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show that our method is up to 27 times faster 
than straightforward sequential scanning. 

Abstract 

We examine the problem of finding similar tu- 
mor shapes. Starting from a natural ,similar- 
ity function (the so-called ‘max morphological 
distance’), we show how to lower-bound it and 
how to search for nearest neighbors in large 
collections of tumor-like shapes. 

Specifically, we use, .:!tate-of-the-art concepts 
from morphology, n;,mely the ‘pattern spec- 
trum’ of a shape, to map each shape to a point 
in n-dimensional space. Following [16, 301, we 
organize the n-d points in an R-tree. We show 
that the L, (= max) norm in the n-d space 
lower-bounds the actual distance. This guar- 
antees no false dismissals for range queries. In 
addition, we present a nearest neighbor algo- 
rithm that also guarantees no false dismissals. 

Finally, we implemented the method and 
tested it against a testbed of realistic tumor 
shapes, using an established tumor-growth 
model of Murray Eden[l3]. The .experiments 
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1 Introduction 

This paper proposes an algorithm to rapidly search 
for “similar shapes”. Such an algorithm would have 
broad applications in electronic commerce (eg., ‘find 
shapes similar lo a screw-driver’), photo-journalism 
[17], etc., but would be particularly useful in medi- 
cal imaging. During the past twenty years, the devel- 
opment of new modalities such as Computed Tomog- 
raphy (CT) and Magnetic Resonance Imaging (MRI) 
have .substantially increased the number and com- 
plexity of images presented to radiologists and other 
physicians. Additionany, the recent introduction of 
large scale PACS (Picture Archival and Communica- 
tion Systems) has resulted in the creation of large dig- 
ital image databases. A typical radiology department 
currently generates between 100,000 and 10,000,000 
such images per year. A filmless imaging department 
such as the Baltimore VA Medical Center (VAMC) 
generates approximately 1.5 terabytes of image data 
annually. 

An algorithm that would be able to search for simi- 
lar shapes rapidly would have a number of useful appli- 
cations in diagnostic imaging. Both “experts” such ss 
radiologists and non-experts could use such a system 
for the following tasks: 

1. Diagnosis/Classification: distinguish between a 
primary or metastatic tumor based on shape and 
degree of change in shape over time. correlating 
this with data about diagnoses and symptoms. 
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Computer-kided diagnosis will be especially useful 
in increasing the reliability of detection of pathol- 
ogy, particularly when overlapping structures cre- 
ate a distraction or in other cases where limita- 
tions of the human visual system hamper diagno. 
sis [31]. 

2. Forecasting/Time Evolution Analysis: predict the 
degree of aggressiveness of the pathologic process 
or try to distinguish a particular histology based 
on patterns of change in shape. In this setting, 
the goal is to find tumors in the database with 
the similar history as the current tumor. 

3. Data Mining: detect correlations among shapes, 
diagnoses, symptoms and demographic data, and 
thus form and test hypotheses about the develop- 
ment and treatment of tumors. 

In all of the above tasks, the central problem is sim- 
ilarity matching: ‘find tumors that are similar to a 
gaven pattern’ (including shape, shape changes, and de- 
mographic patient data). We mainly focus on match- 
ing similar shapes. 

Some terminology is necessary. Following [16], 
we distinguish between (a) range queries (eg., find 
shapes that are within distance E from the desirable 
query shape) and (b) nearest neighbor queries (eg., find 
the first k closest shapes to the query shape) An or- 
thogonal axis of classification distinguishes between 
whole-matching and sub-pattern matching: In whole- 
matching queries, the user specifies an S x S query 
image and requires images of 5’ x S that are similar; in 
sub-pattern matching queries, the user specifies only a 
small portion and requires all the (arbitrary-size) im- 
ages that contain a similar pattern 

In this work we focus on whole-matching, because 
this is the stepping stone for the sub-pattern matching. 
For the whole matching problem, there are two major 
challenges: 

l How to measure the dis-similarity/distance be- 
tween two shapes. In the tumor application, as 
well as in most other shape applications, the dis- 
tance function should be invariant to rotation and 
translation. Moreover, we would like a function 
that pays attention to details at several scales, as 
we explain later. 

l Given such a distance fyction, how can we 
do better than sequential scanning of the whole 
database? This faster method, however, should 
not compromise the correctness: it should have 
no false dismissals; that is, it should return ex- 
actly the same response set as sequential scanning 
wouia do. 

Next’ we provide solutions to the above two chal- 
lenges. This paper is organized as follows: Section 
2 gives the survey. Section 3 gives an introduction 
to morphology and tumor-shape modeling. Section 4 
presents our main result: the lower-bounding of the 
‘max-morphological’ distance, as well as a k-nearest 
neighbor algorithm, without false dismissals. Section 
5 gives the experiments. Section 6 gives the conclu- 
sions. 

2 Survey 

2.1 Multimedia Indexing 

The state of the art in multimedia indexing is based 
on feature extraction [30, 161. The idea is to extract n 
numerical features from the objects of int,erest, map- 
ping them into points in n-dimensional space. Then 
any multi-dimensional indexing method can be used 
to organize, cluster and efficiently search the resulting 
points. Such methods are traditionally called Spatial 
Access Methods (SAMs). A query of the form find ob- 
jects similar to the query object Q becomes the query 
find points that are close to the query poant q, and 
thus becomes a range query or nearest neighbor query. 
Thus, we can use the SAM to identify quickly the qual- 
ifying points, and, from them, the corresponding ob- 
jects. Following [l], we refer to the resulting index 
as the ‘F-index’ (for ‘feature index’). This general 
approach has been used in several settings, such as 
searching for similar time-sequences [l] (eg., trying to 
find quickly stock prices that move like MacDonalds), 
color images [15, 171, etc. 

The major challenge is to find feature extraction 
functions that’ preserve the dis-similarity/distance be- 
tween the objects as much as possible. In [l, 161 we 
showed that the F-index method can guarantee that, 
there will not be any false dismissals, if the actual 
distance is lower-bounded by the distance in feature 
space. 

Mathematically, let 01 and 02 be two objects (eg., 
time sequences, bitmaps of tumors, etc.) with dis- 
tance function Dobjeel() (eg., the sum of squared er- 
rors) and F(Oi), F(Oz) be their feature vectors (eg., 
their first few Fourier coefficients), with distance func- 
tion Dfeature() (eg., the Euclidean distance, again). 
Then we have: 

Lemma 1 (Lower-Bounding) 
To guarantee no false dismissals for range queries, the 
feature eitraction function F() should satisfy the fol- 
lowing formula: 

Dfeature(F(Ol), F(O2)) 5 Dobjeet(Olr 02) (1) 

Proof: In [16]. 
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Thus, the search for range queries involves two steps. 
For a query object Q with tolerance E, 

I. Discard quickly those objects whose j 
feature vectors are too far array. That 
is, we retrieve the objects X such that 
Qeature(J’(Q), WO) < c. 

2. Apply Dobject() to discard the false 
alarms (the clean-up stage). 

2.2 Spatial Access Methods 

Since we rely on spatial access methods as the even- 
tual indexing mechanism, we give a brief survey of 
them. These methods fall in the following broad 
classes: methods that transform rectangles into points 
in-a higher dimensionality space [26]; methods that 
use linear quadtrees [19] [3] or, equivalently, the t- 
ordering [45] or other space filling curves [14] [29]; 
and finally, methods based on trees (R-tree [23], k-d- 
trees [6], k-d-B-trees [49], hB-trees (351, cell-trees [22], 
etc.) 

One of the most promising approaches in the last 
class is the RLtree [23] and its numerous variants 
(Greene’s variation [21], the R+-tree [51], R-trees us- 
ing Minimum Bounding Polygons [28], the R”-tree [5], 
the Hilbert R-tree [32], etc.). We use R-trees, because 
they have already been used successfully for high- 
dimensionality spaces (lo-20 dimensions [15]); in con- 
trast, grid-files and linear quadtrees may suffer from 
the ‘dimensionality curse’. 

2.3 Tumor Growth Models 

Our target class is a collection of images of tumor-like 
shapes. As a preliminary testbed, we use artificial data 
generated by a certain stochastic model of simulated 
tumor growth. Our particular model is a discrete-time 
version of Eden’s tumor growth model [13]. At time 
t=O, only one grid-cell is ‘infected’; each infected grid- 
cell may infect its four non-diagonal neighbors with 
equal probability p at each time-tick. 

On the basic Eden model, we have added the notion 
of East-West/North-South bias, to capture the effects 
of anisotropic growth patterns, due to anisotropies in 
the surrounding tissue (eg., lesions shaped by their lo- 
cation within the lung, breast, or liver.) Thus, in our 
model, an infected grid-cell has probability PNS to in- 
fect its North and South neighbors, and probability 
PEW to infect its East/West ones, with pNS not nec- 
essarily equal to PEW. 

2.4 Shape Representation and Matching 

Shape representation is an interesting enough prob- 
lem to have attracted many researchers and generated 

a rich array of approaches [46]. There are two closely 
related problems: (a) how to measure the difference 
between two shapes, so that it corresponds to the vi- 
sually perceived difference, and (b) how to represent a 
single shape compactly. 

We address (a) in Section 3.3. With respect to (b), 
the most popular methods are: 

l representation through ‘landmarks’: for example, 
in order to match two faces, information about 
the eyes, nose, etc., are extracted manually [4] 
or automatically. Thus, a shape is represented 
by a set of landmarks and their attributes (area, 
perimeter, relative position, etc). The distance 
between two images is the sum of the penalties 
for the differences of the landmarks. 

l representation through numerical vectors, such as 
(a) samples of the ‘turning angle’ plot [27] (that 
is, the slope of the tangent at each point of the pe- 
riphery, as a function of the distance traveled on 
the periphery from a designated starting point) 
(b) some coefficients of the 2-d Discrete Fourier 
Transform (DFT), or, more recently, the (2-d) 
Discrete Wavelet Transform [37] or (c) the first 
few moments of inertia [17, 151. In these cases, we 
typically use the (weighted) Euclidean distance of 
the vectors. 

l representation through a simpler shape, such as 
polygonalization [20, 44, 48, 53, 341 and Mathe- 
matical Morphology [55, 41, 38, 10, 71, which we 
shall examine in detail next. 

Among them, representations based on morphology 
are very promising because 

l they can be easily designed to be essentially in- 
variant to rotation and translation (= rigid mo- 
tions); 

l they are inherently ‘multi-scale’, and thus they 
can highlight differences at several scales, as we 
explain next. 

The multi-scale characteristic is important, espe- 
cially for tumors, because the ‘ruggedness’ of the pe- 
riphery of a tumor contains a lot of information about 
it [9]. Thus, given two tumor-like shapes, we would 
like to examine differences at several scales before we 
pronounce the two shapes as ‘similar’. 

Even for general shapes, there exists substantial ev- 
idence that scale-space behavior is an important and 
highly discriminating shape “signature” [54, 36, 81. 
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3 Morphology 

Our goal is to choose a distance function between 
shapes which will be invariant to translation and ro- 
tation, and which will ‘give attention’ to all levels of 
detail. One such function is founded on ideas from the 
field of Ma~hema2ical Morphology. See [ll] for a very 
accessible introduction. Next, we present the concepts 
that we need for our application. Table 3 lists the 
symbols and their definitions. 

Symbol 
!J? 
W+ 
0 

l 

1x1 

f,” (Xl 

Y? 

4.7 .) 

d*(., .> 
d,(., .) 

bo(., .I 

R 
n 

Definition 
the set of reals 
the set of non-negative reals 
the operator for morphological opening 
the operator for morphological closing 
area of a shape X 
a smoothed version of X at scale m wrt 
structural elt ri 
the size-distribution (cumulative pattern 
spectrum) of X wrt structural elt H 
the set-di’perence distance between 
two shapes 
the floating shape distance 
the max-morphological distance between 
two shapes 
the max-granulometric distance between 
two shapes 
response set size (number of actual hits) 
database size (number of images) 
number of features in feature space 

Table 1: Symbol Table 

Some definitions are in order: Consider black-and- 
white images in 2-d space; the ‘white’ points of an 
image are a subset of the 2-d address space, while the 
background is, by convention, black. More formally, 
let X (the “shape space”) be a set of compact subsets 
of ?R2, and 72 be the group of rigid motions R : A! H X. 

3.1 Introduction to Morphology 

Mathematical Morphology is a rich quantitative the- 
ory of shape, which incorporates a multi-scale com- 
ponent. It has been developed mainly by Matheron 
[42, 431, Serra [52, 121, and their collaborators. Since 
the 1980’s, morphology and its applications have be- 
come extremely popular. 

In mathematical morphology, mappings are defined 
in terms of a structural element, a “small” primitive 
shape (set of points) which interacts with the input 
image to transform it, and, in the process, extract use- 
ful information about its geometrical and topological 

original (X) structural elt (H) 

opening (X 0 H) closing (X 0 H) 

Figure 1: Original image (top left), structural element 
(top right), opening, and closing. 

structure. The operators we use are the opening and 
closing. 

Figure 1 shows the opening, X o H, of shape X 
with respect to structural element H. Intuitively, the 
opening is the set of points that a brush of foot H can 
reach when the brush is confined inside the shape, and 
is barely allowed to touch the periphery of the shape. 

Figure 1 also shows the closing, X l H, of shape X 
with respect to structural element H. It is equivalent 
to the opening of the complement of X. Intuitively, 
the closing is the set of points that remain after the 
original shape is ‘blown up’, by tracing its perimeter 
with a brush and then reduced when an eraser sweeps 
the perimeter of the blown-up shape. Thus, the open- 
ing by a circle of radius n in effect ‘cuts the corners’, 
eliminating the protruding details of the shape X, with 
radius less than n. 

3.2 Granulometries and the Size Distribution 

The concept of the Pattern Spectrum as a compact 
shape-size descriptor has been developed by Maragos 
[40] based on earlier seminal work on openings of sets 
in Euclidean spaces by Matheron [42, 43, 24, 251, who 
called them Grunulometries. Serra [52, 121 and his 
collaborators have used Lebesgue measures of openings 
by a size-parameterized family of structural elements 
to develop shape-size sensitive measurements of shape 
attributes which they called Size Distributions. 

Definition 1 The size distribution y$ of a shape X E 
X, with respect to a structural element H is defined as 
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with 

1 XomH l<m<M 
f,H(X) 2 x m=O (3) 

X*mH -M<m<-1 

where H is some structural element. 

Intuitively, If,(X)] is the area of a smoothed ver- 
sion of X at scale m, i.e., for If:(X)] is the area of 
X, IfiH(X)I is th e area of X o H., etc. In other words, 
the vector yg, contains measurements of the area of 
X at different scales, or degrees of shape smoothing, 
thus constituting the size distribution. 

The pattern spectrum, as discussed by Maragos [40] 
contains exactly the same information. Its elements 
are backward differences of the size distribution. In 
other words, the size distribution can be thought of 
as the ‘cumulative pattern spectrum’. The intuitive 
meaning of the pattern spectrum is the amount of de- 
tail (= additional area) that the next closing will add, 
or that the next (larger-radius) opening will subtract. 
Figure 2 shows the pattern spectrum of a circular disc 
of radius 5, as well ‘as of a square of side 10, with re- 
spect to a a unit disc structural element H. Notice 
that the disc has only one ‘spike’, at m=5, while the 
pattern spectrum of the square has details at several 
scales. (Of course, the situation would be reversed, if 
the structural element H was the unit square). 

circular disc nattern snectrum 

square pattern spectrum 

Figure 2: Image and respective pattern spectrum his- 
tograms of (a) a circular disc of radius 5, and (b) a 
square of side 10. 

The importance of the pattern spectrum (and, by 
equivalence, the size distribution) is that it summa- 
rizes important shape characteristics in the sense that 
it possesses high discriminatory power, as reported in 
P, 471. 

3.3 Distance Functions 

Given two shapes X1 and Xz, a natural distance func- 
tion involves penalizing the non-common areas. For- 
mally, 

original after 
shape opening 

after 
closing 

Figure 3: Shapes Xi, Xz and Xs at 3 different scales. 

Definition 2 Let d(., .) d enote the area of the sym- 
metric set difference distance measure, i.e., for 
x1,x2 EX 

d(Xl, Xz) = lXl\Xzl = 1x1 u X21 - 1x1 n x2( (4) 

We can show that d(., .) is a distance metric over 
X x K. However, we need a distance function that al- 
lows rotations and translations. This is achieved by re- 
quiring that the two shapes are first optimally aligned 
by allowable motions. Formally, we have a new dis- 
tance function: 

Definition 3 Define the floating shape distance 
d*() of two shapes X1 and X2 as 

d*(Xl, X2) = infRERd(Xl, R(X2)) (5) 

where R is the set of rigid motions. The process of 
optimal alignment of two shapes is called registration. 
In [27] an efficient method is presented whereby the 
centers of mass of both shapes are aligned and then 
the shapes are rotated about the centers of mass so 
that their axes of least inertia are parallel. 

The d*() distance is very natural and intuitive; it 
only fails in one account, namely, to consider details 
at several levels. Figure 3 illustrates the point: Xi is 
a square, X2 is an identical square, with a line seg- 
ment coming out of its left side, and Xs is identical to 
X1, with a line segment cutting into it. At the cur- 
rent scale, the distance d*() among any pair of them 
is small. For example, if X1 and X2 are optimally 
aligned, making the two squares to coincide, then the 
area of the disjoint part is the area of the protrud- 
ing line segment, which is negligible. However, the vi- 
sual difference between the two is non-negligible. The 
same is true for Xi and X3. These counter-intuitive 
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results can be remedied by applying the newly intro- 
duced tools of morphology: after applying a closing 
(see third column), we see that the protruding line 
segment in X2 will make its presence more obvious. 
Similarly, after applying an opening (second column), 
the ‘cut’ in Xz will become more obvious. 

Thus, given any two shapes, each opening and clos- 
ing will emphasize different details of their differences, 
resulting in a different value of d*(). The question is 
how to combine all these scale-dependent penalties to 
arrive at a single number. The solution we propose is 
to take the maximum difference. More formally, 

Definition 4 Define the Max Morphological Dis- 
tance dg : X x X w %+ as 

with f:(X) defined in Eq. 3. 

For the remainder we assume some fixed structural 
element H (eg., the unit ball), and we drop these in- 
dices. 

The intuitive meaning of the d,() distance function 
is the following: 

1. compute d”(), that is take the two shapes Xr and 
Xz, align them optimally, and compute the area 
of the disjoint parts 

2. take their closings using a disk of radius 1, 2, . . . 
M; in each case, compute the d*() of the resulting 
shapes 

3. do the same for openings, with a disk of radius 1, 
2 A4 ) . . . 

4. pick the maximum difference, and report it as the 
distance of the two shapes. 

Lemma 2 The function d, is indeed a distance met- 
ric between elements of X. 

Proof: See [33]. 

4 Proposed Solution 

The problem we focus on is the design of fast searching 
methods that will operate on a tumor database to lo- 
cate the most similar object to the query object. The 
(dis-)similarity is measured by the max-morphological 
distance (Eq. 6). We focus on both range queries as 
well as nearest neighbor queries. We have three obsta- 
cles to overcome: 

1. what features to use (i.e., how to map tumor-like 
shapes into n-d points) 

2. 

3. 

how to prove that the above mapping is contrac- 
tive, that is, it obeys the Lower-Bounding Lemma 
(Lemma 1). 

how to use the resulting F-index on the feature 
space so that we Can answer nearest-neighbor 
queries with respect to the actual distance (as op- 
posed to the distance in feature space) 

Next we present the proposed solutions to these 
three problems. 

4.1 Features 

Our goal is to derive features that will capture a lot 
of the shape information, that will be rotation and 
translation invariant, and that will lead to a feature- 
distance function that fulfills the Lower-Bounding 
Lemma. Given the success of the pattern spectrum as 
a means to capture shape information [2, 40, 39, 551, 
we started with its coefficients as features. and trans- 
form them into the coefficients yx of the size distri- 
bution (Eq. 2), h h w ic contains exactly the same infor- 
mation as the pattern spectrum. 

We ‘penalize’ two shapes for differences at several 
scales. The question is, what is the best way to com- 
bine the penalties of each scale? A natural choice is to 
pick the maximum among the penalties. This is iden- 
tical to the L, norm of the two feature vectors, and 
it leads to the following distance function: 

Definition 5 Define the Max Granulometric Dis- 
tance f5,() oft wo shapes XI, X2 as 

6E (Xl, X2) = -M!F<M Ivx, (ml - m,(m)1 (7) 
- - 

4.2 Lower-Bounding 

Our next challenge is to show that the distance in fea- 
ture space (i.e., the max-granulometric distance 6,()) 
lower-bounds the actual distance do3(). This is neces- 
sary to guarantee no false dismissals. 

Lemma 3 (Morphological Distance Bounding) 
The mat-granulometric distance &,() lower-bounds 
the mat-morphological distance d,(): 

6,(X1, X2) 5 d&Xl, X2), VXl, X2 E X (8) 

Proof: Observe that 

d*(Xl,Xz) > IlXlI - 1x211 (9) 

with equality achieved if and only if there exists some 
rigid motion R E I?, which brings all points in X2 
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(or Xi) in registration with points in Xi (Xz, respec- 
tively). Then 

d*(f*(X1)7 fm(Xz>> 1 Ilfm(Xl)I - IfmV2)ll (10) 

and 

-M!;$M d*(fm(Xl), fm(X2)) >_ 
- - 

+g?;TM Ilfm(X1)1- Ifm(Xa)ll (11) 
- - 

Recall that the left-hand side is the definition of d, 
and the right-hand side is the definition of 6,. Thus, 
the proof is complete. QED 

By keeping the dimensionality of the spectra space 
small (say M = 5 H 2M + 1 = 11 features) we can use 
an F-index which, as we show later, results in consid- 
erably faster access of large image databases. 

4.3 Nearest Neighbor Algorithm 

We have just described a good set of features, namely, 
the 2M + 1 entries of the size distribution (Z cumula- 
tive pattern spectrum) of an image, as well as proved 
that the resulting S,() distance lower-bounds the ac- 
tual distance. Thus, the resulting ‘F-index’ will guar- 
antee no false dismissals upon range queries. 

The next problem is to find the k-nearest neigh- 
bors of a query image, given that the images of the 
collection have already been mapped into n-d points 
and organized in a SAM. Algorithms to find the k- 
nearest neighbors of a given point already exist, using 
a branch-and-bound algorithm [18], and have been ap- 
plied to R-trees recently [50]. 

The SAM search will return the k-nearest neighbors 
with respect to the max-granulometric distance a,(), 
as opposed to the max-morphological distance dh() 
that we really want. Figure 4.3 presents Algorithm 1, 
which finds the actual k-nearest neighbors in any F- 
index where the Lower-Bounding Lemma (Lemma 1) 
holds. 

Lemma 4 Algorithm 1 guarantees no false dismissals 
for k-nn queries. 

Proof: See [33]. 

5 Experiments 

To test the speed of our approach, we implemented 
our method and ran experiments Next we describe 
the set up, as well as our results and observations, for 
range queries and for nearest neighbor queries. 

Testbed: We generated 20,000 black-and-white 128 x 
128 pixel images of tumor shapes based on Eden’s 
model of tumor growth. Each image contains a tumor 
that either (a) grows uniformly in all eight directions, 

Algorithm 1 (k-nn) 

I. Search the SAM to find the k-nn wrt the 
feature distance Dfeatvre (6, in our 
case). 

2. Compute the actual distance Dobject(Q,X) 
(d,(Q,X) in our case) for all the k 
candidates X, and return the maximum 
Grum * 

3. Issue a range query with the feature 
vector F(Q) of the query object Q and 
ema+ on the SAM, retrieve all the actual 
objects, compute their actual distances 
Doeject from Q and pick the nearest k. 

Figure 4: Nearest Neighbor Algorithm. Given query 
object Q, the k-nearest neighbors Xi, X2, , XI, are 
returned according to the actual distance d,() 

(b) is biased vertically and horizontally with slower 
growth along the diagonals, (c) is restricted along one 
direction (blocked by a barrier such as a bone), or (d) is 
restricted along two directions (cone-shaped). Within 
each of these four classes of growth, we vary 

l the number of iterations, which affects the size of 
the tumor; 

l the directional bias (p~~/p~w), which affects the 
ratio of height to width. 

We performed experiments for varying database sizes 
N, by choosing N images among the 20,000. 

Competing Methods: 

l straightforward sequential scan: This is the sim- 
ple brute force algorithm. Given a query im- 
age, the algorithm goes through all images in 
the database and computes its max-morphological 
distance from the query image, keeping track of 
the images with the minimum distance. Because 
the algorithm is comparing images on a pixel-by- 
pixel basis, it is extremely inefficient. 

l F-index with an n-d R-tree: On insertion, the size 
distribution (E cumulative pattern spectrum) yx, 
of each image of the database has been computed 
and the n-dimensional vector has been inserted 
into an R-tree. Given a query image, its size dis- 
tribution is computed, and then submitted for a 
range or k-nearest neighbor search in the R-tree, 
as discussed previously. 
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20 Range Queries 
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Figure 5: Response time vs. response-set size a for range queries (a) with seq. scanning (b)‘without seq. scanning 
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Figure 6: (a) Response time vs. db size(N), for k = 10 nn queries for both seq. scan and F-index (b) Response 
time vs. N for k=2,3,4,and 10. 

Measurements: We are interested in the response 
time, that is, the time until the last actual hit is re- 
turned to the user (after the system has discarded 
possible false alarms). For some small settings we 
report actual (wall-clock) time, from the time util- 
ity of UNIXTM. However, the time t,, to com- 
pute the max-morphological distance between two im- 
ages is high (t,, = 12.69 set on average) and shows 
small variance (standard deviation of 0.036sec). Thus, 
to accelerate the execution of experiments on large 
databases, we time all the other steps of the algo- 
rithms involved, and simply ‘charge’ a delay of t,, 
seconds for each max-morphological distance compu- 
tation that we omit. 

Hardware and Software: The methods were imple- 
mented in ‘C’ and KornShell under UNIXTM. The 
experiments ran on a dedicated Sun SPARCstation 5 
with 32Mb of ‘main memory, running SunOS 4.1.3. 
The disk drive was aLFUJITSU M2266S-512 model 
‘CRANEL-M2266SA’ with minimum positioning time 
of 8.3 ms and maximum positioning time of 30ms. 

We present experiments on range queries as weli as 
nearest neighbor queries. We also give some pictures 
of the images that have been returned. 

5.1 Range Queries 

We asked 20 queries on a database of N = 1,000 im- 
ages for both methods. Figure 5(a) plots the response 
time for the proposed F-index method as a function 
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Figure 7: Response time vs. k for N = 10,000 and N = 20,000 (a) with seq. scanning (b) without seq. scanning 

of the response-set size a (i.e., number of actual hits, 
after the false-hits have been eliminated), for several 
values of the tolerance. It also shows the response 
time for sequential scanning for comparison, which is 
estimated to take 12697.6 seconds. Figure 5(b) shows 
only ‘the proposed method, in more detail. The per- 
formance gap between the two methods is very large: 
our method achieves 15-fold to 27-fold savings. See 
[33] for tables. 

5.2 Nearest Neighbor Queries 

We ran queries with k=2,3,4, and 10 for several N. 
Figure 6 shows (a) the results of k-nearest neighbor 
queries with k = 10, for varying N, for the proposed 
method compared to the sequential scan algorithm, 
and.(b) the results of k=2,3,4, and 10 for the pro- 
posed method only. Each data point represents the 
average response time (in seconds) for 100 random 
query images taken from the database. The ratio of re- 
sponse time between sequential scan and the proposed 
method (for k=lO) ranges between 3.76 and 6.89. 

Figure 7(a) shows response time vs. k (= 2,3,4,10) 
for N = 10,000 and N = 20,000 for both methods. 
Figure 7(b) shows response time vs. k for N = 10,000 
and N = 20,000 for the proposed method only. Again, 
each data point represents the average response time 
over 100 queries. 

The observations are the following: 

l Our proposed algorithm is 3-7 times faster than 
sequential scanning, even for a large value of k 
(eg., 10) for the nearest neighbors; 

l The savings of the proposed method compared 
to sequential scan seems to increase with the 
database size N; 

l Response time grows slowly with k. 

Figure 8: Query images (left column) and their near- 
est neighbors, according to the max-morphological dis- 
tance. 

5.3 Sample Output 

Here we illustrate that the max-morphological dis- 
tance function do30 seems to capture the perceptual 
distance between two shapes. Figure 8 shows a few 
query images (left column) and their corresponding 3- 
nearest neighbors according to the max-morphological 
distance. Since the query images were drawn from the 
database, the first nearest neighbor is identical to the 
query shape (which is a ‘sanity’ check for our algo- 
rithms and implementations). Notice how similar the 
other 2 nearest neighbors are, for both query shapes. 

Finally, Figure 9 illustrates the realism of Eden’s 
model. Figure 9(a) shows the whole mammogram, 
highlighting the tumor shape; (b) shows the tumor 
magnified; (c) shows the tumor shape after it has been 
thresholded (and thus becomes a black-and-white im- 
age); and (d) shows the nearest neighbor that was 
retrieved from our testbed of 20,000 synthetic tumor 
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(a) full mammogram (b) magnification of tumor (c) thresholded tumor (d) synthetic nn 

Figure 9: (a) a real tumor within a mammogram (b) magnification of the tumor (c) its black-and-white (thresh- 
.  I  ~ I  

olded) version (d) the most, similar synthetic tumor 

shapes. The similarity of the real tumor with its syn- 
thetic nearest neighbors is striking. 

6 Conclusions 

We have focused on fast searching for similar shapes 
with emphasis on tumor-like shapes. To solve the 
problem, we used a multi-scale distance function, the 
so-called ‘max-morphological’ distance. This distance 
function is based on modern signal processing meth- 
ods, and specifically mathematical morphology. The 
distance is invariant to rotations and translations, and 
gives similar attention to all levels of detail (‘scales’). 
From the database end, we used the ‘Feature index’ 
(F-index) approach [l, 16j, which is the latest in mul- 
timedia indexing. 

The main contribution of this work is that it man- 
ages to couple the max-morphological distance with 
the F-index. This is done by using the. coefficients of 
the size distribution as features, and by showing that 
the L, (=max) distance in the resulting feature space 
1ower:bounds the max-morphological distance. Given 
the Lower-Bounding Lemma (Lemma l), this guaran- 
tees no false dismissals for range queries. 

Additional contributions are the following: 

l The design and implementation of a nearest 
neighbor algorithm on an F-index, which prov- 
ably guarantees no false dismissals 

l The implementation of the proposed method and 
the experimentation on a synthetic but realistic 
database of tumor-like shapes. There, the pro- 
posed method achieved dramatic speed-ups (up 
to 27-fold) over straightforward sequential scan- 
ning. 

l The introduction of the basic morphological con- 
cepts (opening, closing, size distribution, etc.) in 

an intuitive way so that these powerful tools will 
become more accessible to database researchers. 

Future research should focus on applications and ex- 
tensions of the proposed method for several modalities 
including Computed Radiography, CT, MRI, Ultra- 
sound, and Nuclear Medicine, as well as non-radiologic 
images in areas such as dermatology and pathology. 
The algorithm could be incorporated for general use 
in a large-scale PACS and serve as a powerful tool for 
both diagnostic and research purposes. 
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