
EROC: A Toolkit for Building NEAT0 Query
Optimizers

William J. McKenna Louis Burger
Bell Laboratories NCR Corporation

bmckenna@research.bell-labs.cnm louisb@sandiegoca.ncr.com

Chi Hoang
NCR Corporation

ckh@elsegundoca.ncr.com

Abstract

EROC (Extensible, Reusable Optimization
Components) is a toolkit for building query
optimizers. EROC’s components are C++
classes based on abstractions we have iden-
tified as central to query optimization, not
only in relational DBMSs, but in extended re-
lational and object-oriented DBMSs as well. I
EROC’s use of C++ classes clarifies the map-
ping from application domain (optimization)
abstractions to solution domain (EROC) ab-
stractions, and these classes provide: (1)
complex predicate definition and manipula-
tion; (2) representations for common oper-
ators, such as join and groupby, and asso-
ciated property derivation functions, includ-
ing key derivation; (3) management of cat-
alog and type information; (4) implementa-
tions of common algebraic equivalence rules,
and (5) System R- and Volcano-style search
strategies. The classes are designed to pro-
vide optimizer implementors reusability and
extensibility through layering and inheritance.
EROC provides much more functionality than
previous optimization tools because at1 of

Pemnission to copy without fee all 01 part of this material is
granted provided thaf the copies are not made OT distributed fOT’

direct commercial advantage, the VLDB copyright notice and
the title of the publication and ifs date appear, and notice is
given that copying is by permission of the Ve’ery Large Data Base
Endowment. To copy otherwise, OT to republish, sequires a fee
.andbor special permission from fhe Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

Melissa Truong
NCR Corporation

melissa.truong@sandiegoca.ncr.com

EROC’s optimization classes are extensible
and reusable, not just the search components.

In addition to describing EROC’s architec-
ture and software engineering, we also show
how EROC’s classes were extended to build
NEAT0 (New EROC-based Advanced Ter-
adata Optimizer), a join optimizer for a
massively parallel environment. Based on
the extensions required we give an indica-
tion of the savings EROC, provided us. To
show NEATO’s efficiency and effectiveness, we
present results of optimizing complex TPC/D
benchmark queries and show that NEAT0
easily searches the entire space of query exe-
cution plans. We outline plans for extensions
to NEAT0 and overview how the flexibility of
EROC will enable these extensions.

1 Introduction

Optimizer development is generally agreed to be a
time-consuming and complex process, and once de-
veloped, optimizers tend to be difficult to understand
and extend with new features. While reflecting on the
Open OODB optimizer development [BMG93], we ob-
served that although use of the Volcano Optimizer
Generator [McK93, GM931 spared the implementor
the relatively complex task of writing a search en-
gine, a great deal of code that was not specific to
the OpenOODB system had to be developed. In par-
ticular, the code to represent and manipulate opera-
tor arguments (e.g., predicates), and to perform var-
ious support (e.g., catalog) functions, comprised ap-
proximately 60% of the code written by the optimizer
implementor [MGB93]. We felt strongly that care-
fully defined and implemented abstractions (besides

111

the search engine) should be reusable, and eliminate
reimplementation of common code.

Given these observations about optimizer develop-
ment, along with the facts that we wanted to de-
velop an optimizer for Ode[AG89] and also needed
an implementation platform for many of the optimiza-
tion techniques developed at Bell Labs (e.g., predicate
movearound [LMS94], theta semijoins [SHL+96]), we
decided to develop a core collection of reusable soft-
ware components, EROC, to meet these needs. The
following list gives examples of some important func-
tionality EROC provides to assist the optimizer imple-
mentor:

l a general, yet efficient, representation of expres-
sions, which is used as the underlying representa-
tion of logical and physical algebra trees (queries
and query execution plans), arithmetic and aggre-
gate expressions (e.g., ‘Avg(Dept.budget * 2)‘))
and predicates (e.g., ‘Sum(Price*(l-Discount)) >
10,000’),

an efficient representation of a set of expressions
(predicates, queries, etc.), called an expression
space,

representations for several relational and SQL op-
erators (e.g., groupby) and their associated prop-
erty derivation functions (including key deriva-
tions) ,

a general purpose rule-based expression enumer-
ator that can be used to generate an optimizer
search space, as well as perform predicate trans-
formations (because of the common underlying
representation of predicates and queries),

an implementation of the ,Volcano costing algo-
rithm, an efficient yet general optimization algo-
rithm, and

an implementation of a Starburst-based enumer-
ation algorithm [OL88], an efficient algorithm for
fast enumeration of join orders.

EROC supports extensibility and reuse of ah opti-
mizer components, not just the search engine, so unlike
the implementation described in [LVZZ94], we intend
for others to be able to extend EROC’s classes to cus-
tomize them for a particular data model and execution
environment. Another way of viewing EROC is as a far
more complete population of the optimization frame-
work described in [McK93, GM931 and (GD87, Gra87].

To demonstrate the extensibility of EROC, we show
how various EROC components were extended and
combined to produce NEATO, a join optimizer cus-
tomized for the Teradata [ATT951 parallel environ-
ment. By comparing (1) the number of lines of code

112

required to extend EROC classes to develop NEAT0
and (2) the number in EROC, we give an indication of
the effort required to produce a custom optimizer using
EROC and our savings in development time. We also
describe how EROC’s search components were com-
posed to form its highly efficient hybrid search engine.
To our knowledge, this is the &st search engine to
combine a Starburst-style (‘bottomup’) join enumera-
tor and Volcano’s goal-driven (‘topdown’) costing algo-
rithm, two techniques which have been viewed as mu-
tually exclusive. We show that for complex TPC/D
[Raa95] join queries NEAT0 gives excellent perfor-
mance, allowing us to exhaustively search the entire
space of query execution plans in seconds.

The remainder of this document is organized as fol-
lows. Section 2 gives an overview of EROC and its
central components. Section 3 describes how (and
why) we extended EROC’s base classes and combined
various classes to get NEATO, and presents experi-
mental results obtained by optimizing a portion of the
TPC/D benchmark using NEATO. Section 4 covers
related work and then, in Section 5, we present a sum-
mary, conclusions, and future directions.

2 EROC Components

This section outlines the architecture of EROC by de-
scribing the abstractions on which it is based and their
implementations as reusable toolkit components. We
show how the basic components can be layered and
combined to form other components, including opti-
mizers themselves.

The classes we describe are only those that are re-
lated specifically to optimization, called optimization
classes. There is another group of classes, called sup-
port classes, that includes implementations of lists,
hash tables, stacks, queues, directed graphs, dynamic
arrays, and a fast memory-allocator. These classes
were used extensively in building the optimization
classes. Space does not permit us to describe each
class, or indeed to even completely describe the classes
we present, but rather our goals are (1) familiarize
the reader with the important components, and with
the design principles which guided their development,
namely identification of key abstractions and the reuse
of components through layering and inheritance, (2)
give sufficient description of the search components so
we can later show how to compose search strategies.

2.1 Expression Representations

Expressions are a basic building block for many of
the optimization classes. To understand the EROC’s
search components, we first present the classes that
implement expressions,. and then those that support
efficient storage of groups of related expressions.

MultiJxpr

I

Predicate-Component Operator-Argument

G-IA

PredJxpr Predicate Sort-Arg Groupby-Arg

A

&a-bpr Path-Expr

Figure 1: Partial Expression Hierarchy
2.1.1 The MultiJ3xpr Class

In EROC, expressions include

queries, or logical algebra expressions (‘join
R.a=S.b (R S)‘),

query execution plans, or physical algebra expres-
sions (‘index-nested-loops R.a=S.b (R S)‘),

path expressions (‘City.mayor.name’, ‘E.salary’),

arithmetic expressions (‘R.a*7’),

aggregate expressions (‘Avg(E.salary*2)‘), and

predicates (‘Sum(Price*(l-Discount))> 10,000’).

The implementations of all expressions utilize the
Multi-Expr (‘multiple expression’) class. EROC’s im-
plementation of expressions was’ inspired by the repre-
sentation of terms in term rewriting systems, where
terms can be represented as directed graphs whose
nodes are variables and constants [Pv93]. EROC’s
Multi-Expr class is therefore layered on top of the Di-
rected-Graph class. Figure 1 shows that portion of
EROC’s expression and operator argument hierarchy
relevant to the expressions listed above’. (Operator
arguments are described below .)

The reuse achieved through inheritance and layer-
ing gets us additional ‘free’ functionality for expres-
sions. Having a common, extensible representation
for all expressions allows any class that operates on
Multi-Exprs to also operate on their subclasses. For
example, rules (e.g., join associativity) can be applied
not only to queries but also to predicates, for exam-
ple, to implement a semantic optimization rule such

1 We note that EROC USES C++ inheritance mechankns
to reflect application domain subtyping (public inheritance in
C++) and to enable code reuse where subtyping does. not
apply (private inheritance in C++). An example of ap-
plication domain subtyping is the OperatorArgument and
Predicate relationship, while code reuse is enabled by the
MultiExpr/Predicate-Component relationship. See [Cop92] for
a discussion of object reuse in C++.

as ‘E.salary < 5000 => False’. Layering expressions
on top of the Directed-Graph class permits us to eas-
ily implement directed graph-type functions, such as
depth-first search, on the nodes in a query. Other func-
tionality we can exploit because of the reuse of the
Multi-Expr class is that provided by the ExprClass
and ExprSpace classes to efficiently store groups of
related expressions, for example to prevent redundant
allocation of predicates or compactly store an opti-
mizer’s search history. We describe these classes next.

2.1.2 The Expr-Class and Expr-Space Classes

Expressions may be grouped together for various pur-
poses. For example, different representations of a
query can be grouped together if they are algebraically
equivalent. The Expr-Class class is an abstraction to
support such groupings. The ExprSpace abstraction
also groups logically related expressions, but provides
the following additional features:

l compactness, because the semantics of the class
are that the same expression will never be stored
twice, and inputs to Multi-Exprs can be classes
of expressions (i.e., an ExprClass), not simply
single Multi-Exprs, and

l fast lookup of expressions.

An important use of the ExprSpace class in EROC
is for compactly storing an optimizer’s search history.
In the next section we describe the classes that support
EROC’s implementation of search space enumerators,
which generate equivalent alternative representations
of a query, and show how spaces of logical expressions
produced by these enumerators can be mapped to cor-
responding spaces of physical expressions based on an
abstraction we call a mapper.

2.2 Search Components - Expression Space
Enumerators and Mappers

In this section we describe the two EROC classes that
are fundamental to building search engines. The Enu-
merator class generates spaces (ExprSpace instances)
of alternative representations of a query, while the
Mapper class maps these alternatives to another space
(i.e., a space of physical plans) based on cost.

2.2.1 The Enumerator and Rule Classes

We present, two Enumerator instances included in
EROC, a generative enumerator and a transforma-
tional enumerator. The algorithms they implement are
not novel - rather the purpose of describing the enu-
merators is (1) to show reusable functionality available
to optimizer developers who use EROC, and (2) to fa-
miliarize the reader with the two types of enumeration

113

as a basis for understanding how we composed search
components to form NEATO’s hybrid search engine.

EROC’s Enumerator class is an abstract base class
[StrSl]. In the current version of the toolkit, there
are two subclasses of Enumerator, BU-Enumerator
(‘bottomup’, also known as a ‘generative’ enumerator)
and Trans-Enumerator (‘transformational’ enumera-
tor). The former is an implementation of a variant of
the Starburst join enumeration algorithm, while the
latter is a general purpose rule-based enumerator sim-
ilar to the one in Volcano.

The BUAmmerator Class

A BU-Enumerator instance accepts as parameters (to
a member function ‘apply-bu’)

a target ExprSpace instance,

a list of join predicates, instances of the class
Join-Predicate, a subclass of Predicate,

a list of non-join predicates, instances of the class
Predicate (e.g., selection predicates),

a list of input relations, instances of the Compos-
ite-Collection class (a subclass of Collection),

a sort constraint (final sort order),

a projection list (those attributes that should be
in the output),

a groupby argument,
GroupbyArg class, and

a having clause, which is

an instance of the

a Predicate instance.

When apply-bu completes, the ExprSpace in-
stance will contain a set of expressions represented as
MultiExprs. The number of Multi-Expr nodes will be
the number of feasible joins [OL90] for the input query,
plus additional nodes to represent groupby and hav-
ing clauses. The implementation supports the search
parameters of the Starburst algorithm, i.e., options to
limit the number of relations in the inner join input
and to enable/disable Cartesian products. The cur-
rent implementation places non-join predicates as low
in expressions as possible, although it is simple to ex-
tend the implementation to find other interleavings of
selections and joins (e.g., to handle expensive predi-
cates [HS93]).

The TransJZnumerator and Rule Classes

A Trans-Enumerator instance is invoked with a
set of transformation rules (instances of the Rule
class), a MultiExpr (the query to be optimized),
and an ExprSpace instance. After application, the

ExprSpace contains a representation of all expres-
sions derivable using the transformation rules. For
example, given a complete set of join transformation
rules and a join expression, a Trans-Enumerator in-
stance will produce the same space of feasible joins as
a BU-Enumerator instance. The current implemen-
tation of Trans-Enumerator follows the left-to-right
depth first rule application strategy of Volcano. EROC
provides complete implementations of many common
relational algebra transformation rules so implemen-
tors do not have to redevelop them.

We note that the Trans-Enumerator class is appli-
cable to predicates (because the Predicate class is de-
rived from the Multi-Expr class). In EROC we ex-
ploit this reusability to transform predicates (specifi-
cally, conjunctive join predicates) to be sure we detect
equivalences among join expressions whose predicates
may contain the same conjuncts in different sequences.
For example, this ensures that the following two join
queries are detected as equivalent because both pred-
icates will be in the same ExprXlass instance (in the
Expr-Space for predicates).

l join (R.a=S.b A R.al=S.bl A R.a2=S.b2) (R S)

l join (R.al=S.bl A R.a2=S.b2 A R.a=S.b) (R S)

2.2.2 The Mapper Class

Logical expressions are mapped by an optimizer search
engine to a space of physical expressions. In the EROC
architecture this mapping function is captured by the
abstraction mapper. Given a (source) logical expres-
sion space, a (target) physical expression space, and
a goal (an instance of Goal), a Mapper instance will
return a physical expression that meets whatever con-
straint is specified by the goal. A goal is (1) a query, an
expression space, or an expression class, together with
(2) a set of properties the optimized plan must return
For example, a goal may be the query ‘join R.a=S.b
R S’ with the constraint ‘sorted on S.b’, which may be
mapped to ‘merge-join R.a=S.b (sort/partition R.a R)
(sort/partition S.b S)‘.

There is an additional class Map that records the
mappings from goals to physical algebra expressions,
i.e., the mappings from expressions in the. logical
search space to. expressions in the physical search
space. There is one Map instance for each ExprXlass
in the logical search space. The Map class supports
dynamic programming (in the Volcano-Mapper, for in-
stance) because goals are only solved once and the so-
lution (physical plan) stored. If a goal is requested
again, the solution is returned.

EROC currently has one Mapper subclass, Vol-
cano-Mapper, which is an implementation of the
Volcano costing algorithm (described in detail in

114

[McK93]). We will later show that in EROCthis map-
per is not restricted to being used with a transforma-
tional (rule-based) enumerator as it was in Volcano,
but can be used with the BU-Enumerator class to form
NEATO’s search component, a highly efficient hybrid
join optimizer. Figure 2 gives a high-level view of a
Mapper and its member functions.

We make a final observation on EROC’s search
classes. EROC’s ExprXlass and ExprSpace classes
are similar to Volcano’s equivalence class and MEMO
data structures. However, in EROC the mapping from
optimization abstractions to solution abstractions is
much clearer. For example, in Volcano the MEMO
dala strvctvre represented both the logical and physi-
cal search spaces, and there was no clear mapping from
any particular optimization abstraction to this struc-
ture. EROC, on the other hand, makes this mapping
much clearer, and from this we were able to better’un-
derstand the composition of optimizer search strate-
gies and use this understanding to develop NEATO’s
search engine. In the next, section we present addi-
tional solution domain abstractions EROC.provides to
an optimizer implementor.

2.3 Other Important EROC Classes

We now describe other extensible EROC classes that
provide common functionality which can be shared by
optimizer developers.

2.3.1 Operator Classes

EROC provides several predefined operator classes,
namely: ‘bulk’ operators, which consume and produce
collections, such as Join, MergeJoin, NestedLoopsJoin,
Groupby, * FileScan, IndexScan; predicate operators,
such as >, <, AND, OR,‘etc.; aggregate operators,
such as Sum, Avg, Max, Min, Count; and arithmetic
operators, such as +, -, /, modulo, etc.

The reason for predefining these operators is that
in many data models the semantics of the operators
are similar. For example, a join operator typically
produces an output type2 that is the concatenation

2Support for type information is provided by the Type-Info
class, which is also (re)used to provide run-time type identifica-
tion (RTTI) [StrSl] for EROC classes.

of its input types. As another example, a merge join
operator requires its inputs to be sorted on appropri-
ate joining attributes, and produces sorted output. In
other optimization tools, this functionality has to be
coded by the optimizer implementor. In EROC, how-
ever, a reasonable semantics is provided for operators
but an optimizer implementor is free to redefine (via
virtual functions) some or all operator semantics, or
add a completely new operator class to the Operator
hierarchy.

Each operator has a ‘derive-property’ member func-
tion that determines the output (collection3) proper-
ties of an expression involving the operator. An impor-
tant property derivation EROC provides is key de&a-
lion, which permits optimizations such as elimination
of SQL distinct operations. (See [Sha92] for a discus-
sion of key derivation and elimination of SQL distinct
operators.)

2.3;2 The Operator Argument Classes

EROC provides the following common operator argu-
ment classes:

sort arguments (class Sort-Arg), layered on or-
dered lists of Predicate-Components (class Predi-
cate-Component-List);

groupby arguments (class GroupbyArg), layered
on lists of Aggr-Exprs and Path-Exprs;

predicates;

partitioning and projection arguments (both lay-
ered on class Predicate-Component-List).

All Operator-Argument classes guarantee that du-
plicate instances will not be allocated. These classes
also provide member functions to support syntax
checking, i.e., to see if an operator/argument pair is
valid given one or more input collections.

3 The Collection class encodes meta-information au optimizer
needs about collections (e.g., files, relations), such as cardinality,
type, partitioning, sort order, etc.

115

3 The NEAT0 Join Optimizer

In this section we discuss the motivation for NEATO’s
development, extensions we made to ERIC to create

NEATO, and performance of NEAT0 on optimizing
two complex TPC/D queries.

The current Teradata optimizer gives excellent per-
formance and has been highly tuned over many years
of use. However, extending the optimizer with new
techniques (e.g., new search strategies, theta semijoins,
predicate movearound) is not as easy as it would be
in an EROC-based optimizer. Out of this desire for
extensibility the NEAT0 project was born. The goals
of the NEAT0 project were (1) show that an EROC-
based optimizer does not degrade (and hopefully im-
proves) performance, and (2) EROC is indeed extensi-
ble enough to allow incorporation of Teradata-specific
optimizations and operators, as well as optimization
techniques not found in the current, optimizer.

3.1 Search Strategy

NEAT0 implements a hybrid search strategy, using
EROC’s BU-Enumerator class for join order enumer-
ation and the Volcano-Mapper to perform mapping
from logical to physical operators. To our knowledge
this is the first, implementation that combines these
two strategies, which have before been seen as mutu-
ally exclusive. The strategy first enumerates all join
(and, optionally, Cartesian product) orders, and the
mapper then traverses and maps this space. We de-
cided to use the Starburst-style join enumerator be-
cause it is relatively easy to~understand and performs
better than the transformational enumerator if joins
and Cartesian products are being considered. We de-
cided on the Volcano mapping algorithm because it is
very efficient and its top-down costing and constraint
passing allow discovery of plans that are harder to
find with a bottomup mapping strategy [McK93]. To-
gether, this enumerator and mapper generate the en-
tire space of join expressions and considers all possible
mappings to physical operators. Such a strategy guar-
antees we will find the execution plan with minimum
estimated cost, and the complexity of the join prob-
lem for TPC/D benchmark queries is sufficiently low
to permit exhaustive search.

3.2 Extensions to EROC

Table 1 shows the number of lines of code for
EROC optimization classes4 and NEAT0 extensions
to these classes. The entries show the amount of ‘code
to implement,: basic expressions (including expression
classes and spaces); enumerators (both transforma-
tional and Starburst-based) and the Volcano mapper;

4EROC support classes comprise another 7212 lines.

transformation rules (including associated pre- and
post-condition code); operators (including property
derivation); collections; types; predicate components
(predicates, path exprs., etc); other operator argu-
ments (e.g., sort and groupby); miscellaneous classes.
The extensions listed here were the only additional
code we required to build NEAT05.

We note that, search algorithm implementations
comprise only 2418 lines, or 7% of the toolkit optimiza-
tion code. The mechanisms to store expressions (e.g.,
search history) comprise another 1656 lines, or 5% of
the total (counted as part of basic expression code in
Table 1). This implies that only providing a generic
search engine (or engines) and a mechanism to store
search history, as other optimization tools do, leaves
an optimizer implementor a great deal of complex code
that must be implemented. EROC, on the other hand,
eliminates the need for much of this redevelopment.
We also note that development of the search compo-
nents required a relatively small amount of total de-
velopment time. For example, both the Starburst-
style and transformational enumerators required ap-’
proximately one person-week each to develop, while
the Volcano mapper took about three person-weeks to
code and test.

NEAT0 currently optimizes for Teradata’s two
most important join algorithms, merge join and prod-
uct (nested loops) join, full file scan, and four of Tera-
data’s index access method8 The primary extensions
we made to EROC to create NEAT0 were to (.I) incor-
porate Teradata cost calculations for these seven oper-
ators, and (2) encode Teradata-specific mappings from
goals to partial solutions (which are used by EROC’s
Volcano-based mapper class). These major extensions
make up the value in the ‘Oper.’ column of Table 1
for NEATO.

The first extension was easily accomplished by cre-
ating seven new subclasses, namely TeraDataMerge-
Join (a subclass of EROC’s MergeJoin class), TeraDat-
aProductJoin (a subclass of EROC’s NestedLoopJoin
class), TeraDataFileScan (a subclass of EROC’s FileS-
can class), TeradataPrimaryIndexScan (a subclass of
EROC’s IndexScan operator), etc. For each new sub-
class the ‘cost’ member function was redefined.

For the second extension, we simply derived the new
classes TeradataJoin (a subclass of EROC’s Join class)
and TeradataGet (a subclass of EROC’s Get operator)
and redefined the superclasses’. virtual functions that
map goals to partial solutions. This member function
is called ‘get-partialsolution’ and given a Goal (see
Section 2.2.2 above) returns a set of physical opera-

5There is additional code to mlerjace NEAT0 with the Ter-
adata parser and execution engine.

6 At the time of writing we are introducing the Teradata index
nested loops algorithm and other access methods.

116

Table 1: Lines of Optimization Class Code

Enums.
and Pred. Other

System Expr. Map. Rules Oper. Colls. Types Comps. Args. Other Total
EROC 5366 2418 4121 4792 3524 4193 4359 2709 1129 32602

NEAT0 0 0 0 6977 318 222 408 0 406 8331

tors and associated input constraints that partially or
fully satisfy the Goal. (See [McK93] for a complete ex-
planation of Volcano’s goal-driven search algorithm.)
This partial solution code is straightforward to imple-
ment. However, there are many mapping choices in a
parallel system (because of the combinations of par-
titioning/replication/sorting strategies), and therefore
more partial solutions than one would have to encode
for a non-parallel DBMS. These mapping choices ac-
count for the relatively large number of lines of code
for NEAT0 under the heading ‘Oper.‘.

3.3 Performance

Tables 2 and 3 shows NEAT0 performance on opti-
mizing TPC/D queries 5 and 8 for a 300 GB database.
We chose these two queries because the number of joins
is large (for the benchmark), with Query 5 containing
joins of 6 relations and Query 8 containing joins of 8
relations. The optimization times do not include the
time to parallelize the plans since this is done in a
post-optimization phase in Teradata.

Table 2 shows exhaustive7 optimization without
Cartesian products, while Table 3 shows results from
considering all joins plus Cartesian products. The
columns in the tables show enumeration, mapping, and
total optimization times, estimated execution co&!
maximum heap space, and the numbers of MultiExprs
and ExprXlasses in the logical and physical expression
spaces at the end of optimization. The experiments
were run on a 150 MHz Spare 20 with a memory size
of 128 MB.

We note several points about NEATO’s perfor-
mance and plan quality. First, for Query 5 Cartesian
product introduction reduced the estimated plan cost
by approximately 2%, while the plan cost for Query
8 is the same in both cases. We found the additional
investment in optimization time is worthwhile because
of the net savings in combined optimization and esti-
mated execution time. Second, NEATO’s plan quality
is guaranteed to be at least as good as that of Ter-
adata’s current optimizer because all plans are con-
sidered (using NEATO’s current search strategy), and

‘That is, all physical operators and partitioning/replication
/sorting schemes were considered for all left-deep, right-deep,
and bushy join trees.

8For proprietary reasous we do not specify the cost units.

NEAT0 in fact finds mappings that the current (non-
exhaustive) optimizer does not.

Third, we note the complexity of the search space
for these queries. Table 2 shows that the size of the
logical search space for Query 5 (8) is between the
number of feasible joins for a g-relation (grelation)
linear-shaped join and a 6-relation (8-relation) star-
shaped join. (See [OLSS] for a discussion of feasible
joins). Table 3 show% that NEAT0 considers the max-
imum number of feasible joins for each of the queries9 .
The complexity of Query 8 with all Cartesian products
considered is between the complexities of a lo- and
an ll-relation star join (without Cartesian products),
and between the complexity of a 26- and a 27-relation
linear join query (without Cartesian products). This
shows that even using its current exhaustive search
algorithm NEAT0 can easily find optimal plans for
queries of these complexities.

Finally, NEATO’s optimization time is dominated
by the mapping phase. The reason is the relatively
large number of mappings of goals to partial solu-
tions in a parallel DBMS (like Teradata’s). This sug-
gests we focus research into faster mapping algorithms
rather than faster enumeration algorithms. We believe
a prime candidate for this research is the paralleliza-
tion of the Volcano mapping algorithm. ‘We summa-
rize by noting that EROC was easy to extend to pro-
duce an optimizer tailored to the Teradata environ-
ment, and gives excellent performance on optimizing
complex TPC/D queries.

During NEATO’s development the question arose
as to how to extend NEATO’s search strategy to
handle queries whose complexity is clearly too high
for exhaustive search. Two strategies we consider
promising to handle these queries are randomizing
[IK90, GLPK94] and greedy [CLR89] algorithms. We
plan to implement these strategies using combinations
of EROC’s existing enumeration and mapping classes
(or extensions. to these), and discuss these plans in the
future work section below.

gThe number of points in the logical search space is slightly
higher than the number of feasible joins because additional
points are allocated for non-join expressions such as groupby.

117

Table 2: No Cartesian Products

Enum. Map. Total Logical Logical Physical Physical
Time Time Time Est. Heap Multi Expr Multi Expr

Query (sec.) (sec.) (sec.) Cost (MB) Exprs Classes Exprs Classes
5 0.06 0.26 0.32 3536 3.2 74 30 47 47
8 0.10 1.19 1.29 3609 4.4 124 44 142 142

Table 3: All Cartesian Products

Enum. Map. Total Logical Logical Physical Physical
Time Time Time Est. Heap Multi Expr Multi Expr

Query (sec.) (sec.) (sec.) Cost (MB) Exprs Classes Exprs Classes
5 0.20 1.31 1.51 3473 4.9 307 63 130 130
8 1.35 10.39 11.74 3609 17.9 3033 255 583 583

4 Related Work

Both Volcano and EXODUS are based on transforma-
tional, algebraic optimization. They differ primarily in
their mapping algorithms and interleaving of enumer-
ation and mapping. They provide implementors with
a single generic search engine, a rule code generator,
and an extensible framework. OPT++ [KD95] offers
an implementor a variety of search engines (random-
izing, System R-style, Volcano-style) in an extensible
framework, and was influenced by object-oriented de-
sign to support extensible search strategies found in
[LV91]. All three of these tools provide one or more
search strategies and leave the optimizer implementor
the tasks of writing operator code, predicate and other
operator argument code, catalog and property deriva-
tion functions, etc. We have shown that in EROC only
about 12% of the code is devoted to providing both
Volcano- and Starburst-style search components, and
the remainder is devoted to supporting those functions
absent from these previous systems. While EROC pro-
vides search components, it can also be viewed as com-
plementary to these other optimization tools. For ex-
ample, EROC’s operator argument and catalog classes
could be used with the Volcano Optimizer ‘Generator
to create an OpenOODB-type optimizer.

In [LVZZ94] a query optimizer for a parallel
database system is described, namely the EDS op-
timizer. This optimizer, like EROC, is built on the
principle of extensibility through object-oriented tech-
niques. The authors see this approach as a contrast
to the declarative rule-baaed approach to extensibility
taken by EXODUS and Volcano, while EROC’s exten-
sibility encompasses the rule-based approach. Their
implementation is aimed at allowing extensibility by
themselves rather than outside implementors and, as
in OPT++, they have achieved extensibility primarily

118

in the search strategy.
Cascades [Gra95] is an optimizer framework be-

ing used as the basis- for optimizers for Tandem’s
Nonstop SQL [CKP+93] and Microsoft’s SQL Server.
This framework is based on object-oriented principles
and includes a new optimization algorithm, baaed on
the ordering of tasks, that permits exhaustive and
heuristic transformation-based (rule-based) optimizrt-
tion. EROC differs from Cascades in that EROC fo-
cuses on providing building blocks that can be used to
construct any type of optimizer search strategy rather
than on providing a single optimization algorithm. It
is also difficult to compare the two since it is un-
clear (1) how much r&sable code Cascades provides,
(2) how much effort is required to build an optimizer
based on Cascades, and (3) what the performance of
a Cascades-based optimizer is.

5 Summary, Conclusions, and Future
Directions

EROC maps optimization abstractions (predicate,
search space, enumerator, mapper, collection, type,
etc.) to C++ classes, and mixes application do-
main subtyping, inheritance of implementations, and
layering to achieve reuse and extensibility. EROC
proved valuable in building an efficient new join opti-
mizer for the Teradata massively parallel DBMS. This
optimizer, NEATO, not only gives excellent perfor-
mance and finds low-cost plans for complex TPC/D
queries, but is understandable and extensible. EROC’s
reusable classes saved us a great deal of development
effort since most of the code needed for the new join
optimizer was already provided, and the extensions
(customizations) we made were straightforward. We
are also continuing development of an optimizer for

Ode using EROC, and finding that EROC’s classes
are sufficiently general to support development of an
OODBMS optimizer. This finding is not surprising
since EROC evolved in part from experiences build-
ing the OpenOODB optimizer. EROC provides more
functionality than previous optimization tools by ex-
tending good modeling and reuse techniques to all as-
pects of optimizer development rather than limiting
its scope to the search problem.

Future Work

We plan to enhance EROC’s functionality by making
the following extensions:

implementations of randomizing and greedy
search algorithms;

a new subclass in the Predicate-Component hi-
erarchy to support nested queries, and addition
of unnesting techniques [Kim82, GW87, Day87,
Mm921 to the toolkit’O;

rules to support theta semijoin transformations;

predicate inferencing support;

a GIJI to support optimizer development and use,
e.g., to display and manipulate expressions, cat-
alog information (e.g., c.ollection and type infor-
mation), etc.

We are using EROC to build an automated tun-
ing tool, which will suggest alterations to a phys-
ical database design based on a given query suite.
A tuning option we are exploring is caching of so-
lutions for common subexpressions in a query suite.
EROC’s Expr-Space class is being used as a basis for
this cache since it supports common subexpression de-
tection. EROC is also providing an experimental plat-
form for research in classifying and analyzing optimiza-
tion search algorithms [GLL+95].

NEATO’s search strategy will be extended to sup-
port optimization of queries whose complexity is too
high to permit exhaustive search. To make these ex-
tensions we plan to build on our observations that
many common search strategies can be described by
their enumeration and costing methods, the interleav-
ing of these methods, together with application of spe-
cial search techniques, such as dynamic programming
and branch-and-bound pruning. For example, greedy

loThe current Teradata optimizer uses sophisticated unnest-
ing techniques developed by Teradata. The NEAT0 join opti-
mizer will be coupled with this existing unnesting code to fonu
a complete SQL optimizer. The ‘unnesting algorithms we are
going to add to EROC are similar to those found in the litera-
ture, and our intention is to spare EROC users from having to
reimplement these conunon techniques.

19

search techniques typically use a bottomup enumera-
tion strategy interleaved with costing and pruning of
both the logical and physical search space. System
R also uses a bottomup enumerator and interleaves
costing, but does not prune the logical space as ag-
gressively as greedy search techniques, and augments
the search with dynamic programming. Volcano uses a
non-interleaved strategy with a transformation-based
enumerator. Since we have the basic building blocks
(enumerators, costing algorithm, commonsearch space
representation) we should be able to add alternative
strategies easily. We also plan to extend the toolkit
with a component to estimate query complexity and
invoke the most appropriate search strategy.

We also want to experiment with techniques for
commuting groupbys and joins [CS94, GHQ95]. Our
strategy is to add another step to NEATO’s hy-
brid strategy. This step will consist of invoking a
transformational enumerator with a rule to commute
groupby and join on an expression space produced by
a BU-Enumerator instance. We believe that imple-
menting this technique is more natural using trans-
formation rules than integrating it inlo a bottomup
enumerator. We have a common representation for a
search space, so are free to mix transformational and
generative enumeration strategies that operate on the
representation.

Acknowledgements

We wish to thank Latha Colby, Dennis Shasha, and
Divesh Srivsstava for their excellent suggestions on
the paper. We thank Pekka Kostamaa and Ramesh
Bhashyam for providing information about the Tera-
data architecture. We wish to thank NCR manage-
ment, notably Alan Chow and Malla Reddy, for their
support and commitment to this project. A spec.ial
thanks to Narain Gehani for his support, suggestions,
and encouragement during the EROC and NEAT0
projects.

References

[AG89]

[ATT951

[BMG93]

R. Agrawal and N. Gehani. ODE (Ob-
ject Database and Environment): The lan-
guage and the data model. In Proc. ACM
SIGMOD Conf., page 36, Portland, OR,
May-June 1989.

ATT Global Information Solutions Com-
pany. Teradata DBS Concepts and Fa-
cilities Manual (UNIX) - Product ID Dl-
&6-~, 1995.

J. Blakeley, W. McKenna, and G. Graefe.
Experiences building the Open OODB
query optimizer. In Proc. ACM SIGMOD

[C:KP+93]

[C:LR89]

[Cop92]

[CS94]

Pw871

[GD87]

[GHQ95]

Conf., page 287, Washington, DC, May
1993.

A. Chen, Y. F. Kao, M. Pong, D. Sak,
S. Sharma, J. Vaishnav, and H. Zeller.
Query processing in Nonstop SQL. IEEE
Data Eng. Bull., 16(4):29, December 1993.

[Gra87]

T. Gormen, G. Leiserson, and R. Rivest.
Introduction to Algorithms. McGraw-Hill,
New York, NY, 1989.

[Gra95]

J. Goplien. Advanced C’S+: Programming
Styles and Idioms. Addison-Wesley, Read-
ing, MA, 1992.

S. Ghaudhuri and K. Shim. Including
group-by in query optimization. In Proc.
Intl’ Conf. on Very Large Data Bases, page
354, Santiago, Chile, August 1994.

U. Dayal. Of nests and trees: A unified ap-
proach to processing queries that contain
nested subqueries, aggregates, and quanti-
fiers. In Proc. Intl’ Conf. on Very Large
Data Bases, page 197, Brighton, England,
August 1987.

G. Graefe and D. J. Dewitt. The EXO-
DUS optimizer generator. In Proc. ACM
SIGMOD Conf., page 160, San Francisco,
CA, May 1987.

A. Gupta, V. Harinarayan, and D. Quass.
Aggregate processing in data warehous-
ing environments. In Proc. Intl’ Conf. on
Very Large Data Bases, page 358, Zurich,
Switzerland, September 1995.

(GW87]

[HS93]

[I K90]

[KD95]

[Kim821

[LMS94]

[LV91]

[LVZZ94]

[McK93]

120

P. Gibbons, A. Levy, D. Lieuwen,
Y. Matias, W. McKenna, I. S. Mumick,
D. Srivastava, S. Ganguly, S. Sudar-
shan, R. Bhashyam, L. Burger, C. Hoang,
P. Kostamaa, and A. Witkowski. A survey
of query processing techniques with rec.-
ommendations for the Teradata database.
Technical report, Bell Laboratories, Mur-
ray Hill, NJ, December 1995.

[GLPK94] C. Galindo-Legaria, A. Pellenkoft, and
M. Kersten. Fast, randomized join-order
selection-why use transformations? In
Proc. Intl’ Conf. on Very Large Data
Bases, page 354, Santiago, Chile, August
1994.

[GM931 G. Graefe and W. McKenna. The Volcano
optimizer generator: Extensibility and ef-
ficient search. In Proc. IEEE Iut’l. Conf.

on Data Eng., page 209, Vienna, Austria,
April 1993.

G. Graefe. IWe-Based Query Optimization
in Extensible Database Systems. PhD the-
sis, IJniv. of Wisconsin-Madison, August
1987.

G. Graefe. The Cascades framework for
query optimization. IEEE Data Eng. Bull.,
18(3):19, September 1995.

R. A. Ganski and H. K. T. Wong. Opti-
mization of nested SQL queries revisited.
In Proc. ACM SIGMOD Conf., yage 23,
San Francisco, CA, May 1987.

J. M. Hellerstein and M. Stonebraker.
Predicate migration: Optimizing queries
with expensive predicates. In Proc. ACM
SIGMOD Conf., page 267, Washington,
DC, May 1993.

Y. E. Ioannidis and Y. Kang. Random-
ized algorithms for optimizing large join
queries. In Proc. ACM SIGMOD Conj.,
page 312, Atlantic Gity, NJ, May 1990.

N. Kabra and D. Dewitt. OPT++: An ob-
ject oriented implementation for extensible
database query optimization. unpublished
manuscript, 1995.

W. Kim. On optimizing an SQL-like nested
query. ACM Transactions on Database
Systems, 7(3):443, September 1982.

A. Levy, I. Mumick, and Y. Sagiv. Query
optimization by predicate move-around.
In Proc. Intl’ Conf. on Very Large Data
Bases, page 96, Santiago, Ghile, August
1994.

R. Lanzelotte and P. Valduriez. Extend-
ing the search strategy in a query opti-
mizer. In Proc. Intl’ Conf. on Very Large
Data Bases, page 363, Barcelona, Spain,
September 1991.

R. Lanzelotte, P. Valduriez, M. Zait, and
M. Ziane. Industrial-strength parallel
query optimization: Issues and lessons. Inf.
sys., 19(4):411, 1994.

W. J. McKenna. Eficient Search in Exten-
sible Database Query Optimization: The
Volcano Optimizer Generator. PhD thesis,
IJniversity of Colorado-Boulder, May 1993.

[MGB93]

[Mur92]

[OL88]

[OL90]

[PVSB]

[Raa95]

[Sha92]

[SHL+96]

[StrS l]

W. McKenna, C;. Graefe, and J. Blake-
ley. Experiences building the Open OODB
query optimizer. In J. Blakeley, editor,
Proc. of the Workshop on Database Query
Optimizer Generators and Rule-base Op-
timizers, page 13, Dallas, TX, September
1993.

M. Muralikrishna. Improved unnesting al-
gorithms for join aggregate SQL queries.
In Proc. Zntl’ Conf. on Very Large Data
Bases, page 91, Vancouver, BC!, C:anada,
August 1992.

K. Ono and G. M. Lohman. Extensible
enumeration of feasible joins for relational
query optimization. Research Report RJ
6625 (63936), IBM, December 1988.

K. Ono and G. M. Lohman. Measur-
ing the complexity of join enumeration in
query optimization. In Proc. Intl’ Conf.
on Very Large Data Bases, page 314, Bris-
bane, Australia, August 1990.

R. Plasmeijer and R. van Eekelen. Func-
tional Programming and Parallel Graph
Rewriting. Addison-Wesley, Reading, MA,
1993.

Francois Raab, editor. TPC Benchmark D
- Standard Specification. Transaction Pro-
cessing Performance C:ouncil, Shanley Pub-
lic Relations, 777 N. First Street, Suite 600,
San Jose, C:A 95112-6311, May 1995.

D. Shasha. Database Tuning: A Principled
Approach. Prentice-Hall, Englewood C:liffs,
NJ, 1992.

P. Seshadri, J. Hellerstein, T. Y. Leung,
H. Pirahesh, R. Ramakrishnan, D. Srivas-
tava, P. Stuckey, and S. Sudarshan. C:ost-
based optimization of complex queries:
The magic of theta-semijoins. In Proc.
ACM SIGMOD Conf., Montreal, C:anada,
1996.

B. Stroustrup. The C+.+ Programming
Language. Addison-Wesley, Reading, MA,
1991.

121

