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Abstract 

An object query can include a path expres- 
sion to traverse a number of related collec- 
tions. The order of collection traversals 
given by the path expression may not be the 
most efficient to process the query. This gen- 
erates a critical problem for an object query 
optimizer to select the best execution plan. 
This paper studies the different algorithms to 
process path expressions with predicates, 
including depth first navigation, forward and 
reverse joins. Using a cost model, it then 
compares their performances in different 
cases, according to memory size, selectivity 
of predicates, fan out between collections, 
etc.. It also presents a heuristic-based al- 
gorithm to find profitable n-ary operators for 
traversing collections, thus reducing the 
search space of query plans to process a 
query with a qualified path expression. An 
implementation based on the 02 system dem- 
onstrates the validity of the results. 

1. Introduction 

One of the advantages of object-oriented DBMSs 
(OODBMSs) is that they support class relationships, 
rhu, permitting objects to refer to each other directly 
through pointers. Objects can have attributes which 
are references to other objects. 

The concept of object navigation is an important 
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aspect of object databases. In query languages, re- 
quired navigations among objects are specified using 
path expressions. At each level of a path, a predicate 
can be used to restrict the navigation, and a variable 
can be used to refer to the selected objects in query 
results or further in the query qualification. We call 
such path expressions qualified path expressions; 
they unify the navigational and declarative aspects of 
object queries. 

Up to now, a lot of research has been done in 
object query languages [Cat93, GV92, KKS92], 
which emphasizes the expressive power of path ex- 
pressions in user queries. There is also research work 
done on physical access methods to support path ex- 
pressions as path indexes [KKD89, Ber91, KM90]. 
[KGM91] has proposed an algorithm for efficiently 
assembling complex objects. [SC891 have developed 
a comparison of traditional value based joins and 
pointer based joins. System designers often think that 
in object databases, traditional joins are no’ longer 
necessary since objects point at each other and object 
navigations can replace joins. For example, the Ob- 
jectstore system does not implement value-based join 
algorithms. However, it is not obvious that following 
pointers is always very efficient, especially when the 
memory size is small as it may require to swap out 
data pages. Very few papers give precise comparisons 
among different ways of executing path expressions. 

In this paper, we propose and compare different 
algorithms to search objects satisfying a qualified 
path expression. The basic algorithms for evaluating 
path expressions include depth-first fetch, forward 
join and reverse join. We then show that the mix of 
traditional joins together with pointer based naviga- 
tions can give very efficient strategies. To compare 
the various approaches and include them in a cost- 
based optimizer, we develop a cost model for estimat- 
ing different collection traversal algorithms. We also 
compare the performances of the proposed algorithms 
through an implementation based on the 02 system. 
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We show the different performances of these algo- 
rithms with different memory buffer sizes. 

In this paper, we also propose a simple heuristic 
based on a cost model to select the best path traversal 
algorithms. Since a path expression can be executed 
using a mix of pointer based and traditional value 
based joins, the search space of the query optimizer 
becomes very large. In object system, the size of 
search space is increased due to the richness of dif- 
ferent access methods. Implementing a complex 
search strategy is beyond the capabilities of most 
current OODBMS optimizers. Thus, to make our 
results simply applicable in current systems, we pro- 
pose a simple heuristic to select an approximately 
optimal path expression processing strategy. 

The remainder of this paper is organized as fol- 
lows. Section 2 introduces qualified path expressions 
and presents three different algorithms for evaluating 
them. Section 3 gives heuristic rule for the query 
optimizer to generate the search space for executing a 
complex path expression and to select the optimal 
combination of algorithms. Section 4 precisely de- 
termines the costs of basic operators to evaluate path 
expressions. Section 5 presents the implementation 
results of different algorithms evaluating the same 
path expression with different memory configura- 
tions. Section 6 concludes the paper. 

2. Path Traversal Algorithms 

In this section, we describe three basic algorithms 
that can be used to evaluate a path expression. These 
algorithms correspond to various types of traversal of 
an object network as illustrated in Figure 1. They are 
called Depth-First-Fetch (DFF), Breadth-First-Fetch 
(BFF), and Reverse-Breadth-First-Fetch (RBFF). BFF 
is based on Forward Join (FJ) while RBFF is based 

I on Reverse Join (RJ). During query optimization, a 
path can be cut into several subpaths and each of 
these subpaths can be traversed using a different al- 
gorithm. 

Figure 1 - An object network. 

2.1 Qualified Path Expressions 

Let (Cl, C2, . . . . Cn) be a set of related collections. 
Each collection Ci contains a set of homogeneous 
objects of type Ti. From the source Cl to the target 
Cn, collections are linked through attributes : Ai is an 
attribute of Ci objects whose values are collections 
of 1 or more objects in class Ci+l. A qualified path 
expression is an expression of the form : 

where Xi is a variable representing an object of col- 
lection Ci, Ai a relationship role attribute, and Pi is a 
predicate which qualifies Ci objects. Pi is optional 
and can be empty, which means true. 

The semantics of a qualified path expression is a 
set of tuples S { [Xl, X2, . . . Xn] }, where each tuple 
corresponds to a path of qualifying objects, i.e., an 
instance Xl, X2, . . . Xn contains OIDs of linked ob- 
jects satisfying the associated predicate in the path. S 
is called a supporting table for the qualified path 
expression. Note that; when evaluating a qualified 
path expression, it is not always necessary to instan- 
tiate the supporting table of OID tuples (i.e., the se- 
mantics) as required attribute values can be directly 
extracted from objects. Thus, in the supporting tables, 
OIDs are often replaced by attribute values required 
for assembling the query result, or omitted if no 
longer used. To improve the performance of path 
traversal, these supporting tables may be hashed on 
the value of OID. 

We illustrate qualified path expressions using 
three collections (Companies, Persons, Vehicles} 
linked by relationships Employs and Owns, as repre- 
sented in Figure 2. The double arrow in the figure 
represents l-to-many relationship between two col- 
lections. Qualified path expressions can be used as 
complex predicates in some variations of object SQL. 
Various syntaxes have been proposed for that, as in 
ESQL [GV92], SQL3 [Mel93], and OQL (Cat931. 
Below, we suggest a direct form in which qualified 
path expressions are used as complex predicates. 

Figure 2 - Examples of linked collections. 

The following query retrieves the name of the 
companies, the name of the employed persons, the 
number of the owned vehicle, for all companies in 
Paris whose employees younger than 30 have cars of 
power greater than 10 : 

SELECT C.Name, P.Name, V.Number 
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FROM Companies C, Persons P, Vehicles V 

WHERE C[City=“Paris”].Employs.P[Age<fO].Owns.V[Pow~ IO] 

It uses the qualified path expression C[City = 
“Paris”].Employees.P[Age < 30J.Cars.V[Pow > lo] in 
the WHERE clause. The corresponding query is ex- 
pressed in OQL as follows : 

SELECT C.Name, P.Name, V.Number 

FROM C IN Companies, P IN CEmploys, V IN P.Owns 
WHERE C.City=“Paris” AND P.Age<30 AND V.Pow>lO 

Directly supporting qualified path expressions in 
the query language will give less procedurality to the 
language. Linking attributes can be seen as stored 
predicates. Further, it permits to simply express que- 
ries with branching paths, which is known to be diffi- 
cult in OQL (e.g., expressing C.Emp1oys.P and 
C.Prom0tes.P may require two variables and one 
predicate in OQL). Proposed object query language 
standards (e.g., OQL and SQL3) are rather procedural 
with regards to qualified path expressions; they sim- 
ply express them as nested SELECT, which could 
bias certain query optimizers. We show in the follow- 
ing sections that the optimal order of collection tra- 
versals is complex to determine. 

2.2 DFF Traversal 

Depth-First-Fetch (DFF) is the natural algorithm for 
evaluating a path expression. It follows the path from 
the root to the target collection, using a depth first 
graph traversal algorithm. The corresponding opera- 
tor is an n-ary operator denoted DFF. It processes the 
path expression by navigating through object refer- 
ences following the order of the collections in the 
path expression. If there are multiple references from 
an object to the objects in the next collection, the 
navigation follows the depth first order. It assembles 
objects accessed through OIDs, which are efficiently 
decoded in most object database systems. 

The advantage of DFF is that it is an nary opera- 
tor that does not generate intermediate results. The 
result objects are assembled one at a time, which 
allows the system to return an answer before having 
processed the whole path. The CPU time is restricted 
to the time required to test the predicates and assem- 
ble the results. When objects are clustered according 
to the traversed relationships, the I/O time is signifi- 
cantly reduced. In general, this operator is very effi- 
cient when the memory size is large enough to avoid 
swapping of objects at level K in the tree when proc- 
essing objects at level K+I, otherwise it could be very 
costly. The detailed performance analysis is given in 
section 4. 

DFF is different from a set of pipelined binary 
joins which is a popular technique in relational 
DBMSs. Neither DFF nor pipelined multijoin needs 
to memorize temporary results. But the latter is a set- 
oriented operation and can not terminate the join 
process before all the tuples in a relation are evalu- 
ated. The granularity of DFF is finer since it proc- 
esses objects one-at-a-time rather than by sets of ob- 
jects. It also never processes objects of level K not 
pointed by at least one object of level K-l, which is 
an advantage of pointer-based joins over value-based 
joins. 

2.3 BFF Traversal and Forward Join 

Breadth-First-Fetch (BFF) traversal processes the tree 
of objects using a Forward Join (FJ) algorithm which 
is based on pointer chasing between two collections. 
Successive binary joins of collections are performed 
from the source collection to the target, following the 
path in a forward order. 

To process a qualified path expression of the 
form Xl[Pl].Al.X2[P2]...An-l.Xn[Pn] from collec- 
tion Cl to collection Cn, (n-l) successive joins of 
type Si+l = FJ(Si,Ci.Ai,Pi+l) are performed, where 
Si designates the supporting table of objects satisfy- 
ing the subpath expression Xl.[Pl].Al...Ai-l.Xi[Pi]. 
The join criteria is simply the traversal of Ci.Ai 
pointers. A new supporting table must be generated at 
each step to record the OID mappings among the 
different collections. The algorithm gains in ordering 
the supporting tables according to the OIDs of the 
objects of the next collection to be traversed. Thus, 
each page of a traversed collection is only loaded 
once. Ordering can be simply achieved using an order 
preserving hash function. 

The advantage of the BFF algorithm is to avoid 
nested loop OID comparisons like in traditional 
nested loop joins; thus the CPU cost is not high, al- 
though some time is spent to maintain the hashed 
supporting tables. Note that the FJ operator can be 
considered as a special case of the DFF one, where 
only two collections are involved in the path expres- 
sion. However, the BFF algorithm requires the con- 
struction of supporting tables, which is both costly in 
memory size and CPU. 

2.4 RBFF Traversal and Reverse Join 

As BFF, Reverse-Breadth-First-Fetch (RBFF) per- 
forms a sequence of binary joins between two neigh- 
bor collections to traverse the path, but it proceeds in 
the reverse order of the path. Thus, each join is called 
a Reverse Join (RJ). The join criterion is the member- 

392 



ship of the second collection object identifier to the 
first collection pointer attribute values. To process a 
qualified path expression of type 
Xl[Pl].Al.X2[P2]...An-l.Xn[Pn] from collection Cl 
to collection Cn, (n-l) successive joins of type Si-1 = 
RJ(Si,Ci- 1 .Ai- 1 ,Pi- 1) are performed, where Si desig- 
nates the supporting table of objects satisfying the 
subpath expression Xi[Pi].Ai...An.Xn[Pn] and RJ is 
the OID membership join algorithm in reverse order. 
As there is no direct link from the Ci collection to the 
Ci-1 one, a value based join must be used to check 
the OID membership condition. 

RBFF is efficient when the predicate in the last 
collection is selective as well as the intermediate 
joins. Thus, the supporting tables at each step remain 
relatively small and can generally be entirely loaded 
in memory. However, RJ doesn’t benefit of the clus- 
tering of traversed collections Ci according to the Pi 
selection predicate. It performs value-based compari- 
sons of OIDs, which is in general inefficient in CPU. 

2.5 Support tables 

A support table can be regarded as a collection 
of tuples of qualified object identifiers and attributes. 
Two support tables can be joined together if there 
exists a common supported collection between them. 
Figure 3 shows some support tables generated during 
path traversals. In (a), collection A is forward joined 
with collection B to get an OID mapping between A 
objects and C objects; the support table Tb is then 
forward joined with the C collection to get a mapping 
between A and D (b). (c) is an example of reverse 
joins between collection D and E, and (d) shows a 
join between two support tables. 

I I 

I I 

Figure 3- Join between support tables. 

3. Mixed Strategies to Evaluat Com- 

plex Path Expressions 

In this section, we examine strategies mixing the 
three algorithms given above to evaluate path ex- 
pressions. We particularly evaluate the size of the 
search space using these three algorithms for travers- 
ing a path of length (n-l). 

3.1 Query Plans as Processing Trees 

A processing tree (PT) is a graphical representa- 
tion of an execution plan [KBZ86]. A PT is a labeled 
n-ary tree where the leaf nodes represent collections 
of objects, the non-leaf nodes represent operators 
(e.g., Selection, FJ, RJ, DFF), and the edges represent 
temporary collections (e.g., support tables Tl, T2). 
We extend the traditional PT in the sense that certain 
intermediate nodes may have more than two children 
such as DFF operator, which starts from the objects in 
the left most collection and navigates to the right 
most collection. 

Figure 4 - A processing tree. 

Figure 4 gives an example of a PT. We consider 
three kinds of operators: unary such as select and 
index-select; binary such as FJ and RJ; and n-ary 
such as DFF. Each PT node has annotations indicat- 
ing the detail of the algorithms, the projection results 
and the qualifying predicates of the input collections. 
The execution of a PT follows bottom-up order. A 
join node (FJ or RJ) captures the join between an 
outer node (i.e., its left operand) and an inner node 
(i.e., its right operand). Given a PT rooted at node N, 
the cost-of the PT is computed recursively using the 
formula : 

Cost(PT) = Cost(N) + C Cost(Childi) 
i 

where Childi is the i-th child node of node N in 
the PT. In the following, to evaluate costs, we use 
classical notations : IlCill denotes the cardinality of 
collection i, ICil denotes the number of disk pages of 
collection i, Selr denotes the selectivity of the collec- 
tion i with predicate Pi, and fani,j denotes the fan out 
of the considered relationship from collection i to 
collection j. 
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3.2 Processing Tree Transformations 

As shown in Section 2, a qualified path expression 
can be executed using different combinations of op- 
erators. Each execution plan corresponds to one spe- 
cific PT. The costs of different PTs differ a lot, even 
though they are equivalent in semantics. The objec- 
tive of a query optimizer is to avoid the worse cases 
and to pick up one of the most efficient PTs. Differ- 
ent execution plans can be generated by the optimizer 
from an initial one based on a set of transformation 
rules. For example, Figure 5 illustrates several trans- 
formed PTs of the PT given in Figure 4. 

Figure 5- Transformed processing trees. 

The number of execution plans explored by the 
optimizer depend on the’ applied search strategy. As 
in relational databases, where the problem of large 
search space is mainly caused by join series, in 
OODBMS the search space of a query is exponential 
according to the length of path expressions. In mod- 
ern query optimizer architectures [FV94, FG94], 
different components are driven by different search 
strategies; thus, it would be useful to have a special 
combination of strategies for optimizing path expres- 
sions. For example, we could first apply a greedy 
strategy to select the algorithm for traversing certain 
neighbor collections; then the path would be cut into 
subpaths, which would greatly reduce the search 
space. 

3.3 Generating the Search Space 

Relational database systems rely on the join operator 
to assemble tuples of different tables for answering 
queries. Although the order, of joins does not affect 
the final result, it does determine to a large extent the 
response time of the query. In object databases que- 
ries, series of joins are replaced by path expressions. 
The number of equivalent plans becomes even larger, 
since path expressions can be executed not only by 
series of binary joins as usual in relational databases, 
but also by assembling efficiently the objects 

[KGM91]. [TL91] gives an estimation of the size of 
the search space when only binary joins are consid- 
ered. In this section, we present a method to measure 
the search space where nary joins like DFF exist. 

Suppose we have a path A.B.C.D...Z as in Figure 
6. Links with double arrows represent multiple object 
references, while single arrows represent mono- 
valued object references. Let n be the number of col- 
lections traversed and x be the number of different 
binary join algorithms. Let us consider a given proc- 
essing tree. For each binary join, x different join al- 
gorithms can be selected, which yields x”-i possible 
execution plans. Thus, without considering a multi- 
join algorithm, the size of the Search Space (SS) is 
given by : 

U(n) = 
(2n - 2) ! * xn-l 

n!(n - l)! 

where x n-l gives the combinations of binary join 

algorithms among n .collections and 
(2n-2)! 

gives 
n!(n - l)! 

the different orders to execute these joins. For exam- 
ple, if the path length equals 2 and there are only two 
different join algorithms, FJ and RJ, then the size of 
the search space for processing the path expression is 
SS(3)=8. When multi-joins are supported, the size of 
the search space is increased. Series of joins can be 
replaced by one DFF operator. 

Figure 6 - A sample path. 

Figure 7(a) gives all the possible join combina- 
tions for a path expression with length 5. Each circle 
represents a join operator, FJ, RJ or DFF. The num- 
ber in each circle indicates the starting and ending 
joined collections in the path. The bottom level of the 
pyramid gives the binary joins; the level above gives 
the DFF operators involving three collections; the top 
level circle represents a DFF operator applied to all 
the six collections. This pyramid has n-l levels. 
Looking closer to the pyramid, smaller pyramids in- 
side can be isolated, like the two marked with solid 
and dotted lines. The size of each pyramid varies, but 
the summit of each small pyramids represents a DFF 
operator equivalent to the sequence of binary join 
operators at the bottom level. For example, a join 
between the collections 0 and 1 followed by a join 
between the collections 1 and 2 is equivalent to a 
DFF operator on collections 0, 1, and 2. 
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SS(6) 
SS(4) 

SW) 
Figure 7 - Extending search space with DFF. 

>Let us assume now that the size of the search 
space of a path with 6 collections is SS(6). It contains 
a pure binary join sub-space of size (2 * 6 - 2)! * 25. 

6!(6 - l)! 

Further, if part of the traversing is done using DFF - 
for example using DFF to traverse collection 2,3,4, 
- then SS(6) includes the case b in Figure 7, whose 
search space size is SS(4). There are totally 4 differ- 
ent DFFs on three collections (012, 123, 234, 345), 
each of them transferring pyramid (a) to different 
pyramids of 3 levels with a search space of size 
SS(4). We can also execute a DFF on 4 collections, as 
in the small pyramid marked out with solid line in 
Figure 7.a. Collections 0,1,2,3 become an atomic 
element since they are traversed together by one DFF 
operator. This transfers pyramid (a) to the case of 
(c) with three collections ((0123), 4, 5) whose search 
space is SS(3). There are totally 3 different DFFs on 
four collections (0123, 1234, 2345), each of them 
transfers5 pyramid (a) to different pyramids of two 
levels. For the same reason, there are 2 different 
DFFs on five collections(01234, 12345), each of them 
transferring the original path to a path with 2 atomic 
collections whose search space is SS(2). Finally, 
there exists one DFF which traverses the whole path 
in a forward order based on OID navigations, which 
transfers the original path query to a simple query on 
one atomic collection, whose search space is SS(Z). 
But in the above analysis, there is a case counted 
twice, which applies DFF both on collection 012 and 
collection 345, whose search space is SS(2). 

Finally, the precise search space of a path with 6 
collections is given by : 

lo! 
SS(6) = - * 25 + 4 *B(4) + 3 * SS(3) + 2 * SS(2) + KY(I) - B(2) 

6!*5! 

If we consider only 2 different bin&y joins (FJ 
and RJ) and one nary join (DFF), we obtain SS(I) = 
1, SS(2) = 2, and the total search space for SS(6) = 
1544. More generally, the size of the search space for 

different numbers of linked collections is given in 
Table 1. 

Number of Search Space Number of 
collections collections 

Search Space 

1 1 5 256 
2 2 6 1544 
3 9 7 9910 

4 45 8 65462 

Table I- Size of search space. 

Note that the results in the above table are calcu- 
lated using only 3 different algorithms, when there 
are no reverse links in the paths. When the path graph 
becomes more complicated (e.g., with reverse links), 
or when there are more join algorithms (e.g., different 
hash join algorithms), the search space is much 
larger, and it is even more necessary to apply certain 
heuristics for selecting a PT. In the next section, we 
present such a heuristic to pick up profitable n-ary 
operators before considering binary operators. 

3.4 Heuristics to Reduce the Search Space 

From Table 1, we can see that the search space for 
optimizing a path expression is exponential to the 
path length. If the query optimizer can immediately 
find the profitable nary operators to apply on a num- 
ber of collections, the search space will be largely 
reduced since those collections linked by the nary 
operator can be considered as one single collection. 

For this purpose, we propose a data structure 
called Access Matrix. It is a two dimensional array. 
Each node inside the matrix Nodeij represents the 
path information from collection i to collection j. 

Thus it is a n*n matrix with iz2 nodes, where n is 
number of collections involved in the path expres- 
sion. The information associated with each node in- 
cludes the following : 

l Weight : the path length from collection i to j; 
l Cluster : whether the collections are clustered 

according to the path; 
l PathIndex : whether there is a path index be- 

tween collection i and j; 
l DFF : whether the nary DFF operator is profit- 

able from i to j; 
The attributes of a node can also be extended, for 

example, to add the statistics of a collection, the type 
of index, etc. The DFF attribute has three states{- 
1 ,O,l ) . The state 1 means the nary operator DFF from 
collection i to collection j is profitable compared to a 
set of binary join operators. The state 0 means the 
contrary. The state -1 means that it is impossible to 
perform DFF operators between collection i and j, 
because there is no link starting from collection i to 
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collection j. This case only appears in the node 
Nodei,j where i>j (in the case that there is no inverse 
link from collection i to j). 

As stated in section 2, DFF is an efficient opera- 
tor since it is based on the navigation following the 
pre-computed links and no intermediate result has to 
be generated. But DFF generates many random disk 
accesses if collections are not clustered according to 
the links. When memory buffer size is small, the re- 
sponse time of the DFF operator is increasing rapidly 
due to memory disk swaps. The performance analysis 
and measurements presented in the following sections 
confirm this fact. 

In summary, DFF appears superior to BFF or 
RBFF when the memory size is large enough to avoid 
reading twice a page, due to the fact that intermediate 
structures are not required as with forward join or 
reverse join. DFF is also superior when the collec- 
tions are clustered according to the path, as only one 
cluster is read to traverse all pointers from a given 
object. In case of a path index, special algorithms 
have to be considered as the supporting table is di- 
rectly available. Thus, we propose the following heu- 
ristic to select DFF when there is no path index from i 
toj. 

Heuristic Rule for DFF : Select DFF from Ci to Cj 
iff one,of the following condition holds : 

l The collections are clustered according to the 
path. 

l The available memory buffer size is superior to 
M, the expected number of pages to access in 
Ci+l, . . . Cj using the DFF algorithm. 

The last factor (M) can be evaluated using different 
estimators. We propose a formula for estimating M in 
the next section. 

In our approach, there are two steps to optimize a 
query with a path expression. In the first step, the 
optimizer parses the Access Matrix. The objective is 
to find some profitable nary operators along the path. 
Once these profitable nary operators are found, col- 
lections traversed by the same operator are consid- 
ered as one atomic collection; thus the path length is 
reduced. In the second step, the query optimizer ap- 
plies classical optimization techniques such as join 
permutation and algorithm selection (FJ or RJ) based 
on cost estimation using an efficient search strategy. 
As we have already shown, the search space is expo- 
nential in the path length. Thus, it is important that 
the second step be processed within a largely reduced 
search space. 

3.5 Estimating Page Block Hits for DFF 

To apply the given heuristic, the optimizer has to 
evaluate the expected number of pages to traverse 
with the DFF algorithm. This can, be done. using the 
Yao formula [Yao77]. It estimates the number of 
block hits for selecting k records from a collection 
which contains n records and is grouped into m 
blocks as being : 

n 
k n---i+1 

Yao(n,m,k)=m*(l-i~l n)lli+, ) 

Let XL be the number of distinct objects to select in. 
collection Ck. Then, the number of pages to access in 
collection Ck is given by yao( 11 Ck 11, I Ck I ,X,). Thus, 
the number of pages to access in collections Ci+l to 
Cj is given by the formula : 

The value of Xi can be estimated using the database 
statistics. An approximation will be given in the next 
section when computing the DFF cost. 

4. Cost Evaluation of Operators 

In the following we present a cost model for the dif- 
ferent path traversal algorithms studied in section 2. 
This is useful to complete the heuristic described in 
section 3. 

4.1 Cost Model Parameters 

There are several different components of the cost : 
the CPU cost is the cost of processing CPU instruc- 
tions; the IO cost is the cost of read and write opera- 
tions between memory and disk. We assume that : 

m is the available memory size for, process- 
ing a query, 
p is the page size, 
move(O) denotes the time to copy an object 
0 in memory, which is a pure CPU cost, 
camp denotes the time to compare two 
value in the memory, which is a pure CPU 
cost, 
hash denotes the CPU cost to find the mem- 
ory address of an OID. 
fan(Cl,C2) denotes the average number of 
references from a Cl object to C2 objects. 

4.2 Cost of Temporary Result 

Each operator generates an output result. As men- 
tioned above, results may be support tables, i.e., ta- 
bles of tuples of OIDs. Assuming a support table of 
size card in number of tuples and denoting 
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movefproj) the CPU cost required to project the at- 
tributes with size pruj and write the projection result 
in memory, we obtain : 

Output- CPU _ Cost(card,proj) = move(proj)* card 

Output- IO- Cost(card,proj) = 
card* proj 

P 

4.3 Cost of the Forward Join Operator 

The IO cost of the Forward Join consists of two 
parts : charging objects from the Cl and C2 collec- 
tions to memory and writing the result file to disk. 
Seh-, is the selectivity of a predicate on Cl if it ex- 
ists, otherwise it is equal to 1. When the available 
memory buffer size m satisfies the formula 
m 2 yao(p211,~~21, x 2) , there is no need of read- 
ing several %time the same page of C2 as seen in the 
previous section. Thus, the IO-Cost is equal to the 
total page number of Cl plus the number of page 
block hits on C2. 

When the available memory size is smaller, some 
pages need to be loaded multiple times and for each 
reference from a Cl object to C2 object. For collec- 
tion Cl, each object is charged only once for forward 
join operator. Once all the objects in the same data 
page have been processed, this page can be freed 
from the memory buffer. At any instance in the mem- 
ory buffer, the algorithm needs only one Cl data page 
and (m-l) C2 data pages. Suppose the C2 objects 
referred by Cl are uniformly distributed in all the 
data pages of C2. We estimate each time for derefer- 
encing an OID of a C2 object, there are (m-l)/ICzl 
possibilities that the object is in memory. The number 
of OIDs to dereference is given by the formula 

II II cl * sell * fan(c, ,c2) as each selected object in 

Cl has an average of fan(Cl,C2) pointers to C2 ob- 
jects. Thus, the additional number of I/OS in the case 
of not enough available memory to hold C2 is : 
(l-~*]Jc,pscll *.fan(C],C2). 

Collecting all the components yields the IO cost 
of the forward join : 

i 

m-l 
+ (l--p-$*~CJ’~$ *fMCc.C22 if m<wAijC2],1C21,X2) 

i 

The CPU cost also consists of two parts : the 
CPU cost for finding the memory address of each C2 
object referred by Cl objects and the CPU cost for 
projecting the result. It yields : 

+ OutPut- CPU- Cost(~~Cl~~ *Sell *fan(C, , C2) * Sd2, proj) 

4.4 Cost of the Reverse Join Operator 

Reverse join is a traditional value-based set-oriented 
join. Although reverse join does not benefit from the 
navigational aspects provided by object systems, it 
can still be very efficient for processing a path ex- 
pression, especially when a selection has been done 
on the second collection resulting in a list of qualify- 
ing OIDs saved in a support table. Then, one of the 
inputs of the RJ is a table of OIDs directly in mem- 
ory. . 

The cost of value-based join has been analyzed 
using different join algorithms in relational systems. 
The reader can refer to [Sha86] for nicely revisited 
formulas. For processing path expressions, the re- 
verse join is based on comparing attributes of OID 
type. One interesting problem is to estimate the size 
of temporary results after a reverse join. In the fol- 
lowing, we present an estimation method for that size. 
Assuming classical formulas for nested loop joins, we 
derive the CPU and I/O costs. 

The average number of references of a Ci object 
to C2 objects isfan(C,,C2). Thus, the total number of 
references from Ci objects to CZ objects equals to 
fan(CI,C2)*lIC,II. For each object in collection CZ, 
the average number of references from C, objects is : 

fan’(C, C2) = “““‘,i”‘,; * (ICI II 
C2 

Let Tz be the support table for collection C2, 
containing OIDs of C2 objects. As C2 has been fil- 
tered using predicate P2 of selectivity Se12 there are 
IIC~11*Sez~ entries in TZ. So there should be 
fan ‘(C,, C,) *I I Czl I *Se12 logical links from Ci objects 
to the relevant CZ objects. For an object in collection 
Ci, the probability of not being involved in these 
logical links is : 

P(O) = (I_ 1)IlC*I(‘Sel,*frtn’(C,,C,~ 
IF 111 

Finally, the number of qualifying C1 objects after 
reverse join is equals to the following : 

N = (I- P(O)) *[[Cl 11 

The previous formula gives the size in number of 
objects of the results. Assuming a nested loop join, 
we can derive the CPU and I/O costs of RJ. They are 
given by the following formulas : 
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Note that the cost formulas neglect the time spent to 
generate the hashed support table T2 on C2. In many 
cases, the support table T2 generated on collection 
C2 contains only OIDs. As the size of an OID is 
about 4-8 bytes, a data page may store several hun- 
dreds of OIDs. Thus often T2 can be entirely kept in 
memory. Only CPU time has to be added. to the first 
formula, for example IIc2 )I * SeL2 * Ass , where Ass is 

the time to insert an OID in the support table. 

4.5 Cost of the DFF Operator 

DFF is an efficient operator for traversing the path 
when the memory size is big, since it profits the navi- 
gation aspect of object systems. It consumes few CPU 
and does not generate any temporary results for 
evaluating a path. The CPU cost for DFF without 
taking into account the output of results and the 
checking of the selection predicates is simply the time 
of traversing the graph, decoding the OIDs and 
evaluating the predicates if any, which yields : 

n-l i 
DFF~CPU~Cosf = bash * llCll[ * (I+ C II (fan(Cj,Cj + 1) * Seli)) 

i=lj=l 

The IO cost can vary depending of the available 
memory size. When the memory is large, we have : 

DFF- IO- Cost = /Cl1 + J2 yao(llCill,lCil,Xi) 

The Xi’s are also used in the heuristic rule of section 
3. A more precise value can be derived from 
lGGT951 : 

xi = (, _ (, _ & Xi-l*Se’i-l*fani-lpi ) * IcilI 

Xi is the number of objects in collection i to select 
when evaluating the subpath Xl[Pl].Al.X2[P2]...Ai- 
1 .Xi[Pi]. (, _ ~‘i-l*‘eI,-l*fUni-l,i gives the 

probability of an object in collection i not to be in- 
volved in the evaluation of the path expression. When 

ll’i II >> xi-1 * seti- * faniel i ’ which means that 

only a small proportion of objects in collection Ci is 
referenced by :he objects from collection Ci-i, Xi can 
be approximated by ximl * seiiml * funiwl i ; when 

llCill< Xi-1 * Seti- * fUni-l,i ’ Xi is close t0 IICill. 

When the memory is small, the IO cost of DFF 
can be very high since objects which are already 
loaded into memory may be replaced and then loaded 

again during the navigation. In the worst case, the 
number of 10s can be close to the value of 

IhII* :s:,:, (I+ ,I: JI fan(cj,cj + 1) * seli) . Thus, it seems 
better to avoid DFF when the memory size is rela- 
tively smaller. 

5. Performance Study 

This section presents the performance evaluations of 
different collection traversal algorithms in various 
cases. 

5.1 The Experiment Platform 

The experimentation platform is based on the 02 
system and the 007 Benchmark on a SUN Spare 20 
with 96 M bytes of memory. To test the different 
algorithms, we generate a scalable tree of 007 ob- 
jects. This tree is composed of 5 levels of Assemblies 
with a maximum fan out equal to 5. Since we set the 
root collection to 256 ComplexAssemblies, the end- 
ing collection stores 160,000 BaseAssemblies. The 
size of the test base is about 20M bytes. Objects be- 
longing to the same collection are grouped together; 
links between objects of two neighbor collections are 
randomly generated. We have implemented three 
collection traversal algorithms described in section 2 
with 02C. For BFF, at each step, the OID values 
inside the support table are hashed. This avoids ran- 
dom access to the objects of the next collection in the 
following step of BFF. RJ is implemented using the 
hash join algorithm. 

5.2 FJ versus RJ on Two Collections 

In the first step, we compare two binary join algo- 
rithms (FJ and RJ) on two large collections when the 
memory buffer size varies. Figure 8 shows the re- 
sponse time of processing a path expression 
a.b[pred] with a predicate on the second collection. 
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,600 -- 

1 
1400 -- 
,200 -- 

F 1000 -- “) ____ * . . . . *---.a . ..__ . ..- . ..-.... I 

!t 
800 -- 

8 600 -- 
400 -- 
200 T 

Figure 8 - Forward Join and Reverse Join. 

The fan out between these two collections is set to 5. 
In this case, the condition of the heuristic rule de- 
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scribed in Section 3 returns 11 Mbytes, which means 
when the memory buffer size is less than this limit, 
the FJ operator is not profitable. We can see that this 
value is quite close to the breakpoint of the FJ in 
Figure 8, slightly left shifted. Compared to FJ, RJ is 
less sensitive to the memory size. The response time 
of the RJ does not change unless the memory be- 
comes very limited . 

5.3 BFF versus.DFF 

We now analyze the executions of a DFF compared to 
the execution of a sequence of FJ (BFF) on a path 
schema involving 5 collections (path length equals 4). 
Figures 9(a) and 9(b) gives the response time for 
different fan out settings in function of the memory 
size. 

Figure 9(a)-Fan out variation for the BFF. 
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Figure 9(b) - Fan out variation for the DFF. 

Figure-9(c) Path length variation for the DFF 

Figures 9(c) and 9(d) show the response time of the 
BFF and the DFF when varying the path length. We 
observe for the two algorithms that their respective 
breakpoint arises earlier and that the inclined angle of 
curves drastically increases when the path length 
increases. Figures 9(c) and 9.(d) confirms that in 
general, when path length becomes longer and mem- 
ory size becomes relatively smaller, BFF outperforms 
DFF, 

\._.‘=‘iii. 

Figure 9(d) - Path length variation for the BFF. 
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Figure 9 (e) - DFF : Selectivity of the first 
predicate 

Figure 9(f)- BFF : Selectivity of the first predicate. 

Figure 9(e) and 9(f) show the response time of the 
BFF and the DFF when the selectivity on the first 
predicate changes. We can see that when the selectiv- 
ity of the first collection increases, the break point of 
DFF is shifted to the right. The reason is that when 
there are more qualified objects from the starting 
collection, there are many more objects’belonging to 
the following collections involved by the path ex- 
pression, thus yielding the increasing of the value M. 
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From all the experiments reported in Figure 9(a) 
to 9(f), we conclude that for DFF the fan out and path 
length factors have more impact on the performance 
than the predicate selectivity, which only has a linear 
effect on a limited part of memory. Thus the poor 
performance of the DFF is mainly due to memory- 
disk faults yielding multiple accesses to certain 
pages. 

5.4 BFF, DFF and RBFF 

RBFF is implemented using a serial of hash join. The 
experiment of Figure 10 compares three different 
collection traversal algorithms for processing a path 
expression with length 4. 

3500 T 

3000 4 \ ---cDFF I 

5oj j 
0 10000 20000 30000 40000 

U.mor* SII. (KBYl.., 

Figure 10 - BFF, DFF and HRJ. 

In Figure 10 we can see that when the memory buffer 
size is large, DFF outperforms BFF (200 seconds) 
and HRJ (1000 seconds) mainly due to the fact that it 
requires neither to generate any intermediate results 
nor to charge any unreferenced objects. There is no 
predicate restriction on any of the five collections. 
Applying our heuristics, M is close to 19Mbytes. The 
curve of DFF confirms that when the memory size is 
below this number, DFF starts to increase drastically. 
The response time of DFF can be several times more 
than BFF and HRJ in the memory zone less than 10 M 
bytes. Using our heuristic rule, the query optimizer 
can avoid applying DFF with small memory size 
(compared to collection size). BFF and HRJ are rela- 
tively stable as the memory buffer size varies. Com- 
pared to HRJ, BFF is more sensitive to memory 
buffer size since it is a pointer-based join. We notice 
that when the memory is less than 10 M bytes, the 
response time of BFF starts to increase. 

The heuristics gives M an estimation of 21 M 
bytes. Thus, when the memory buffer is bigger than 
this value, DFF stays the best algorithm. But when the 
memory buffer size is smaller, the Mixed1 tree be- 
comes the most efficient. Mixed1 becomes the most 
efficient. HRJ is quite stable when memory buffer 
size varies. Mixed2 behaves almost the same as HRJ 
since the it uses two hash joins for traversing the two 
biggest collections C4 and C5. For very large data- 
bases, the memory buffer size is usually much smaller 
than the collection average size. Therefore, it is cru- 
cial for the optimizer to find the good mixed algo- 
rithm for executing the query. 

6. Conclusion 

5.5 Mixed Strategies 

From above experiments, we have shown the behavior 
of different path traversal algorithms in relation to 
factors such as fan out, selectivity, path length, mem- 
ory size. The experimental results show that none of 
these algorithms dominates the others in any’ case. 
DFF is an algorithm that can either be very efficient 
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This paper studies one of the open problems in ob- 
ject-oriented database systems, namely path expres- 
sion processing. It defines qualified path expression, 
which merges selection predicates with path travers- 
als. It introduces a cost model for path traversal and 
compares the performances of different collection 
traversal algorithms both analytically and experimen- 
tally. The results show that each algorithm has a best 

or very inefficient depending on the memory size. 
When the memory is small, a mix of these three 
strategies could have better performance. Figure 
11(a) displays two processing trees with mixed path 
traversal algorithms. Figure 1 l(b) shows the response 
time for traversing a path expression with length 4 
and fan out 5. There are five execution plans in Fig- 
ure 11 (b). The two above mixed plans plus DFF, 
BFF and HRJ. 

Figure 1 I(a) - Mixed strategies 

-I)- DFF 
- . m - . BFF 
+ HRJ 
-+-- Mixed2 
--o-.Mixedl 

210 -- 
ml I 

0 1CKKKl 20000 3am 4cml 

Memory size (KByies) 

Figure 1 I(b) - BFF,DFF HRJ and Mixed. 



range of application. This paper also suggests a data 
structure named Access Matrix to explore profitable 
nary operators and apply the heuristic rule to reduce 
the search space of the query optimizer. 

More specifically, the performance study shows 
that in different cases the costs of different traversal 
algorithms vary a lot. Each of these algorithms has its 
advantages and disadvantages. Depth-first-fetch al- 
gorithm is profitable when the memory size is large 
and becomes very expensive when memory size is 
reduced. Binary traversal algorithms are not too 
sensitive to the memory buffer size compared to nary 
collection traversal algorithms. Traditional join al- 
gorithms can still be very efficient compared to 
pointer chasing, particularly when the selectivity of 
the predicate applied on the last collection of a path 
is small. Today several leading commercial 
OODBMS products mainly rely on naive navigation 
for processing a query with a path expression. Tradi- 
tional binary join algorithms based on OIDs. (RBFF) 
are not even implemented. Current systems should be 
improved by implementing various path traversal 
algorithms. Of course, their query optimizer should 
master the condition when to apply these different 
algorithms. The results of the implementation prove 
that the heuristics we propose for finding profitable 
nary operators are correct. When the memory buffer 
size is smaller than the condition we defined in the 
heuristic rule, the cost of navigation operator is rais- 
ing up rapidly. 
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