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Abstract 

In the relational model the order of fetching 
data does not affect query correctness. This 
flexibility is exploited in query optimization 
by statically reordering data accesses. How- 
ever, once a query is optimized, it is executed 
in a fixed order in most systems, with the re- 
sult that data requests are made in a fixed 
order. Only limited forms of runtime reorder- 
ing can be provided by low-level device man- 
agers. More aggressive reordering strategies 
are essential in scenarios where the latency of 
access to data objects varies widely and dy- 
namically, as in tertiary devices. This paper 
presents such a strategy. Our key innovation 
is to exploit dynamic reordering to match exe- 
cution order to the optimal data fetch order, in 
all parts of the plan-tree. To demonstrate the 
practicality of our approach and the impact 
of our optimizations, we report on a proto- 
type implementation based on Postgres. Us- 
ing our system, typical I/O cost for queries on 
tertiary memory databases is as much as an 
order of magnitude smaller than with conven- 
tional query processing techniques. 

1 Introduction 
We investigate new, aggressive reordering strategies 
for speeding up queries on relational databases. The 
relational data model provides a set-oriented seman- 
tics where the order of processing tuples is unimpor- 
tant for correctness. For instance, a SELECT query 
does not require that the relation be scanned sequen- 
tially; there is flexibility to fetch the data blocks in 
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any arbitrary order. Database designers have used 
this flexibility in building multiple access paths to re- 
lations, designing multiple methods of processing joins 
and optimizing queries based on evaluation of different 
methods. However, once a plan is optimized, execu- 
tion of the plan proceeds in a fixed manner with the 
result that data pages are demanded in a fixed order 
that was optimized for a given data layout. The 
only form of dynamic reordering available during exe- 
cution is through low-level I/O device schedulers or in 
some cases by asynchronous prefetching. The reorder- 
ing that existing schedulers can achieve is limited to 
I/O requests from multiple users or to batch prefetch- 
ing from processes doing asynchronous I/O. These ex- 
isting schedulers may have greater opportunities for 
optimization if prefetching is done in larger batches; 
however, prefetching in large amounts can adversely 
affect caching performance [6]. In this paper, we show 
that a effective way around this problem is to dynami- 
cally reorder execution to match the optimal data fetch 
order. If data in some part of the plan tree is “near 
by” now and will get “further away” later, it is advan- 
tageous to process the “near by” data first instead of 
waiting for the data “far away”. This paper describes 
the implementation and evaluation of this simple idea 
in practical settings. 

The key features of our framework for reordering 
execution are: 

Relations are comprised of chunks that are avail- 
able together. 
Each query plan tree is divided into parts (called 
subqueries’ here) that can be executed indepen- 
dently in arbitrary order. 

A scheduling unit collects subqueries from 
many users and decides at runtime the order in 
which they are executed. 
A reorderable executor communicates with the 
scheduler to process the query plan in the grder 
dictated by the scheduler. 

The scheduling unit (item 3 above) has been de- 
scribed in [29]; there we designed an algorithm that 
determines the order in which data should be fetched 
to reduce l/O cost and presented preliminary results 
using simple hand-compiled queries. In contrast, this 
paper deals with the design and implementation of 
the reorderable executor that can extract the subquery 

‘The term subqueries is not to be confused with the SQL 
notion of subqueries. We use the subqueries to refer to parts of 
query. 
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lists and execute them in an arbitrary order (items 2 
and 4). 

For easy integration into an existing execution en- 
gine, we extended the plan tree data-structure with 
three new meta-operators that are added in an exbra 
phase between optimization and execution of the plan 
tree. These operators enable the executor to commu- 
nicate and synchronize with the scheduler for ordering 
the execution of subqueries. 

The last part of this paper reports on a evaluation of 
the above ideas for reordering executio‘l in the context 
of a tertiary mernory database. We also quantify the 
overheads of reordering, and show that they .are small 
compared to the performance gains, which are often 
as high as an order of magnitude. 

1.1 Applications 

Reordering execution can be beneficial in all cases 
where the access latency of data in various parts of the 
plan-tree varies widely and dynamically. We present 
below a list of potential situations: 

. 

. 

0 

1.2 

Tertiary memory systems: A typical tertiary 
storage device consists of a large number of tapes 
or optical disks (we will use the term platter to 
refer to both tapes or optical disks), a few read- 
write drives and even fewer robot arms to switch 
the platter between the shelves and the drives. 
The time to load and unload platters from drives 
is often high. It is, therefore, beneficial to order 
execution to first process data on the currently 
loaded unit before unloading it. 
Cache systems: Cached data is “nearer” than 
the uncached data and it might help to process 
the cached data before fetching more data that 
might replace it. Database cache-replacement al- 
gorithms [9, 14, 331 are extensively researched but 
none of these algorithms have considered applying 
execution reordering to adapt to the cached data. 
Broadcast disks for mobile computing: Broad- 
cast disks [l, 17, 151 are gaining importance in 
mobile and asymmetric environments for reduc- 
ing number of messages from the clients to the 
data servers. With broadcast disks, data is pe- 
riodically transmitted by base stations or servers 
to multiple clients instead of clients explicitly re- 
questing data from the servers. It will help to 
reorder the execution of the clients so that they 
process the plan tree in the order in which data 
is broadcast by the server instead of following a 
fixed order of processing. 

Motivating example 

We start with a few examples of potential benefits due 
to execution reordering on a tertiary memory system. 
Consider a single-drive tape jukebox with three re- 
lations stored across three tapes as shown in Figure 1. 
Relation S is stored as three contiguous chunks on two 
tapes, R as three chunks on three different tapes and 
T on a single tape. The size of each chunk of R is 1 GB 

Figure 1: Layout of R, S and T on tape 

IO Pmcesses 

Figure 2: The architecture of the tertiary memory 
database system with the centralized scheduler 

and of 5’ and T is 0.5 GB each. A 1 GB disk cache is 
used for staging data to and from the tertiary memory 
in units of 256 KB. Consider the following scenarios: 

User-l submits a sequential scan query on S. The 
best order to fetch S is Si, followed by S’s and 
then Sz. Suppose after user-l has processed all of 
S, user-2 submits a sequential scan on S. In this 
case, the best way to process user-2’s scan is in 
the order Ss, S; and then S1 since Sa and Sz are 
still in cache. 
User-l submits query-l and after tape-2 has been 
loaded to fetch Si, User-2 submits an index scan 
on R. In this case, the best order for fetching the 
qualifying blocks of R is to first fetch Rz’s blocks, 
then RI’s and finally Rs’s. 

In both these cases, we notice that simply changing 
the execution order of each user’s query based on data 
layout is not sufficient when multiple users interact. 
The optimal execution order during multi-user pro- 
cessing could be quite different from the best static 
order. Thus, we need to be able to dynamically re- 
order execution. 

1.3 Outline of the paper 

Section 2 gives an overview of our architecture and 
reviews the design of the scheduling unit. Section 3 
presents the design of the new executor which extracts 
the list of subqueries and executes them in arbitrary 
order. Section 4 describes our prototype and presents 
a performance evaluation. Section 5 presents related 
work. Finally, concluding remarks appear in Section 6. 

2 Architecture Overview 

Figure 2 sketches the architecture of our tertiary mem- 
ory database system introduced in 1291. We assume a 
process-per-user architecture where each user-session 



has a separate process serving its queries. An arriving 
query is first compiled by the user process. The user- 
process then extracts the list of subqueries from the 
query and submits the list to the scheduler process. 
We have a single centralized scheduler process that re- 
ceives subqueries from all user processes and decides 
when they are executed. The scheduler maintains a 
set of I/O processes that transfer data between the 
disk cache and tertiary memory. As soon as all the 
data accessed by a subquery are available in the disk 
cache, the scheduler marks the subquery as “ready” 
for execution. The user processes contact the sched- 
uler to collect ready subqueries and block until some 
subqueries are ready. After finishing execution of these 
ready subqueries, they send a notification to the sched- 
uler, which can then decide to evict the cached data 
used by that subquery when desirable. 

Each relation consists of a number of fragments. 
A fragment is the part of a relation that lies contigu- 
ously on a storage medium. For instance, in Figure 1, 
S’r, S’z and Sa are fragments of S. The fragments of a 
relation correspond to the data chunks of our frame- 
work introduced in Section 1 (item 1). We further 
restrict the size of each fragment based on the size of 
the cache, the latency of access on tertiary memory, 
the data transfer rate and the number of concurrent 
users as discussed in [29]. 

The scheduler (1) co-ordinates data movement be- 
tween the disk cache and tertiary memory, (2) sched- 
ules query execution for each user process, and (3) 
decides what data is cached to or evicted from the 
disk cache. The scheduler makes these decisions based 
on system-wide information about pending subqueries 
from all users, the state of the disk cache and the ter- 
tiary memory, e.g, what platter is currently loaded. 
Details of how these decisions are made is given in 
[29]. When deciding on the order of executing sub- 
queries, the scheduler’s objective is to maximize the 
overall system throughput. Hence, for a given user- 
process, one or more subqueries could be scheduled for 
execution together in an arbitrarily interleaved fashion 
with those of other users. 

3 Execution Engine 

In this section we describe the design of the execu- 
tion engine of the user processes. We first list the 
requirements needed by an execution engine to sup- 
port reordering. Then we present the mechanism for 
supporting these requirements. 

3.1 Specifications 

1. Submit to the scheduler a list of subqueries to be 
executed 
The scheduler does not need to know all the de- 
tails of the subquery, only which fragments are 
needed together in executing the subquery. Con- 
sider a nest-loop join between relations R and 
S’ where R has .three fragments RI, R2 and RJ, 
and ,S’ has two fragments Sr and Sz. The list of 

1) 

subqueries submitted to the scheduler, called the 
SQ-list, is: 

{(Rl, Sl), (Rl,S2), (R2,Sl), (R2,S2), (R3,Sl), (R3,Sz 

2. Execute subqueries out-of-order 
There should be no ordering constraints be- 
tween the subqueries submitted to the scheduler. 
For the two way join example above, the subquery 
(Rz, &), for instance, might be scheduled before 
the subqueries (RI, Sr) and (RI, Sz). Thus when 
the operators of a plan tree have precedence con- 
straints on them, the subqueries must be submit- 
ted in multiple stages. For instance, for hash-join 
queries the inner fragments have to be fetched and 
the hash-table built, before processing any frag- 
ments of the outer relation. 

3. Execute multiple subqueries together 
The scheduler could have more than one subquery 
ready for execution. We require that the executor 
be able to process multiple subqueries together. 
Executing one subquery at a time can lead to re- 
dundant computation for joins, since the scans on 
the outer relation cannot be shared across multi- 
ple fragments of the inner relation. For instance 
in the two-way join example, if Sr, Sz and R3 are 
cached, the scheduler will “ready” both the sub- 
queries (Rs, Sr) and (R3, Sz). The executor must 
be able to join R3 with both Sr and S’z in one scan 
of R3. Hence, although executing each subquery 
separately would allow for easy implementation, 
we must provide a means of executing multiple 
subqueries together. 

3.2 Design 

In this section, we describe the design of an executor 
that meets the specifications of Section 3.1. We base 
our discussion on the Postgres execution engine, in 
which each query plan is a tree of operators. Allfopera- 
tors are implemented as iterators and support a simple 
start-next-end interface. Most relational database sys- 
tems have analogous operator-based execution engines 
and can be extended similarly [13]. 

A query is first optimized as usual except for a few 
minor changes related to sorting via index scans that 
are discussed in Section 3.4. The optimized plan tree 
is then processed to extract the list of subqueries as 
discussed in Section 3.2.1. In Section 3.2.2 we discuss 
how execution proceeds out of order. 

3.2.1 Extracting subquery lists 

This proleeds in two phases: the fragmentation phase 
and the extraction phase. 

Fragmentation phase: In this phase, each scan 
node on each base relation is replaced by a combine 
node that contains a list of scan nodes on the fragments 
of the base relation. The type of scan (sequential scan 
or index scan) on the fragments is the same as on the 
base relation. We assume that all the fragments of a 
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relation have the same set of indices. For example, 
in Figure 3(a) we show the plan-tree of a 3-way join 
with three sequential scan nodes on base relations S, 
U and T. In Figure 3(b) we show the plan-tree after 
fragmentation. 

Extraction phase: In this phase we extract the 
sq-lists and insert special nodes called schedule 
nodes that are responsible for communicating with 
the scheduler and keeping synchronization information 
during execution. Each schedule node has an associ- 
ated Sq-list. Because of precedence constraints be- 
tween operators ( Section S.l(item 2)), we could have 
multiple Sq-lists in a plan-tree. For example, the 
plan-tree in Figure 3(b) has ordering constraints be- 
tween the hash-build and hash-probe nodes. Hence, 
we added a schedule node before the hash-build node 
since the hash-build stage has to complete before start- 
ing processing on any nodes above it. We add a second 
schedule node at the top for the rest of plan-tree. 

minor modifications in the scan nodes and the newly 
introduced schedule and combine nodes enable us to 
achieve this goal. 

For inserting such schedule nodes and for construct- 
ing the Sq-lists we define a “Find-Sub-Query” call 
for each plan-tree node. This call returns the list of 
subqueries necessary to process the node. We give be- 
low the “Find-Sub-Query” routine for a few common 
nodes. 

For ef- 
ficiency reasons (discussed in Section 3.1,itern 3) we 
want to execute all subqueries of a plan-tree frorn a 
single plan-tree instead of building a separate plan- 
tree for each subquery. This requires us to keep track 
of what subquery of the plan-tree is currently being 
executed. We do so by marking the scan nodes of the 
subqueries currently being executed as available and 
all other scan-nodes suspended. The plan-tree is then 
processed as usual: starting from the root of the plan 
tree, successive “next” calls are made to each node of 
the tree. When a “next” call is made on a combine 
node it submits the “next” call to a scan node under- 
neath it that is marked available. A “next” call on 
a suspended scan node returns no tuple. Thus, only 
scan-nodes of currently scheduled subqueries partici- 
pate in execution. 

Find-Sub-Query for various nodes 
Combine node: 

return list of fragments under the combine node 
Hash-build, Aggregate or Sort node: 

query-list = Find-Sub-Query(subtree under node) 
if query-list non-empty 

add schedule node with query-list below node 
return empty-list 

Join node: 

We next discuss how and when the schedule nodes 
are used for exchanging subquery information. Note 
that there could be multiple schedule nodes in the plan 
tree. It is critical to ensure proper interaction between 
these nodes to prevent deadlocks during execution by 
(I) submitting the St?-list of a schedule node before 
the Xl-list of any schedule node above it and (2) 
processing subqueries of one schedule node and noti- 
fying the scheduler of their completion before submit- 
ting a St?-list of some other schedule node. We want 
all these operations to be seamlessly integrated with 
the normal processing of the plan-tree. We achieve 
this goal by localizing all communication control into 
a “next” call of a schedule node consisting of the fol- 
lowing steps: 

1istL = Find-Sub-Query (left subtree) 
listR = Find-Sub-Query (right subtree) 
query-list = cross product of 1istR and 1istL 
If 1istR is empty, query-list = 1istL 
If 1istL is empty, query-list = list% 
return query-list 

Make a “next” call on the node underneath the 
schedule node to get the next tuple, t 
If t is valid, return t 

In Figure 3, the “Find-Sub-Query” call on the 
Hash-build node adds a schedule node with the list 
{(Sr), (S’s)} and .t re urns the empty-list. The “Find- 
Sub-Query” call on the Hash-probe node returns 
{([Jr)} and on the right branch of the Nest-loop node 
returns the list { (Tl), (Tz)}. The “Find-Sub-Query” 
call on the Nest-loop node returns the cross product 
{ (Ur , Tl), (Ur , Tz)} that is stored in a schedule node at 
the top of the tree. 

5. 

Else, submit the stored sq-list to the scheduler, 
if it has not already been submitted. 
Inform the scheduler of the completion of the last 
batch of scheduled subqueries, if any, and mark 
the scan nodes of those subqueries as suspended. 
Make a blocking call to the scheduler to get the 
next collection of subqueries. Let Q be the collec- 
tion of “ready” subqueries returned by the sched- 
uler. 

3.2.2 Executing queries out-of-order 

If Q is empty, then all subqueries have been exe- 
cuted, therefore return EOF. 
Else, enable Q for execution by marking all the 
scan nodes appearing in Q as available. 
Finally, make a “next” call on the node under- 
neath and return the tuple obtained. 

Our goal during the design of the execution engine We will illustrate the above steps with the plan-tree 
was to follow the normal mode of processing as far in Figure 3. Initially, all the fragments are marked 
as possible except for occasional communication be- suspended. The first “next” call results in the sub- 
tween the execution engine and the scheduler for pass- mission of the list { (Sr), (Sz)}. Assume the scheduler 
ing subquery information, collecting ready subqueries makes (S’s) available first. As a result, the hash-build 
and notifying subquery completion. We show here how operation is partially completed. The scheduler is in- 
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(a) Plan-tree after cptimizaticn @) Pbn-tree after fragmentation (C) Plan-tree after extractIon 

Figure 3: Example of a three-way join. The scan nodes are not shown for clarity; all of them are sequential. 

formed of the completion of subquery (Sz) (so it can 
uncache Ss if needed) and a blocking request is made 
to get the next subquery. When the scheduler makes 
(Sr) ready, the rest of the hash-build operation is com- 
pleted and the scheduler is informed of its completion. 
Next, the Sq-list {(Ur, Tr), (VI, Ts)} on the topmost 
schedule node is submitted. Assume both the sub- 
queries are scheduled together. All data required by 
the plan-tree is now available. Hence, execution of the 
query is completed by pipelining the hash-probe and 
nest-loop operations. 

The above scheme requires certain caution when 
scheduling multiple join subqueries together to avoid 
repetition of the following form: Consider the 
R w S example of Section 3.1. Following 
the above scheme we first submit the SQ-list 
{(RI, %), (RI, sz), (R2, Sl), (R2,5’2), (R3, SI), CR37 5’2)) 
to the scheduler. Suppose the scheduler next 
makes (RI, Sr) ready, the executor finishes process- 
ing (RI, Sr) and asks for the next set of ready sub- 
queries. Suppose the next set of scheduled subqueries 
is ((RI,&), (,Rs,Sr), (Rz,Sz)}. Toexecute these three 
subqueries, scan-nodes of fragments RI, R2, Sr and SZ 
will be marked available, and the plan-tree will be 
processed as usual. But, by doing so, we have repeated 
the execution of subquery (RI, Sr ). To avoid such rep- 
etitions, the scheduler keeps track of subqueries al- 
ready executed and uses this information for schedul- 
ing subqueries. 

3.3 Handling Dependencies 

Sometimes, it is not possible to know before execution 
what subqueries are needed because there is depen- 
dency between fragments. To determine what frag- 
ments are need, some other fragments have to be pro- 
cessed. For example, with index scans, the data blocks 
required can be determined only after partial process- 
ing on the index trees. Similarly, with tuples pointing 
to large objects, the large objects to be fetched can 
be determined only after selecting the required tuples. 
To handle dependencies, two changes are needed: 

1. First, we augment the plan-tree structure further 
with a special schedule node called the resolve 
node. The resolve node is added during the ex- 

2. 

traction phase immediately above the plan-tree 
node that introduces dependency between frag- 
ments. The resolve node, like the schedule node, 
contains a list of subqueries (S&list) that need 
to be executed first to resolve the dependencies. 
For instance, for an index scan, the resolve node is 
added immediately above the corresponding com- 
bine node and the sq-list is the list of index trees 
on the indexed fragments. The sq-list of the 
first schedule node above this resolve node cannot 
be established and hence is marked unresolved. 
Next, we process nodes that introduce depen- 
dency in two stages: in -the first stage a “Re- 
solveDependency” call is made to compute the 
dependant list of subqueries and in the second 
stage after the subqueries are scheduled the rest 
of the node is processed. For instance, for the in- 
dex scan node in the “ResolveDependency” stage 
the index tree is scanned and the list of matching 
TIDs sorted to get the list of blocks that needs to 
be fetched. In the second stage, after these blocks 
are fetched we complete the rest of index scan. 

With these modifications we can handle dependen- 
cies during execution as follows: when it is time to 
process a schedule node, s marked “unresolved”, we 
make a “resolve-sub-query” caI1 on the node below. 
The resolve-sub-query call behaves like the “find-sub 
query” call for each node of the plan-tree until a resolve 
node is reached. The resolve node submits its stored 
S&l-list to the scheduler, and as subqueries from this 
list get scheduled, we make ResolveDependency calls 
on the node below to get the new sq-list. The final 
Xl-list is then returned and execution proceeds as 
usual. We will illustrate details of this method with 
the three normal cases of dependencies in relational 
engines: index scans, joins with index scans on inner 
relation and large object access. 

Nested loop join with runtime index on the in- 
ner relation: We demonstrate how to execute the 
hybrid join algorithm [8], which is an improvement 
over the standard nest-loop join. 

We first describe the hybrid join algorithm. It works 
in two stages: In the first stage, for each tuple of the 
outer relation the index of the inner relation is probed 
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Figure 4: A plan-tree with dependency. The right- 
hand side is the plan-tree after the fragmentation and 
extraction phase. The sequential scan nodes on frag- 
ments have not been shown for clarity. ’ 

and entries are made in an in-memory join table for 
each matched <outer tuple, inner TID> pair (inner 
TID refers to the tuple identifier of the inner relation 
that is obtained from the index tree). The join table is 
then sorted in storage order of the inner relation TIDs. 
In the second stage, the relevant inner relation tuples 
are fetched in storage order and merged with the join 
table to form the result tuples. 

We adapt this algorithm to our framework. In the 
extraction phase, we add a resolve node above the hy- 
brid join node as shown in the example of a four-way 
join in Figure 4. The SQ-list of the resolve node is a 
cross product of two subquery lists: one from the outer 
branch of the join node ({(VI, SI), (VI, 5’~))) and the 
other from the inner branch ({(ITI)}, the index tree 
of 2’1). The schedule node above this resolve node is 
marked unresolved. 

During execution, when “resolve-subquery” call 
is made to the resolve node, we submit the 
stored W-list ({((VI, SI), ITI), ((VI, Sz),IT1))) to 
the scheduler and wait for “ready” subqueries. When 
some set Q of subqueries are “ready”, we use the hy- 
brid join algorithm to get the list of blocks of the in- 
ner fragments. In our example, if ((VI, Sl), ZTl) is 
“ready “, we construct the hybrid join table using in- 
dex tree, ITI and notify the scheduler of the comple- 
tion of this subquery. Later, when ((VI, &), ZTI) is 
&ready n, we complete the join table. When all sub 
queries in the SQ-list are executed, we extract the 
list of blocks of the inner fragments that needs to be 
fetched. This completes the ResolveDependency call 
and we return the list to the schedule node above. The 
schedule node above the resolve node can then con- 
struct its SQ-list and execution proceeds as usual. 
In our example, the SQ-list of the schedule node is 
{(BV’l), &)I h w ere BL(Tr) denotes the list of qual- 
ifying blocks of Tl. When this subquery is scheduled, 
the join is completed using the in-memory join table. 
The result tuples are pipelined to the Nest-loop join 
on Ur. 

Schedule 
‘unresolved 

Resolve 
KW) 

ii 

Restrict LO 

Join 

R s 

Figure 5: Adding resolving nodes for large object ac- 
cess. 

Index scans: Index scans are just a special case of 
the above nest-loop joins and can be handled in a sim- 
ilar manner. 

Large objects: To support reordering between large 
object accesses of different tuples, we add a resolve 
node after the node that accesses the large objects. 
The SQ-list is derived from the plan tree underneath 
this node. For example in Figure 5, a restrict clause 
on a large object is above the join node between R 
and S. Therefore, the SQ-list {(R, S)} is stored in 
the resolve node. 

During the resolution phase, we submit the SQ-list 
to the scheduler and when the subquery is “ready” a 
ResolveDependency is made to the node accessing the 
large object. During this call, the join is completed 
and the resultant tuples along with the IDS of large ob- 
jects required by them are collected in an in-memory 
table (like for the nest-loop join above). The list of 
large objects is then returned. The schedule node sub- 
mits this collected list to the scheduler. The scheduler 
fetches the large objects in an efficient order. When 
a large object is “ready” the corresponding tuple is 
processed further and the scheduler is notified of its 
completion. Cases where whole of the large object is 
not needed will require modification of the function 
that selects the part to be fetched. The execution of 
the function has to be split into two phases, where in 
the first phase the function selects the blocks of the 
large object to be fetched (like in index scans) and in 
the second phase the function actually processes the 
data. 

Dealing with limited memory: If the in-memory 
table is larger than the available main memory, then 
the resolve node cannot complete the construction of 
the entire table in one pass. Thus, the whole re- 
solve step cannot be completed in one “resolve-sub- 
query” call and multiple passes are required. Each 
“resolve-sub-query” call returns only the partial list of 
data along with an “incomplete flag”. The schedule 
node above the resolve node executes the partial sub- 
query list and submits successive “resolve-sub-query” 
call until the entire query is completed. 

3.4 Preventing reordering failures 

Free reordering of scans does not yield the correct an- 
swer when an index scan is used for getting tuples in 
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sorted order e.g., in a merge join. When sorting order 
is important, the optimizer adds a ,modified combine 
node (called merge-combine) above the index-scanned 
relation. This modified combine node uses the individ- 
ual index scans on fragments to get sorted runs that 
are merged together to sort the entire relation. The 
“Find-sub-query” call on the merge-combine node is 
slightly different than on a normal combine node. For 
the merge-combine node, the “Find-sub-query” call re- 
sults in the addition of a schedule node containing a 
single subquery of all the fragments and their index 
trees. Similarly, when accessing large objects, when 
the sort-order of tuples is important we cannot reorder 
the processing of tuples. In such cases, we limit the 
size of the in-memory table to tuples whose results we 
can buffer. 

4 Performance evaluation 

The architecture described in this paper is imple- 
mented on a DEC Alpha AXP workstation running 
Digital IJNIX (OSF/l V3.2). It is a modification of 
the Postgres [32] database system that was extended 
with a multi-threaded scheduler and the I/O process as 
described in Section 2. The user processes are the orig- 
inal Postgres backends, modified to support the new 
nodes and the fragmentation and extraction proce- 
dures. The user and I/O processes communicate with 
the scheduler using RPCs. The scheduler maintains 
as many I/O processes as the number of drives in the 
tertiary memory device to allow parallel data trans- 
fer from all the drives. To facilitate measurements on 
robots which were unavailable, we implemented a ter- 
tiary memory device simulator. The simulated device 
used a magnetic disk for data storage but serviced I/O 
requests with the same approximate delay as an actual 
device. This also allowed us to vary critical parameters 
like the number of drives, switch time etc for measur- 
ing sensitivity of our results to these parameters. 

For our experiments, we used a 512 MB local mag- 
netic disk drive as a cache. This cache size is arguably 
smaller than the cache expected to be used by pro- 
duction systems storing terabytes of data on tertiary 
memory. However, because of the practical inconve- 
nience of loading huge datasets and running multiple 
experiments on them, we have scaled down the size 
of the cache, the size of the datasets and the num- 
ber of concurrent users proportionately. The size of 
a storage block was set to 256 KB since this was the 
size used by the original Postgres storage manager for 
staging data from tertiary memory devices [26]. Each 
tuple of a relation consisted of ten integer fields that 
enable selection baaed on different selectivities (as in 
the Set Query Benchmark [25]) and a text field that is 
used to pad each tuple to a total (internal) size of 300 
bytes. We ran a series of experiments to compare the 
following three approaches for processing queries: 

l NOPREFETCH where data is fetched in units of 
a storage block (256 KB) on demand and no 
prefetching whatsoever is used. 

tape Magneto-Optical 
stacker jukebox 

switch time (set) 30 14 
transfer rate(MB/sec) 2 0.5 
seek rate (MB/set) 200 - 
seek startup (set) 2 0.3 
number of drives 1 2 
platter size (GB) 10 1.3 (both sides) 
number, of platters 10 32 

Table 1: Tertiary Memory Parameters: The switch 
time is a summation of the average time needed to 
rewind any existing platter, eject it from the drive, 
move it from the drive to the shelf, move a new platter 
from shelf to drive, load the drive and make it ready 
for reading. 

PREFETCH where we use both sequential prefetch 
(for sequential scans) and list prefetch (for index 
scans). The size of the prefetch unit was set to 
32 storage blocks (8 MB), which is used in some 
database systems that use prefetching [‘L7]. 
REORDER which is our scheme of reordering exe- 
cution as described in this paper. 

We start with a few anecdotal cases of simple scan 
queries (Section 4.1). Often, more useful insights 
can be obtained by running particular query instances 
where it is easy to analyze where and why one ap- 
proach performs better than the other. Later, we re- 
port measurements on a mixed multi-user workloads 
(Section 4.2) to evaluate average case performance. 
Finally, in Section 4.3 we measure the overhead of 
scheduling. 

4.1 Simple scan tests 

We first did a set of experiments on a simulated tape 
stacker (Table 1) involving only sequential and index 
scans to demonstrate some of the basic cases where 
reordering is effective. Our objective is to show how 
conventional query processing techniques, although ac- 
ceptable for single user queries perform badly when 
multiple users interact. 

The first set of experiments are with a single user. 
In Figure 6(a) we show the total time taken to pro- 
cess the sequential scan with the three schemes: NO- 
PREFETCH,~REFETCH and REORDER. We also show 
the part of the total time spent in data transfer, plat- 
ter switch and seeks on tertiary memory. We note that 
the PREFETCH and REORDER schemes are 20% better 
than NOPREFETCH. This is mainly due to I/O-CPU 
overlap. The total I/O done is the same in all three 
schemes but NOPREFETCH does not enable effective 
overlap between I/O and CPU. 

We then let two users run the same scan query, the 
second user submitted the query after the first one had 
scanned just more than 512 MB of the relation. The 
total time in all our multi-user experiments is defined 

162 



Seek 
.,.... . ..i. 

-i 
E 
* Lz 
a P 

2500 

2000 

1500 

1000 

500 

0 

single-user 2-users 

Figure 6: Difference in total execution time for three 
methods (NOPREFETCH, PREFETCH,REORDER) with 
sequential scans. “Rest” refers to the part of the to- 
tal query processing time not spent in doing tertiary 
memory I/O. 

as the time between the submission of the first query 
and the time when the answer to the last query is re- 
turned. As shown in Figure 6(b), the total time with 
REORDER is one-fifteen of NOPREFETCH and less then 
one-half of PREFETCH. With REORDER, the second 
user started the scan from the remaining part of the 
relation instead of the beginning as in the other two 
schemes. Thus, both users synchronized their process- 
ing perfectly, so that they processed the same data 
blocks at the same time. In contrast, with PREFETCH 
the second user had to re-fetch every data block since 
the cache can only hold 512 MB. 

We next repeated the query with five users to mea- 
sure how these results scale. Each user submitted its 
query after the first one had scanned somewhere be- 
tween one-tenth to one-half of the entire relation (se- 
lected randomly). In this case, REORDER takes almost 
one-fifth the time taken by PREFETCH. By synchroniz- 
ing the scans of the different users, REORDER not only 
makes better use of cached data, it also incurs smaller 
seek cost. For PREFETCH almost 80% of the total time 
is spent in seeks whereas for REORDER the seek cost 
is negligible. We expect this trend to continue as we 
increase the number of users and stagger their scans 
such that simple LRU based cache replacement poli- 
cies cannot ensure proper reuse of cached data. 

This experiment illustrates how our method of re- 
ordering execution can enable better caching perfor- 
mance than conventional prefetching schemes. The 
next experiment illustrates how we can use execution 
reordering to reduce I/O cost even when two queries 
are accessing disjoint data. 

4.1.1 Index scans 

In this experiment, we report the performance of un- 
clustered index scans. 

Total Transfer Switch Seek 
(minutes) (minutes) (minutes) (minutes) 

Single-user 
NoPre 4134 19.4 4010 42 
Pref 21.55 17.5 2.5 .25 
Reord 21.25 17.5 2.5 .25 

Two-users 
NoPre 8415.9 38.9 8035 280 
Pref 349 35 302.5 10 
Reord 39.23 35 3 .03 

5-users 
NoPre 11 20952 1 100 1 20090 1 700 
Pref 749.5 87.5 600 55 
Reord 99.8 87.5 6.5 .15 

Table 2: Difference in total execu&ion time with index 
scans. 

We used two 25 GB relations spread across 5 differ- 
ent tapes in units of 5 GB each. The first relation was 
stored on tapes 1 through 5 and the second on tapes 2 
through 6. The fragment size was again 256 MB. The 
indices reside on magnetic disk. The selectivity of the 
index scan was 0.01%. In Table 2 we show the per- 
formance of a single-user index scan. NOPREFETCH is 
almost two orders of magnitude worse than the other 
two schemes because it does too many random I/OS. 
Since the index scan is unclustered, each block access 
could result in an I/O request to any of the five tapes 
of the tertiary memory. This leads to high platter 
switch and seek overhead. Schemes PREFETCH and 
REORDER convert the unclustered I/O to clustered 
I/O by pre-scanning the index tree, sorting the quali- 
fying TIDs and fetching the data blocks in their stor- 
age order. This results in significant reduction in the 
number of platter switches and the the seek cost. 

Next, two users concurrently submitted the index 
scan query on the two relations. The first users scan 
was on relation 1 that was spread on platters 1 to 5 
whereas the second users scan was on relation 2 that 
was spread on platter 2 to 6 as described earlier. For 
this case too, NOPREFETCH was much worse than 
PREFETCH and REORDER. In addition, REORDER 
performed almost an order of magnitude better than 
PREFETCH. The difference was mainly due to plat- 
ter switches. REORDER does fewer platter switches 
because the execution of user-l is modified such that 
first both users finished processing on the data lying on 
tapes 2 though 5, then user-l scans its part of the rela- 
tion on tape 1, and finally user-2 scans its part of the 
relation on tape 6. Thus,, the total number of platter 
switches is 6. In contrast, with PREFETCH the scans of 
users 1 and 2 interfered. For instance, in the beginning 
when user-l was fetching data from tape 1, user-2 was 
fetching data from tape 2. Although each user’s scan 
was clustered (because of list prefetch), when the two 
users executed concurrently with PREFETCH, for every 
prefetch request a tape switch was incurred. Even if 
we increase the size of the prefetch unit, PREFETCH 
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r Description 
workloacl 
# queries per user 
# users 
% of a-way join queries 
% index scans 
Index selectivity 
# of relations 
Relation size 

Fragment size 
Data layout 

Default ’ 

5 
3 
50 
80 
O.l-10% 
10 
100 MB to 10 GB 
(Uniform distribution) 
5 85 MB ($th cache size) 
each relation stored from 
1 to 5 platters 

1 

Table 3: Experimental setup for mixed workload. 

will incur at least four more media switches than RE- 
ORDER. 

We demonstrate how this result for two users scales 
over multiple users by running concurrently a collec- 
tion of five index scans queries on five different rela- 
tions of 25 GB each. Each relation was spread in units 
of 5 GB each across five different platters chosen ran- 
domly from 1 to 13. Each platter could hold a maxi- 
mum of 10 GB. In this case too, the number of platter 
switches incurred is almost two orders of magnitude 
more with PREFETCH than with REORDER. 

This experiment demonstrates that statically re- 
ordering index scans reduces random I/O considerably 
for single user index scans. But, with multiple users 
static reordering is not sufficient for reducing random 
I/O. Summarizing, the sequential example showed how 
the amount of data transferred can be reduced by do- 
ing better scheduling of queries that share data ac- 
cesses. The index scan example showed how the num- 
ber of platter switches can be reduced by doing better 
scheduling of queries that share common platters. 

4.2 Multiuser-mixed workload tests 

Next, we used a mixed multi-user workload of Z-way 
joins and selects to identify conditions where reorder- 
ing pays-off and where it does not by taking mea- 
surements under different configurations of cache sizes, 
number of drives, etc. We also report measurements on 
a real HP magneto-optical jukebox (performance char- 
acteristics summarized in Table ,l) that is connected to 
our prototype2. Table 3 summarizes the details of ex- 
perimental setup. 

In Figure 7(a) we plot the total time for this work- 
load on the tape-jukebox and the MO-jukebox with 
one drive each3. On the tape-jukebox, the total time 
with PREFETCH is about one-fifth of NOPREFETCH 

2Magueto-optical jukeboxes offer substantially lower price- 
performauce advantage over tape-jukeboxes, hence they are less 
popular in mass storage systems. We, therefore, prefer to do 
most of our experiments on tape jukeboxes. 

3Tlle one drive MO jukebox also had to be simulated since 
we only bad a two-drive MO jukebox 

while REORDER is one-seventh of PREFETCH. On the 
MO-jukebox, the total time with PREFETCH is about 
one-third of NOPREFETCH and REORDER is about 
one-third of PREFETCH. For both NOPREFET~H and 
PREFETCH, the execution time is dominated by I/O on 
tertiary memory unlike in our reordering scheme. As 
shown in Figure 7(.a), the main I/O bottleneck is plat- 
ter switches for both NOPREFETCH and PREFETCH. 
REORDER performs better since it greatly reduces the 
number of platter switches. For the MO-jukebox the 
platter switch cost is not as high as for the tape- 
jukebox. Therefore, we observe smaller relative gains 
with REORDER for the MO-jukebox. 

Increasing the number of drives: Since the 
main bottleneck is platter switches, increasing the 
number of drives from 1 to 2 decreases the gap between 
the reordering and non-reordering based schemes as 
shown in Figure 7(b). For the two-drive case we plot 
only the total execution time since it is difficult to sep- 
arately account for the time spent in doing various I/O 
activities, example data transfer on one drive might 
be overlapped with seeks on another. For REORDER 
there was negligible change in execution time when we 
increased the number of drives from 1 to 2 since the to- 
tal execution time was not bound by tertiary memory 
I/O. 

In general, if we further increased the number of 
drives we can expect this trend to continue. At the 
stage where the number of drives is so large that all re- 
quired platters are always loaded, the various schemes 
will differ only in the amount of data transfered and 
the seek overhead. We observed that in this case, RE- 
ORDER performed 25% better than PREFETCH for the 
tape-jukebox. 

We observed that for REORDER there was no change 
in execution time due to increased number of drives 
since the total execution time was not bound by ter- 
tiary memory I/O. The performance of NO PREFETCH 
and PREFETCH improve until all required platters are 
always loaded. At this stage, the only gain with re- 
ordering is through reduction in seek and transfer cost. 

Decreasing working set: For the experiments so 
far, the transfer cost incurred with.all three schemes 
was not significantly different. One of the merits of 
our query scheduling policies is better reuse of the 
cached data. Therefore, we expected to observe sig- 
nificant reduction in transfer time too with REORDER. 
CYoser inspection of the workload revealed that there 
was very little opportunity for reusing data since the 
degree of sharing between the three concurrent users 
was limited. Each of the three users picked at most 
two of the ten relations in the database with equal 
likelihood. Hence there was little chance of overlap 
between the component relations of queries running 
concurrently. To verify this claim, we repeated the 2- 
drive experiments, with five users instead of three and 
skewed the access requests so that 80% of the accesses 
go to 30% of the data. We observed that the transfer 
time for REORDER was almost one-half of that with 
PREFETCH for the skewed dataset (Figure. 7(c)). 
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(a) Single Drive (b) Two Drives (c) Single Driie, Tape jukebox 

Figure 7: Difference in total execution time for three methods (NOPREFETCH, PREFETCH, REORDER) using the 
mixed workload. The execution time is normalized by the time taken by scheme NOPREFETCH to allow drawing 
on the same scale. 

5 Related Work There experiments demonstrate that reordering is 
beneficial for tertiary memory databases either when 
the platter switch or seek costs are high or when the 
degree of sharing between queries is large. 

4.3 Scheduling overhead 

Finally, we measured the overheads of reordering in 
our prototype. For the experiments presented ear- 
lier, reordering has definitely paid off, whatever be the 
scheduling overhead. But an important question is 
how well these benefits scale with increasing number 
of users or increasing number of fragments. The an- 
swer is crucially dependent on the scheduling overhead 
that we present next. 

We measure the following overheads: (1) The per- 
fragment overhead that is directly proportional to the 
number of fragments in the query, e.g., the time to 
fragment a plan-tree. Measured as a percentage of the 
time to scan a cached fragment, this overhead was typ- 
ically 0.06% (1.5 milliseconds). (2) the per-subquery 
overhead: e.g, the time spent in the extraction phase 
or in communicating with the scheduler. Measured as 
a fraction of the time spent in processing a two-way 
hash-join query on cached data, this overhead was typ- 
ically 0.15% (5 milliseconds). (3) the per-session over- 
head e.g., time spent by the scheduler in dkciding what 
subquery to schedule next. Unlike the previous two 
overheads this overhead depends on factors like the 
number of users concurrently active and the number 
of fragments per relation and can only be measured as 
a function of these factors. We plot this overhead as 
a function of number of users (1 through 9) and total 
number of fragments in the database (10 to 100) in 
Figure 8. The overhead per subquery increases only 
at a rate of 2 millisecond per additional user and less 
than 1/4th millisecond per additional fragment. The 
total overhead ‘is thus measured to be typically less 
than 30 milliseconds per subquery and less than 1% of 
the total execution time. 

There are six areas of work that are relevant to the 
research presented here: prefetching, page scheduling 
for join execution, parallel query scheduling, multiple 
query optimization, dynamic query optimization and 
batching in OODBs. 

Prefetching is useful both in operating systems [6, 
19, 281 and database systems [33, 11, 21 especially 
when accompanied by execution reordering, e.g., list 
prefetch [23, 4, 81 used with index scans. Our system 
extends prefetching to entire plan trees and not sim- 
ply to index scans. A significant difference is that, we 
can reorder based on dynamic conditions like cached 
data, the state of the I/O device and the data needs of 
other queries whereas existing prefetching techniques 
reorder execution based on static storage layout. 

Page scheduling on page join graphs as discussed 
in [24, 22, 201 is an example of reordering two-way 
joins queries. However, their methods are specific to 
join queries and require implementation of new join 
algorithms - our method is meant to be a general 
scheme for reordering any node of a plan tree. For 
parallel [3,5, 16,34, 131 and distributed query schedul- 
ing [3I, 71, plan trees have to be analyzed for es- 
tablishing pipelining and ordering dependencies in a 
manner somewhat analogous to our subquery extrac- 
tion step. However, our method is different in two 
ways: first, for efficiency reasons discussed in this pa- 
per (Section 3. l), we execute all subqueries from a 
single plan-tree whereas most parallel and distributed 
systems construct different plan-trees for subqueries to 
be scheduled on different processors and second, our 
model for communicating and synchronizing with the 
schedulef for deciding online the order in which sub- 
queries aEe scheduled places a different set of require- 
ments than on these systems. 

Our technique is reminiscent of the way ,multiple 
query optimizers combine queries with common subex- 
pressions [30]. [21] d iscusses policies for scheduling a 
batch of select and hash-join queries. for sharing in- 
memory hash-tables. Queries are thus scheduled for 
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Figure 8: The per-session overhead as a function of the number of users and number of fragments. The y-axes 
are overhead in milliseconds per subquery (left) and overhead as a percentage of the total execution time (right). 

execution in a data-driven manner the way we do. 
However, such optimizers typically schedule at whole 
relation level and do not consider reordering within a 
scan unlike our scheme. 

Dynamic query optimization [4, lo] is another tech- 
nique that involves plan tree modification at runtime. 
However, in contrast to our work, the emphasis in that 
area is on choosing dynamically from some fixed set of 
execution plans. Once the choice is made, execution 
proceeds in a fixed order. 

In object oriented databases, the navigational na- 
ture of queries can lead to bad I/O performance mak- 
ing it important to do prefetching [la] and batch- 
ing [lg]. [18] presents ways of modifying the plan-tree 
to replace object-at-a-time references with an assem- 
bly operator that collects multiple object references 
first and then reorders them to optimize I/O accesses. 
However the main difference between their scheme and 
ours is that, they cannot handle reordering across dif- 
ferent operators of a plan-tree or across data reference 
of different users. 

Another concurrent work on modifying query plans 
to reorder I/O access on tape is reported in [35]. They 
propose a scheme for pre-executing functions that ac- 
cess large objects so as to allow I/O requests of differ- 
ent large objects in the same tuple stream and across 
multiple users to be reordered. However, they do not 
allow the order of proccessing tuples to be modified 
unlike in our case. 

Summing up, our distinction from related work is 
that we propose the first system that provides a gen- 
eral framework for reordering execution of plan trees 
dynamically in an extended relational database sys- 
tem. 

6 Conclusion 

In this paper, we have explored a simple, yet power- 
ful, idea of reordering execution to tune to the optimal 
data fetch order. Existing methods of query execu- 
tion provide but a limited flexibility of reordering data 
fetches during execution. Our proposal is based on the 
premise-that in a multi-user environment when access 
latency of data varies widely, significant performance 
advantage can be gained by dynamically reordering 
execution. 

We proposed a general framework for reordering 
all parts of the plan tree. For building a reorder- 

able execution engine, we extended the plan tree data- 
structure with three new meta-nodes that are added in 
an extra phase between optimization and execution of 
the plan tree. These operators enable the executor to 
communicate ar d synchronize with the scheduler’ for 
ordering the ex zution of subqueries. Our changes are 
restricted only ;o these new operators and the extra 
phase and thr enable modular extension of existing 
execution enp .les. We extended the Postgres execu- 
tion engine :,nd used it for building a prototype of a 
tertiary memory database. 

Our prototype yields almost an order of rnagni- 
tude improvement over schemes that use prefetching 
and almost three orders of magnitude improvement 
over schemes that do not, even for simple index scan 
queries. Further experiments demonstrate that either 
(1) when the platter switch and seek costs are high, 
or (2) when the cache is small and there is overlap 
between data accesses of concurrent queries, our re- 
ordering scheme will enable better scheduling of I/O 
requests and more effective reuse of cached data than 
conventional schemes. The overhead of reordering is 
measured to be small compared to the total query ex- 
ecution time (less than 1%). Thus, at least for tertiary 
memory databases the penalty of reordering is so neg- 
ligible that reordering can almost always be used to 
advantage. 

Our proposed general framework is applicable to 
other situations where tuning data to some external or- 
der of arrival is important, e.g., a broadcast disk-based 
mobile computing client. The data chunks can be de- 
termined by the pages broadcast together. The size of 
the data chunks is important for limiting the overhead 
of reordering. For our prototype, typical overhead per 
subquery was 30 milliseconds. Hence, as long as the 
processing time per subquery is much larger than this 
reordering can be used profitably. The scheduling unit 
would be responsible for watching the broadcast data 
stream, caching relevant data when appropriate and 
scheduling ready subqueries for execution. 

Future work in the area should consider the impact 
of execution reordering on query optimization: execut- 
ing queries in parts invalidates some of the assump- 
tions and cost functions used by the optimizer. InJhis 
paper, index scans posed one such scenario. T.here 
are other issues specific to tertiary memory systems 
that need to be addressed: (1) estimating the access 
cost when some relations are stored permanently on 
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disk and others on tertiary memory; (2) including the 
size of t,he disk cache in optimizing queries. When 
the disk cache is sm,aller than the relation, sorting is 
no longer an option. Another topic for future \irork is 
providing support for cancelling submitted subqueries 
to the scheduler when a restrict or a join node yields 
an empty result. 
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