
Cost-based Selection of Path Expression Processing

Algorithms in Object-Oriented Databases

Georges GardarinaYb, Jean-Robert Gruserb, Zhao-Hui Tanga

aCNRS-PRiSM Laboratory
University of Versailles-St-Quentin

78035 Versailles, France
firstname. lastname @prism. uvsq.fr

Abstract

An object query can include a path expres-
sion to traverse a number of related collec-
tions. The order of collection traversals
given by the path expression may not be the
most efficient to process the query. This gen-
erates a critical problem for an object query
optimizer to select the best execution plan.
This paper studies the different algorithms to
process path expressions with predicates,
including depth first navigation, forward and
reverse joins. Using a cost model, it then
compares their performances in different
cases, according to memory size, selectivity
of predicates, fan out between collections,
etc.. It also presents a heuristic-based al-
gorithm to find profitable n-ary operators for
traversing collections, thus reducing the
search space of query plans to process a
query with a qualified path expression. An
implementation based on the 02 system dem-
onstrates the validity of the results.

1. Introduction

One of the advantages of object-oriented DBMSs
(OODBMSs) is that they support class relationships,
rhu, permitting objects to refer to each other directly
through pointers. Objects can have attributes which
are references to other objects.

The concept of object navigation is an important

____---------
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

bProjet Rodin
INRIA, Rocquencourt

78 153 Le Chesnay Cedex, France
firstname. lastname @ inria.fr

aspect of object databases. In query languages, re-
quired navigations among objects are specified using
path expressions. At each level of a path, a predicate
can be used to restrict the navigation, and a variable
can be used to refer to the selected objects in query
results or further in the query qualification. We call
such path expressions qualified path expressions;
they unify the navigational and declarative aspects of
object queries.

Up to now, a lot of research has been done in
object query languages [Cat93, GV92, KKS92],
which emphasizes the expressive power of path ex-
pressions in user queries. There is also research work
done on physical access methods to support path ex-
pressions as path indexes [KKD89, Ber91, KM90].
[KGM91] has proposed an algorithm for efficiently
assembling complex objects. [SC891 have developed
a comparison of traditional value based joins and
pointer based joins. System designers often think that
in object databases, traditional joins are no’ longer
necessary since objects point at each other and object
navigations can replace joins. For example, the Ob-
jectstore system does not implement value-based join
algorithms. However, it is not obvious that following
pointers is always very efficient, especially when the
memory size is small as it may require to swap out
data pages. Very few papers give precise comparisons
among different ways of executing path expressions.

In this paper, we propose and compare different
algorithms to search objects satisfying a qualified
path expression. The basic algorithms for evaluating
path expressions include depth-first fetch, forward
join and reverse join. We then show that the mix of
traditional joins together with pointer based naviga-
tions can give very efficient strategies. To compare
the various approaches and include them in a cost-
based optimizer, we develop a cost model for estimat-
ing different collection traversal algorithms. We also
compare the performances of the proposed algorithms
through an implementation based on the 02 system.

390

We show the different performances of these algo-
rithms with different memory buffer sizes.

In this paper, we also propose a simple heuristic
based on a cost model to select the best path traversal
algorithms. Since a path expression can be executed
using a mix of pointer based and traditional value
based joins, the search space of the query optimizer
becomes very large. In object system, the size of
search space is increased due to the richness of dif-
ferent access methods. Implementing a complex
search strategy is beyond the capabilities of most
current OODBMS optimizers. Thus, to make our
results simply applicable in current systems, we pro-
pose a simple heuristic to select an approximately
optimal path expression processing strategy.

The remainder of this paper is organized as fol-
lows. Section 2 introduces qualified path expressions
and presents three different algorithms for evaluating
them. Section 3 gives heuristic rule for the query
optimizer to generate the search space for executing a
complex path expression and to select the optimal
combination of algorithms. Section 4 precisely de-
termines the costs of basic operators to evaluate path
expressions. Section 5 presents the implementation
results of different algorithms evaluating the same
path expression with different memory configura-
tions. Section 6 concludes the paper.

2. Path Traversal Algorithms

In this section, we describe three basic algorithms
that can be used to evaluate a path expression. These
algorithms correspond to various types of traversal of
an object network as illustrated in Figure 1. They are
called Depth-First-Fetch (DFF), Breadth-First-Fetch
(BFF), and Reverse-Breadth-First-Fetch (RBFF). BFF
is based on Forward Join (FJ) while RBFF is based

I on Reverse Join (RJ). During query optimization, a
path can be cut into several subpaths and each of
these subpaths can be traversed using a different al-
gorithm.

Figure 1 - An object network.

2.1 Qualified Path Expressions

Let (Cl, C2, Cn) be a set of related collections.
Each collection Ci contains a set of homogeneous
objects of type Ti. From the source Cl to the target
Cn, collections are linked through attributes : Ai is an
attribute of Ci objects whose values are collections
of 1 or more objects in class Ci+l. A qualified path
expression is an expression of the form :

where Xi is a variable representing an object of col-
lection Ci, Ai a relationship role attribute, and Pi is a
predicate which qualifies Ci objects. Pi is optional
and can be empty, which means true.

The semantics of a qualified path expression is a
set of tuples S { [Xl, X2, . . . Xn] }, where each tuple
corresponds to a path of qualifying objects, i.e., an
instance Xl, X2, . . . Xn contains OIDs of linked ob-
jects satisfying the associated predicate in the path. S
is called a supporting table for the qualified path
expression. Note that; when evaluating a qualified
path expression, it is not always necessary to instan-
tiate the supporting table of OID tuples (i.e., the se-
mantics) as required attribute values can be directly
extracted from objects. Thus, in the supporting tables,
OIDs are often replaced by attribute values required
for assembling the query result, or omitted if no
longer used. To improve the performance of path
traversal, these supporting tables may be hashed on
the value of OID.

We illustrate qualified path expressions using
three collections (Companies, Persons, Vehicles}
linked by relationships Employs and Owns, as repre-
sented in Figure 2. The double arrow in the figure
represents l-to-many relationship between two col-
lections. Qualified path expressions can be used as
complex predicates in some variations of object SQL.
Various syntaxes have been proposed for that, as in
ESQL [GV92], SQL3 [Mel93], and OQL (Cat931.
Below, we suggest a direct form in which qualified
path expressions are used as complex predicates.

Figure 2 - Examples of linked collections.

The following query retrieves the name of the
companies, the name of the employed persons, the
number of the owned vehicle, for all companies in
Paris whose employees younger than 30 have cars of
power greater than 10 :

SELECT C.Name, P.Name, V.Number

391

FROM Companies C, Persons P, Vehicles V

WHERE C[City=“Paris”].Employs.P[Age<fO].Owns.V[Pow~ IO]

It uses the qualified path expression C[City =
“Paris”].Employees.P[Age < 30J.Cars.V[Pow > lo] in
the WHERE clause. The corresponding query is ex-
pressed in OQL as follows :

SELECT C.Name, P.Name, V.Number

FROM C IN Companies, P IN CEmploys, V IN P.Owns
WHERE C.City=“Paris” AND P.Age<30 AND V.Pow>lO

Directly supporting qualified path expressions in
the query language will give less procedurality to the
language. Linking attributes can be seen as stored
predicates. Further, it permits to simply express que-
ries with branching paths, which is known to be diffi-
cult in OQL (e.g., expressing C.Emp1oys.P and
C.Prom0tes.P may require two variables and one
predicate in OQL). Proposed object query language
standards (e.g., OQL and SQL3) are rather procedural
with regards to qualified path expressions; they sim-
ply express them as nested SELECT, which could
bias certain query optimizers. We show in the follow-
ing sections that the optimal order of collection tra-
versals is complex to determine.

2.2 DFF Traversal

Depth-First-Fetch (DFF) is the natural algorithm for
evaluating a path expression. It follows the path from
the root to the target collection, using a depth first
graph traversal algorithm. The corresponding opera-
tor is an n-ary operator denoted DFF. It processes the
path expression by navigating through object refer-
ences following the order of the collections in the
path expression. If there are multiple references from
an object to the objects in the next collection, the
navigation follows the depth first order. It assembles
objects accessed through OIDs, which are efficiently
decoded in most object database systems.

The advantage of DFF is that it is an nary opera-
tor that does not generate intermediate results. The
result objects are assembled one at a time, which
allows the system to return an answer before having
processed the whole path. The CPU time is restricted
to the time required to test the predicates and assem-
ble the results. When objects are clustered according
to the traversed relationships, the I/O time is signifi-
cantly reduced. In general, this operator is very effi-
cient when the memory size is large enough to avoid
swapping of objects at level K in the tree when proc-
essing objects at level K+I, otherwise it could be very
costly. The detailed performance analysis is given in
section 4.

DFF is different from a set of pipelined binary
joins which is a popular technique in relational
DBMSs. Neither DFF nor pipelined multijoin needs
to memorize temporary results. But the latter is a set-
oriented operation and can not terminate the join
process before all the tuples in a relation are evalu-
ated. The granularity of DFF is finer since it proc-
esses objects one-at-a-time rather than by sets of ob-
jects. It also never processes objects of level K not
pointed by at least one object of level K-l, which is
an advantage of pointer-based joins over value-based
joins.

2.3 BFF Traversal and Forward Join

Breadth-First-Fetch (BFF) traversal processes the tree
of objects using a Forward Join (FJ) algorithm which
is based on pointer chasing between two collections.
Successive binary joins of collections are performed
from the source collection to the target, following the
path in a forward order.

To process a qualified path expression of the
form Xl[Pl].Al.X2[P2]...An-l.Xn[Pn] from collec-
tion Cl to collection Cn, (n-l) successive joins of
type Si+l = FJ(Si,Ci.Ai,Pi+l) are performed, where
Si designates the supporting table of objects satisfy-
ing the subpath expression Xl.[Pl].Al...Ai-l.Xi[Pi].
The join criteria is simply the traversal of Ci.Ai
pointers. A new supporting table must be generated at
each step to record the OID mappings among the
different collections. The algorithm gains in ordering
the supporting tables according to the OIDs of the
objects of the next collection to be traversed. Thus,
each page of a traversed collection is only loaded
once. Ordering can be simply achieved using an order
preserving hash function.

The advantage of the BFF algorithm is to avoid
nested loop OID comparisons like in traditional
nested loop joins; thus the CPU cost is not high, al-
though some time is spent to maintain the hashed
supporting tables. Note that the FJ operator can be
considered as a special case of the DFF one, where
only two collections are involved in the path expres-
sion. However, the BFF algorithm requires the con-
struction of supporting tables, which is both costly in
memory size and CPU.

2.4 RBFF Traversal and Reverse Join

As BFF, Reverse-Breadth-First-Fetch (RBFF) per-
forms a sequence of binary joins between two neigh-
bor collections to traverse the path, but it proceeds in
the reverse order of the path. Thus, each join is called
a Reverse Join (RJ). The join criterion is the member-

392

ship of the second collection object identifier to the
first collection pointer attribute values. To process a
qualified path expression of type
Xl[Pl].Al.X2[P2]...An-l.Xn[Pn] from collection Cl
to collection Cn, (n-l) successive joins of type Si-1 =
RJ(Si,Ci- 1 .Ai- 1 ,Pi- 1) are performed, where Si desig-
nates the supporting table of objects satisfying the
subpath expression Xi[Pi].Ai...An.Xn[Pn] and RJ is
the OID membership join algorithm in reverse order.
As there is no direct link from the Ci collection to the
Ci-1 one, a value based join must be used to check
the OID membership condition.

RBFF is efficient when the predicate in the last
collection is selective as well as the intermediate
joins. Thus, the supporting tables at each step remain
relatively small and can generally be entirely loaded
in memory. However, RJ doesn’t benefit of the clus-
tering of traversed collections Ci according to the Pi
selection predicate. It performs value-based compari-
sons of OIDs, which is in general inefficient in CPU.

2.5 Support tables

A support table can be regarded as a collection
of tuples of qualified object identifiers and attributes.
Two support tables can be joined together if there
exists a common supported collection between them.
Figure 3 shows some support tables generated during
path traversals. In (a), collection A is forward joined
with collection B to get an OID mapping between A
objects and C objects; the support table Tb is then
forward joined with the C collection to get a mapping
between A and D (b). (c) is an example of reverse
joins between collection D and E, and (d) shows a
join between two support tables.

I I

I I

Figure 3- Join between support tables.

3. Mixed Strategies to Evaluat Com-

plex Path Expressions

In this section, we examine strategies mixing the
three algorithms given above to evaluate path ex-
pressions. We particularly evaluate the size of the
search space using these three algorithms for travers-
ing a path of length (n-l).

3.1 Query Plans as Processing Trees

A processing tree (PT) is a graphical representa-
tion of an execution plan [KBZ86]. A PT is a labeled
n-ary tree where the leaf nodes represent collections
of objects, the non-leaf nodes represent operators
(e.g., Selection, FJ, RJ, DFF), and the edges represent
temporary collections (e.g., support tables Tl, T2).
We extend the traditional PT in the sense that certain
intermediate nodes may have more than two children
such as DFF operator, which starts from the objects in
the left most collection and navigates to the right
most collection.

Figure 4 - A processing tree.

Figure 4 gives an example of a PT. We consider
three kinds of operators: unary such as select and
index-select; binary such as FJ and RJ; and n-ary
such as DFF. Each PT node has annotations indicat-
ing the detail of the algorithms, the projection results
and the qualifying predicates of the input collections.
The execution of a PT follows bottom-up order. A
join node (FJ or RJ) captures the join between an
outer node (i.e., its left operand) and an inner node
(i.e., its right operand). Given a PT rooted at node N,
the cost-of the PT is computed recursively using the
formula :

Cost(PT) = Cost(N) + C Cost(Childi)
i

where Childi is the i-th child node of node N in
the PT. In the following, to evaluate costs, we use
classical notations : IlCill denotes the cardinality of
collection i, ICil denotes the number of disk pages of
collection i, Selr denotes the selectivity of the collec-
tion i with predicate Pi, and fani,j denotes the fan out
of the considered relationship from collection i to
collection j.

393

3.2 Processing Tree Transformations

As shown in Section 2, a qualified path expression
can be executed using different combinations of op-
erators. Each execution plan corresponds to one spe-
cific PT. The costs of different PTs differ a lot, even
though they are equivalent in semantics. The objec-
tive of a query optimizer is to avoid the worse cases
and to pick up one of the most efficient PTs. Differ-
ent execution plans can be generated by the optimizer
from an initial one based on a set of transformation
rules. For example, Figure 5 illustrates several trans-
formed PTs of the PT given in Figure 4.

Figure 5- Transformed processing trees.

The number of execution plans explored by the
optimizer depend on the’ applied search strategy. As
in relational databases, where the problem of large
search space is mainly caused by join series, in
OODBMS the search space of a query is exponential
according to the length of path expressions. In mod-
ern query optimizer architectures [FV94, FG94],
different components are driven by different search
strategies; thus, it would be useful to have a special
combination of strategies for optimizing path expres-
sions. For example, we could first apply a greedy
strategy to select the algorithm for traversing certain
neighbor collections; then the path would be cut into
subpaths, which would greatly reduce the search
space.

3.3 Generating the Search Space

Relational database systems rely on the join operator
to assemble tuples of different tables for answering
queries. Although the order, of joins does not affect
the final result, it does determine to a large extent the
response time of the query. In object databases que-
ries, series of joins are replaced by path expressions.
The number of equivalent plans becomes even larger,
since path expressions can be executed not only by
series of binary joins as usual in relational databases,
but also by assembling efficiently the objects

[KGM91]. [TL91] gives an estimation of the size of
the search space when only binary joins are consid-
ered. In this section, we present a method to measure
the search space where nary joins like DFF exist.

Suppose we have a path A.B.C.D...Z as in Figure
6. Links with double arrows represent multiple object
references, while single arrows represent mono-
valued object references. Let n be the number of col-
lections traversed and x be the number of different
binary join algorithms. Let us consider a given proc-
essing tree. For each binary join, x different join al-
gorithms can be selected, which yields x”-i possible
execution plans. Thus, without considering a multi-
join algorithm, the size of the Search Space (SS) is
given by :

U(n) =
(2n - 2) ! * xn-l

n!(n - l)!

where x n-l gives the combinations of binary join

algorithms among n .collections and
(2n-2)!

gives
n!(n - l)!

the different orders to execute these joins. For exam-
ple, if the path length equals 2 and there are only two
different join algorithms, FJ and RJ, then the size of
the search space for processing the path expression is
SS(3)=8. When multi-joins are supported, the size of
the search space is increased. Series of joins can be
replaced by one DFF operator.

Figure 6 - A sample path.

Figure 7(a) gives all the possible join combina-
tions for a path expression with length 5. Each circle
represents a join operator, FJ, RJ or DFF. The num-
ber in each circle indicates the starting and ending
joined collections in the path. The bottom level of the
pyramid gives the binary joins; the level above gives
the DFF operators involving three collections; the top
level circle represents a DFF operator applied to all
the six collections. This pyramid has n-l levels.
Looking closer to the pyramid, smaller pyramids in-
side can be isolated, like the two marked with solid
and dotted lines. The size of each pyramid varies, but
the summit of each small pyramids represents a DFF
operator equivalent to the sequence of binary join
operators at the bottom level. For example, a join
between the collections 0 and 1 followed by a join
between the collections 1 and 2 is equivalent to a
DFF operator on collections 0, 1, and 2.

394

SS(6)
SS(4)

SW)
Figure 7 - Extending search space with DFF.

>Let us assume now that the size of the search
space of a path with 6 collections is SS(6). It contains
a pure binary join sub-space of size (2 * 6 - 2)! * 25.

6!(6 - l)!

Further, if part of the traversing is done using DFF -
for example using DFF to traverse collection 2,3,4,
- then SS(6) includes the case b in Figure 7, whose
search space size is SS(4). There are totally 4 differ-
ent DFFs on three collections (012, 123, 234, 345),
each of them transferring pyramid (a) to different
pyramids of 3 levels with a search space of size
SS(4). We can also execute a DFF on 4 collections, as
in the small pyramid marked out with solid line in
Figure 7.a. Collections 0,1,2,3 become an atomic
element since they are traversed together by one DFF
operator. This transfers pyramid (a) to the case of
(c) with three collections ((0123), 4, 5) whose search
space is SS(3). There are totally 3 different DFFs on
four collections (0123, 1234, 2345), each of them
transfers5 pyramid (a) to different pyramids of two
levels. For the same reason, there are 2 different
DFFs on five collections(01234, 12345), each of them
transferring the original path to a path with 2 atomic
collections whose search space is SS(2). Finally,
there exists one DFF which traverses the whole path
in a forward order based on OID navigations, which
transfers the original path query to a simple query on
one atomic collection, whose search space is SS(Z).
But in the above analysis, there is a case counted
twice, which applies DFF both on collection 012 and
collection 345, whose search space is SS(2).

Finally, the precise search space of a path with 6
collections is given by :

lo!
SS(6) = - * 25 + 4 *B(4) + 3 * SS(3) + 2 * SS(2) + KY(I) - B(2)

6!*5!

If we consider only 2 different bin&y joins (FJ
and RJ) and one nary join (DFF), we obtain SS(I) =
1, SS(2) = 2, and the total search space for SS(6) =
1544. More generally, the size of the search space for

different numbers of linked collections is given in
Table 1.

Number of Search Space Number of
collections collections

Search Space

1 1 5 256
2 2 6 1544
3 9 7 9910

4 45 8 65462

Table I- Size of search space.

Note that the results in the above table are calcu-
lated using only 3 different algorithms, when there
are no reverse links in the paths. When the path graph
becomes more complicated (e.g., with reverse links),
or when there are more join algorithms (e.g., different
hash join algorithms), the search space is much
larger, and it is even more necessary to apply certain
heuristics for selecting a PT. In the next section, we
present such a heuristic to pick up profitable n-ary
operators before considering binary operators.

3.4 Heuristics to Reduce the Search Space

From Table 1, we can see that the search space for
optimizing a path expression is exponential to the
path length. If the query optimizer can immediately
find the profitable nary operators to apply on a num-
ber of collections, the search space will be largely
reduced since those collections linked by the nary
operator can be considered as one single collection.

For this purpose, we propose a data structure
called Access Matrix. It is a two dimensional array.
Each node inside the matrix Nodeij represents the
path information from collection i to collection j.

Thus it is a n*n matrix with iz2 nodes, where n is
number of collections involved in the path expres-
sion. The information associated with each node in-
cludes the following :

l Weight : the path length from collection i to j;
l Cluster : whether the collections are clustered

according to the path;
l PathIndex : whether there is a path index be-

tween collection i and j;
l DFF : whether the nary DFF operator is profit-

able from i to j;
The attributes of a node can also be extended, for

example, to add the statistics of a collection, the type
of index, etc. The DFF attribute has three states{-
1 ,O,l) . The state 1 means the nary operator DFF from
collection i to collection j is profitable compared to a
set of binary join operators. The state 0 means the
contrary. The state -1 means that it is impossible to
perform DFF operators between collection i and j,
because there is no link starting from collection i to

395

collection j. This case only appears in the node
Nodei,j where i>j (in the case that there is no inverse
link from collection i to j).

As stated in section 2, DFF is an efficient opera-
tor since it is based on the navigation following the
pre-computed links and no intermediate result has to
be generated. But DFF generates many random disk
accesses if collections are not clustered according to
the links. When memory buffer size is small, the re-
sponse time of the DFF operator is increasing rapidly
due to memory disk swaps. The performance analysis
and measurements presented in the following sections
confirm this fact.

In summary, DFF appears superior to BFF or
RBFF when the memory size is large enough to avoid
reading twice a page, due to the fact that intermediate
structures are not required as with forward join or
reverse join. DFF is also superior when the collec-
tions are clustered according to the path, as only one
cluster is read to traverse all pointers from a given
object. In case of a path index, special algorithms
have to be considered as the supporting table is di-
rectly available. Thus, we propose the following heu-
ristic to select DFF when there is no path index from i
toj.

Heuristic Rule for DFF : Select DFF from Ci to Cj
iff one,of the following condition holds :

l The collections are clustered according to the
path.

l The available memory buffer size is superior to
M, the expected number of pages to access in
Ci+l, . . . Cj using the DFF algorithm.

The last factor (M) can be evaluated using different
estimators. We propose a formula for estimating M in
the next section.

In our approach, there are two steps to optimize a
query with a path expression. In the first step, the
optimizer parses the Access Matrix. The objective is
to find some profitable nary operators along the path.
Once these profitable nary operators are found, col-
lections traversed by the same operator are consid-
ered as one atomic collection; thus the path length is
reduced. In the second step, the query optimizer ap-
plies classical optimization techniques such as join
permutation and algorithm selection (FJ or RJ) based
on cost estimation using an efficient search strategy.
As we have already shown, the search space is expo-
nential in the path length. Thus, it is important that
the second step be processed within a largely reduced
search space.

3.5 Estimating Page Block Hits for DFF

To apply the given heuristic, the optimizer has to
evaluate the expected number of pages to traverse
with the DFF algorithm. This can, be done. using the
Yao formula [Yao77]. It estimates the number of
block hits for selecting k records from a collection
which contains n records and is grouped into m
blocks as being :

n
k n---i+1

Yao(n,m,k)=m*(l-i~l n)lli+,)

Let XL be the number of distinct objects to select in.
collection Ck. Then, the number of pages to access in
collection Ck is given by yao(11 Ck 11, I Ck I ,X,). Thus,
the number of pages to access in collections Ci+l to
Cj is given by the formula :

The value of Xi can be estimated using the database
statistics. An approximation will be given in the next
section when computing the DFF cost.

4. Cost Evaluation of Operators

In the following we present a cost model for the dif-
ferent path traversal algorithms studied in section 2.
This is useful to complete the heuristic described in
section 3.

4.1 Cost Model Parameters

There are several different components of the cost :
the CPU cost is the cost of processing CPU instruc-
tions; the IO cost is the cost of read and write opera-
tions between memory and disk. We assume that :

m is the available memory size for, process-
ing a query,
p is the page size,
move(O) denotes the time to copy an object
0 in memory, which is a pure CPU cost,
camp denotes the time to compare two
value in the memory, which is a pure CPU
cost,
hash denotes the CPU cost to find the mem-
ory address of an OID.
fan(Cl,C2) denotes the average number of
references from a Cl object to C2 objects.

4.2 Cost of Temporary Result

Each operator generates an output result. As men-
tioned above, results may be support tables, i.e., ta-
bles of tuples of OIDs. Assuming a support table of
size card in number of tuples and denoting

396

movefproj) the CPU cost required to project the at-
tributes with size pruj and write the projection result
in memory, we obtain :

Output- CPU _ Cost(card,proj) = move(proj)* card

Output- IO- Cost(card,proj) =
card* proj

P

4.3 Cost of the Forward Join Operator

The IO cost of the Forward Join consists of two
parts : charging objects from the Cl and C2 collec-
tions to memory and writing the result file to disk.
Seh-, is the selectivity of a predicate on Cl if it ex-
ists, otherwise it is equal to 1. When the available
memory buffer size m satisfies the formula
m 2 yao(p211,~~21, x 2) , there is no need of read-
ing several %time the same page of C2 as seen in the
previous section. Thus, the IO-Cost is equal to the
total page number of Cl plus the number of page
block hits on C2.

When the available memory size is smaller, some
pages need to be loaded multiple times and for each
reference from a Cl object to C2 object. For collec-
tion Cl, each object is charged only once for forward
join operator. Once all the objects in the same data
page have been processed, this page can be freed
from the memory buffer. At any instance in the mem-
ory buffer, the algorithm needs only one Cl data page
and (m-l) C2 data pages. Suppose the C2 objects
referred by Cl are uniformly distributed in all the
data pages of C2. We estimate each time for derefer-
encing an OID of a C2 object, there are (m-l)/ICzl
possibilities that the object is in memory. The number
of OIDs to dereference is given by the formula

II II cl * sell * fan(c, ,c2) as each selected object in

Cl has an average of fan(Cl,C2) pointers to C2 ob-
jects. Thus, the additional number of I/OS in the case
of not enough available memory to hold C2 is :
(l-~*]Jc,pscll *.fan(C],C2).

Collecting all the components yields the IO cost
of the forward join :

i

m-l
+ (l--p-$*~CJ’~$ *fMCc.C22 if m<wAijC2],1C21,X2)

i

The CPU cost also consists of two parts : the
CPU cost for finding the memory address of each C2
object referred by Cl objects and the CPU cost for
projecting the result. It yields :

+ OutPut- CPU- Cost(~~Cl~~ *Sell *fan(C, , C2) * Sd2, proj)

4.4 Cost of the Reverse Join Operator

Reverse join is a traditional value-based set-oriented
join. Although reverse join does not benefit from the
navigational aspects provided by object systems, it
can still be very efficient for processing a path ex-
pression, especially when a selection has been done
on the second collection resulting in a list of qualify-
ing OIDs saved in a support table. Then, one of the
inputs of the RJ is a table of OIDs directly in mem-
ory. .

The cost of value-based join has been analyzed
using different join algorithms in relational systems.
The reader can refer to [Sha86] for nicely revisited
formulas. For processing path expressions, the re-
verse join is based on comparing attributes of OID
type. One interesting problem is to estimate the size
of temporary results after a reverse join. In the fol-
lowing, we present an estimation method for that size.
Assuming classical formulas for nested loop joins, we
derive the CPU and I/O costs.

The average number of references of a Ci object
to C2 objects isfan(C,,C2). Thus, the total number of
references from Ci objects to CZ objects equals to
fan(CI,C2)*lIC,II. For each object in collection CZ,
the average number of references from C, objects is :

fan’(C, C2) = “““‘,i”‘,; * (ICI II
C2

Let Tz be the support table for collection C2,
containing OIDs of C2 objects. As C2 has been fil-
tered using predicate P2 of selectivity Se12 there are
IIC~11*Sez~ entries in TZ. So there should be
fan ‘(C,, C,) *I I Czl I *Se12 logical links from Ci objects
to the relevant CZ objects. For an object in collection
Ci, the probability of not being involved in these
logical links is :

P(O) = (I_ 1)IlC*I(‘Sel,*frtn’(C,,C,~
IF 111

Finally, the number of qualifying C1 objects after
reverse join is equals to the following :

N = (I- P(O)) *[[Cl 11

The previous formula gives the size in number of
objects of the results. Assuming a nested loop join,
we can derive the CPU and I/O costs of RJ. They are
given by the following formulas :

397

Note that the cost formulas neglect the time spent to
generate the hashed support table T2 on C2. In many
cases, the support table T2 generated on collection
C2 contains only OIDs. As the size of an OID is
about 4-8 bytes, a data page may store several hun-
dreds of OIDs. Thus often T2 can be entirely kept in
memory. Only CPU time has to be added. to the first
formula, for example IIc2)I * SeL2 * Ass , where Ass is

the time to insert an OID in the support table.

4.5 Cost of the DFF Operator

DFF is an efficient operator for traversing the path
when the memory size is big, since it profits the navi-
gation aspect of object systems. It consumes few CPU
and does not generate any temporary results for
evaluating a path. The CPU cost for DFF without
taking into account the output of results and the
checking of the selection predicates is simply the time
of traversing the graph, decoding the OIDs and
evaluating the predicates if any, which yields :

n-l i
DFF~CPU~Cosf = bash * llCll[* (I+ C II (fan(Cj,Cj + 1) * Seli))

i=lj=l

The IO cost can vary depending of the available
memory size. When the memory is large, we have :

DFF- IO- Cost = /Cl1 + J2 yao(llCill,lCil,Xi)

The Xi’s are also used in the heuristic rule of section
3. A more precise value can be derived from
lGGT951 :

xi = (, _ (, _ & Xi-l*Se’i-l*fani-lpi) * IcilI

Xi is the number of objects in collection i to select
when evaluating the subpath Xl[Pl].Al.X2[P2]...Ai-
1 .Xi[Pi]. (, _ ~‘i-l*‘eI,-l*fUni-l,i gives the

probability of an object in collection i not to be in-
volved in the evaluation of the path expression. When

ll’i II >> xi-1 * seti- * faniel i ’ which means that

only a small proportion of objects in collection Ci is
referenced by :he objects from collection Ci-i, Xi can
be approximated by ximl * seiiml * funiwl i ; when

llCill< Xi-1 * Seti- * fUni-l,i ’ Xi is close t0 IICill.

When the memory is small, the IO cost of DFF
can be very high since objects which are already
loaded into memory may be replaced and then loaded

again during the navigation. In the worst case, the
number of 10s can be close to the value of

IhII* :s:,:, (I+ ,I: JI fan(cj,cj + 1) * seli) . Thus, it seems
better to avoid DFF when the memory size is rela-
tively smaller.

5. Performance Study

This section presents the performance evaluations of
different collection traversal algorithms in various
cases.

5.1 The Experiment Platform

The experimentation platform is based on the 02
system and the 007 Benchmark on a SUN Spare 20
with 96 M bytes of memory. To test the different
algorithms, we generate a scalable tree of 007 ob-
jects. This tree is composed of 5 levels of Assemblies
with a maximum fan out equal to 5. Since we set the
root collection to 256 ComplexAssemblies, the end-
ing collection stores 160,000 BaseAssemblies. The
size of the test base is about 20M bytes. Objects be-
longing to the same collection are grouped together;
links between objects of two neighbor collections are
randomly generated. We have implemented three
collection traversal algorithms described in section 2
with 02C. For BFF, at each step, the OID values
inside the support table are hashed. This avoids ran-
dom access to the objects of the next collection in the
following step of BFF. RJ is implemented using the
hash join algorithm.

5.2 FJ versus RJ on Two Collections

In the first step, we compare two binary join algo-
rithms (FJ and RJ) on two large collections when the
memory buffer size varies. Figure 8 shows the re-
sponse time of processing a path expression
a.b[pred] with a predicate on the second collection.

2000 -
,800 --
,600 --

1
1400 --
,200 --

F 1000 -- “) ____ * *---.a . ..__ . ..- . ..-.... I

!t
800 --

8 600 --
400 --
200 T

Figure 8 - Forward Join and Reverse Join.

The fan out between these two collections is set to 5.
In this case, the condition of the heuristic rule de-

398

scribed in Section 3 returns 11 Mbytes, which means
when the memory buffer size is less than this limit,
the FJ operator is not profitable. We can see that this
value is quite close to the breakpoint of the FJ in
Figure 8, slightly left shifted. Compared to FJ, RJ is
less sensitive to the memory size. The response time
of the RJ does not change unless the memory be-
comes very limited .

5.3 BFF versus.DFF

We now analyze the executions of a DFF compared to
the execution of a sequence of FJ (BFF) on a path
schema involving 5 collections (path length equals 4).
Figures 9(a) and 9(b) gives the response time for
different fan out settings in function of the memory
size.

Figure 9(a)-Fan out variation for the BFF.

,600
,400

0 moo 10000 15000 20000 25000 mow 35000 40000
M.mo* Sk. (Kbytel,

Figure 9(b) - Fan out variation for the DFF.

Figure-9(c) Path length variation for the DFF

Figures 9(c) and 9(d) show the response time of the
BFF and the DFF when varying the path length. We
observe for the two algorithms that their respective
breakpoint arises earlier and that the inclined angle of
curves drastically increases when the path length
increases. Figures 9(c) and 9.(d) confirms that in
general, when path length becomes longer and mem-
ory size becomes relatively smaller, BFF outperforms
DFF,

\._.‘=‘iii.

Figure 9(d) - Path length variation for the BFF.

0 5000 l0000 11000 20001 21000 10000 15000 ,oooo
“.l.r”sll.,rb,l..,

Figure 9 (e) - DFF : Selectivity of the first
predicate

Figure 9(f)- BFF : Selectivity of the first predicate.

Figure 9(e) and 9(f) show the response time of the
BFF and the DFF when the selectivity on the first
predicate changes. We can see that when the selectiv-
ity of the first collection increases, the break point of
DFF is shifted to the right. The reason is that when
there are more qualified objects from the starting
collection, there are many more objects’belonging to
the following collections involved by the path ex-
pression, thus yielding the increasing of the value M.

399

From all the experiments reported in Figure 9(a)
to 9(f), we conclude that for DFF the fan out and path
length factors have more impact on the performance
than the predicate selectivity, which only has a linear
effect on a limited part of memory. Thus the poor
performance of the DFF is mainly due to memory-
disk faults yielding multiple accesses to certain
pages.

5.4 BFF, DFF and RBFF

RBFF is implemented using a serial of hash join. The
experiment of Figure 10 compares three different
collection traversal algorithms for processing a path
expression with length 4.

3500 T

3000 4 \ ---cDFF I

5oj j
0 10000 20000 30000 40000

U.mor* SII. (KBYl..,

Figure 10 - BFF, DFF and HRJ.

In Figure 10 we can see that when the memory buffer
size is large, DFF outperforms BFF (200 seconds)
and HRJ (1000 seconds) mainly due to the fact that it
requires neither to generate any intermediate results
nor to charge any unreferenced objects. There is no
predicate restriction on any of the five collections.
Applying our heuristics, M is close to 19Mbytes. The
curve of DFF confirms that when the memory size is
below this number, DFF starts to increase drastically.
The response time of DFF can be several times more
than BFF and HRJ in the memory zone less than 10 M
bytes. Using our heuristic rule, the query optimizer
can avoid applying DFF with small memory size
(compared to collection size). BFF and HRJ are rela-
tively stable as the memory buffer size varies. Com-
pared to HRJ, BFF is more sensitive to memory
buffer size since it is a pointer-based join. We notice
that when the memory is less than 10 M bytes, the
response time of BFF starts to increase.

The heuristics gives M an estimation of 21 M
bytes. Thus, when the memory buffer is bigger than
this value, DFF stays the best algorithm. But when the
memory buffer size is smaller, the Mixed1 tree be-
comes the most efficient. Mixed1 becomes the most
efficient. HRJ is quite stable when memory buffer
size varies. Mixed2 behaves almost the same as HRJ
since the it uses two hash joins for traversing the two
biggest collections C4 and C5. For very large data-
bases, the memory buffer size is usually much smaller
than the collection average size. Therefore, it is cru-
cial for the optimizer to find the good mixed algo-
rithm for executing the query.

6. Conclusion

5.5 Mixed Strategies

From above experiments, we have shown the behavior
of different path traversal algorithms in relation to
factors such as fan out, selectivity, path length, mem-
ory size. The experimental results show that none of
these algorithms dominates the others in any’ case.
DFF is an algorithm that can either be very efficient

400

This paper studies one of the open problems in ob-
ject-oriented database systems, namely path expres-
sion processing. It defines qualified path expression,
which merges selection predicates with path travers-
als. It introduces a cost model for path traversal and
compares the performances of different collection
traversal algorithms both analytically and experimen-
tally. The results show that each algorithm has a best

or very inefficient depending on the memory size.
When the memory is small, a mix of these three
strategies could have better performance. Figure
11(a) displays two processing trees with mixed path
traversal algorithms. Figure 1 l(b) shows the response
time for traversing a path expression with length 4
and fan out 5. There are five execution plans in Fig-
ure 11 (b). The two above mixed plans plus DFF,
BFF and HRJ.

Figure 1 I(a) - Mixed strategies

-I)- DFF
- . m - . BFF
+ HRJ
-+-- Mixed2
--o-.Mixedl

210 --
ml I

0 1CKKKl 20000 3am 4cml

Memory size (KByies)

Figure 1 I(b) - BFF,DFF HRJ and Mixed.

range of application. This paper also suggests a data
structure named Access Matrix to explore profitable
nary operators and apply the heuristic rule to reduce
the search space of the query optimizer.

More specifically, the performance study shows
that in different cases the costs of different traversal
algorithms vary a lot. Each of these algorithms has its
advantages and disadvantages. Depth-first-fetch al-
gorithm is profitable when the memory size is large
and becomes very expensive when memory size is
reduced. Binary traversal algorithms are not too
sensitive to the memory buffer size compared to nary
collection traversal algorithms. Traditional join al-
gorithms can still be very efficient compared to
pointer chasing, particularly when the selectivity of
the predicate applied on the last collection of a path
is small. Today several leading commercial
OODBMS products mainly rely on naive navigation
for processing a query with a path expression. Tradi-
tional binary join algorithms based on OIDs. (RBFF)
are not even implemented. Current systems should be
improved by implementing various path traversal
algorithms. Of course, their query optimizer should
master the condition when to apply these different
algorithms. The results of the implementation prove
that the heuristics we propose for finding profitable
nary operators are correct. When the memory buffer
size is smaller than the condition we defined in the
heuristic rule, the cost of navigation operator is rais-
ing up rapidly.

References

[BerBl] E. Bertino. An indexmg technique for object-
oriented databases. In Proceedings of Int.
Conf. Data Engineering, April 199 1.

[BMG93] J.A. Blakeley, W.J.McKenna, and G.
Graefe, Experiences building the open OODB
optimizer. In proceedings of ACM Sigmod,

[Cat931

[FG94]

[FV94]

1993.
R.G.G. Cattell. The Object Database Stan-
dard : ODMG-93. Morgan Kaufmann, 1993.
B. Finance and G. Gardarin. Rule-based
query optimizer with adaptable search
strategies. In Data and Knowledge Engineer-
ing, 13(2), 1994.
D. Florescu and P. Valduriez, Rule-based
query processing in the IDEA system, In
Proceedings of Int. Symp. on Advanced Da-
tabase Technologies and Their Integration,
Nara, Japan, October 1994.

tabases. In Proceedings of 21st International
Conference on Very Large Databases, Zu-
rich, 1995.

[GV92] G. Gardarin and P. Valduriez. ESQL2 : An
object-oriented SQL with F-Logic semantics,
In Int. Conf. on Data Engineering, Phoenix,
1992.

[KBZ86] R. Krishnamurty, H. Boral, C. Zaniolo.
Optimization of nonrecursive queries, In
Proceedings of 12th International Conference
on Very Large Databases, 1986.

[KKS92] M. Kifer, W. Kim and Y. Sagiv. Querying
object-oriented databases, In Proceedings of
ACM-SIGMOD International Conference.,
1990.

[KKD89] K.C. Kim, W. Kim and A. Dale. Indexing
techniques for object-oriented databases. In
W. Kim and F. H. Lochovsky, editors, Ob-
ject-oriented concepts, Databases, and Ap-
plications, 371-392. AddisonWesley, 1989.

[KM901 A. Kemper and G. Moerkotte. Access sup-
port in object bases. In Proceedings of the
ACM-SIGMOD International Conference.,
Atlantic City, 1990.

[KGM91] T. Keller, G. Graefe and D. Maier. Effi-
cient Assembly of Complex Objects. In Pro-
ceedings of ACM-SIGMOD International
Conference on Management of Data, 14%
157., 1991.

[Me1931 J. Melton, editor. IOS/ANSI Working Draft
Database SQL (SQL3). X3H2-93-091 IS0
DBL YOK-003, 1993.

[SC891 E. J. Shekita and M. J. Carey. A performance
evaluation of pointer-based joins. In Pro-
ceddings of SIGMOD Int. Conf. on Manage-
ment of Data, New Jersey, May 1990.

[Sha86] L. Shapiro, “Join Processing in Database

[TL91]

Systems with Large Main Memories“, ACM
Transactions on Database Systems, Vol 11
n”3, ~239-264, September 1986.
K.L. Tan and H.Lu, A note on the strategy of
multiway join query optimization problems,
In Proceedings of SIGMOD Int. Conf. On
Management of Data, 1991.

[Yao77] S.B. Yao. Approximating the number of
accesses in database organizations. In Comm.
of the ACM, 20(4) :260, April 1977.

[GGT95] G. Gardarin, J.R. Gruser and Z.H. Tang, A
cost model for clustered object -oriented da-

401

