
Reordering Query Execution in Tertiary Memory Databases*
Sunita Sarawagi Michael S tonebraker

Computer Science Division
University of California, Berkeley, CA 94720, USA

{sunita,mike}Qcs.berkeley.edu

Abstract

In the relational model the order of fetching
data does not affect query correctness. This
flexibility is exploited in query optimization
by statically reordering data accesses. How-
ever, once a query is optimized, it is executed
in a fixed order in most systems, with the re-
sult that data requests are made in a fixed
order. Only limited forms of runtime reorder-
ing can be provided by low-level device man-
agers. More aggressive reordering strategies
are essential in scenarios where the latency of
access to data objects varies widely and dy-
namically, as in tertiary devices. This paper
presents such a strategy. Our key innovation
is to exploit dynamic reordering to match exe-
cution order to the optimal data fetch order, in
all parts of the plan-tree. To demonstrate the
practicality of our approach and the impact
of our optimizations, we report on a proto-
type implementation based on Postgres. Us-
ing our system, typical I/O cost for queries on
tertiary memory databases is as much as an
order of magnitude smaller than with conven-
tional query processing techniques.

1 Introduction
We investigate new, aggressive reordering strategies
for speeding up queries on relational databases. The
relational data model provides a set-oriented seman-
tics where the order of processing tuples is unimpor-
tant for correctness. For instance, a SELECT query
does not require that the relation be scanned sequen-
tially; there is flexibility to fetch the data blocks in

This research was sponsored by NSF Grant IRI-9107455,
AR0 Grant DAAL03-91-G-0183, and DARPA Contract
DABT63-92-C-0007. Additional support was provided by the
University of California and Digital Equipment Corporation un-
der Sequoia 2000 research grant #1243.

Permission Lo copy without fee all or part of this material is
granted provided that the copies are not made or disfributed for
direct commercial advantage, the VLDB copyright nofice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or io republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

any arbitrary order. Database designers have used
this flexibility in building multiple access paths to re-
lations, designing multiple methods of processing joins
and optimizing queries based on evaluation of different
methods. However, once a plan is optimized, execu-
tion of the plan proceeds in a fixed manner with the
result that data pages are demanded in a fixed order
that was optimized for a given data layout. The
only form of dynamic reordering available during exe-
cution is through low-level I/O device schedulers or in
some cases by asynchronous prefetching. The reorder-
ing that existing schedulers can achieve is limited to
I/O requests from multiple users or to batch prefetch-
ing from processes doing asynchronous I/O. These ex-
isting schedulers may have greater opportunities for
optimization if prefetching is done in larger batches;
however, prefetching in large amounts can adversely
affect caching performance [6]. In this paper, we show
that a effective way around this problem is to dynami-
cally reorder execution to match the optimal data fetch
order. If data in some part of the plan tree is “near
by” now and will get “further away” later, it is advan-
tageous to process the “near by” data first instead of
waiting for the data “far away”. This paper describes
the implementation and evaluation of this simple idea
in practical settings.

The key features of our framework for reordering
execution are:

Relations are comprised of chunks that are avail-
able together.
Each query plan tree is divided into parts (called
subqueries’ here) that can be executed indepen-
dently in arbitrary order.

A scheduling unit collects subqueries from
many users and decides at runtime the order in
which they are executed.
A reorderable executor communicates with the
scheduler to process the query plan in the grder
dictated by the scheduler.

The scheduling unit (item 3 above) has been de-
scribed in [29]; there we designed an algorithm that
determines the order in which data should be fetched
to reduce l/O cost and presented preliminary results
using simple hand-compiled queries. In contrast, this
paper deals with the design and implementation of
the reorderable executor that can extract the subquery

‘The term subqueries is not to be confused with the SQL
notion of subqueries. We use the subqueries to refer to parts of
query.

156

lists and execute them in an arbitrary order (items 2
and 4).

For easy integration into an existing execution en-
gine, we extended the plan tree data-structure with
three new meta-operators that are added in an exbra
phase between optimization and execution of the plan
tree. These operators enable the executor to commu-
nicate and synchronize with the scheduler for ordering
the execution of subqueries.

The last part of this paper reports on a evaluation of
the above ideas for reordering executio‘l in the context
of a tertiary mernory database. We also quantify the
overheads of reordering, and show that they .are small
compared to the performance gains, which are often
as high as an order of magnitude.

1.1 Applications

Reordering execution can be beneficial in all cases
where the access latency of data in various parts of the
plan-tree varies widely and dynamically. We present
below a list of potential situations:

.

.

0

1.2

Tertiary memory systems: A typical tertiary
storage device consists of a large number of tapes
or optical disks (we will use the term platter to
refer to both tapes or optical disks), a few read-
write drives and even fewer robot arms to switch
the platter between the shelves and the drives.
The time to load and unload platters from drives
is often high. It is, therefore, beneficial to order
execution to first process data on the currently
loaded unit before unloading it.
Cache systems: Cached data is “nearer” than
the uncached data and it might help to process
the cached data before fetching more data that
might replace it. Database cache-replacement al-
gorithms [9, 14, 331 are extensively researched but
none of these algorithms have considered applying
execution reordering to adapt to the cached data.
Broadcast disks for mobile computing: Broad-
cast disks [l, 17, 151 are gaining importance in
mobile and asymmetric environments for reduc-
ing number of messages from the clients to the
data servers. With broadcast disks, data is pe-
riodically transmitted by base stations or servers
to multiple clients instead of clients explicitly re-
questing data from the servers. It will help to
reorder the execution of the clients so that they
process the plan tree in the order in which data
is broadcast by the server instead of following a
fixed order of processing.

Motivating example

We start with a few examples of potential benefits due
to execution reordering on a tertiary memory system.
Consider a single-drive tape jukebox with three re-
lations stored across three tapes as shown in Figure 1.
Relation S is stored as three contiguous chunks on two
tapes, R as three chunks on three different tapes and
T on a single tape. The size of each chunk of R is 1 GB

Figure 1: Layout of R, S and T on tape

IO Pmcesses

Figure 2: The architecture of the tertiary memory
database system with the centralized scheduler

and of 5’ and T is 0.5 GB each. A 1 GB disk cache is
used for staging data to and from the tertiary memory
in units of 256 KB. Consider the following scenarios:

User-l submits a sequential scan query on S. The
best order to fetch S is Si, followed by S’s and
then Sz. Suppose after user-l has processed all of
S, user-2 submits a sequential scan on S. In this
case, the best way to process user-2’s scan is in
the order Ss, S; and then S1 since Sa and Sz are
still in cache.
User-l submits query-l and after tape-2 has been
loaded to fetch Si, User-2 submits an index scan
on R. In this case, the best order for fetching the
qualifying blocks of R is to first fetch Rz’s blocks,
then RI’s and finally Rs’s.

In both these cases, we notice that simply changing
the execution order of each user’s query based on data
layout is not sufficient when multiple users interact.
The optimal execution order during multi-user pro-
cessing could be quite different from the best static
order. Thus, we need to be able to dynamically re-
order execution.

1.3 Outline of the paper

Section 2 gives an overview of our architecture and
reviews the design of the scheduling unit. Section 3
presents the design of the new executor which extracts
the list of subqueries and executes them in arbitrary
order. Section 4 describes our prototype and presents
a performance evaluation. Section 5 presents related
work. Finally, concluding remarks appear in Section 6.

2 Architecture Overview

Figure 2 sketches the architecture of our tertiary mem-
ory database system introduced in 1291. We assume a
process-per-user architecture where each user-session

has a separate process serving its queries. An arriving
query is first compiled by the user process. The user-
process then extracts the list of subqueries from the
query and submits the list to the scheduler process.
We have a single centralized scheduler process that re-
ceives subqueries from all user processes and decides
when they are executed. The scheduler maintains a
set of I/O processes that transfer data between the
disk cache and tertiary memory. As soon as all the
data accessed by a subquery are available in the disk
cache, the scheduler marks the subquery as “ready”
for execution. The user processes contact the sched-
uler to collect ready subqueries and block until some
subqueries are ready. After finishing execution of these
ready subqueries, they send a notification to the sched-
uler, which can then decide to evict the cached data
used by that subquery when desirable.

Each relation consists of a number of fragments.
A fragment is the part of a relation that lies contigu-
ously on a storage medium. For instance, in Figure 1,
S’r, S’z and Sa are fragments of S. The fragments of a
relation correspond to the data chunks of our frame-
work introduced in Section 1 (item 1). We further
restrict the size of each fragment based on the size of
the cache, the latency of access on tertiary memory,
the data transfer rate and the number of concurrent
users as discussed in [29].

The scheduler (1) co-ordinates data movement be-
tween the disk cache and tertiary memory, (2) sched-
ules query execution for each user process, and (3)
decides what data is cached to or evicted from the
disk cache. The scheduler makes these decisions based
on system-wide information about pending subqueries
from all users, the state of the disk cache and the ter-
tiary memory, e.g, what platter is currently loaded.
Details of how these decisions are made is given in
[29]. When deciding on the order of executing sub-
queries, the scheduler’s objective is to maximize the
overall system throughput. Hence, for a given user-
process, one or more subqueries could be scheduled for
execution together in an arbitrarily interleaved fashion
with those of other users.

3 Execution Engine

In this section we describe the design of the execu-
tion engine of the user processes. We first list the
requirements needed by an execution engine to sup-
port reordering. Then we present the mechanism for
supporting these requirements.

3.1 Specifications

1. Submit to the scheduler a list of subqueries to be
executed
The scheduler does not need to know all the de-
tails of the subquery, only which fragments are
needed together in executing the subquery. Con-
sider a nest-loop join between relations R and
S’ where R has .three fragments RI, R2 and RJ,
and ,S’ has two fragments Sr and Sz. The list of

1)

subqueries submitted to the scheduler, called the
SQ-list, is:

{(Rl, Sl), (Rl,S2), (R2,Sl), (R2,S2), (R3,Sl), (R3,Sz

2. Execute subqueries out-of-order
There should be no ordering constraints be-
tween the subqueries submitted to the scheduler.
For the two way join example above, the subquery
(Rz, &), for instance, might be scheduled before
the subqueries (RI, Sr) and (RI, Sz). Thus when
the operators of a plan tree have precedence con-
straints on them, the subqueries must be submit-
ted in multiple stages. For instance, for hash-join
queries the inner fragments have to be fetched and
the hash-table built, before processing any frag-
ments of the outer relation.

3. Execute multiple subqueries together
The scheduler could have more than one subquery
ready for execution. We require that the executor
be able to process multiple subqueries together.
Executing one subquery at a time can lead to re-
dundant computation for joins, since the scans on
the outer relation cannot be shared across multi-
ple fragments of the inner relation. For instance
in the two-way join example, if Sr, Sz and R3 are
cached, the scheduler will “ready” both the sub-
queries (Rs, Sr) and (R3, Sz). The executor must
be able to join R3 with both Sr and S’z in one scan
of R3. Hence, although executing each subquery
separately would allow for easy implementation,
we must provide a means of executing multiple
subqueries together.

3.2 Design

In this section, we describe the design of an executor
that meets the specifications of Section 3.1. We base
our discussion on the Postgres execution engine, in
which each query plan is a tree of operators. Allfopera-
tors are implemented as iterators and support a simple
start-next-end interface. Most relational database sys-
tems have analogous operator-based execution engines
and can be extended similarly [13].

A query is first optimized as usual except for a few
minor changes related to sorting via index scans that
are discussed in Section 3.4. The optimized plan tree
is then processed to extract the list of subqueries as
discussed in Section 3.2.1. In Section 3.2.2 we discuss
how execution proceeds out of order.

3.2.1 Extracting subquery lists

This proleeds in two phases: the fragmentation phase
and the extraction phase.

Fragmentation phase: In this phase, each scan
node on each base relation is replaced by a combine
node that contains a list of scan nodes on the fragments
of the base relation. The type of scan (sequential scan
or index scan) on the fragments is the same as on the
base relation. We assume that all the fragments of a

158

relation have the same set of indices. For example,
in Figure 3(a) we show the plan-tree of a 3-way join
with three sequential scan nodes on base relations S,
U and T. In Figure 3(b) we show the plan-tree after
fragmentation.

Extraction phase: In this phase we extract the
sq-lists and insert special nodes called schedule
nodes that are responsible for communicating with
the scheduler and keeping synchronization information
during execution. Each schedule node has an associ-
ated Sq-list. Because of precedence constraints be-
tween operators (Section S.l(item 2)), we could have
multiple Sq-lists in a plan-tree. For example, the
plan-tree in Figure 3(b) has ordering constraints be-
tween the hash-build and hash-probe nodes. Hence,
we added a schedule node before the hash-build node
since the hash-build stage has to complete before start-
ing processing on any nodes above it. We add a second
schedule node at the top for the rest of plan-tree.

minor modifications in the scan nodes and the newly
introduced schedule and combine nodes enable us to
achieve this goal.

For inserting such schedule nodes and for construct-
ing the Sq-lists we define a “Find-Sub-Query” call
for each plan-tree node. This call returns the list of
subqueries necessary to process the node. We give be-
low the “Find-Sub-Query” routine for a few common
nodes.

For ef-
ficiency reasons (discussed in Section 3.1,itern 3) we
want to execute all subqueries of a plan-tree frorn a
single plan-tree instead of building a separate plan-
tree for each subquery. This requires us to keep track
of what subquery of the plan-tree is currently being
executed. We do so by marking the scan nodes of the
subqueries currently being executed as available and
all other scan-nodes suspended. The plan-tree is then
processed as usual: starting from the root of the plan
tree, successive “next” calls are made to each node of
the tree. When a “next” call is made on a combine
node it submits the “next” call to a scan node under-
neath it that is marked available. A “next” call on
a suspended scan node returns no tuple. Thus, only
scan-nodes of currently scheduled subqueries partici-
pate in execution.

Find-Sub-Query for various nodes
Combine node:

return list of fragments under the combine node
Hash-build, Aggregate or Sort node:

query-list = Find-Sub-Query(subtree under node)
if query-list non-empty

add schedule node with query-list below node
return empty-list

Join node:

We next discuss how and when the schedule nodes
are used for exchanging subquery information. Note
that there could be multiple schedule nodes in the plan
tree. It is critical to ensure proper interaction between
these nodes to prevent deadlocks during execution by
(I) submitting the St?-list of a schedule node before
the Xl-list of any schedule node above it and (2)
processing subqueries of one schedule node and noti-
fying the scheduler of their completion before submit-
ting a St?-list of some other schedule node. We want
all these operations to be seamlessly integrated with
the normal processing of the plan-tree. We achieve
this goal by localizing all communication control into
a “next” call of a schedule node consisting of the fol-
lowing steps:

1istL = Find-Sub-Query (left subtree)
listR = Find-Sub-Query (right subtree)
query-list = cross product of 1istR and 1istL
If 1istR is empty, query-list = 1istL
If 1istL is empty, query-list = list%
return query-list

Make a “next” call on the node underneath the
schedule node to get the next tuple, t
If t is valid, return t

In Figure 3, the “Find-Sub-Query” call on the
Hash-build node adds a schedule node with the list
{(Sr), (S’s)} and .t re urns the empty-list. The “Find-
Sub-Query” call on the Hash-probe node returns
{([Jr)} and on the right branch of the Nest-loop node
returns the list { (Tl), (Tz)}. The “Find-Sub-Query”
call on the Nest-loop node returns the cross product
{ (Ur , Tl), (Ur , Tz)} that is stored in a schedule node at
the top of the tree.

5.

Else, submit the stored sq-list to the scheduler,
if it has not already been submitted.
Inform the scheduler of the completion of the last
batch of scheduled subqueries, if any, and mark
the scan nodes of those subqueries as suspended.
Make a blocking call to the scheduler to get the
next collection of subqueries. Let Q be the collec-
tion of “ready” subqueries returned by the sched-
uler.

3.2.2 Executing queries out-of-order

If Q is empty, then all subqueries have been exe-
cuted, therefore return EOF.
Else, enable Q for execution by marking all the
scan nodes appearing in Q as available.
Finally, make a “next” call on the node under-
neath and return the tuple obtained.

Our goal during the design of the execution engine We will illustrate the above steps with the plan-tree
was to follow the normal mode of processing as far in Figure 3. Initially, all the fragments are marked
as possible except for occasional communication be- suspended. The first “next” call results in the sub-
tween the execution engine and the scheduler for pass- mission of the list { (Sr), (Sz)}. Assume the scheduler
ing subquery information, collecting ready subqueries makes (S’s) available first. As a result, the hash-build
and notifying subquery completion. We show here how operation is partially completed. The scheduler is in-

159

(a) Plan-tree after cptimizaticn @) Pbn-tree after fragmentation (C) Plan-tree after extractIon

Figure 3: Example of a three-way join. The scan nodes are not shown for clarity; all of them are sequential.

formed of the completion of subquery (Sz) (so it can
uncache Ss if needed) and a blocking request is made
to get the next subquery. When the scheduler makes
(Sr) ready, the rest of the hash-build operation is com-
pleted and the scheduler is informed of its completion.
Next, the Sq-list {(Ur, Tr), (VI, Ts)} on the topmost
schedule node is submitted. Assume both the sub-
queries are scheduled together. All data required by
the plan-tree is now available. Hence, execution of the
query is completed by pipelining the hash-probe and
nest-loop operations.

The above scheme requires certain caution when
scheduling multiple join subqueries together to avoid
repetition of the following form: Consider the
R w S example of Section 3.1. Following
the above scheme we first submit the SQ-list
{(RI, %), (RI, sz), (R2, Sl), (R2,5’2), (R3, SI), CR37 5’2))
to the scheduler. Suppose the scheduler next
makes (RI, Sr) ready, the executor finishes process-
ing (RI, Sr) and asks for the next set of ready sub-
queries. Suppose the next set of scheduled subqueries
is ((RI,&), (,Rs,Sr), (Rz,Sz)}. Toexecute these three
subqueries, scan-nodes of fragments RI, R2, Sr and SZ
will be marked available, and the plan-tree will be
processed as usual. But, by doing so, we have repeated
the execution of subquery (RI, Sr). To avoid such rep-
etitions, the scheduler keeps track of subqueries al-
ready executed and uses this information for schedul-
ing subqueries.

3.3 Handling Dependencies

Sometimes, it is not possible to know before execution
what subqueries are needed because there is depen-
dency between fragments. To determine what frag-
ments are need, some other fragments have to be pro-
cessed. For example, with index scans, the data blocks
required can be determined only after partial process-
ing on the index trees. Similarly, with tuples pointing
to large objects, the large objects to be fetched can
be determined only after selecting the required tuples.
To handle dependencies, two changes are needed:

1. First, we augment the plan-tree structure further
with a special schedule node called the resolve
node. The resolve node is added during the ex-

2.

traction phase immediately above the plan-tree
node that introduces dependency between frag-
ments. The resolve node, like the schedule node,
contains a list of subqueries (S&list) that need
to be executed first to resolve the dependencies.
For instance, for an index scan, the resolve node is
added immediately above the corresponding com-
bine node and the sq-list is the list of index trees
on the indexed fragments. The sq-list of the
first schedule node above this resolve node cannot
be established and hence is marked unresolved.
Next, we process nodes that introduce depen-
dency in two stages: in -the first stage a “Re-
solveDependency” call is made to compute the
dependant list of subqueries and in the second
stage after the subqueries are scheduled the rest
of the node is processed. For instance, for the in-
dex scan node in the “ResolveDependency” stage
the index tree is scanned and the list of matching
TIDs sorted to get the list of blocks that needs to
be fetched. In the second stage, after these blocks
are fetched we complete the rest of index scan.

With these modifications we can handle dependen-
cies during execution as follows: when it is time to
process a schedule node, s marked “unresolved”, we
make a “resolve-sub-query” caI1 on the node below.
The resolve-sub-query call behaves like the “find-sub
query” call for each node of the plan-tree until a resolve
node is reached. The resolve node submits its stored
S&l-list to the scheduler, and as subqueries from this
list get scheduled, we make ResolveDependency calls
on the node below to get the new sq-list. The final
Xl-list is then returned and execution proceeds as
usual. We will illustrate details of this method with
the three normal cases of dependencies in relational
engines: index scans, joins with index scans on inner
relation and large object access.

Nested loop join with runtime index on the in-
ner relation: We demonstrate how to execute the
hybrid join algorithm [8], which is an improvement
over the standard nest-loop join.

We first describe the hybrid join algorithm. It works
in two stages: In the first stage, for each tuple of the
outer relation the index of the inner relation is probed

160

Figure 4: A plan-tree with dependency. The right-
hand side is the plan-tree after the fragmentation and
extraction phase. The sequential scan nodes on frag-
ments have not been shown for clarity. ’

and entries are made in an in-memory join table for
each matched <outer tuple, inner TID> pair (inner
TID refers to the tuple identifier of the inner relation
that is obtained from the index tree). The join table is
then sorted in storage order of the inner relation TIDs.
In the second stage, the relevant inner relation tuples
are fetched in storage order and merged with the join
table to form the result tuples.

We adapt this algorithm to our framework. In the
extraction phase, we add a resolve node above the hy-
brid join node as shown in the example of a four-way
join in Figure 4. The SQ-list of the resolve node is a
cross product of two subquery lists: one from the outer
branch of the join node ({(VI, SI), (VI, 5’~))) and the
other from the inner branch ({(ITI)}, the index tree
of 2’1). The schedule node above this resolve node is
marked unresolved.

During execution, when “resolve-subquery” call
is made to the resolve node, we submit the
stored W-list ({((VI, SI), ITI), ((VI, Sz),IT1))) to
the scheduler and wait for “ready” subqueries. When
some set Q of subqueries are “ready”, we use the hy-
brid join algorithm to get the list of blocks of the in-
ner fragments. In our example, if ((VI, Sl), ZTl) is
“ready “, we construct the hybrid join table using in-
dex tree, ITI and notify the scheduler of the comple-
tion of this subquery. Later, when ((VI, &), ZTI) is
&ready n, we complete the join table. When all sub
queries in the SQ-list are executed, we extract the
list of blocks of the inner fragments that needs to be
fetched. This completes the ResolveDependency call
and we return the list to the schedule node above. The
schedule node above the resolve node can then con-
struct its SQ-list and execution proceeds as usual.
In our example, the SQ-list of the schedule node is
{(BV’l), &)I h w ere BL(Tr) denotes the list of qual-
ifying blocks of Tl. When this subquery is scheduled,
the join is completed using the in-memory join table.
The result tuples are pipelined to the Nest-loop join
on Ur.

Schedule
‘unresolved

Resolve
KW)

ii

Restrict LO

Join

R s

Figure 5: Adding resolving nodes for large object ac-
cess.

Index scans: Index scans are just a special case of
the above nest-loop joins and can be handled in a sim-
ilar manner.

Large objects: To support reordering between large
object accesses of different tuples, we add a resolve
node after the node that accesses the large objects.
The SQ-list is derived from the plan tree underneath
this node. For example in Figure 5, a restrict clause
on a large object is above the join node between R
and S. Therefore, the SQ-list {(R, S)} is stored in
the resolve node.

During the resolution phase, we submit the SQ-list
to the scheduler and when the subquery is “ready” a
ResolveDependency is made to the node accessing the
large object. During this call, the join is completed
and the resultant tuples along with the IDS of large ob-
jects required by them are collected in an in-memory
table (like for the nest-loop join above). The list of
large objects is then returned. The schedule node sub-
mits this collected list to the scheduler. The scheduler
fetches the large objects in an efficient order. When
a large object is “ready” the corresponding tuple is
processed further and the scheduler is notified of its
completion. Cases where whole of the large object is
not needed will require modification of the function
that selects the part to be fetched. The execution of
the function has to be split into two phases, where in
the first phase the function selects the blocks of the
large object to be fetched (like in index scans) and in
the second phase the function actually processes the
data.

Dealing with limited memory: If the in-memory
table is larger than the available main memory, then
the resolve node cannot complete the construction of
the entire table in one pass. Thus, the whole re-
solve step cannot be completed in one “resolve-sub-
query” call and multiple passes are required. Each
“resolve-sub-query” call returns only the partial list of
data along with an “incomplete flag”. The schedule
node above the resolve node executes the partial sub-
query list and submits successive “resolve-sub-query”
call until the entire query is completed.

3.4 Preventing reordering failures

Free reordering of scans does not yield the correct an-
swer when an index scan is used for getting tuples in

161

sorted order e.g., in a merge join. When sorting order
is important, the optimizer adds a ,modified combine
node (called merge-combine) above the index-scanned
relation. This modified combine node uses the individ-
ual index scans on fragments to get sorted runs that
are merged together to sort the entire relation. The
“Find-sub-query” call on the merge-combine node is
slightly different than on a normal combine node. For
the merge-combine node, the “Find-sub-query” call re-
sults in the addition of a schedule node containing a
single subquery of all the fragments and their index
trees. Similarly, when accessing large objects, when
the sort-order of tuples is important we cannot reorder
the processing of tuples. In such cases, we limit the
size of the in-memory table to tuples whose results we
can buffer.

4 Performance evaluation

The architecture described in this paper is imple-
mented on a DEC Alpha AXP workstation running
Digital IJNIX (OSF/l V3.2). It is a modification of
the Postgres [32] database system that was extended
with a multi-threaded scheduler and the I/O process as
described in Section 2. The user processes are the orig-
inal Postgres backends, modified to support the new
nodes and the fragmentation and extraction proce-
dures. The user and I/O processes communicate with
the scheduler using RPCs. The scheduler maintains
as many I/O processes as the number of drives in the
tertiary memory device to allow parallel data trans-
fer from all the drives. To facilitate measurements on
robots which were unavailable, we implemented a ter-
tiary memory device simulator. The simulated device
used a magnetic disk for data storage but serviced I/O
requests with the same approximate delay as an actual
device. This also allowed us to vary critical parameters
like the number of drives, switch time etc for measur-
ing sensitivity of our results to these parameters.

For our experiments, we used a 512 MB local mag-
netic disk drive as a cache. This cache size is arguably
smaller than the cache expected to be used by pro-
duction systems storing terabytes of data on tertiary
memory. However, because of the practical inconve-
nience of loading huge datasets and running multiple
experiments on them, we have scaled down the size
of the cache, the size of the datasets and the num-
ber of concurrent users proportionately. The size of
a storage block was set to 256 KB since this was the
size used by the original Postgres storage manager for
staging data from tertiary memory devices [26]. Each
tuple of a relation consisted of ten integer fields that
enable selection baaed on different selectivities (as in
the Set Query Benchmark [25]) and a text field that is
used to pad each tuple to a total (internal) size of 300
bytes. We ran a series of experiments to compare the
following three approaches for processing queries:

l NOPREFETCH where data is fetched in units of
a storage block (256 KB) on demand and no
prefetching whatsoever is used.

tape Magneto-Optical
stacker jukebox

switch time (set) 30 14
transfer rate(MB/sec) 2 0.5
seek rate (MB/set) 200 -
seek startup (set) 2 0.3
number of drives 1 2
platter size (GB) 10 1.3 (both sides)
number, of platters 10 32

Table 1: Tertiary Memory Parameters: The switch
time is a summation of the average time needed to
rewind any existing platter, eject it from the drive,
move it from the drive to the shelf, move a new platter
from shelf to drive, load the drive and make it ready
for reading.

PREFETCH where we use both sequential prefetch
(for sequential scans) and list prefetch (for index
scans). The size of the prefetch unit was set to
32 storage blocks (8 MB), which is used in some
database systems that use prefetching [‘L7].
REORDER which is our scheme of reordering exe-
cution as described in this paper.

We start with a few anecdotal cases of simple scan
queries (Section 4.1). Often, more useful insights
can be obtained by running particular query instances
where it is easy to analyze where and why one ap-
proach performs better than the other. Later, we re-
port measurements on a mixed multi-user workloads
(Section 4.2) to evaluate average case performance.
Finally, in Section 4.3 we measure the overhead of
scheduling.

4.1 Simple scan tests

We first did a set of experiments on a simulated tape
stacker (Table 1) involving only sequential and index
scans to demonstrate some of the basic cases where
reordering is effective. Our objective is to show how
conventional query processing techniques, although ac-
ceptable for single user queries perform badly when
multiple users interact.

The first set of experiments are with a single user.
In Figure 6(a) we show the total time taken to pro-
cess the sequential scan with the three schemes: NO-
PREFETCH,~REFETCH and REORDER. We also show
the part of the total time spent in data transfer, plat-
ter switch and seeks on tertiary memory. We note that
the PREFETCH and REORDER schemes are 20% better
than NOPREFETCH. This is mainly due to I/O-CPU
overlap. The total I/O done is the same in all three
schemes but NOPREFETCH does not enable effective
overlap between I/O and CPU.

We then let two users run the same scan query, the
second user submitted the query after the first one had
scanned just more than 512 MB of the relation. The
total time in all our multi-user experiments is defined

162

Seek
.,.... . ..i.

-i
E
* Lz
a P

2500

2000

1500

1000

500

0

single-user 2-users

Figure 6: Difference in total execution time for three
methods (NOPREFETCH, PREFETCH,REORDER) with
sequential scans. “Rest” refers to the part of the to-
tal query processing time not spent in doing tertiary
memory I/O.

as the time between the submission of the first query
and the time when the answer to the last query is re-
turned. As shown in Figure 6(b), the total time with
REORDER is one-fifteen of NOPREFETCH and less then
one-half of PREFETCH. With REORDER, the second
user started the scan from the remaining part of the
relation instead of the beginning as in the other two
schemes. Thus, both users synchronized their process-
ing perfectly, so that they processed the same data
blocks at the same time. In contrast, with PREFETCH
the second user had to re-fetch every data block since
the cache can only hold 512 MB.

We next repeated the query with five users to mea-
sure how these results scale. Each user submitted its
query after the first one had scanned somewhere be-
tween one-tenth to one-half of the entire relation (se-
lected randomly). In this case, REORDER takes almost
one-fifth the time taken by PREFETCH. By synchroniz-
ing the scans of the different users, REORDER not only
makes better use of cached data, it also incurs smaller
seek cost. For PREFETCH almost 80% of the total time
is spent in seeks whereas for REORDER the seek cost
is negligible. We expect this trend to continue as we
increase the number of users and stagger their scans
such that simple LRU based cache replacement poli-
cies cannot ensure proper reuse of cached data.

This experiment illustrates how our method of re-
ordering execution can enable better caching perfor-
mance than conventional prefetching schemes. The
next experiment illustrates how we can use execution
reordering to reduce I/O cost even when two queries
are accessing disjoint data.

4.1.1 Index scans

In this experiment, we report the performance of un-
clustered index scans.

Total Transfer Switch Seek
(minutes) (minutes) (minutes) (minutes)

Single-user
NoPre 4134 19.4 4010 42
Pref 21.55 17.5 2.5 .25
Reord 21.25 17.5 2.5 .25

Two-users
NoPre 8415.9 38.9 8035 280
Pref 349 35 302.5 10
Reord 39.23 35 3 .03

5-users
NoPre 11 20952 1 100 1 20090 1 700
Pref 749.5 87.5 600 55
Reord 99.8 87.5 6.5 .15

Table 2: Difference in total execu&ion time with index
scans.

We used two 25 GB relations spread across 5 differ-
ent tapes in units of 5 GB each. The first relation was
stored on tapes 1 through 5 and the second on tapes 2
through 6. The fragment size was again 256 MB. The
indices reside on magnetic disk. The selectivity of the
index scan was 0.01%. In Table 2 we show the per-
formance of a single-user index scan. NOPREFETCH is
almost two orders of magnitude worse than the other
two schemes because it does too many random I/OS.
Since the index scan is unclustered, each block access
could result in an I/O request to any of the five tapes
of the tertiary memory. This leads to high platter
switch and seek overhead. Schemes PREFETCH and
REORDER convert the unclustered I/O to clustered
I/O by pre-scanning the index tree, sorting the quali-
fying TIDs and fetching the data blocks in their stor-
age order. This results in significant reduction in the
number of platter switches and the the seek cost.

Next, two users concurrently submitted the index
scan query on the two relations. The first users scan
was on relation 1 that was spread on platters 1 to 5
whereas the second users scan was on relation 2 that
was spread on platter 2 to 6 as described earlier. For
this case too, NOPREFETCH was much worse than
PREFETCH and REORDER. In addition, REORDER
performed almost an order of magnitude better than
PREFETCH. The difference was mainly due to plat-
ter switches. REORDER does fewer platter switches
because the execution of user-l is modified such that
first both users finished processing on the data lying on
tapes 2 though 5, then user-l scans its part of the rela-
tion on tape 1, and finally user-2 scans its part of the
relation on tape 6. Thus,, the total number of platter
switches is 6. In contrast, with PREFETCH the scans of
users 1 and 2 interfered. For instance, in the beginning
when user-l was fetching data from tape 1, user-2 was
fetching data from tape 2. Although each user’s scan
was clustered (because of list prefetch), when the two
users executed concurrently with PREFETCH, for every
prefetch request a tape switch was incurred. Even if
we increase the size of the prefetch unit, PREFETCH

163

r Description
workloacl
queries per user
users
% of a-way join queries
% index scans
Index selectivity
of relations
Relation size

Fragment size
Data layout

Default ’

5
3
50
80
O.l-10%
10
100 MB to 10 GB
(Uniform distribution)
5 85 MB ($th cache size)
each relation stored from
1 to 5 platters

1

Table 3: Experimental setup for mixed workload.

will incur at least four more media switches than RE-
ORDER.

We demonstrate how this result for two users scales
over multiple users by running concurrently a collec-
tion of five index scans queries on five different rela-
tions of 25 GB each. Each relation was spread in units
of 5 GB each across five different platters chosen ran-
domly from 1 to 13. Each platter could hold a maxi-
mum of 10 GB. In this case too, the number of platter
switches incurred is almost two orders of magnitude
more with PREFETCH than with REORDER.

This experiment demonstrates that statically re-
ordering index scans reduces random I/O considerably
for single user index scans. But, with multiple users
static reordering is not sufficient for reducing random
I/O. Summarizing, the sequential example showed how
the amount of data transferred can be reduced by do-
ing better scheduling of queries that share data ac-
cesses. The index scan example showed how the num-
ber of platter switches can be reduced by doing better
scheduling of queries that share common platters.

4.2 Multiuser-mixed workload tests

Next, we used a mixed multi-user workload of Z-way
joins and selects to identify conditions where reorder-
ing pays-off and where it does not by taking mea-
surements under different configurations of cache sizes,
number of drives, etc. We also report measurements on
a real HP magneto-optical jukebox (performance char-
acteristics summarized in Table ,l) that is connected to
our prototype2. Table 3 summarizes the details of ex-
perimental setup.

In Figure 7(a) we plot the total time for this work-
load on the tape-jukebox and the MO-jukebox with
one drive each3. On the tape-jukebox, the total time
with PREFETCH is about one-fifth of NOPREFETCH

2Magueto-optical jukeboxes offer substantially lower price-
performauce advantage over tape-jukeboxes, hence they are less
popular in mass storage systems. We, therefore, prefer to do
most of our experiments on tape jukeboxes.

3Tlle one drive MO jukebox also had to be simulated since
we only bad a two-drive MO jukebox

while REORDER is one-seventh of PREFETCH. On the
MO-jukebox, the total time with PREFETCH is about
one-third of NOPREFETCH and REORDER is about
one-third of PREFETCH. For both NOPREFET~H and
PREFETCH, the execution time is dominated by I/O on
tertiary memory unlike in our reordering scheme. As
shown in Figure 7(.a), the main I/O bottleneck is plat-
ter switches for both NOPREFETCH and PREFETCH.
REORDER performs better since it greatly reduces the
number of platter switches. For the MO-jukebox the
platter switch cost is not as high as for the tape-
jukebox. Therefore, we observe smaller relative gains
with REORDER for the MO-jukebox.

Increasing the number of drives: Since the
main bottleneck is platter switches, increasing the
number of drives from 1 to 2 decreases the gap between
the reordering and non-reordering based schemes as
shown in Figure 7(b). For the two-drive case we plot
only the total execution time since it is difficult to sep-
arately account for the time spent in doing various I/O
activities, example data transfer on one drive might
be overlapped with seeks on another. For REORDER
there was negligible change in execution time when we
increased the number of drives from 1 to 2 since the to-
tal execution time was not bound by tertiary memory
I/O.

In general, if we further increased the number of
drives we can expect this trend to continue. At the
stage where the number of drives is so large that all re-
quired platters are always loaded, the various schemes
will differ only in the amount of data transfered and
the seek overhead. We observed that in this case, RE-
ORDER performed 25% better than PREFETCH for the
tape-jukebox.

We observed that for REORDER there was no change
in execution time due to increased number of drives
since the total execution time was not bound by ter-
tiary memory I/O. The performance of NO PREFETCH
and PREFETCH improve until all required platters are
always loaded. At this stage, the only gain with re-
ordering is through reduction in seek and transfer cost.

Decreasing working set: For the experiments so
far, the transfer cost incurred with.all three schemes
was not significantly different. One of the merits of
our query scheduling policies is better reuse of the
cached data. Therefore, we expected to observe sig-
nificant reduction in transfer time too with REORDER.
CYoser inspection of the workload revealed that there
was very little opportunity for reusing data since the
degree of sharing between the three concurrent users
was limited. Each of the three users picked at most
two of the ten relations in the database with equal
likelihood. Hence there was little chance of overlap
between the component relations of queries running
concurrently. To verify this claim, we repeated the 2-
drive experiments, with five users instead of three and
skewed the access requests so that 80% of the accesses
go to 30% of the data. We observed that the transfer
time for REORDER was almost one-half of that with
PREFETCH for the skewed dataset (Figure. 7(c)).

164

(a) Single Drive (b) Two Drives (c) Single Driie, Tape jukebox

Figure 7: Difference in total execution time for three methods (NOPREFETCH, PREFETCH, REORDER) using the
mixed workload. The execution time is normalized by the time taken by scheme NOPREFETCH to allow drawing
on the same scale.

5 Related Work There experiments demonstrate that reordering is
beneficial for tertiary memory databases either when
the platter switch or seek costs are high or when the
degree of sharing between queries is large.

4.3 Scheduling overhead

Finally, we measured the overheads of reordering in
our prototype. For the experiments presented ear-
lier, reordering has definitely paid off, whatever be the
scheduling overhead. But an important question is
how well these benefits scale with increasing number
of users or increasing number of fragments. The an-
swer is crucially dependent on the scheduling overhead
that we present next.

We measure the following overheads: (1) The per-
fragment overhead that is directly proportional to the
number of fragments in the query, e.g., the time to
fragment a plan-tree. Measured as a percentage of the
time to scan a cached fragment, this overhead was typ-
ically 0.06% (1.5 milliseconds). (2) the per-subquery
overhead: e.g, the time spent in the extraction phase
or in communicating with the scheduler. Measured as
a fraction of the time spent in processing a two-way
hash-join query on cached data, this overhead was typ-
ically 0.15% (5 milliseconds). (3) the per-session over-
head e.g., time spent by the scheduler in dkciding what
subquery to schedule next. Unlike the previous two
overheads this overhead depends on factors like the
number of users concurrently active and the number
of fragments per relation and can only be measured as
a function of these factors. We plot this overhead as
a function of number of users (1 through 9) and total
number of fragments in the database (10 to 100) in
Figure 8. The overhead per subquery increases only
at a rate of 2 millisecond per additional user and less
than 1/4th millisecond per additional fragment. The
total overhead ‘is thus measured to be typically less
than 30 milliseconds per subquery and less than 1% of
the total execution time.

There are six areas of work that are relevant to the
research presented here: prefetching, page scheduling
for join execution, parallel query scheduling, multiple
query optimization, dynamic query optimization and
batching in OODBs.

Prefetching is useful both in operating systems [6,
19, 281 and database systems [33, 11, 21 especially
when accompanied by execution reordering, e.g., list
prefetch [23, 4, 81 used with index scans. Our system
extends prefetching to entire plan trees and not sim-
ply to index scans. A significant difference is that, we
can reorder based on dynamic conditions like cached
data, the state of the I/O device and the data needs of
other queries whereas existing prefetching techniques
reorder execution based on static storage layout.

Page scheduling on page join graphs as discussed
in [24, 22, 201 is an example of reordering two-way
joins queries. However, their methods are specific to
join queries and require implementation of new join
algorithms - our method is meant to be a general
scheme for reordering any node of a plan tree. For
parallel [3,5, 16,34, 131 and distributed query schedul-
ing [3I, 71, plan trees have to be analyzed for es-
tablishing pipelining and ordering dependencies in a
manner somewhat analogous to our subquery extrac-
tion step. However, our method is different in two
ways: first, for efficiency reasons discussed in this pa-
per (Section 3. l), we execute all subqueries from a
single plan-tree whereas most parallel and distributed
systems construct different plan-trees for subqueries to
be scheduled on different processors and second, our
model for communicating and synchronizing with the
schedulef for deciding online the order in which sub-
queries aEe scheduled places a different set of require-
ments than on these systems.

Our technique is reminiscent of the way ,multiple
query optimizers combine queries with common subex-
pressions [30]. [21] d iscusses policies for scheduling a
batch of select and hash-join queries. for sharing in-
memory hash-tables. Queries are thus scheduled for

165

Figure 8: The per-session overhead as a function of the number of users and number of fragments. The y-axes
are overhead in milliseconds per subquery (left) and overhead as a percentage of the total execution time (right).

execution in a data-driven manner the way we do.
However, such optimizers typically schedule at whole
relation level and do not consider reordering within a
scan unlike our scheme.

Dynamic query optimization [4, lo] is another tech-
nique that involves plan tree modification at runtime.
However, in contrast to our work, the emphasis in that
area is on choosing dynamically from some fixed set of
execution plans. Once the choice is made, execution
proceeds in a fixed order.

In object oriented databases, the navigational na-
ture of queries can lead to bad I/O performance mak-
ing it important to do prefetching [la] and batch-
ing [lg]. [18] presents ways of modifying the plan-tree
to replace object-at-a-time references with an assem-
bly operator that collects multiple object references
first and then reorders them to optimize I/O accesses.
However the main difference between their scheme and
ours is that, they cannot handle reordering across dif-
ferent operators of a plan-tree or across data reference
of different users.

Another concurrent work on modifying query plans
to reorder I/O access on tape is reported in [35]. They
propose a scheme for pre-executing functions that ac-
cess large objects so as to allow I/O requests of differ-
ent large objects in the same tuple stream and across
multiple users to be reordered. However, they do not
allow the order of proccessing tuples to be modified
unlike in our case.

Summing up, our distinction from related work is
that we propose the first system that provides a gen-
eral framework for reordering execution of plan trees
dynamically in an extended relational database sys-
tem.

6 Conclusion

In this paper, we have explored a simple, yet power-
ful, idea of reordering execution to tune to the optimal
data fetch order. Existing methods of query execu-
tion provide but a limited flexibility of reordering data
fetches during execution. Our proposal is based on the
premise-that in a multi-user environment when access
latency of data varies widely, significant performance
advantage can be gained by dynamically reordering
execution.

We proposed a general framework for reordering
all parts of the plan tree. For building a reorder-

able execution engine, we extended the plan tree data-
structure with three new meta-nodes that are added in
an extra phase between optimization and execution of
the plan tree. These operators enable the executor to
communicate ar d synchronize with the scheduler’ for
ordering the ex zution of subqueries. Our changes are
restricted only ;o these new operators and the extra
phase and thr enable modular extension of existing
execution enp .les. We extended the Postgres execu-
tion engine :,nd used it for building a prototype of a
tertiary memory database.

Our prototype yields almost an order of rnagni-
tude improvement over schemes that use prefetching
and almost three orders of magnitude improvement
over schemes that do not, even for simple index scan
queries. Further experiments demonstrate that either
(1) when the platter switch and seek costs are high,
or (2) when the cache is small and there is overlap
between data accesses of concurrent queries, our re-
ordering scheme will enable better scheduling of I/O
requests and more effective reuse of cached data than
conventional schemes. The overhead of reordering is
measured to be small compared to the total query ex-
ecution time (less than 1%). Thus, at least for tertiary
memory databases the penalty of reordering is so neg-
ligible that reordering can almost always be used to
advantage.

Our proposed general framework is applicable to
other situations where tuning data to some external or-
der of arrival is important, e.g., a broadcast disk-based
mobile computing client. The data chunks can be de-
termined by the pages broadcast together. The size of
the data chunks is important for limiting the overhead
of reordering. For our prototype, typical overhead per
subquery was 30 milliseconds. Hence, as long as the
processing time per subquery is much larger than this
reordering can be used profitably. The scheduling unit
would be responsible for watching the broadcast data
stream, caching relevant data when appropriate and
scheduling ready subqueries for execution.

Future work in the area should consider the impact
of execution reordering on query optimization: execut-
ing queries in parts invalidates some of the assump-
tions and cost functions used by the optimizer. InJhis
paper, index scans posed one such scenario. T.here
are other issues specific to tertiary memory systems
that need to be addressed: (1) estimating the access
cost when some relations are stored permanently on

166

disk and others on tertiary memory; (2) including the
size of t,he disk cache in optimizing queries. When
the disk cache is sm,aller than the relation, sorting is
no longer an option. Another topic for future \irork is
providing support for cancelling submitted subqueries
to the scheduler when a restrict or a join node yields
an empty result.

Acknowledgements

We would like to thank Professor Dr. Kurt Mehlhorn of

MPI Informatik for allowing access to necessary resources

in the last five days of preparing the camera-ready copy.

We would also like to thank the anonymous reviewers for

their feedback.

References

PI

PI

PI

141

[51

WI

[71

PI

[91

[lOI

I111

P21

I131

P41

S. Acharya, R. Alonso, M. Franklin, and S. Zdonik.
Broadcast disks: Data management for assymetric
communication environments. Proc. A CM SIGMOD
Int. Con!. on Management of Data, 24(2):199-210,
1995.

S. Acharya, M. Franklin, and S. Zdonik. Prefetching
from broadcast disks. In Proc. Int. Conj. on Data
Eng., 1996.

W. Alexandar and G. Copeland. Process and dataflow
control in distributed data-intensive systems. In Proc.
ACM SIGMOD Int. Conj. on Management of Data,
pages 90-98, 1988.

G. Antoshenkov. Dynamic query optimization in
Rdb/VMS. In Proc. Int. Conj. on Data Eng., pages
538-547, 1993.
P. Borla-Salamet, C. Chachaty, and B. Dageville.
Compiling control into database queries for parallel
execution management. In Proceedings of the First
International Conference on Parallel and Distributed
Information Systek, pages 271-279, Dee 1991.

P. Cao, E. W. Felten, A. R. Karlin, and K. Li.
Application-controlled caching, prefetching and disk
scheduling. Technical Report TR-493-95, Princeton
IJniversity, 1995.

S. Ceri and G. Pelagatti. Distributed Databases: Prin-
ciples and Systems, chapter 5,6. McGraw-Hill Book
Company, 1984.

J. Cheng, D. Haderle, R. Hedges, B. Iyer, et al. An effi-
cient hybrid join algorithm: a DB2 prototype. In Proc.
Int. Conf. on Data Eng., pages 171-80, Apr 1991.

H. Chou and D.J.DeWitt. An evaluation of buffer
management strategies for relational database sys-
tems. In Proc. Int. Conf. on Very Large Databases,
pages 127-141, 1985.

R. Cole and G. Graefe. Optimization of dynamic
query evaluation plans. Proc. ACM SIGMOD Int.
Conf. on Management of Data, 23(2):150-160, 1994.

I<. Curewitz, P. Krishnan, and J. Scott Vitter. Prac-
tical prefetching via data compression. In Proc. ACM
SIGMOD Int. Conf. on Mqnagement of Data, pages
257-66, 1993.

C. Gerlhof and A. Kemper. A multi-threaded archi-
tecture for prefetching in object bases. In Advances
in database technology, pages 351-364, March 1994.

G. Graefe. Encapsulation of parallelism in the volcano
query processing system. Proc. ACM SIGMOD Int.
Conj. on Management of Data, 19(2):102-11, 1990.

G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):73-170,
Jun 1993.

P51

WI

P71

WI

P91

PO1

P11

P21

P31

1241

1251

WI

P71

P81

P91

1301

[311

1321

[331

[341

[351

G. Herman., G. Gopal, I<. Lee, and Weinrib. The dat,-
acycle archltecture for very high throughput database
systems. Proc. ACM SIGMOD Int. Conj. on Manage-
ment of Data, 16(3), 1987.

W. Hong and M. Stonebraker. Optimizat,ion of par-
allel query execution plans in XPRS. Distributed and
Parallel Databases, 1(1):9-32, Jan 1993.

T. Imielinski, S. Viswanathan, and B. Badrinath. En-
erev efficient indexing on air. Proc. ACM SIGMOD
Iny Conf. on Managkent of Data, 23(2):25-36, 1994.

T. Keller, G. Graefe, and D. Maier. Efficient assembly
of complex objects. Proc. ACM SIGMOD Int. Conj.
on Management of Data, 20(2):148-57, 1991.

D. Kotz. Disk-directed I 0 for MIMD multiproces-
sors. In Proc. 1st / lJSEN X Sym. on OS Design and
Implementation, 1994.

C. Lee and Z.-A. Chang. Workload balance and page
access scheduling for parallel joins in shared-nothing
systems. In Proc. Int. Conj. on Data Eng., pages 411-
8, Apr 1993.

M. Mehta, V. Soloviev, and D. Dewitt. Batch schedul-
ing in parallel database systems. In Proc. !nt. Conj.
on Data Eng., pages 400-410, 1993.

T. Merrett, Y. Kambayashi, and H. Yasuura. Schedul-
ing page-fetches in join operations. In Proc. Int. Conj.
on Very Large Databases, pages 488-98, Sep 1981.

C. Mohan, D. Haderle, Y. Wang, and J. (%eng.
Single table access usmg_multiple indexes: opti-
mizat,ion, execution, and concurrency control tech-
niques. In Proc. International Conference on Extend-
inq Database Technology, pages 29-43, 1990.

M. Murphy and D. Rotem. Multiprocessor join
scheduling. IEEE Transactions on Iinowledw and
Data EnGneering, 5(2):322-38, Apr 1993. -

P. 0. Neil. A set query benchmark for large databases.

Technical Report, 22(2):2-11, 1989.

M. A. Olson. Extending the POSTGRES database
system to manage tertiary storage. Master’s thesis,
University of California, Berkeley, 1992.

P. O’Neil. Database Principles, Programming, Per-
formance, chapter 8. ISBN l-55860-219-4. Morgan
Kaufmann, 1994.

R. Patterson, G. Gibson, E. Ginting, and others. III-
formed prefetching and caching. In Proc. 15th ACM
Sym. on Operating Systems Principles, 1995.

S. Sarawagi. Query processing and caching in tertiary
memory databases. In Twentyjirst conference on Very
Large Databases, Sep 1995.

T. Sellis and S. Ghosh. On the multiple-query opti-
mization problem. IEEE Transactions on Knowledge
and Data Engineering, 2(2):262-266, 1990.

M. Stonebraker et al. Mariposa: A wide-area dis-

yj&ted database system. VLDB Journal, 5(l), Jan

M. i. Stonebraker and G. Kern&z. The POSTGRES
next generation database mana ement system. Com-
munications of the ACM, 34(10 ,, 1991. 7
J. Teng and R. Gumaer. Managing IBM Database 2
buffers to maximize performance. IBM Systems Jour-
nal, 23(2):211-18, 1984.

Y.Wang. DB2 query parallelism: Staging and in-
plementation. In Proc. Int. Conf. on Very Large
Databases, pages 686-91, 1995.

Y.Yu and D. Dewitt. Query pre-execution and batch-
ing in paradise. In Proc. Int. Conf. on Very Large
Databases. 1996.

167

