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Abstract 
Over the last decade, a dramatic increase has been 
observed in the ability of individual experimen- 
tal scientists to generate and store data, which has 
not been matched by an equivalent development 
of adequate data management tools. In this pa- 
per, we present the results of our efforts to develop 
a Desktop Experiment Management Environment 
that many experimental scientists would like to 
have on their desk. The environment is called 
ZOO and is developed in collaboration with do- 
main scientists from Soil Sciences and Biochem- 
istry. We first describe the overall architecture of 
ZOO, and then focus on key features of its various 
components. We specifically emphasize aspects of 
the object-oriented database server that is at the 
core of the system, the experimentation manager 
that initiates the execution of experiments as a re- 
sult of scientists’ requests, and the mechanisms 
that the modules of the system use to communicate 
between them. Finally, we briefly discuss our ex- 
periences with the use of the current ZOO proto- 
type in the context of plant-growth simulation ex- 
periments and NMR spectroscopy experiments. 

1 Introduction 

In the past few years, several scientific communities have 
initiated very ambitious and broad-ranged projects in their 
disciplines. The NASA Eos effort and the NIH Hu- 
man Genome project are two examples of such national 
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and international scientific endeavors. A major part of 
these projects is the collection of huge amounts of data 
(sometimes measured in petabytes) on complex phenom- 
ena. Managing this surge of scientific data poses significant 
challenges, many of which cannot be effectively addressed 
by existing database technology. This has resulted in much 
research activity in the area of Scientijc Database Systems 
[FJFYO, SOW84]. 

Despite the renewed interest in the area, still little atten- 
tion has been devoted to the needs of small teams of scien- 
tists who perform individual experimental studies in their 
laboratories. In particular, a major problem that many ex- 
perimental scientists are facing is that there are no adequate 
experiment management tools that are powerful enough to 
capture the complexity of the experiments and at the same 
time are natural and intuitive to the non-expert. A small lab- 
oratory that can easily generate and store several megabytes 
of data per day is still dependent on the good old paper note- 
book when it comes to keeping track of the data. 

Over the past three years, in collaboration with several 
domain scientists, we have studied the needs of a wide 
range of experimental disciplines, developed solutions to 
some of the basic problems in experiment managemerit, 
and have made significant progress towards implementing 
a simple Desktop Experiment Management Environment 
(DEME) called Zoo. Our work has proceeded in a tight 
loop between developing generic experiment management 
technology that is implemented in a generic tool, Zoo, and 
installing customized enhancements of the tool that con- 
stitute full systems (complete Customized Desktop Exper- 
iment Management Systems (CDEMSs)) in laboratories’ of 
interest. New technology has been continuously transferred 
to these laboratories, while feedback from installed soft- 
ware as tested and evaluated in real-life settings has affected 
our research directions and decisions. Because of our em- 
phasis on the genericity of the basic technology developed, 
we believe that the main research results and software tools 
are applicable to a wide range of experimental disciplines. 

1 We use the term ‘laboratory’ to indicate any scientific environment 
where experiments are conducted, be it a physical laboratory in the tm- 
ditional sense, or a virtual laboratory involving scientists collaborating 
across the network, simulation-based modeling, etc. 
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In this paper, we first describe the overall philosophy 
and architecture of Zoo, thus making it a defining docu- 
ment of the entire project. We then focus on key features 
of its core components, i.e., the object-oriented database 
server, the experimentation manager that initiates the exe- 
cution of experiments as a result of scientists’ requests, and 
the mechanisms that the modules of the system use to com- 
municate between them. Finally, we briefly discuss our ex- 
periences with the use of the current Zoo prototype in the 
context of plant-growth simulation experiments and NMR 
spectroscopy experiments. Some aspects of the project 
and some of the Zoo modules emphasizing user interfaces 
have already been discussed elsewhere: the role of schemas 
in Zoo [IL92], the theoretical framework used for schema 
visualization [HIL94] and the resulting prototype schema 
manager [HIL95, ILBH961, the data model and query lan- 
guage of the system [WI93], and the object-to-file translator 
[AIL96]. This paper concentrates on the internal engines of 
the system, which have not been presented earlier. It briefly 
touches upon those of the above issues that are necessary for 
a comprehensive understanding of the system, but focuses 
on the overall system architecture and implementation, and 
on the technical contributions of the work in the areas of 
data management and experimentation. 

2 Life-Cycle of Experimental Studies 
We have been in an on-going dialog with experimental sci- 
entists who represent many experimental disciplines: pri- 
marily groups in soil sciences and biochemistry, but also 
physics, genetics, biotechnology, molecular biology, earth 
sciences, and manufacturing. Although these sciences have 
very little in common, typical experimental studies in any 
of them (and even in experimental computer science, as 
we have experienced it in our own work on DeNet [Liv88] 
and Condor [LLM88]) seem to go through very similar life- 
cycles. In particular, we have identified the following stages 
in the typical experiment life-cycle (we have given more de- 
tails elsewhere [IL92]): 

w Design of Experiment: The experimental frame (i.e., 
the experiment structure) of a study is laid out [Zei76], 
specifying which variables will be controlled and what 
will be measured as output. This is typically done on 
paper. 

l Data Collection: Experiments are actually conducted. 
The scientist specifies the experiment set-up and the 
values of the input parameters, and the relevant output 
data is then collected. This is done using some exper- 
imentation tool, e.g., a simulator or some laboratory 
equipment. 

l Data Exploration: The collected data is studied so that 
conclusions about the subject of the experiment may 
be drawn. This is typically done using a variety of sys- 
terns for retrieving, analyzing, or visualizing the data. 

Note that the life-cycle described only captures the ac- 
tivities involved in conducting the experiments and not 

those involved in preparing the appropriate experimenta- 
tion tools, e.g., implementing the necessary simulators or 
setting up the necessary laboratory equipment. 

To illustrate the above life-cycle, we discuss experi- 
ments in the area of soil sciences, conducted by a group of 
domain scientists with whom we have been collaborating 
the longest. They have developed the Cupid model [NC83, 
NC89], which represents an attempt to define collective 
plant-environment interactions by combining knowledge 
from the disciplines of meteorology, soil physics, plant 
physiology, microbiology, entomology, and plant pathol- 
ogy into a single manageable package. Cupid is quite com- 
plex (more than 10K lines of Fortran) and is used in about a 
dozen laboratories in the U.S. and abroad. Typically about 
a hundred parameters are input to Cupid and over three hun- 
dred are received as output for any specific application. 

Traditionally, an experimental study using Cupid goes 
through the following stages. Experiment Design: The in- 
put and output variables that are important to the study are 
chosen among all those dealt with by the model. This is 
done with pencil and paper and the final outcome is kept in 
notebooks. Data Collection: Input files are constructed in 
the format required by Cupid, containing the combinations 
of input variables to be tested. Cupid is called on each one 
of these files, generating each time an output file in a spe- 
cific format. Data Exploration: Unix scripts are written to 
extract the required data for every different research ques- 
tion that the scientists may have in the course of their study. 

A major impediment to exploiting the full power of Cu- 
pid has been keeping track of the numerous input and out- 
put files that are associated with a study. Over time liter- 
ally thousands of files are generated, making the task of data 
exploration a nightmare. Another major problem has been 
that scientists are forced to use very different tools during 
each of the three life-cycle stages, making the whole pro- 
cess difficult to manage. 

A key objective of our effort has been for Zoo to be an in- 
tegrated software package with a uniform user interface that 
(a) supports the entire life-cycle of an experimental study 
allowing smooth transitions between its stages, (b) trans- 
parently manages all the data generated by the study, and 
(c) hides the details of any underlying software used. An- 
other key objective is to blur the separating line between the 
data collection and data exploration stages, in the sense that 
data exploration may implicitly involve some data collec- 
tion. When a scientist is studying a phenomenon, whether 
a specific piece of information has already been collected or 
needs to be collected via an experiment is irrelevant. Thus, 
some requests in the data exploration stage may generate or- 
ders for datacollection. The following section describes the 
architecture of Zoo, which has been influenced significantly 
by the above objectives. 
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3 Architecture of Zoo 
Zoo is designed to be a generic Desktop Experiment 
Management Environment (DEME). To become a com- 
plete Customized Desktop Experiment Management Sys- 
tem (CDEMS) and be installed in a specific laboratory, 
e.g., the Cupid laboratory, it must be enhanced with some 
custom-made pieces, which can be generated usually with 
little effort. The overall architecture of Zoo and a result- 
ing CDEMS is shown in Figure 1. Blocks with white back- 
ground are generic Zoo modules and files; for ease of refer- 
ence, a short description of these modules is shown in Ta- 
ble 1. Blocks with gray background must be generated sep- 
arately for each complete Zoo-based CDEMS. Blocks with 
striped background are external systems with which a given 
CDEMS needs to communicate. Among them there is UC 
least one experimentation system2, where the experiments 
are conducted during the data collection stage. In addition, 
there may be other external systems that are useful in the 
data exploration stage, e.g., for statistical analysis or visu- 
alization. 

3.1 Zoo Module Functionality 

At the core of the system is Horse (Heavy-duty Object 
Repository for Scientific Experiments), its database server. 
It is based on the Moose (Modeling Objects Of Scientific 
Environments) object-oriented data model and the Fox 
(finding Objects of experiments) query language [IL89b, 
WI93], which we have designed for Zoo. Understand- 
ing the rest of the paper requires some familiarity with the 
Moose data model, so its salient features are briefly de- 
scribed below. 

There are various kinds of object classes in Moose. The 
primitive classes are integer, real, boolean, and character- 
string. Tuple classes have objects consisting of a prespeci- 
fied number of other objects, called purrs, identified by la- 
beled relationships. Collectionclasses have objects consist- 
ing of an arbitrary number of other objects, all from a single 
elements class. Collection classes are distinguished into set, 
multiset (bag), sequenced-set (list or array), and indexed-set 
classes. An indexed-set is essentially an array indexed by 
(the elements of) another arbitrary collection object; the lat- 
ter is called the keys& of the indexed-set and its elements are 
called keys. 
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There are five kinds of binary object relationships in 
Moose. The structure of a tuple class is defined by an ar- 
bitrary number of has-part relationships, each pointing to a. 
single object. The structure of a collection class is defined 
by a single set-of relationship, unless it is an indexed-set 
class in which case its structure is defined by a single set- 
of and a number of indexed-by relationships equal to the di- 
mensionality of the indexed-set. Association relationships 

Figure 2 shows a simple Moose schema in graph form 
that is used as an example throughout the rest of the pa- 
per. It represents a (simplified) soil-science study to deter- 
mine the total yield and quality of a crop depending on the 
weather and’on how various types of plants are distributed 
in a large piece- of huid divided into zones. Each Experi- 
menr is modeled as a complex object, with sub-objects rep- 
resenting its Input and its Output. Its output is a pair of the 
total yield and quality of the harvest. Its input consists of 
the Weather and a Plant_community, which is an indexed- 
set of Plants indexed by the set of land Zones so that the 
zone where each plant is grown is recorded independently 
for each Plant-community in which the plant participates. 
The weather is captured by rainfall, temperature, and wind- 
speed values, and may be windy (derived as wind-speed > 
.30 mph), in which case wind-direction becomes impoflant 
as well, dry (derived as rainfall < 2 in), in which case air hu- 
midity becomes important as well, or disaster, which com- 
bines the two. (The derivation conditions are not shown.) 

2 We use the term ‘system’ in a general sense, to include both soft- 
ware systems and physical systems possibly involving humans in their 
operation. 

Module 
EMU 
FOX 
FROG 

HORSE 

MOOSE 
OPOSSUM 
SQUID 
TURTLE 

Description 
Experimentation manager 
Declarative object-oriented query language 
Visual tool for specifying mappings between 
Moose objects and Ascii files 
Object-oriented database server based on 
Moose and Fox 
Object-oriented data model 
Visual schema manager 
Visual query manager 
Translator between Moose objects and Ascii files 

Table 1: Alphabetical list of Zoo modules with short de- 
scriptions 

do not define any structure but simply connect individual 
objects in two arbitrary classes (of any kind). Finally, an is- 
a relationship between two classes has the usual meaning. 

Any relationship from a class A to a class B may be spec- 
ified as derived, meaning that for each A object, the re- 
lated B object is constructed or identified based on other 
objects that are (indirectly) connected to the A object via 
other relationships. The construction or identification may 
be through a Fox query, or may require processing by an ex- 
ternal system that receives as input a file containing (parts 
of) these other objects. Likewise, any subclass may be spec- 
ified as derived, meaning that the members of its superclass 
that belong to it are identified through some query or other 
computation. 

Note that the output of an experiment is indicated as a 
derived relationship (label (D)). Although not shown in the 
figure, the derivation is based on the input part of an experi- 
ment (in particular, the values in the primitiveleaf classes of 
that complex object class) and is realized by the execution 
of an external program (e.g., Cupid, although Cupid deals 
with much more complex experiments). 
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Figure 2: Sample Moose schema of Soil Sciences experiment 
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Opossum (Obtaining Presentations Of Semantic Sche- 
mas Using Metaphors) and Squid (System for Queries 
Updates Insertions Deletions) make up the user interface 
of Zoo. Opossum is a schema manager [HIL95] and Squid 
is a query/update manager. Opossum and Squid have been 
built following a visualization framework that we have de- 
veloped that separates the data domain from its visualiza- 
tion [HIL94] for maximum flexibility. In particular, they 
are generic visual systems whose inputs are files with spec- 
ifications of a data model or query language (which are al- 
ways Moose and Fox for Zoo, respectively), a visual model, 
and a metaphor that indicates the correspondence between 
visualizations and underlying schemas or queries. For ex- 
ample, the most useful visual model for Moose schemas is 
that of graphs and the most useful corresponding metaphor 
maps graph nodes to Moose classes, graph edges to Moose 
relationships, etc. (Figure 2 presupposes such a metaphor.) 
Receiving these, Opossum is customized to operate for the 
specific data model and visualization style. (Likewise for 
Squid.) Although for Zoo the data model and query lan- 
guage are fixed, Opossum and Squid still offer much flexi- 
bility in defining different ways in which schemas or queries 
may be visualized. 

Emu (Experimentation Management Unit) is responsible 
for transforming user requests into actions at external sys- 
tems and preparing everything necessary for these actions. 
It interacts with Horse for retrieving the necessary user re- 
quests and with custom-built agents, one for each external 
system that the specific Zoo-based CDEMS needs to com- 
municate with. It also interacts with Turtle, to which it del- 
egates the necessary object-to-file translations. 

Turtle (Translation Unit of Run lime ‘of Large Experi- 
ments) is the system’s translator from Moose objects to 
Ascii files and vice versa. It is also a generic module; it re- 
ceives as input a map-jile that contains specifications of how 
the various parts of a complex object correspond to the var- 
ious areas of an external file, and based on that, it performs 
the actual translations. 

Frog (Files Related to Objects Graphically) is a visual 
tool for generating the map-files required by Turtle. In one 
window, it has a sample (input or output) file of the external 
system, and in another, it has the Moose schema for the ex- 
periment concerned, managed by Opossum. By highlight- 
ing a specific area in the file and clicking on the appropriate 
part of the schema, the designer specifies what objects cor- 
respond to what area of the file. Printing details, e.g., pre- 
cision, are guessed by Frog and can be overwritten by the 
user. 

3.2 Installation of Zoo-based CDEMS 

Each external system with which communication is desired 
may have specialized usage requirements that are impossi- 
ble to include in a generic system. Thus, installation Of a 
Zoo-based CDEMS in a specific laboratory or fora specific 

study entails a customized enhancement of the system: 
N 

l For each external system of interest, a customized 
agent is built incorporating all the specific details re- 
quired for interacting with and monitoring the system. 
The agent is registered with Zoo and information about 
it is stored in a system-defined class (Section 6). 

For example, our soil-science collaborators want to exechte 
the Cupid simulator under Condor [LLM88], so the corre- 
sponding agent takes care of all the Condor communication. 
On the other hand, our biocheyistry collaborators run ex- 
periments on spectrometers that are operated by humans, so 
the corresponding agent uses electronic mail to send the ap- 
propriate messages to designated technicians and to collect 
the output from designated files. Agents for new external 
systems can be built and registered dynamically, even after 
experiments have been run. 

Both modules in the user-interface ofZoo, Opossum and 
Squid, are generic and need some customized input to be- 
come operational. Graph-based visualizations of schemas 
and queries are universally useful and intuitive, so the ap- 
propriate model and metaphor files have been constructed 
and are provided for scientists to use directly. If, however, 
the scientists desire different schema or query visualiza- 
tions, then the following activity becomes necessary at in- 
stallation time as well: 

l Opossum is used as a meta-schema manager to cre- 
ate the files containing the data and visual models and 
metaphors required by the scientists. Meta-model and 
metaphor files that are “manually” constructed for this 
bootstrapping process are used as input t<Opossum. 
The resulting meta-schemas are then storedin files and 
used as Opossum and Squid inputs [HIL95]. 

New visual models and metaphors can also be designed dy- 
namically. / 

Note that, unless new visual models and metaphors are 
desired, installation only requires some programming in a 
regular programming language to build the agents but no 
database expertise, which is one of the goals of our effort. 

3.3 Experiment Design 

During the design stage of an experiment’s life-cycle, 

l Opossum is used to specify the schema of the exper- 
iment, which is then used to generate a database un- 
der Horse. This schema contains derived relationships 
corresponding to external systems associated with the 
given Zoo-based CDEMS. 

Since Turtle is also a generic module, to be able to per- 
form the appropriate translations between objects and files, 
it needs some customized input. Therefore, experiment de- 
sign includes the following activity as well: 
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l Frog is used to specify mappings between the designed 
Moose schema and the input and output files required 
by each external system. The resulting map-files are 
then stored and used as Turtle input [AIL96]. 

Again, no real database expertise is required for experiment 
design, as both Opossum and Frog are visual tools offering 
a high-level intuitive interface. 

3.4 Data Collection and Exploration 

As mentioned in Section 2, an important feature of Zoo is 
that it blurs the distinction between the data collection and 
data exploration stages if the scientist so desires. In partic- 
ular, the scientist may use Squid to request results of exper- 
iments without any knowledge of whether they have been 
run yet or not. When they have been run, Horse retrieves 
the necessary information from its database and returns it to 
Squid for display. When not, Horse invokes the mechanism 
for dealing with derived relationships (recall that the output 
of an experiment is derived), which eventually triggers the 
necessary actions at the appropriate external system. 

4 Information Storage and Shipping 
A Zoo-based CDEMS deals with a wide variety of informa- 
tion types, i.e., the contents of the database associated with 
each experimental study, results of queries that have been 
posed to a database and are important enough for the scien- 
tific study to store away, the queries themselves, visual rep- 
resentations of the database schemas, and eventually maybe 
even the models and metaphors required by Opossum or 
the map-files required by Turtle. For uniformity, genericity, 
and extensibility of storage by Horse and of communica- 
tion between the various Zoo modules, Zoo views any piece 
of information of any of the above flavors as an object in 
a Moose database [IL89a]. This is done recursively, in the 
sense that the schema of each one of these databases is also 
an object in a different, higher-level meta-database, until 
some mot databases are reached, whose schemas are known 
to all modules (Horse in particular) in a hardwired fashion. 
There are three root databases: one storing all user-defined 
Moose schemas in the Zoo-based CDEMS, one storing all 
saved Fox queries,‘and one storing all visual models that 
are used for visualization. Figure 3 shows the schema of 
the Moose-schema database. We do not present the other 
two, since we have not described Fox or the visualization 
methodology in any detail for these schemas to be compre- 
hensible, Figure 3 is self-explanatory (the attributes of Re- 
lationship capture its kind, its forward and reverse labels 
(fname and mame), and its forward and reverse properties 
represented as a bitmap (fprop and t-prop), e.g., cardinality, 
mutability, etc.). Note that derivation rules are part of the 
schema and each one is associated with one of the relation- 
ships. Currently, derivation rules are represented as plain 
text, but in principle, one could develop a schema rooted at 
the DerivationRule class capturing the rules’ structure. 

Figure 3: Meta-schema of user-defined Moose schemas 

There are several important implications of the overall 
approach above with respect to information storage: 

1. Schemas are a commodity whose usage goes way be- 
yond the typical one in the context of database sys- 
tems. Scientists can define them, examine them, or 
modify them, thus affecting the experimental frame of 
their studies, without thinking about them as express- 
ing database structures. In fact, a schema does not nec- 
essarily have to be associated with a database, but may 
exist uninstantiated. 
A schema of one database can be simply copied and be 
used as part of another schema. It is common for ex- 
perimental studies in the same field to share pieces of 
their overall setup, so during experiment design, it is 
very convenient for scientists to simply take and reuse 
an existing schema. In fact, even subschemas can be 
reused this way. For example, several Cupid studies 
may need the exact same modeling of weather as in 
the schema of Figure 2; scientists can simply copy that 
subschema to their own and avoid the trouble of re- 
designing it. 

2. Whole databases can be made part of larger databases, 
as subobjects. In fact, databases can be shared by 
multiple larger databases that need to use the contents 
of these subdatabases without replicating them: Sim- 
ilarly to point 1 above, experimental studies in the 
same field often share not just their design but even 
some of the data that they use as input. This is of- 
ten the case in modeling studies (simulation studies), 
where part of the input is actual measurements or ob- 
servations. Then, specific datasets that have been col- 
lected at some point and have properties that are well- 
known tend to be used continuously, so database shar- 
ing comes very handy and saves much space. Contin- 
uing on with the example in point 1, a study may need 
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not only the schema of the Weather class, but even 
the actual data with which this class and its subclasses 
have been populated (because, say, these represent ac- 
tual weather characteristics observed in a specific geo- 
graphic area of interest). This can be seen as a simple 
special case of schema/database merging in heteroge- 
neous databases [KLK9 I] where there are no semantic 
inconsistencies in the merged schemas, all of them are 
in the same data model, and they are reused without 
any transformation. 
Expanding this notion of database sharing, Horse per- 
vmits scientists to pose requests that span multiple 
databases. Scientists can bring up throughbpossum or 
Squid (visualizations of) any number of schemas and 
then pose queries on them. In some sense, this is like 
generating an ad hoc new database that has the actual 
databases as parts. This capability is very important, 
as scientists often want to access the results of multi- 
ple separate studies to correlate or combine their re- 
sults. For example assume that two different studies 
have the exact same schema of Figure 2. One may be 
a study that has used the Cupid simulator, while the 
other may be a study actually done on the fields con- 
taining actual measurements. Scientists may then re- 
quest pairs of yield values for every experiment that 
has the same input. This would allow them to validate 
Cupid‘and calibrate it appropriately if any major dis- 
crepancy arises in the results of the two studies. 

3. Queries are a commodity as well, and can be saved and 
reused at will. A query that resulted in data that leads 
to interesting insights needs to be saved (together with 
its result), for later reuse, to serve as a starting point for 
modifying it to obtain other similar queries, or to be 
eventually reported in scientific publications. More- 
over, it can be used in the context of other studies hop- 
ing to generate similar insights, to identify correlations 
between results of different studies, etc. 

4. Multiple visualizations can be used for the same 
schema, query, or object. For example, three separate 
visualizations could be stored for the schema captured 
in Figure 2: the specific graph layout of the figure, a 
completely different graph layout (possibly generat- 
ing different intuitions about the experiment design), 
and some other non-graph representation. Scientists 
can switch among these depending on their aesthetic 
preferences or needs and the appropriate visualization 
would come to the screen. 

5. Visualizations are a commodity as well and can be ma- 
nipulated accordingly. All schema and query copying 
and sharing in points 1 and 3 above are in fact done us- 
ing Opossum and Squid through visualizations, which 
are copied and shared as well. Likewise, visual models 
for schemas, queries, or object are a commodity that 

can be reused. For example a visual model for graphs 
generated to capture Moose schemas, may be useful in 
capturing many other types of objects as well. The de- 
signer can simply copy it instead of reconstructing it. 

The above schema/meta-object approach has important 
implications on information transfer between Zoo modules 
as well. Everything that is shipped is an object in some 
schema that has also been specified in the same or an earlier 
shipment. Schemas, queries, objects, visualizations, etc., 
everything is shipped as an instance of a known schema. By 
receiving the schema before the object, the recipient module 
has all the necessary information to interpret the object ap- 
propriately. Thus, all Zoo modules communicate with each 
other following the exact same generic protocol, using the 
exact same code, which we call shipping code. 

The shipping code has been developed so that each mod- 
ule could run on a separate machine, communicating via 
messages. Thus, on both ends of a communication link be- 
tween modules, there are transformation mechanisms be- 
tween the internal representation used by the module and 
the Ascii representation required by the shipping code. This 
has given great portability to Zoo, since it does not depend 
on any machine-specific characteristic for communication. 

Since the shipped objects may be quite complex (essen- 
tially, arbitrary Moose objects), their shipping (Ascii) rep- 
resentation is quite flexible. Essentially, an object to be 
shipped is an array with an entry for each individual object 
that is part of the overall object shipped. The relationships 
between these objects are captured as indices into the ar- 
ray rather than memory pointers as these have to be shipped 
across the network. Figure 4 shows the full structure of an 
input object based on the schema of Figure 2 in graph form. 
This is similar to the schema graph, so what the actual ob- 
ject is should be clear. Figure 5 shows the corresponding 
shipping representation for that object. 

5 The Horse Database Server 
Horse is the backbone of the entire Zoo environment, be- 
ing a server for all other modules3. It has been developed 
in a layered fashion for flexibility and extensibility. At the 
front-end, it accepts Moose data definition requests and Fox 
query and update requests in shipping form, but can also 
operate in a stand-alone mode, accepting textual requests. 
At the back-end, it is currently using the Informix relational 
database system as a storage server. There are many reasons 
for the Informix choice. First, we wanted a commercial 
piece of software that was unquestionably reliable so that 
scientists would feel comfortable storing their data under 
it. Second, we preferred a relational over an object-oriented 
database system (which would have a data model concep- 
tually closer to Moose) because the 00 systems that ex- 
isted when we-started required that the schema of a database 

3 It is truly a workhorse! 
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Envy Class Value Array of relationship linked lists 

1 string “wheat” ----_-_ 

2 integer 5 -_--___ 

3 integer 10 ___- ___ 

4 

Figure 4: Graph representation of input object 

be essentially compiled with any code developed on top of 
them, which is clearly inadequate for a dynamic environ- 
ment like Zoo where many experiment/schema designs will 
be defined over time. Third, Informix was donated to us 
for free! Our experience with Informix has been extremely 
positive, so we are happy that we made that choice. More- 
over, thanks to the layered implementation of Horse, we can 
easily port the system to use as a storage server any other 
relational or non-relational system. (We have taken some 
initial steps in this direction, to port Horse on top of Shore 
[c+94].) 

The most significant function of Horse is to translate 
Moose and Fox into the Relational model and SQL, respec- 
tively. Most aspects of these translations are quite straight- 
forward and similar to other efforts. The interesting parts 
are those that deal with unique or uncommon Moose and 
Fox features: sets and indexed-sets (which are very impor- 
tant in scientific experiments) and deep path expressions. 
Due to lack of space, we do not present any details on these 
translations, which can be found in the extended version of 
this paper. 

6 Experimentation Management 
As mentioned earlier, in Zoo, experimentation and any 
other form of external processing is achieved through the 
derived relationship mechanism. To support this mecha- 
nism, Horse uses two system-defined classes, the Task class 
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and the Agent class, whose schemas and their relationship 
Figure 5: Shipping representation of same object 

are shown in Figure 6. At any point, the Task class contains 
one object for each external computation/activity sched- 
uled. It records a status code for the computation (waiting- 
to-be-scheduled, scheduled, and complete), the class of the 
output object (an object in the schema database (Figure 3)), 
the oid of the object whose relationship is derived (embed- 
ded in the FullId class, which we use to express objects 
of any class), and a list with the oids of the input,objects 
(whose parts will be placed in the input file). The Agent 
class contains one object for each registered agent. The 
attributes of the class include the agent’s name (which is 
what Emu uses to call the agent for execution), the map-file 
names for the input and output files for the agent’s corre- 
sponding external system, and possibly the map-file name 
for the file returned with status information from that exter- 
nal system during processing. 

When Horse receives a request for data that requires 
some experimentation (or other processing) at an external 
system, it generates an object in the Task class and pop- 
ulates its parts with all the necessary information for the 
experiment to run. Emu periodically inquires Horse and 
whenever it finds new objects in the Task class, it initiates 
the corresponding experiments. Specifically, it first calls 
Turtle and passes to it the aid(s) of the object(s) that cap- 
ture the experiment’s input as well as the name of the appro- 
priate map-file that has been generated during experiment 
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Figure 6: Schemas of the Task and Agent classes 

design by Frog, all of which are found by Emu in the Task 
and Agent objects related to the experiment. Turtle inter- 
prets the map-file, uses the given object aid(s) to call Horse 
and extract the needed data from the database, and eventu- 
ally constructs the appropriate input file. Then, Emu com- 
municates with the appropriate agent sending to it the in- 
put file, and the experiment starts. Periodically, Emu polls 
the agents and when it detects that the experiment is over, it 
calls Turtle again and passes to it the name of the output file 
generated by the experimentation system and the name of a 
different map-file that has also been generated by Frog ear- 
lier. Turtle now operates in the oppositedirection, interprets 
the map-file, and constructs database object(s) from the out- 
put file, which are then stored in the database and possibly 
sent to Squid for visualization as well. 

During an experiment’s execution, status requests by the 
scientists are supported through the last relationship of the 
Agent class. Specifically, registration of an agent may also 
involve the specification of a schema for status information, 
which in general would be different for various agents. To 
accommodate this schema, conceptually, the class that rep- 
resents the external derivation process is accompanied by a 
shadow subclass, which is nof part of the scientist’s schema 
and is therefore not normally visible. At any point, the 
shadow subclass contains only objects representing deriva- 
tions that are in-flight, which are removed when the deriva- 
tion process completes. The root of the status schema is 
connected to the shadow subclass via a derived relation- 
ship. Any status query triggers the appropriate derivation, 
just like any other external request, and results in a status 
call to the appropriate agent and eventually to the external 
system. Since status schemas are (on purpose) not visible, 
queries requesting the output of an experiment when that 
output has the special value inflight are interpreted as status 
queries. Horse redirects the query to the shadow subclass 
and modifies it to request a status object instead of an out- 
put object. 

For example, consider the schema in Figure 2. The Ex- 
periment class captures external computations and its rela- 
tionship to the Output class provides connection to the re- 
sults of these computations. Ignoring the structure below 
the Input class, Figure 7 shows the same schema enhanced 

with the shadow subclass IF-Experiment (‘IF’ for In-Flight) 
and a simple status schema connected to it. The enhance- 
ment is shown in dashed lines, as it is not normally visi- 
ble. In the example, the status consists of the experiment’s 
elapsed time, the last stage in the external process that has 
completed, and a prediction of the amount of time required 
for final convergence. Any query requesting for the output 
object of some experiment that is still in progress will return 
a status object consisting of the three pieces of information 
mentioned above. 

7 Status and Experience 

Zoo is being implemented in C++. Not counting any vi- 
sual libraries (Interviews, Tcl/Tk) or database libraries (In- 
formix) that it uses, Zoo is currently approximately 144K 
lines of code, with about 51K in Horse and the shipping 
code, 74K in Opossum, 8K in Squid (not counting the Opos- 
sum code it uses), and 11K in Frog, Turtle, and Emu. An 
initial version of the system is operational and used for test- 
ing by experimental scientists. Some of the functionality 
described in this paper as part of the system’s design is still 
under development: only the Moose metaschema hierarchy 
of Section 4 is supported within Horse; Squid provides a vi- 
sual language that captures only a subset of the expressive 
power of Fox; the meta-model and metaphor files are not 
complete for Opossum (Figure I), so models and metaphors 
are specified in text form; the Emu and agent functionality is 
provided by the same module and so a Zoo-based CDEMS 
only works with a single external system at a time. 

Zoo has been successfully tested by the Cupid group for 
experimentation. A custom-built Emu/agent combination 
has been implemented as a single module, for communica- 
tion with the Cupid simulator. The resulting CDEMS has 
been used to drive test runs on Cupid. The interface offered 
by Opossum for experiment design has played a key role in 
the positive reception the system has had. Our soil-science 
collaborators have been able to learn the tool and then orga- 
nize and layout large experiment schemas with hundreds of 
classes within a few hours. (The input part of the full Cupid 
schema alone has 159 classes.) The tool has also brought 
substantial improvements in other aspects of the scientists’ 
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date 

Figure 7: Schema enhanced with shadow Experiment class to capture status 

work: For example, before Opossum, the Cupid group had 
to refer to the input data file to a Fortran program, which had 
grown increasingly fractured and confusing over the years. 
They now use the corresponding visual schema as their ref- 
erence in thinking about the model, planning experiments, 
and explaining the model and experiments to other scien- 
tists. Likewise, not having to deal directly with large num- 
bers of input and output files is considered a great benefit of 
using Zoo. 

In addition to the Cupid group in Soil Sciences, Zoo has 
also been tested by a collaborating group in Biochemistry. 
A Zoo-based CDEMS has been partially developed for ex- 
periments run on various spectrometers. Test experiments 
have been designed with Opossum (having in the order 
of 350 classes in the corresponding schemas), customized 
Emu/agent modules have been developed, and object-to-file 
translations have been specified with Frog. Tests with the 
system have been successfully run and the reaction of the 
scientists involved has been very positive again. The same 
group has also used Opossum to design a large relational 
schema for the Biological Magnetic Resonance Databank, 
an international repository of data on biological macro- 
molecules derived from NMR spectroscopy. 

Finally, Opossum has been used as a stand-alone schema 
manager for the relational and E-R data models, using a va- 
riety of visual models and metaphors. In fact, customized 
(through its input files) to visualize E-R schemas as the tra- 
ditional E-R diagrams, Opossum is currently being used in 
our database courses as a database design tool. 

8 Current Practice and Related Work 
Currently, many scientists use notebooks to keep track of 
where data is stored and search these notebooks manually 
whenever they need to retrieve data. They have to write 
application programs in procedural languages in order to 
access the data, and for every different type of question 
they want to explore, a different program has to be writ- 
ten. In some cases, relational database systems are used, but 
what they can offer is not adequate. Declarative textual lan- 
guages do not correspond to the intuition of scientists and 
thus are hard to use. For example, writing an SQL query 
that retrieves information regarding a phenomenon that has 
hundreds of parameters is a very time consuming process. 

Scientists must look around the catalogs to identify the ap- 
propriate relations and the query must be spelled out, which 
involves specifying a large number of joins and selections. 
Finally, in some cases, scientists use specialized software 
tools developed just for experiments in their field. For ex- 
ample, CERN (European Center for Nuclear Physics) has 
developed PAW [BCVZSS] and HEPDB [Shi93], which are 
currently used by high-energy physicists to deal with data 
from accelerator experiments. Tools like these, however, 
usually lack much of the desired functionality that Zoo in- 
tends to offer, especially the visual style of user interaction, 
the ability to communicate with several external systems 
from the same interface, and of course genericity. Thus, 
the current state of affairs forces scientists to spend time 
on learning data access and manipulation software systems, 
when they should be focusing on scientific analysis. 

There ‘are a few other projects that share some of the 
goals of Zoo. These include the “Laboratory Notebook” 
effort at Los Alamos [Nel90], the “Chromosome Infor- 
mation System” (CIS) database at LBL supported by the 
SDT [MF91] and ERDRAW [SM91] design tools, the OPM 
model and tools at LBL as well [CM95], the Computational 
Chemistry Database project at OGI [CMR+94], the “Soft- 
ware Testpilot” project on DBMS performance assessment 
at CWI [KK93], and others. The focus of each project is 
different, so comparisons with Zoo are not always mean- 
ingful. In general, the most important aspects of Zoo are 
its generic nature, its flexible schema/meta-object hierarchy 
for all forms of information, its powerful data model and 
query language, its emphasis on visual interaction based on 
declaratively specified metaphors, and its open architecture 
to multiple external systems. 

With respect to experimentation management, the OPM 
data model [CM951 employs special protocol classes to 
capture the flow of experiments, something that Zoo is 
capturing indirectly through the derived relationships in 
Moose. The relative expressibility of the two approaches 
is a question that we plan to investigate in the future. The 
computational proxies mechanism [CMR+94] addresses 
the issue of finding out what input objects are the output ob- 
jects of an experiment associated with. Within Zoo, this is 
handled by the translation mechanisms of Turtle. 

Final& with respect to data management independent of 
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experiment management, Horse offers some unique char- 
acteristics not found elsewhere. In addition to the novel 
features of Moose and Fox [WI93], the view of schemas 
as commodity objects, separate from their instantiations, 
opens up many new opportunities for information sharing 
and system communication. This also holds for all the other 
commodity objects discussed in Section 4 enabling varied 
visualizations for the same information, experiment result 
sharing, etc. We are not aware of any other system follow- 
ing this approach. All database systems store their schemas 
in catalogs as data, but the catalogs are known only to the 
particular database. 

9 Conclusions 

The Zoo effort has been driven by two major forces: a) to 
advance the state of the art in experiment management tech- 
nology and b) to enhance the productivity of many experi- 
mentation laboratories. The Zoo environment that we have 
discussed in this paper represents the contributions that we 
have made in (a), while the positive feedback that we have 
been getting by our collaborating scientists testing the sys- 
tem captures the achievements in (b). 

There are several issues that we plan to continue work- 
ing on in the future, enhancing the performance, function- 
ality, and applicability of Zoo. In addition to completing 
its implementation based on this papers’ description, some 
of the other important issues are porting Zoo from on top 
of Informix to on top of Shore [C+94] (so that the use of 
our tool does not depend on the purchase of a commercial 
DBMS), porting Opossum and Squid to Tcl/Tk or Java, and 
providing the ability to express arbitrarily complex experi- 
ment protocols that may involve communicating with sev- 
eral external systems as part of a singleexperiment instance. 
When the system is thoroughly tested, we intend to dis- 
tribute it over the network to external laboratories. 
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