. 
This causes different workloads across nodes during 
join processing, bucket overflows when nodes are al- 
located very large hash buckets, and network hot spots 
because few of the nodes may receive a large number 
of tuples. 

2. Join Product Skew (JPS): It arises due to differences 
in the join selectivities of data processed by different 
nodes. It can occur even if R and S have no AVS and 
is one of the subtler kinds of skew to detect. It mainly 
affects the postproces.s phase of join execution, by re- 
quiring a node with large output to do more work dis- 
tributing the result tuples. 

5.3 Cost Model 

The goal of a load-balancing algorithm is to equalize load 
(the amount of CPU and I/O work) done by various nodes 
participating in the parallel execution. In this section, we 

’ develop a numerical measure to capture the effects of AVS 
and JPS on the load on each node duringQ‘MgC32N. We 

first develop a cost formula W(d) to measure the load con- 
tributed by an attribute value d to the node processing tuples 
with that value. The notation used in deriving the formula 
for W(d) is listed in Table 5.3. 

Clearly, W(d) consists of contributions from the CPU 
and disk costs: 

W(d) = CPU(d) + IO(d). 

Each of the terms above is given by the following formulas: 

CPU(d) = (build x fR(d)) + (probe x fs(d)) 

+(s$it x fJ(d)) + (mcv x fR(d)) 
+(recv x fs(d)) + (send x fJ(d)) 

IW4l IO(d) 2: disk x (1 - - JR(d), ) (‘R(d)’ + ‘S(d)‘) 

We do not include the costs of scanning and sending the 
build and probe tuples because these costs neither depend 
on nor affect the load-balancing technique. The I/O cost due 
to d depends on the type of the hash bucket to which d is 
mapped (i.e, the first bucket or overflow bucket or one of 
the other buckets). This, in turn, partially depends on the 
frequencies of other values in the relation as well as the fre- 
quencies of all values mapping into that bucket of d. Hence, 
in general the I/O cost due to d depends on other attribute 
values as well. For our load balancing algorithm, however, 
it is necessary to capture IO(d) in terms of the frequency 
of d alone. We thus approximate IO(d) by the I/O cost of 
executing a join with fR(d) and fs (d) tuples in its build 
and probe relations, respectively. 1 Ro(d) 1 is the number of 
pages in the first hash bucket of the build relation for this 
join. The term (1 - l/$$$) is the fraction of the build re- 
lation that needs to be written to disk. The value of (Ro (d) 1 
given below is taken from [Sha86]: 

IRo( = IMI - “T$rl’“’ 

Using this in the formula for IO(d), we obtain the follow- 
ing: 

IO(d) 21 disk x ([R(d)1 + IS(d 

WI2 
‘(’ - IR(d)l (IMI - 1) + ,Mr- 1) 

= disk x (IWI + IS( - lMl (I+ ,R(d), IS( )) 

Using the values in Table 3 (given in section 7.1) for the. 
cost parameters in the above formulas, we obtain the fol- 
lowing formula for W(d) (in milliseconds): 

W(d) N 243.4 [R(d)1 + 297.0 IS(d)( + 327.6 jJ(d)l 

IS(d) I 
-25 i”i ci + lR(d)l) (2) 
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Table 2: Description of terms used in the cost model 
Result of joining relations R and S 
Frequency of d in relation X, X E {R, S, J} 
Number of pages necessary to hold the tuples with value d in relation X (i.e., IX(d) ( 
Number of main memory pages 
“Fudge factor” to take into account space overheads of a hash table (2 1.4) [Sha86] 
Cost of inserting a tuple in the build hash table 
Cost of probing the hash table for a single tuple 
Cost of hashing a tuple using a split table 
Cost of writing a tuple into the output buffer 
Cost of reading a tuple from the input buffer 
Disk I/O cost for a page after the redistribution phase 

The load on a node is simply the sum of the costs W(d) 
of all the values d mapped to that node by the split table, 
where W(d) is computed using (2). Note that, despite our 
attempts to choose a reasonable model for the execution en- 
vironment, the parameter values in the cost formula (or the 
cost formula itself) may be different in any given real sys- 
tem. In that case, the cost formula must be approppriately 
updated. 

5.4 Histogram Optimality in Load Balancing 

In section 5.3, we introduced thecost formula for W, which 
depends only on the frequency distributions of the join at- 
tribute Q in the two input relations R, S and in thejoin result 
J. We have developed a load balancing algorithm, called 
‘HZS’H, that makes use of this formula in creating a split 
table, so that the loads on all the nodes in the system are ap- 
proximately equal, thus achieving load balancing. In order 
to estimate the cost formula most accurately, we need rea- 
sonably accurate approximations of these three data distri- 
butions. This is precisely what we achieved in Theorems 
3.1 and 3.2, which show that the v-optimal histograms con- 
structed on rr in R and S identify the data distribution of a 
in R, S, and J most optimally. Next, we present describe 
our algorithm for load balancing. 

5.5 Histogram-Based Algorithm for Skew Handling 
(%ZS31) 

Let HA and Hg be the optimal histograms on the join at- 
tribute of two input relations A and B, respectively, pre- 
computed using algorithm OptBiasHist (section 4). The 
first phase of ‘liZS’?i below analyzes the input relations to 
make some important decisions for join execution3. The 
second phase computes the split table for load balancing. 
Some of the techniques presented in the second phase were 
originally proposed by Dewitt et al. in [DNSS92]. 

Analysis Phase: The histograms HA and HB are ana- 
lyzed to detect the levels of AVS in the input relations. We 

3 In practice, this step will be performed by the optimizer w~hile choos- 
ing the optimal query plan. 

use the variance of the frequencies in the approximate dis- 
tributions as a measure of skew. Next, the build and probe 
relations are chosen from A and B for the best join perfor- 
mance. Let A be the smaller relation. If the level of skew 
in both the relations is very small, exit from this algorithm 
and execute P?i?tJOZN without load balancing, with A 
as the build relation R and B as the probe relation S. If A 
is much smaller than B or fits in memory, choose A as the 
build relation R and B as the probe relation S. Otherwise, 
choose the relation with the highest skew as the probe rela- . 
tion S and the other relation as the build relation R. This 
choice is justified in our experiments (Section 7.4). 

Partition Phase: The cost formula W (Eq. 2) is eval- 
uated for the attribute values in the histograms using their 
frequencies from the approximate frequency distributions 
of R, S and J. Next, the attribute values are divided into a 
fixed number of partitions, which are assigned to the nodes 
in a round robin scheme, such that the sum of W over all 
values in the partitions are approximately equal. Values not 
occurring in the histogram are assumed to be mapped to the 
nodes using a static hash function, similar to Gamma. In 
order to avoid large hash buckets that arise when the same 
value occurs with very high frequency, an attribute value 
may be mapped to multiple nodes [DNSS92]. In this case, 
the fraction of W(d) assigned to each node is also recorded 
in the split table. During the redistribution phase of thejoin, 
tuples from one of the relations having’d in their join at- 
tribute are sent to various nodes in proportion of these frac- 
tions. For correctness all the tuples from the other rela- 
tion with this attribute value should be sent to each such 
node (i.e., multicast), incurring some additional overhead. 
In our algorithm, tuples from the relation with the smaller 
frequency of d are multicast in order to minimize the num- 
ber of tuples processed. The results of our experiments on 
handling skew in the probe relations (section 7.4) justify 
this decision. 

The number of partitions is chosen as k x v, where k is 
the number of nodes and v is the fixed number of virtual 
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processors per node [DNSS92]. The number 21 is chosen so 
that there are small partitions and an attribute value d occur- 
ring with high frequency is mapped to multiple partitions. 

5.51 cost of 312sx 

Since the histograms on the base relations are usually pre- 
computed, their construction does not add to the cost of 
XZS7i which is run at join execution time. %!cZSX incurs 
no additional I/OS other than reading the small histogram 
structures from the catalogs, which are usually present in 
main memory. The CPU costs during the two phases are 
also negligible because the number of buckets in the his- 
tograms is very small (typically 20). The only significant 
cost is incurred during join processing because some of the 
attribute values may be mapped to multiple nodes, thus in- 
creasing the size of the split tables and hence the search 
time. But, our results show that this cost is insignificant 
compared to the savings in the execution time overhead 
from load balancing. 

6 Earlier Approaches to Load Balancing 

Most of the earlier approaches can be classified into two cat- 
egories - Conventional and Sampling-Based. Based on ear- 
lier analyses of these algorithms [HY95] and our own stud- 
ies, we have identified the best proposed solutions in both 
classes. Their split table computation phases are described 
below. 

6.1 Conventional : Extended Adaptive Load Balanc- 
ing Parallel Hash Join (ABP) 

This algorithm was proposed in [HL91]. Each node scans 
and partitions its local portion of build relation into hash 
buckets and stores them back on the disk. All nodes re- 
port the sizes of their portions of the hash buckets to a pre- 
designated coordinator. The coordinator creates a split ta- 
ble by mapping the hash buckets to the nodes so that ap- 
proximately the same number of tuples are allocated to each 
node. 

This approach incurs an additional read and write of the 
relation if the local partitions of relations do not fit in mem- 
ory. Also, since alltuples with the same attribute value are 
sent to a single node, some nodes may end up with a very 
large hash bucket in case of skewed distributions and the al- 
gorithm fails to balance load. Finally, the algorithm ignores 
AVS of the probe relation and JPS. 

6.2 Sampling-Based : Virtual Processor Partitioning 
WPP) 

This algorithm was proposed in [DNSS92]. A small sample 
of the relations is collected and the relation with the highest 
skew is chosen as the build relation. The sampled attribute 
values are sorted and partitioned into (k x v) equal sized 
partitions, where k is the number of nodes and w is a fixed 

number of virtualprocessors per node. These partitions are 
assigned to the nodes using a simple round robin scheme, 
resulting in a split table. 

Compared to d&7+, this approach replaces a complete 
scan of the relations by an inexpensive sampling phase. 
Like %ZS’?t, this algorithm also maps a frequent value to 
multiple nodes, thus handling AVS better than d&T'+. But, 
this algorithm ignores AVS in the probe relation (once the 
build and probe relations are chosen) and JPS. Also, page 
level sampling can introduce errors when the tuples in a 
page are correlated on the join attribute, e.g, when the re- 
lation is clustered on that attribute. 

7 Experiments 

In this section, we study the performance of the four 
load balancing algorithms: BASIC (no load balancing), 
dBJ+, VPP, and 3cZS31, under various inputs and sys- 
tem parameters. 

7.1 Execution Environment 

All our experiments were conducted on a simulator for the 
Gamma parallel database system. The basic simulator was 
written in the CSIM/C++ process-oriented machine lan- 
guage and accurately captures the algorithms and costs of 
Gamma [Bro94]. The simulator assumes uniform data, so 
its use of split tables is trivial. Hence, we enhanced it with 
the capability to operate on non-uniform data and to use a 
split table computed by the load balancing algorithms. We 
describe some relevant parts of the simulator below. 

Query Processing: The query is submitted by a simu- 
lated terminal to the scheduler process. A thread is created 
for every simulated node for each operator to be executed. 
The scheduler sets up communication channels with these 
threads and broadcasts the split table and the operator to be 
executed. Each thread executes the operator on the tuples 
from a simulated disk corresponding to its node. Resulting 
tuples are redistributed using the split table. This process is 
repeated for every operator in the query plan. 

Hardware Environment: The simulator models la- 
tency in the interconnection network but assumes a very 
large bandwidth. This is in agreement with most real sys- 
tems (iPSC/2 Hypercube, CM-5, Paragon). Communica- 
tion between threads is in units of 8 KByte messages. The 
disk is modeled based on the Fujitsu Model M2266 (1 GB, 
5.25”) disk drive. The CPU is scheduled using a round- 
robin policy and the page replacement in the buffer pool is 
based on LRU with love/hate [Ht90] hints. The instruction 
counts for various operations in the validated simulator are 
taken from [SN93] and are listed in Table 3. 

7.2 Experiment Testbed 

Algorithms: The following algorithms are used to compute 
the split table in ‘P’?KU~c1Z~. All the experiments com- 
pute the time taken by PW?L?OZN using the split table 

456 



CPU Cost Parameter 
Table 3: Simulation Parameter Settings 

] No. Instr. )I Configuration/NodeParameter 1 Value 

____ _- r-- ----- - -- I--- ------ , ___ - ____ __-_- ___.. ___.. - _ -.--. --.I-- 

Probe Hash Table 200 I] Disk Settle Time 2.0 msec 
Insert Tuple in Hash Table I 

I 
100 11 Disk Transfer Rate 

II --~~ ----~~---~ 
3.09 MB/set 

HashTuple ~_ I usine Solit Table 1 I 500 II Disk CacheC II ~~~~ ontext Size 4 pages 
ADOIV a Predicate 100 11 Disk Cache Size 8 contexts 

I. . 

Copy 8K Message to Memory 
Message Protocol Costs 

10000 Disk Cylinder Size 
1000 Sampling Overhead 

83 pages 
0.6 set 

resulting from these schemes, including the time taken by of unique values was chosen, up to 1 million, depending on 
the split table computation step. the skew such that the lowest frequency equals 1. 

l BdSZC: No load balancing. For this algorithm, we 
obtained the split table by mapping equal number of 
attribute values to the nodes. 

7.3 Effect of Virtual Processors on the Performance of 
?-US31 

l d&7+: Extended adaptive load balancing (section 
6.1). 

l VPP: Sampling-based virtual processor partitioning 
(section 6.2). The number of virtual processors per 
node was fixed at 60 as recommended in [DNSS92]. 
Sample size was fixed at 14400 tuples. 

l 7iZS’X: Histogram-based skew handling (section 
5.5). In order to study the effects of AVS in the probe 
relation, the Analysis Phase of ‘liZS%! was not exe- 
cuted in any of the experiments. All experiments were 
conducted using the optimal end-biased histograms 
obtained from a sample of 14400 tuples from the data. 
The number of buckets in the histogram was fixed at 
20, because accuracy is not very sensitive to the num- 
ber of buckets beyond this. The number of virtual pro- 
cessors per node was varied from 1 to 100 in the first 
experiment (section 7.3) and fixed at a single value of 
60 for all the subsequent experiments. 

In section 5.5, we briefly described the role of the number of 
virtual processors (v) in ‘l-lZS%. While higher values of w 
ensure that a value with high frequency is mapped to mul- 
tiple nodes, they also incur overheads due to multicasting 
tuples to many nodes. We conducted experiments to mea- 
sure this trade-off in terms of the time taken for join execu- 
tion for different values of 21 ranging from 1 to 100. Build 
relation’s skew was varied from z = 0 to 2 = 5 and probe 
relation was chosen to be uniform. Based on the results we 
decided to use n = 60 for all our remaining experiments 
[PI96]. The same value was arrived at in [DNSS92] also. 

Resources: The number of nodes participating in the 
join was fixed at 16, except for the speed-up experiments. 
Scheduling and other administrative operations were run on 
a separate node. Values of other resources are given in Ta- 
ble 3. 

7.4 Effect of Attribute Value Skew 

The first experiment studies the effect of AVS in the build 
relation’s join attribute. The skew is varied from t = 0 to 
,z = 5. The probe relation is chosen to have a uniform dis- 
tribution. The results are plotted in Figure 4. It can be seen 
that as skew increases, dBJ’+ fails to balance load, be- 
cause it does not distribute the large join buckets containing 
the most frequent values. On the other hand, both ?lZS’Jf 
and YPP handle AVS in the build relation satisfactorily be- 
cause they split these large hash buckets. 

m: All the input relations consisted of 220 (approx- 
imately 1 million) tuples of 100 bytes each. Frequencies 
of the join attribute values are taken from the Zipf distri- 
bution [Zip49, Chr84]. Skew is modeled by varying the z 
parameter of the Zipf distribution from 0 to 5. The number 

The second experiment studies the effect of AVS in the 
probe relation, while the build relation is chosen to be uni- 
form, and the results are plotted in Figure 5. For this case, 
V’PP will choose the skewed relation as the build relation 
and have the same performance as in the previous experi- 
ment. For comparison purposes, we are including the re- 
sult of running YPP by forcing it to use the skewed rela- 
tion as the probe relation. We call this modified algorithm 
VPP’. d&7+ performs the worst because it totally ig- 
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Figure 4: Effect of Build Relation Skew. 

nores the skew in the probe relation. It is clear that 31ZSX 
almost completely eliminates the effect of probe relation’s 
skew on join performance, because it distributesvalues with 
high frequency in the probe relation across multiple nodes. 
Note that all algorithms perform significantly better than in 
the previous experiment, justifying our decision to use the 
most skewed relation as the probe relation. 
7.5 Effect of join product skew 

In this experiment, we restricted the attribute value skews of 
both the build and probe relations to be very small (0 - 0.8). 
Even these low AVS values can still result in significant 
JPS. The performance results shown in Figure 6 demon- 
strate that ?&!GJf achieves significantly better load balanc- 
ing. This is because its cost formula W takes JPS into ac- 
count, while other schemes fail to detect it. 
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Figure 6: Effect of Join Product Skew. 

7.6 Speed-up Performance 

Load imbalances have significant adverse effects on the 
speed-up of a parallel system. Hence, we studied the behav- 
ior of various load balancing algorithms as system config- 
uration is varied. To study speed-up, the number of nodes 
was varied from 1 to 19. Data in both the inputrelations was 
moderately skewed (.z = 0.6). The join costs for various 
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200- vpp’ ..B... 
180- HISH -* 

160- 

140- 

-I 
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eke: (z) 
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Figure 5: Eflect of Probe Relation Skew. 

algorithms are plotted in Figure 7. The curve IDEAL cor- 
responds to a hypothetical algorithm with linear speed-ups 
and is included for comparison purposes. It is clear that all 
the load balancing algorithms (d&7+, VPP, and ‘KZS%) 
have very good speed-ups, with 312831 having almost lin- 
ear speed-up. Referring back to Figure 6, it becomes clear 
that for higher skews 31ZS31 will perform much better than 
the other two algorithms. - 
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Figure 7: Speed-Up Performance. 

8 Conclusions 

Estimation of result distributions plays an important role in 
several components of a DBMS. Using precomputed his- 
tograms is a feasible technique in practical systems. A 
major result of the paper is that the same histograms on 
database relations are optimal for estimating the distribu- 
tion of those relations as well as the results of equi-joins, 
and are independent of all other relations in the database. 
These histograms were also shown earlier to be optimal for 
join selectivity estimation, thus establishing their univer- 
sality. As a special application, we also developed an effi- 
cient solution for load balancing in parallel DBMSs by han- 
dling all kinds of skew in the data. We derived a cost for- 

458 



mula for the load on a machine which captures the effects 
of various kinds of skew. We presented a load balancing 
algorithm which uses histograms on the base relations to 
estimate the cost formula and balances the load across all 
the nodes. Experimental comparison with the current state- 
of-the-art approaches demonstrated that our algorithm bal- 
ances load most effectively under all levels and kinds of 
skew. 
Acknowledgements: The idea of using optimal histograms 
in the context of load-balancing was suggested to us by 
Sridhar Chandrasekharan. The authors are also grateful to 
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