
Obtaining Complete Answers from Incomplete
Databases

Alon Y. Levy
AT&T Research

levyOresearch.att.com

Abstract

We consider the problem of answering queries
from databases that may be incomplete. A
database is incomplete if some tuples may be
missing from some relations, and only a part
of each relation is known to be complete. This
problem arises in several contexts. For exam-
ple, systems that provide access to multiple
heterogeneous information sources often en-
counter incomplete sources. The question we
address is to determine whether the answer to
a specific given query is complete even when
the database is incomplete.

We present a novel sound and complete al-
gorithm for the answer-completeness prob-
lem by relating it to the problem of indepen-
dence of queries from updates. We also show
an important case of the independence prob-
lem (and therefore ofthe answer-completeness
problem) that can be decided in polynomial
time, whereas the best known algorithm for
this case is exponential. This case involves up-
dates that are described using a conjunction
of comparison predicates. We also describe
an algorithm that determines whether the an-
swer to the query is complete in the current
state of the database. Finally, we show that
our ‘treatment extends naturally to partially-
incorrect databases.

Permission to copy without fee all or part of this material is
granted provided that the copies aTe not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requirea a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

1 Introduction

A database is usually assumed to be complete. For
example, in a relational database we usually assume
that the extension of every relation contains all the
tuples that need to be in the relation. However, there
are situations in which we have access to databases
that may be partial, i.e., some tuples may be miss-
ing. If the database is partial, then the meaning of
an answer to a given query needs to be reconsidered.
For queries that do not contain negation, the answers
we obtain are guaranteed to be a subset of the an-
swers that would have been obtained if the database
were complete. However, an important question (con-
sidered originally in [Mot89, EGW94]) is whether the
answer is complete even though the database is in-
complete. When queries contain negation, we need to
modify our query answering algorithms to guarantee
that we obtain only correct answers.

We consider the answer-completeness problem, i.e.,.
deciding whether an answer to a given query is guaran-
teed to be complete even in the presence of an incom-
plete database. We illustrate the problem with several
examples.

Example 1.1: Consider an example in which we
have access to several online databases with informa-
tion about movies. Suppose our relation schema con-
tains the following relations:

Movie(title, director, year)
Shou(title, theater, hour)
Oscar(title, year)

The relation Movie contains tuples describing the
title, director and year of production of movies. The
relation Show describes the movies playing in New York
City, and for each movie it tells us which theaters and
at what hours the movie plays. The relation Oscar ,
contains a tuple for each movie that won an Oscar
award, and the year in which it won the award.

Suppose we know that the relation Movie is com-
plete only from the year 1960 and on, and may be
missing movies from earlier years. The relations Show

402

and Oscar are known to be complete. In such a set-
ting, the completeness of the answer depends on the
query.

Suppose we are given the following query Qr that
asks for the pairs of (title, director) for movies cur-
rently playing in New York:

(Qd: SELECT m.TITLE, m.DIRECTOR
FROM Movie m, Show s

WHERE m.TITLE = s.TITLE.

The answer to this query may be incomplete. In-
tuitively, the answer is incomplete because if we were
to insed some of the missing tuples to the relation
Movie, the answer to the query may change.

On the other hand, consider the following query Qz
that asks for directors whose movies have won Oscars
since 1965.’

(Q2): SELECT m.DIRECTOR
FROM Movie m, Oscar o

WHERE m.TITLE = o.TITLE AND

m.YEAR = o,YEAR AND

o.YEAR > 1965.

The answer to this query zs complete, even though
the relation Movie is not complete. The reason is that
only tuples of Movie whose third argument is 1965 or
more can be joined with tuples from the relation Oscar
to yield an answer to the query. Therefore, if Movie is
complete on that part of the relation, the answer to the
query will be complete. Furthermore, since the answer
to Qz is guaranteed to be complete, then we can also
guarantee that the answer to the following query that
uses the negation of Qz is correct. The query Qs asks
for directors who have won Oscars, but have not won
any Oscars since 1965.

Q3 :
SELECT m.DIRECTOR

FROM Movie m, Oscar o
WHERE m.TITLE = o.TITLE AND

NOT EXISTS
(SELECT f FROM Movie ml, Oscar 01

WHERE m.DIRECTOR = ml.DIRECTOR AND
mi.TITLE = ol.TITLE AND
ol.YEAR 1 1965).

Finally, consider the query Qr again. Even though
in general we cannot guarantee that the answer to the
query is complete for any database in which the rela-
tion Movie may be incomplete, we can check whether
given the current state of the database is complete.

‘Note that although it is reasonable to assume that a movie
wins an Oscar for the year it was produced, we enforce it explic-
itly in the query.

To do so, we can compare the projection of the rela-
tion Shoa on the attribute title and the projection
of Movie on the attribute title. If the projection of
Movie contains the projection of Show, then the an-
swer to Qr is guaranteed to be complete. Intuitively,
&I is complete in such a case because what really mat-
ters is that the relation Movie has listings for movies
that are currently playing in New York. 0

As stated, deciding whether the answer we obtain
for a query is complete is important in order to know
whether we are missing some answers (and therefore
may have to search for them elsewhere), and in or-
der to answer queries involving negation in a sound
manner. The main motivation for our work stems
from the context of a mediator-based systems that pro-
vide access to multiple distributed information sources
(e.g., TSIMMIS [CGMH+94], SIMS [ACHK94], the
Internet Softbot [EW94] and the Information Mani-
fold [LR096a, LRO96b]). In practice, many of the
sources these systems access contain only partial infor-
mation. For instance, the system may have access to
a university repository that contains publications au-
thored by faculty and students of that university, but
does not necessarily contain all of them. On the other
hand, the system may have access to the database of
the library of congress that has all the books published
in the U.S.A in the past few decades. In such a setting,
given a query, it is important to know which sources
(or combination of sources) provide all the answers to
the query. If we cannot obtain all the answers, we
need to query multiple sources, thereby considerably
affecting the performance of the system. Experimen-
tal results reported by Etzioni et al. [EGW94] showed
that identifying answer-completeness of queries en-
ables pruning many redundant accesses to information
sources, and therefore to significant speedups in query
processing. Finally, the answer-completeness problem
is also important in other contexts. For example, dur-
ing a long transaction, a database may be incomplete,
and in other cases, parts of a database may be tem-
porarily inaccessible.
’ We make the following contributions in this paper.

l We show that the answer-completeness problem
can be completely characterized as a problem of
deciding whether a query is independent of an in-
sertion update. As a result, we obtain a better
understanding of the problem, and, in particu-
lar, we obtain novel sound and complete algo-
rithms for deciding answer-completeness. These
results apply to a wider range of cases considered
in [EGW94, Mot891 for this problem, and are the
first ones that are guaranteed to always detect
when an a query is answer-complete.

403

We show an important case of the problem of de-
termining independence of queries from updates
that can be decided in polynomial time, whereas
the best previously known algorithms for this case
are exponential. This is the case in which the up-
dated tuples are described using constraints with
built-in comparison predicates (5, <, =), and the
all comparisons in the update specification and
in the query contain a constant. This result pro-
vides a polynomial-time algorithm for detecting
answer-completeness, but it is also of indepen-
dent interest in the context of determining query-
independence.

We describe an algorithm that determines
whether in the current state of the database the
answer to a given query is complete. Complete-
ness is determined by issuing additional queries to
the database.

qz(Director) is called the head of the query,
and its argument Director is its distinguished vari-
able. The distinguished variables of the query
correspond to attributes appearing in the SELECT
clause. Movie(Title, Dir, Year), Year1 2 1965 and
Show(Title, Theater, Hour) are atoms in the body of
the query. Note that equality predicates in the WHERE
clause are represented by equating variables in ,differ-
ent atoms of a conjunctive query. The atom Year1 2

1965 is said to be an atom of a comparison (or built-
in) predicate (2 in this case). A union of conjunctive
queries is a set of conjunctive queries that have the
same arity in the head. Unless otherwise specified, we
assume that a query is a union of conjunctive queries.

We show that our treatment of the problem of in-
complete databases extends naturally to the case
of databases that may be incorrect (i.e., con-
tain a superset of the tuples that should be in
the database), and the problem of determining
whether the answer to a given query is correct.

Given a database instance D and a query Q, we
denote by Q(D) th e result of evaluating Q over D.
We say that a query Q is satisfiable if there is some
database instance D such that Q(D) is a non empty set
of tuples. Two queries Qi and Qs are said to be equiv-
alent if, for any database instance D, 91(D) = Qz(D).
The length of a conjunctive query is the number of non
built-in atoms in its body. A conjunctive query Q is
said to be minimal if we cannot remove any of the
non-comparison atoms from its body and still obtain
a query equivalent to Q.

Section 2 defines the answer-completeness prob-
lem. Section 3 shows the relationship between the
answer-completeness problem and the query indepen-
dence problem, and Section 4 presents the polynomial-
time algorithm for deciding query independence. Sec-
tion 5 describes the algorithm for determining answer-
completeness in a particular datab,ase state, and Sec-
tion 6 extends our treatment to partially incorrect
databases. Section 7 discusses related work, and Sec-
tion 8 concludes.

2.1 Partial databases

2 Problem definition

404

In our discussion we consider queries over relational
databases that involve select, project, join and union
and that use the built-in comparison predicates 5, <,
= and #. We assume set semantics for queries (and
not multisets). In our analysis it is more convenient
to use the notation of conjunctive queries [UllSS]. For
example, the query

A database is said to be partial when the tuples in each
relation are only a subset of the tuples that should be
in the relation. Formally, such a situation can be mod-
eled as having two sets of relations, the virtual rela-
tions and the available relations. The virtual relations
are R= RI,..., R,, while the available relations are
R’ = R;, . . . , Rh. For every i E (1 . . . n}, the exten-
sion of the available relation R: contains a subset of
the tuples in the extension of the virtual relation Ri.
The user poses queries in terms of the virtual rela-
tions, but the system has access only to the extensions
of the available relations. Therefore, given a query Q
over the virtual relations, the query processor actually
evaluates the query Q’ obtained by replacing every oc-
currence of Ri by R:, for i, 1 5 i 5 n.

(Q2): SELECT m.DIRECTOR
FROM Movie m, Oscar o
WHERE m.TITLE = o.TITLE AND

o.YEAR 2 1965

is given as a conjunctive query of the form:

The question we address is whether the answer we
obtain for a query is complete, that is, whether the
answer to Q’ contains all the tuples we would have
obtained by evaluating Q over the virtual relations.
Clearly, if all we know is that R: C Ri for every i,
1 5 i 5 n, then whenever the query Q is satisfiable the
answer to Q’ may be incomplete. However, it is often
the case that we know that R: is partially complete,
i.e., that some parts of it are identical to Ri.

qz(Director) : -Movie(Title, Director, Year) &
Oscar(Title, YearI) & Year1 1 1965.

Example 2.1: Continuing with Example 1.1, the re-
lation Movie may be known to be complete for tuples

for which Year >_ 1965. As another example, the rela-
tion Movie may be complete for titles of movies being
shown in New York. 0

Formally, we specify local completeness of a relation
R’ in the real database by a constraint on the tuples
of R that are guaranteed to be in R’.

Definition 2.1 (Constraint): Let R be a relation
of arity n, and Xi,... ,X, be variables standing for
its attributes. A constraint C on the relation R is
a conjunction of atoms that includes constants, vari-
ables from X1, . . . , X, and other variables. The rela-
tions used in C can e&her be either database relations
or comparison predicates, but not R itself. A tuple
(al,..., a,,) satisfies C w.r.t. a database instance D if
the conjunction resulting from substituting ai for Xi
in C is satisfied in D. We denote the complement of
C by 4’. 0

Note that a tuple (al, . . . , a,) does not have to be in
the extension of the relation R in a database instance
D in order to satisfy a constraint C on R. In our dis-
cussion on local-completeness statements we consider
only constraints that involve the virtual relations and
comparison predicates.

Definition 2.2 (Local Completeness): Let C be a
constraint on the relation R. A database instance D
that includes the relations R and R’ is said to satisfy
the local-completeness statement LC(R’, R, C) if R’
contains all the tuples of R that satisfy C, i.e., if the
results of following two queries are identical over D:

n(X1,. . ., X,) : -R(X1,. . *, X,) &C,

42(X1, . . . , Xn) : -R/(X1, . . . , X,J & C.

0

Example 2.2 : The two local completeness state-
ments in Example 2.1 can be stated as follows. The
fact that the relation Movie J contains all movies after
1965 is represented by

LC(Movie’,Movie, Year 1 1965).

We can represent that the relation Movie’ has all the
movies that are currently playing in New York by

LC(Movie’, Movie, Show(Title, Theater, Bour)).

Finally, the statement

LC(Movie’, Movie, Show(Title, Theaterl, HourI)&
Show(Title, Theatera, HourZ)&
Theater1 # Theater2).

says that the relation Movie’ is complete w.r.t. movies
that are playing in at least two theaters in NY. 0

We can now define the answer-completeness prob-
lem formally. The problem has two variants. In the
first, we consider whether the answer is complete w.r.t.
any database that satisfies the local-completeness
statements, and in the second we consider only a single
database instance.

Definition 2.3 (Answer-completeness): Let I be
a set of local completeness statements of the: form
LC(R’, R, C), where R E fi (the virtual relations) and
R’ E R’ (the available relations). Let Q be a query
over the virtual relations R, and let Q’ be the result
of replacing every occurrence of Ri by R: in Q, for i,
l<i<n.

The query Q is said to be answer-complete w.r.t. I’
if for any database instance D for the relations ii and
ii’ such that D satisfies I, then Q(D) = Q’(D). 0

Instance answer-completeness considers whether
the answer to a query is complete w.r.t. a specific
database instance for the available relations.

Definition 2.4 (Instance answer-completeness):
Let I be a set of local completeness statements of the
form LC(R’, R, C), where R E ii (the virtual rela-
tions) and R’ E ii’ (the available relations). Let Q be
a query over the virtual relations R, and let Q’ be the
result of replacing every occurrence of Ri by R: in Q,
for i, 1 5 i 5 12.

The query Q is said to be answer-complete w.r.t.
I’ and the database instance D if for any database D’
such that the extensions of ii’ are identical in D and
D’, and such that D’ satisfies I’, then Q(D’) = Q’(D’).
0

Example 2.3: Consider Example 1.1 and two sets
of completeness information:

rl : LC(Movie’, Movie, Year 1 1965),
I2 : LC(Movie’, Movie, Show(Title, Theater, Hour))

The query Qi, asking for pairs of (title, director)
of movies playing in New York, is not complete w.r.t.
I’i because it may miss pairs in which the movie was
produced before 1965. However, the answer to Qi is
complete w.r.t. rz. The query QZ that asks for di-
rectors whose movies have won Oscars since 1965 is
complete w.r.t. rr but not w.r.t. I’z.

For a specific database instance D in which the rela-
tion Movie ’ contains all movies whose titles appear in
the relation Show, the answer to Qi is complete w.r.t.
I1 and D. 0

2.2 Independence of queries from updates

The insight underlying our solution to the answer-
completeness problem is based on showing that it is

405

closely related to the problem of detecting indepen-
dence of queries from updates [BCL89, Elk90, LS93].
The problem of independence of queries from updates
is to determine whether the answer to a query &
changes as a result of an insertion to the database or
as a result of a deletion from the database. Formally,
we specify a possible update by specifying a relation R
that is updated and a constraint C that describes set
of tuples of the relation R may be inserted or deleted.
Formally, the independence problem is defined as fol-
lows.

Definition 2.5 (Independence): Let R be a rela-
tion and C be a constraint on the arguments of R.
The query Q is independent of the insertion update
(R, C), denoted by In+(Q, (R, C)), if for any database
instance D and for any database instance D’ that re-
sults from D by adding to R some tuples that satisfy
C, Q(D) = Q(D’>.

The query Q is independent of the deletion update
(R. C), denoted by In-(&, (R, C)), if for any database
instance D and for any database instance D’ that re-
sults from D by deleting from R some tuples that sat-
isfy C, Q(D) = Q(D’). 0

Example 2.4: Consider the query Qs, asking for
the movies playing in New York that have received an
Oscar in the past twenty years:

qs(Title, Theater) : -Show(Title, Theater, Hour) &

The query q3 is independent of deleting tuples from
the relation Oscar for which the year is less than 1970.
That is, In-(q3, (Oscar, Year 5 1970)) holds. On the
other hand, the query is not independent of adding
tuples to the relation Show for which the show time
is after 8pm. That is, In+(qs, (Show, Hour 1 8pm))
does not hold., 0

3 Deciding answer-completeness of a
query

Our solution to the answer-completeness problem is
based on showing that the problem can be equivalently
translated to a problem of detecting independence of
a query from an insertion update. We establish the
connection between these two problems in this section.
We first illustrate the connection with an example.

Example 3.1: Recall the query Qr that asks for the
pairs of (title, director) for movies currently playing
in New York, and suppose that our local completeness
information states that the relation Movie) is complete
for movies produced after 1965, i.e., the relation may
be missingtuples of movies produced before 1965. The
query &I is not answer-complete. To see why, suppose

Oscar(Title, Year) &Year > 1976.

l The extensions of R’ are the same as in D in all
databases, and

l In Do,..., Di-1 the extension of Ri is the exten-
I . sronofRimD,andmDi,..., D, it is the exten-

sion of Ri in D.

Recall that Q’ is the query in which every occurrence
of Rd in Q is replaced by R:. Note that Q(Do) = Q’(D)
and Q(Dn) = Q(D). We prove by induction on i that
Q(Di) = Q(Di-1). The claim Q(D) = Q’(D) follows.

Consider the case i = 1. Because D satisfies I’,
the database D1 is obtained from Do by adding tuples
that satisfy -431 to the extension of RI. However, since
In+(Q) (RI, 4’r)) holds for any database, it holds in
particular for Do, i.e., Q(Dl) = Q(Do). The proof of
the inductive step is similar.

For the other direction, suppose that one of the
independence assumptions does not hold. Suppose
In+(Q, (RI, -Cl)) does not hold. In that case, there
must be a database instance E and a set of tuples S
that satisfy 4’1, such that Q(E) # Q(E’), where E’
is the result of adding the tuples S to the extension of
RI. Let D be the database in which the extension of
R: is the extension of Ri in E, and the extensions of
R are identical to those in E’. Note that D satisfies
I’, however, Q(D) # Q’(D), and therefore, the answer
to Q is not complete w.r.t. I. 0

406

we insert tuples into the relation Movie’ whose year is
before 1965. In this case, the answer to the query Qr
can change. That is, Qi is not independent of inserting
tuples into Movie’ whose year is before 1965.

On the other hand, suppose we consider the query
Q2 that asks for directors whose movies have won Os-
cars since 1965. The answer to Q2 is guaranteed to be
complete, because even if we update the database with
movies produced before 1965, that would not change
the answer to the query. 0

The following theorem formalizes the connection
between independence and answer-completeness.

Theorem 3.1: Let Q be a union of conjunctive
queries over the virtual relations R and comparison
predicates, and let r be a set of local completeness
statements of the form LC(R(i, Rj, Cj), where Ri E R’
and Rj E R. The query Q is answer-complete w.r.t. r
if and only if In+(Q, (Rj, -Cj)) holds for every state-
ment in r. 0

Proof: For the first direction, suppose
In+(Q, (Rj, -Cj)) holds for every statement in I, and
let D be a database instance that satisfies I’. We need
to show that Q(D) = Q’(D). Let Do,. . . , D, be the
databases such that:

Using Theorem 3.1 we can apply algorithms for de-
tecting independence (e.g., [BCL89, Elk90, LS93]) to
the problem of deciding answer-completeness. Levy
and Sagiv [LS93] describe an algorithm for detect-
ing independence based on checking equivalence be-
tween two queries. Figure 1 describes an algorithm
that adopts the method in [LS93] to decide answer-
completeness based on equivalence checking.

procedure decide-completeness(Q, I’)
/* Q is a query over the relations RI,. . . , R,;

T is a set of local completeness statements:
LC(R:, Ri, Ci) for i, 1 5 i 5 n.

The procedure returns yes if and only if Q
is answer-complete w.r.t. I. */

Let El,..., E, be new relation symbols.
Define the views VI,. . . , V, as follows:

(Xi are the arguments of R;)
i$(Xi) : -Ei(Xi) & TCi.
i((Xi) : -Ri(Ri).

Let &I be the query in which every occurrence of Ri
is replaced by Vi, for i, 1 5 i < n.

return yes if and only if Q is equivalent to Q1.
end.

Figure 1: An algorithm for detecting answer-
completeness of a query.

The problem of checking query equivalence is well
studied in the literature, and therefore algorithm
decide-completeness can use a host of known re-
sults to decide completeness. For example, algorithms
for equivalence of queries containing unions and nega-
tions are given in (SY81, LS93]. When queries are
recursive, the equivalence problem is known to be
undecidable [Shm93]. However, algorithms for re-
stricted cases are given in [CV92, CV94, Sag88, LS93].
Finally, if the database relations are known to sat-
isfy integrity constraints (e.g., functional dependen-
cies, tuple generating dependencies), the algorithms
in [CM77, ASU79b, ASU79a, JK83] can be used for
deciding equivalence. We obtain the following decid-
ability results for the answer-completeness problem.

Theorem 3.2 : Let Q be a union of conjunctive
queries over the relations RI, . . . , R, and comparison
predicates, and let T be a set of local completeness
statements of the form LC(Rj, Rj, Cj), where Ri E R’
and Rj E R. The answer-completeness problem is de-
cidable in the following cases:

1. if each of the Cj ‘s contains only arguments of Rj
or constants, or

2. if the head of Q contains all the variables of the
body of Q, and neither the Cj ‘s or Q use the com-

parison predicates. 0

When the constraints involve comparison predicates
the problem of deciding answer-completeness for the
first case of Theorem 3.2 is II;. In fact, the lower
bound on the problem of equivalence [vdM92] im-
plies that this is also the lower bound on the answer-
completeness problem. The proof of Theorem 3.2
follows from Theorem 3.1 and from decidability re-
sults for query containment [SY81, Kh.188, LS93]. In
the next section we consider the very common case
in which the Cj’s include variable-interval built-in
atoms, and show that deciding independence can be
done in polynomial-time, and therefore so can answer-
completeness.

4 Deciding independence efficiently

In this section we identify an important practical case
in which independence of queries from updates can
be detected more efficiently than in previous algo
rithms. Consequently, deciding answer-completeness
of a query can also be done more efficiently. Intuitively,
in this case detecting independence is equivalent to de-
ciding when the updated tuples and the query are mu-
tually unsatisfiable, whereas in general, detecting in-
dependence requires that we detect that the updated
tuples are redundant w.r.t. the query. The following
example, adopted from [LS93], explains the difference
between satisfiability and redundancy.

Example 4.1: Consider a database containing the
relation inCar(Person, Car, Age). ’ A tuple (P, C, A)
is in the relation inCar if the person P, whose age is
A is in car C. The view canDrive(Person, Car, Age)
is defined as follows:

canDrive(P, C, A) :- inCar(P, C, A), driver(P),

inCar(P1, C, Al), Al 1 18.

That is, a person P is allowed to drive a car C if P
has a driver’s license and there is someone in the car
above the age of 18. Suppose our query is to find all
the adult drivers:

adult Driver(P) :- canDrive(P,C,A), A? 18.

Consider a deletion update that removes from
the relation inCar some tuples (P, C, A) for which
TDriwer(P) and A < 18. Clearly, such tuples can-
not be part of a derivation of an answer to the query
adultDriver because adultDriver uses only tuples of
incur for which either P is a driver or the age is at
least 18. In this case we say that the tuples involved in
the update are mutually unsatisfiable with the query.

407

Clearly, if the updated tuples are mutually unsatisfi-
able with the query, the query is independent of the
update.

Consider a deletion update that removes from the
relation incur tuples involving only non-drivers, i.e.,
tuples (P, C, A) for which lDriver(P). Tuples of
this set can be used in a derivation of the query
adult Driver. For example, if the database con-
tains the tuples inCar(Alice, C, 19), driver(Alice)
and inCar(Bob, C, 20), the tuple of Bob can be used to
derive that Alice is an adult driver. However, the tuple
of Bob is redundant, because Alice (being older than
18) is allowed to drive the car C even if she is alone
in the car, and therefore is an answer to ad&Driver.
Therefore, removing such tuples will not change the
result of the query. •I

Detecting redundancy is a more expensive proce-
dure than detecting satisfiability. For example, for
conjunctive queries with comparison predicates, the
time complexity of detecting redundancy is $ [Klu88,
vdM92], while checking satisfiability can be done in
polynomial time [UllSS].

The case we consider involves variable-interval
queries and updates. In particular, a conjunctive
query & is a variable-interval query if all the built-
in atoms in Q have one constant (i.e., there are no
comparisons between pairs of variables). A variable-
interval update is an update in which the updated tu-
ples are specified by a conjunction of built-in atoms
where each atom contains one constant. It should be
noted that variable-interval queries are a more general
class than semiinterval queries considered in [Klu88].
Figure 2 describes an algorithm for detecting inde-
pendence of variable-interval queries from variable-
interval updates. The following theorem shows that
the algorithm completely decides independence in this
case in polynomial time.

Theorem 4.1: Let Q be a conjunctive variable-
interval query over the relations El, . . . , En and the
comparison predicates <, 5. Suppose U is an update
(either deletion or insertion) to the relation El, in
which tuples satisfying the constraint C are added to
El, where C is a constraint on El involving only the
comparison predicates <,<, and each conjunct in C
has one constant.

If & is a minimal query then procedure detect-
independence will return independent if and only if
Q is independent of U. Th e running time of procedure
detect-independence is polynomial in the size of Q
and C. 0

Proof Sketch: In [LS93] it is shown that Q is inde-
pendent of deleting (El, C) if and only if it is inde-
pendent of adding (El, C), since the update is oblivi-

procedure detect-independence(Q, E, C)
/* Q is conjunctive query, and

E is one of the relations mentioned in Q;
C(X1,...,Xm) is a conjunctive constraint on the
arguments of E that uses only comparison atoms,
each with one constant. */

for every occurrence E(Yl , . . . , Ym) of the relation E
in the body of Q do:

Let 4 be the mapping X, -+ Y, for j, 1 _< j 5 m.
Let Q’ be the conjunctive query in which $(C)

is added to the subgoals of Q.
if Q’ is satisfiable then return not independent.

return independent.
end.

Figure 2: An algorithm for detecting independence of
a query from an insertion update, for updates specified
by built-in predicates.

ous. We show that if Q is independent of the deletion
update (El,C), and Q has a conjunct El(?) that is
consistent with C(Y), then the conjunct must be re-
dundant, and therefore the query is not minimal.

In order to be satisfiable, the comparison atoms of
the conjunctive query Q force the value of every vari-
able X to be in an interval Ix. The interval may be
open or closed and may have 00, -oo as endpoints.

For any given mapping $ of the variables of Q to
constants in their intervals, we can create a database
D$ that contains exactly the tuples .$~(g) for every
subgoal of g E Q, From Dq we can derive the an-
swer $(X), where x are the head variables of Q. In
order to show that the conjunct El(Y) is redundant,
we need to show that for every $J, we can derive the
answer +(X) from D+ without the tuple $(El(Y)).

There are two cases. If $J(Y) satisfies C, then we
can remove E($@)) from D$ without affecting the
answer to Q because the query is independent of delet-
ing (El, C).

In the second case, $J(F) does not satisfy C. Since
the comparison atoms in Q do not compare among
variables, it is possible to modify D,J, to a database D;1
such that one of the variables in ? is mapped to a new
constant, and the resulting database contains a tuple
that may be removed by the update. Furthermore, the
mapping of the head variables of Q in 06 is the same
as it is in D$, and the mapping of D$, is consistent with
the comparison atoms in Q. In D$,, there must be a
proper subset of the tuples that suffices to derive the
answer. In the proof we show that the corresponding
subset in D+ also suffices to derive the answer. •I

408

5 Answer-completeness for a database
instance

In Section 3 we considered the problem of decid-
ing answer-completeness of a query Q by examin-
ing only & and the local-completeness information I.
When our algorithm returned that the query is answer-
complete, then that will be true no matter of the spe-
cific database instance as long as it satisfies I. How-
ever, if the algorithm returned that the query is not
answer-complete, then there still may be database in-
stances in which the answer is complete.

In this section we describe an algorithm that de-
cides whether the answer to the query is complete in
the c~rrenl database state. The algorithm is based
on submitting a couple of additional queries whose an-
swers will show whether the answer to Q is guaranteed
to be complete. We first illustrate the algorithm with
an example.

Example 5.1: Consider again the query &i ask-
ing for the pairs of (title,director) of movies currently
playing in New York.

q(Title, Director) : -Movie(Title, Director, Year) &
Show(Title, Theater, Time)

Suppose the Show relation is known to be complete,
but the Movie relation is not (i.e., Movie’ c Movie),
and assume that the functional dependency Movie :
Title + {Director,Year} holds, i.e., the title of the
movie uniquely determines its director and year of pro-
duction To check whether the answer we get in the
current state of the database is complete we can issue
the following two queries:

ql(Title) : -Show(Title, Theater, Time)
qz(Title) : -Movie(Title, Director, Year)

If the answer to q2 is a superset of the answer to ql,
then we can conclude that the answer to the query Qi
is complete. The reason is that although the relation
Movie’ may not be complete, it contains all the movies
currently playing in NY, and therefore all the tuples
that would be needed in the complete answer. 0

Intuitively, the algorithm is based on finding a sub-
set of the subgoals of the query that provide a superset
of the complete answer to the query. We then check
whether the conjunctive query formed by the rest of
the subgoals is complete on that superset. Before we
describe the algorithm, we need one additional defini-
tion.

Given a set of variables in the query, they may func-
tionally determine the values of other variables.

Definition 5.1 (Functional determination): Let
Q be a conjunctive query, and assume that all equali-
ties between variables have already been propagated in

Q (i.e., Q does not imply additional equalities between
variables or between a variable and a constant). Let
2 be a subset of the variables that appear in the body
of Q. The variable Y in Q is said to be functionally
determined by x if

1. Y E X, or

2. There exist variables Yi, . . . , x that are function-
ally determined by x, and an atom of the rela-
tion R in the body of Q in which the variables
Y,,... , Yr, Y appear in the positions ii,. , iI+1

respectively, and the functional dependency R :
{Xl,. . . , a) + tltl holds.

0

In Example 5.1, the variables Title, Theater and
Time functionally determine all the other variables in
the query.

For simplicity of exposition we describe our algo-
rithm for conjunctive queries. Suppose we are given
a set of local-completeness statements I’, a database
instance D and a query Q of the form

Q: q(x) : -p&$ & . . . &p&?n) & C,

where C, is the conjunction of comparison atoms in
the query. We denote by Si a maximal subset of
pl(xl), . . . ,p,(xn) such that:

The variables in Si functionally determine all the
distinguished variables x of Q, and

The following query is answer-complete w.r.t. I:

Q’ : q/(x’) : -S1 & Cs,

where x’ are the subset of x that appear in Si,
and C’S, is .the projection of C, on the variables
in Si .2

If no subset Si exists, then the algorithm returns
unknown. Otherwise, we denote by S2 the set of non
comparison atoms of Q that are not in Si, and by C’s,
the projection of C, on the variables in Si. The set
Y is the set of variables that appear in both Si and
S’s, and Y’ is a minimal subset of Y that functionally
determines all the other variables in Y. We define the
following two queries:

&I: q@‘) : -SI &C‘s,.
92: q@‘) : -S2 & Cs,.

If the answer to Q2 from D is a superset of the an-
swer to Qi from D, then the algorithm returns com-
plete, and otherwise it returns unknown. q

zNote that the projection of C, on S1 may actually be a
disjunction, in which case Q’ is a union of conjunctive queries.

409

Example 5.2: Continuing with example 5.1, the set
Si includes the subgoal

Show(Title, Theater, Hour)

since Title determines Director and Year, and the
relation Show is assumed to be complete. The set of
variables Y would include only Title, and therefore the
queries would be

ql(Title) : -Show(Title, Theater, Time).
qz(Title) : -Movie(Title, Director, Year). 0

The correctness of the algorithm is established by the
following theorem.

Theorem 5.1: Let Q be a conjunctive query over the
relations RI, . , . , R, and comparison predicates, and
let r be a set of local completeness statements of the
form LC(Ri, Rj, Cj), where Ri E ii’ and Rj E R. Let
&I and Q2 be the queries defined by our algorithm.
For a given database D, ifQz(D) > &l(D) then Q is
answer-complete w.r.2. I’ and D. c]

Proof Sketch: By the construction of the set 5’1, the
answer to Q’ contains a superset of the projection of
the complete answer of Q on the variables x’. This
follows because Q’ is answer-complete w.r.t. I, and
contains a subset of the subgoals of Q. If the answer
to Q2 contains the answer to Qi over D, then inser-
tions to incomplete parts of 5’2 cannot change the join
of Sr and 272. Therefore, since the variables in Si func-
tionally determine all the other variables in the body
of Q, the answer to Q is guaranteed to be complete.
0

6 Answer-correctness

An additional advantage of our treatment of the
answer-completeness problem is that there is a very
analogous treatment for the case of incorrect informa-
tion in the database. In this case, the tuples of a rela-
tion R: are a superset of the tuples of Ri. In the same
way we defined that a relation is locally complete, we
can define a relation to be locally correct:

Definition 6.i (Local Correctness): Let C be a
constraint on the relation R. A database instance D
that includes the relations R and R’ is said to satisfy
the local-correctness statement LCor(R’, R, C) if R’
does not contain tuples satisfying C that are not in R,
i.e., if the results of following two queries are identical
over D:

471(X1,... ,X,) : -R(X1,. . .,X,)&C,
Q2(Xl, * . . ,X,):-R/(X1 ,..., X,)&C.

cl

The question we are interested in now is whether the
answer to a given query Q is correct from the partially
correct database:

Definition 6.2 (Answer-correctness): Let r be
a set of local-correctness statements of the form
LCor(R’, R, C), w h ere R E fi (the virtual relations)
and R’ E R’ (the available relations). Let Q be a query
over the virtual relations fi, and let Q’ be the result
of replacing every occurrence of Ri by R: in Q, for i,
l<isn.

The query Q is said to be answer-correct w.r.t. I
if for any database instance D for the relations ii and
ii’ such that D satisfies I’, then Q(D) = Q’(D). 0

Theorem 3.1 showed that the answer-completeness
problem can be equivalently formulated as the prob-
lem independence of a query from an insertion up-
date. The following theorem shows that the answer-
correctness problem can be equivalently formulated as
the problem independence of a query from an deletion
update.

Theorem 6.1: Let Q be a union of conjunctive
queries over the relations RI,. . . , R, and compari-
son predicates, and let I’ be a set of local complete-
ness statements of the form LCor(Ri, Rj, Cj), where
R: E ii’ and Rj E ii. The query Q is answer-correct
w.r.t. I’ if and only if In-(Q, (Rj, TCj)) holds for ev-
ery statement in r. 0

Given Theorem 6.1 we can use algorithms for
detecting independence also for deciding answer-
correctness. Theorem 6.1 has an additional interest-
ing consequence. As shown by Elkan [ElkgO], inde-
pendence from a deletion is a sufficient condition for
independence from an update, i.e.,

In- (Q, (4 C))> * In+(Q, (4 C>>>.

Therefore, if a query is deemed to be answer-correct,
it is also answer-complete. More importantly, this im-
plies that if we have a database that is partially incom-
plete and partially incorrect, then determining answer-
correctness is enough for detecting that the answer is
both correct and complete.

7 Related work

Motro [Mot891 considers the problem of determin-
ing answer-correctness (which he calls validity) and
answer-completeness in the presence of incorrect or
incomplete databases. His approach is based on de-
scribing the complete (or valid) parts of the database
as views. Given a query Q, if there is a rewriting of
the query using the complete (resp. valid) views, then
the answer is complete (resp. valid). He describes an

410

algorithm that finds rewritings of queries using views,
but it is not always guaranteed to find one if one exists.
Although complete algorithms for rewriting queries us-
ing views have been developed since (e.g., [LMSS95]),
finding a rewriting of the query using views has not
been shown to be a necessary condition for answer-
completeness. Motro also does not consider the prob-
lem of determining answer-completeness w.r.t. a spe-
cific database instance.

Recently, Etzioni et al. [EGW94] considered the
problem of answer-completeness in order to avoid re-
dundant information gathering actions in the Internet
Softbot system [EW94], and demonstrated experimen-
tally the value of detecting answer-completeness. They
show that answer-completeness is closed under con-
junction and partial instantiation of queries, and use
these properties as a basis for their algorithm for de-
termining answer-completeness. As they show, their
algorithm is not guaranteed to always detect answer-
completeness when it holds. They do not allow exis-
tential variables in local-completeness statements, and
they do not make use of the semantics of compari-
son predicates in their algorithms (though comparison
predicates are allowed to appear). Reasoning about
local-complete information is also related to the prob-
lem of reasoning with the closed world assumption.
The bulk of previous work on the topic (see [Gin871
for a collection of articles) has concerned itself with
the logic of reasoning with the closed world assump-
tion (i.e., which conclusions are appropriate to derive)
rather than efficient algorithms for doing so.

Levy and Sagiv [LS93] present sound and complete
algorithms for query independence for queries that are
unions of conjunctive queries with comparison pred-
icates and for recursive queries. Theorem 4.1 is a
case that has not been considered specifically in [LS93]
for which there is a polynomial time algorithm for
query independence. Elkan [Elk901 describes an algo-
rithm for query independence whose time-complexity
is polynomial in the case considered by Theorem 4.1.
However, his algorithms apply only to queries with
no self-joins (i.e., at most one occurrence of every re-
lation in the query). In [LSK95] an algorithm for
pruning redundant sources based on sources complete-
ness was described. However, the question of whether
the answer to a given query is complete given local-
completeness statements was not addressed.

8 Conclusions

We considered the problem of answering queries from
databases that may be incomplete or incorrect, and
presented algorithms that decide whether the answer
to a query is complete or correct. We provided a
complete characterization of the problem by relat-

ing it to the problem of determining independence
of queries from updates. Whereas determining com-
pleteness of an answer is translated to independence
of insertion updates, determining correctness of an
answer is translated to independence of deletion up-
dates. Consequently, we can deal uniformly with both
cases. This characterization yields a better under-
standing of the problem’s complexity and decidabil-
ity, and in particular, it yields novel sound and.com-
plete algorithms for answer-completeness and answer-
correctness that generalize previous treatments of the
problem. In particular, the algorithm for determining
answer-completeness based on query containment can
also be applied in wider contexts, such as in the pres-
ence of integrity constraints on the database. We iden-
tified an important case in which independence can be
determined efficiently, which, aside from being a result
of independent interest, yields an efficient algorithm
for the answer-completeness problem. Finally, we pre-
sented an algorithm that considers the current state
of the database to determine whether the answer is
complete.

A related question one can pose about incomplete
databases (which was considered in [EGW94]) is what
happens when the partial-completeness completeness
information changes. In particular, is the answer to
a query still complete even if parts of the database
that were assumed to be complete may not be com-
plete anymore. It can be shown that this problem
can be reformulated as a problem of independence of
queries from deletion updates, thereby giving it a uni-
form treatment with the problem we considered in this
paper.

There are several interesting directions of future
work to pursue. One is to consider other ways of spec-
ifying local-completeness information that cannot be
captured by the statements we allow here. An inter-
esting direction is to extend the algorithm described
in Section 5 by considering whether more information
about completeness can be obtained by issuing addi-
tional queries to the database.

Acknowledgements

I would like to thank Oren Etzioni and Dan Weld for
discussions that inspired me to do this work.

References

[ACHK94] Yigal Arens, Chin Y. Chee, Chun-Nan Hsu,
and Craig A. Knoblock. Retrieving and
integrating data from multiple information
sources. International Journal on Intelligent
and Cooperative Information Systems, 1994.

[ASU79a] Alfred Aho, Yehoshua Sagiv, and Jeffrey D.
Ullman. Efficient optimization of a class of

411

[ASU79b]

[BCL89]

[CGMH+94]

[CM771

[CV92]

[CV94]

[EGW94]

[Elk901

[EW94]

[Gin871

[JK83]

relational expressions. ACM Transactions on
Database Systems, (4)4:435-454, 1979.

Alfred Aho, Yehoshua Sagiv, and Jeffrey D.
UIIman. Equivalence of relational ex-
pressions. SIAM Journal of Computing,
(8)2:218-246, 1979.

J. A. Blakeley, N. Coburn, and P. A. Lar-
son. Updating derived relations: detecting
irrelevant and autonomously computable up
dates. Transactions of Database Systems,
14(3):369-400, 1989.

Sudarshan Chawathe, Hector Garcia-MoIina,
Joachim Hammer, Kelly Ireland, Yannis Pa-
pakonstantinou, Jeffrey UIIman, and Jennifer
Widom. The TSIMMIS project: Integra-
tion of heterogenous information sources. In
proceedings of IPSJ, Tokyo, Japan, October
1994.

A.K. Chandra and P.M. Merlin. Optimal im-
plementation of conjunctive queries in rela-
tional databases. In Proceedings of the Ninth
Annual ACM Symposium on Theory of Com-
puting, pages 77-90, 1977.

Surajit Chaudhuri and Moshe Vardi. On
the equivalence of recursive and nonrecursive
datalog programs. In The Proceedings of the
Eleventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Sys-
tems, San Diego, CA., pages 55-66, 1992.

Surajit Chaudhuri and Moshe Vardi. On
the complexity of equivalence between re-
cursive and nonrecursive datalog programs.
In The Proceedings of the Thirteenth ACM
SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 55-66,
1994.

Oren Etzioni, Keith Golden, and Daniel
Weld. Tractable closed world reasoning with
updates. In Proceedings of the Conference on
Principles of Knowledge Representation and
Reasoning, KR-94., 1994. Extended version
to appear in Artificial Intelligence.

Charles Elkan. Independence of logic
database queries and updates. In Proceed-
ings of the 9th ACM Symp. on Principles of
Database Systems, pages 154-160, 1990.

Oren Etzioni and Dan Weld. A softbot-based
interface to the internet. CACM, 37(7):72-
76, 1994.

Matthew Ginsberg. Readings in Nonmono-
tonic reasoning. Morgan Kaufmann PubIish-
ers, Inc., San Mateo, California, 1987.

D. S. Johnson and A. Klug. Testing contain-
ment of conjunctive queries under functional
and inclusion dependecies. Journal of Com-
puter and System Sciences, (28):1:167-189,
1983.

[Klu88]

[LMSS95]

[LRO96a]

[LR096b]

[LS93]

[LSK95]

[Mot891

[Sag881

[Shm93]

[SY81]

[UUSS]

[vdM92]

A. Klug. On conjunctive queries contain-
ing inequalities. Journal of the ACM, pages
35(l): 146-160, 1988.

Alon Y. Levy, Albert0 0. Mendelzon,
Yehoshua Sagiv, and Divesh Srivastava. An-
swering queries using views. In Proceedings of
the 14th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Sya-
terns, San Jose, CA, 1995.

Alon Y. Levy, Anand Rajaraman, and
Joann J. OrdiRe. Query answering algo-
rithms for information agents. In Proceedings
of the AAAI Thirteenth National Conference
on Artificial Intelligence, 1996.

Alon Y. Levy, Anand Rajaraman, and
Joann J. OrdiRe. Querying heterogeneous in-
formation sources using source descriptions.
In Proceedings of the g2nd VLDB Confer-
ence, Bombay, India., 1996.

Alon Y. Levy and Yehoshua Sagiv. Queries
independent of updates. In Proceedings of
the 19th VLDB Conference, Dublin, Ireland,
pages 171-181, 1993.

Alon Y. Levy, Divesh Srivastava, and
Thomas Kirk. Data model and query evaI-
uation in global information systems. Jour-
nal of Intelligent Information Systems, Spe-
cial Issue on Networked Information Discov-
ery and Retrieval, 5 (2), September 1995.

Amihai Motro. Integrity =. validity + com-
pleteness. ACM Transactions on Database
Systems, 14(4):480-502, December 1989.

Yehoshua Sagiv. Optimizing datalog pro-
grams. In Jack Minker, editor, Foundqtions
of Deductive Databases and Logic Program-
ming, pages 659-698. Morgan Kaufmann,
Los Altos, CA, 1988.

Odeh Shmueh. Equivalence of datalog
queries is undecidable. Journal of Logic Pro-
gramming, 15:231-241, 1993.

Y. Sagiv and M. Yannakakis. Equivalence
among relational expressions with the union
and difference operators. Journal of the
ACM, 27(4):633-655, 1981.

Jeffrey D. UIIman. Principles of Database
and Knowledge-base Systems, Volumes I,
1L Computer Science Press, RockviIIe MD,
1989.

Ron van der Meyden. The complexity of
querying indefinite data about linearly OI-
dered domains. In The Proceedings of the
Eleventh ACM SIGACT-SIGMOD-SJGART
Symposium on Principles of Database Sys-
tems, San Diego, CA., pages 331’345, 1992.

412

