
The Design and Implementation of a Sequence Database System *

Praveen Seshadri Miron Livny
Computer Sciences Department

U.Wisconsin, Madison WI 53706

praveen,miron,raghu@cs. wisc&iu

Raghu Ramakrishnan

Abstract

This paper discusses the design and implementation
of SEQ, a database system with support for sequence
data. SEQ models a sequence as an ordered collection
of records, and supports a declarative sequence query
language based on an algebra of query operators,
thereby permitting algebraic query optimization and
evaluation. SEQ has been built as a component of the
PREDATOR database system that provides support
for relational and other kinds of complex data as well.

that could describe a wide variety of sequence data, and a
query algebra that could be used to represent queries over se-
quences [SLR95]. We had also observed that sequence query
evaluation could benefit greatly from algebraic optimizations
that exploited the order information [SLR94]. This paper de-
scribes the issues that were addressed when building the SEQ
sequence database system based on these ideas.

There are three distinct contributions made in this
paper. (1) We describe the specification of sequence
queries using the SEQUIN query language. (2) We
quantitatively demonstrate the importance of various
storage and optimization techniques by studying their
effect on performance. (3) We present a novel nested
design paradigm used in PREDATOR to combine
sequence ‘and relational data.

SEQ is a component of the PREDATOR* multi-threaded,
client-server database system which supports sequences, as
well as relations and other kinds of complex data. The system
uses the SHORE storage manager library [CDF+94] for low-
level database functionality like buffer management, concur-
rency control and recovery. A novel design paradigm provides
query processing support for multiple data types, including
both sequences and relations. The system implementation has
been in progress for more than a year and is currently at ap-
proximately 35,000 lines of C++ code (excluding the SHORE
libraries). In this paper, the focus is on the SEQ component
which provides the S&QUZN language to specify declarative
sequence queries, and an optimization and execution engine to
process them. The PREDATOR system is described in detail
in [Ses96], and only a high-level overview is presented here.

1 Introduction
Much real-life information contains logical ordering relation-
ships between data items. “Sequence data” refers to data that
is ordered due to such a relationship. Traditional relational
databases provide no abstractionof ordering in the data model,
and do not support queries based on the logical sequentiality
in the data. In earlier work, we had described a data model

* Praveen Seshadri was supported by IBMReseamh Grant 93-F153900-000
and an IBM Cooperative Fellowship. Miron Livny and Raghu Ramakrishnan
were supported by NASA Research Grant NAGW-3921. Raghu Ranxkish-
nan was also suppofled by a Packard Foundation Fellowship in Science and
Engineering, a Presidential Yomig Investigator Award with matching grants
from DEC, Tandem and Xerox, and NSF grant IRI-9011563.
Permission to copy withoutfee all orpart ofthis material is grantedprovided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of thcpublication and its date appear,
and &ice is given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee a&or special
permissionfrom the Eadinvment.

1.1 The State Of The Art

Financial management products like MIM [MIM94] provide
special purpose systems for analyzing stock m,arket data. Cur-
rent general-purpose database systems provide limited support
for sequence data. The Order-By clause in SQL only speci-
fies the order in which answers are presented to the user. Most
existing support deals with temporal data. While SQL-92 pro-
vides a timestamp data type, there are few constructs that can
exploit sequentiality. Many temporal queries can be expressed
in SQL-92 using features like correlated subqueries and aggre-
gation, these are typically very inefficient to execute. Research
in the temporal database community has focused on enhanc-
ing relational data models with temporal semantics [TCG+93],
but there have been few implementations. Most commercial
database systems will allow a sequence to be represented as a
‘blob’ which is managed by the system, but interpreted solely
by the application program. Some object-oriented systems

Pmceedings of the 22nd VLDB Conference “‘PREDATOR” is (recursively) the PRedator Enhanced DAta Type
MumbaQBombay), India, 1996 Object-Relational DBMS.

99

like 02 [BDK92] provide array and list constructs that al-
low collections of data to be ordered. The object-relational
database system Illustra [I11941 provides database support for
time-series data along with relational data. A time-series is
an ADT(Abstract Data Type) value implemented a& a large
array on disk. A number of ADT methods are implemented
to provide primitive query functionality on a time-series. The
methods may be composed to form meaningful queries.

1.2 Desired Sequence Functionality

The abstract model of a data sequence is shown in Figure 1.
An ordering domain is a data type which has a total order and a
predecessor/successor relation defined over its elements (also
referred to as ‘positions’). Examples of ordering domains are
the integers, days, seconds, etc. A sequence is a mapping
between a collection of similarly structured records and the
positions of an ordering domain. While every record must
be mapped to at least one position, there is no requirement
that there be a record mapped to every position. The ‘empty’
positions correspond intuitively to ‘holes’ in the sequence. The
DBMS should efficiently process queries over large disk-based
sequences. Further, in most applications, there is sequence
data as well as relational and other kinds of data. Complex
values like images, or even entire relations can be associated
with a single position in a sequence [SLR96], and conversely,
there can be a sequence associated with a single relational
tuple.

Recad-oricnted View
,

l-l

i -----------
, (l-many nlationrhip . - . *-w----e---- n . . .

Ordering Domain Collection of Records

Figure 1: Data Sequence
In [SLR95], we proposed an algebra of Positional sequence

query operators. In terms of Figure 1, these operators “view”
the sequence mapping from the left (positions) to the right
(records). While we do not describe the operators in detail
in this paper, the S&QLUN query language is based on this
algebra. The dual mapping from right (records) to the left (po-
sitions) leads to operators that are extensions of the relational
algebra. Such operators have been extensively investigated in
the temporal database community [TCG+93], and they are not
considered here.

2 PREDATOR ‘System Design

Object-relational systems like Illustra [11194], and Par-
adise [DKLPY94] allow an attribute of a relational record
to belong to an Abstract Data Type (ADT). Each ADT defines
methods that may be inyoked on values of that type. An ADT
can itself be a structured complex type like a sequence, with

other ADTs nested inside it. Relations are the top-level type,
and all queries are posed in the relational query language SQL.
There has been mucn research related to ADT technology, be-
ginning with [Sto86].

The PREDATOR design enhances the ADT notion by sup-
porting “Enhanced Abstract Data ‘Iypes”(E-ADTs). Both
sequences and relations are modeled as E-ADTs . Each E-
ADT supports one or more of the following:

Storage Management: Each E-ADT can provide multiple
physical implementations of values of that type. The particular
implementation used for a specific value may be specified by
the user when the value is created, or determined automatically
by the system.
Catalog Management: Each E-ADT can provide catalogs
that maintain statistics and store schema information. Further,
certain values may be named.
Query Language: An E-ADT can provide a query language
with which expressions over values of/that E-ADT can be
specified (for example, the relation E-ADT’may provide SQL
as the query language, and the sequence E-ADT may provide
SEQinN).
Query Operators and Optimization: If a declarative query
language is specified, the E-ADT must provide optimization
abilities that will translate a language expression into a query
evaluation plan in some evaluation algebra.
Query Evaluation: If a query language is specified, the E-
ADT must provide the ability to execute the optimized plan.

The E-ADT paradigm is a novel contribution that differen-
tiates PREDATOR from the traditional ADT-method based ap-
proach to providing support for collection types in databases.
The difference is crucial to the usability, functionality and per-
formance of queries over complex data types like sequences.
The ability to name objects belonging to different E-ADTs al-
lows any E-ADT to be the top-level type. This allows users
who are primarily interested in sequence data, for example,
to directly query named sequences without having to embed
the sequences inside relational tuples. While we believe that
the E-ADT paradigm can and should be applied to provide
database support for any complex data type, a detailed dis-
cussion of E-ADTs is beyond the scope of this paper. In this
current paper, we only wish to place the support for sequence
data in the context of the larger database system. The reader
is referred to [Ses96] for further details on E-ADTs and the
PREDATOR system.

The design philosophy of E-ADTs is carried directly over
into the system architecture. PREDATOR is a client-server
database in which the server is a loosely-coupled system of
E-ADTs . The high-level picture of the system is shown in
Figure 2. An underlying theme in the implementation of most
components of the system is to allow for extensibilityby spec-
ifying uniform interfaces. The server is built on top of a layer
of common database utilities that all E-ADTs can use. Code
to handle arithmetic and boolean expressions, constant values
and functions is part of this layer. An important component

100

--
I
1 SERVER LAVER SOCKET 6 THREAD SUPPORT

I

Figure 2: System Architecture
of the utility layer is the SHORE Storage Manager [CDF+94].
SHORE provides facilities for concurrency control, recovery
and buffer management for large volumes of data. It also
provides a threads package that interacts with the rest of the
storage management layers; PREDATOR uses this package to
build a multi-threaded server.

The core of the system is an extensible table in which E-
ADTs are registered. Each E-ADT may (but does not have to)
support and provide code for the enhancements described. As
shown in the figure, some of the basic types like integers do
not support any enhancements. Two E-ADTs that do support
enhancements are sequences and relations. The important
question to ask is: how does the interaction between sequences
and relations occur? The answer is difficult to explain with
meaningful examples at this stage because the sequence E-
ADT has not yet been described. Instead, we first provide an
isolated discussion of the sequence E-ADT . We then return to
the issue of how sequences and relations interact in Section 4.

3 The Sequence E-ADT

101

An important component of the model of a sequence is
the ordering domain. Each ordering domain is modeled
as a data type with some additional methods that make
it an ordered type. LessThan(Pos1, PosZ), Equal(Pos1,
Pos2) and GreaterThan(Posl, Pos2) allow comparisons to be
made among positions. NumPositions(PosZ, Pos2) counts the
number of positions between the two specified end points.
Next(StartPos, N) and Prev(StartPos, N) compute the Nth suc-
cessor and predecessor of the starting position. All ordering
domains are registered in an extensible table maintained by the
sequence E-ADT . Additionally, we need to capture the hier-
archical relationship between various ordering domains. For
instance, Figure 3 shows one set of hierarchical relationships
between common temporal ordering domains. A table of Col-
lapses is maintained by the sequence E-ADT . Each Collapse

represents an edge in the hierarchy and provides methods that
map a position in one ordering domain to a position or set of
positions in the other domain. For example, a Collapse involv-
ing ‘days’ and ‘weeks’ maps each day to the week it belongs
in, and each week to the set of davs of that week.

Figure 3: Sample Ordering Hierarchy
As shown in Figure 1, a sequence models a many-to-one

mapping between positions in the ordering domain and a set
of records. As a simplification, we restrict each record to
be mapped to a single position (the one-to-many abstraction
is modeled by making copies of the record). In SEQ, the
position mapping is maintained as an explicit attribute of each
record. Although there are different storage implementations
of sequences in the system, they all provide certain common
interface methods:

OpenScan(Cursor), GetNextfCursor), CJoseScan(Cursor).
These methods provide a scan of the sequenca.in the forward
order of the ordering domain. Any positions in the domain
which are not mapped to a record are ignored in the scan.

GetElem(Pos). This finds the record at the specified position
in the sequence (or fails if none exists at that position).

3.1 Experimental Database

We wish to quantitatively demonstrate (a) some possible
choices of storage techniques for sequences, and (b) the im-
portance of various optimization techniques. The sequences
used in the experimental database were generated syntheti-
cally. While we could have used a real-life data set instead,
it would have been more difficult to control various properties
of each sequence. The properties of interest in each sequence
are: (1) the cardinulity, i.e., the number of records in the se-
quence, (2) the record width, i.e., the number of bytes in each
record, (3) the density, i.e. the percentage of the positions in
the underlying ordering domain that are non-empty. All the
sequences have an hourly ordering domain and start at mid-
night on 0100/01/01 (i.e. January 1st in the year 100 AD). We
considered sequences with two different densities: 100% and
20%. The cardinality of each sequence was either 1000 (IK),
lOOOO(IOK) or lOOOOO(1OOK) records. For sequences of each
density, the final time-points are shown in Table I*.

Notice that because of empty positions, the 20% density
sequences span about 5 times as many positions as the 100%

*The entries in the table are approximate since they only show the last day,
not the last hout.

pGppFpq
0100/02/15 0101/04/02 0112/07/16
0100/08/16 0106/05/09 0162/l l/15

Table 1: Synthetic Data Upper Bounds
density sequences. The empty positions were chosen ran-
domly so that the overall density was 20%. The first field
of every sequence record is an SQL time-stamp value. Dif-
ferent sequences were generated with 1, 5, 10 and 20 fields
in addition to the timestamp. The values in the fields were
4-byte integers generated randomly between 0 and 1000. All
experiments were performed on a SUN-Sparc 10 worksta-
tion equipped with 24MB of physical memory. The data was
loaded into a SHORE storage volume implemented on top of
the Unix file system. The SHORE storage manager buffer
pool was set at 200 8K pages, which is smaller than the avail-
able physical memory, but is realistic for this small sample
database. Logging and recovery was turned off to mimic a
query-only environment. In all the experiments, the queries
used contain a final aggregate over the entire sequence, thereby
minimizing any time spent in printing answers. Each query
was executed four times in succession, the maximum and min-
imum execution times were excluded, and the average of the
other two times was used as the performance metric.

3.2 Storage Implementation

SEQ supports two repositories for sequence data, the Unix
file system and the SHORE storage manager. The default
repository is built using the SHORE storage manager library.
Data volumes maintained by SHORE can reside either directly
on raw disk, or on the file system; our experiments used the
latter approach. A sequence can also be stored as an ascii
file on the Unix file system. Much real-world sequence data
currently exists in this format. It may be more expedient to
directly run queries off this data, instead of first loading it into
the database. Of course, this repository does not provide any of
the database properties of concurrency control, recovery, etc.
We studied three alternative implementations of a sequence
using SHORE:

File: SHORE provides the abstraction of a ‘file’ into which
records can be inserted. A scan of the file returns the records in
the order of insertion; this enabled us to implement a sequence
as a SHORE file. One advantage of this implementation was
that we could code it with minimal effort. The major drawback
is that the storage manager imposes several bytes (at least 24)
qf space overhead for every record, in addition to a large space
overhead for creating a file. While concurrency control is
available at the record level, inserts in the middle of a sequence
are difficult to implement without an index.

IdList: In order to eliminate the space overhead per file, a
sequence is stored as an array of record-ids. Each such array
is a SHORE large object, which can grow arbitrarily large.
Each record-id occupies 4 bytes, and identifies the appropri-
ate record. All records are created in a single “super” file.

While the space overhead for each file is eliminated, the other
drawbacks still remain (primarily, the storage overhead per
record). Further, since the record-id is a logical identifier in
SHORE, this needs to be mapped to an internal physical identi-
fier when the record needs to be retrieved. This problem could
be avoided by using the less portable solution of actually stor-
ing the list of physical identifiers instead. Concurrency control
is now at the level of the entire sequence, but inserts are easier
to code because SHORE allows new data to be inserted into
the middle of a large object.

Array: In this implementation, a sequence is an array of
records. The array is implemented. using a single SHORE
large object which contains all the records. Since we expect
many sequences to be irregular (i.e., have empty positions),
we chose a compressed array representation in which no space
is wasted for an empty position. This can dramatically reduce
space utilization for data sets of very low density. However,
this makes some operations within a sequence (like positional
lookup, insert and delete) more expensive to implement. Vari-
able length records require additional complex code. However,
there are two important benefits to this implementation: the
per-record space overhead is minimal and there is physical
sequentiality for the records of a sequence. With fixed-size
records in a mostly-query environment, this should be the im-
plementation of choice.

Experiment 1: We measured the time taken to scan each of the
example sequences stored using each of the implementation
techniques just described. A scan is the most basic sequence
operation that is used in almost every query. Consequently,
the time taken to scan a sequence is a suitable indicator of
the efficiency of the storage implementation. The results for
the sequences with density 100% are shown (there was no
significant difference with the 20% density sequences, hence
they have been omitted). The actual SEQUIN query run
w&S:

PROJECT count(*)
FROM <data-sequence>
ZOOM ALL;

Figures 4.5, and 6 show the results for the sequences of car-
dinality IOOK, IOK and 1K respectively. In all the graphs, the
number of fields in each record varies along the X-axis, while
the runtime is plotted on the Y-axis. For all the implementa-
tions, the scan cost grows with the width of the records. Note
that the SHORE Array implementation is the most efficient
whatever the cardinality or width of the sequence. Therefore,
in all the remaining experiments, this was the storage imple-
mentation used. The SHORE File implementation is worse
than SHORE Array because of the file handling overhead per
record. IdList is the worst SHORE implementation primarily
because of the added cost of converting from logical to physi-
cal identifiers. The Unix ascii file implementation is the most
sensitive to the width of the dam records because each attrioute
needs to be parsed at run-time to convert it from ascii to binary
format.

102

01 1
0 5

ct&ls
15 20

Figure 4: Expmt.1: Card 1OOK Figure 5: Expmt.1: Card 10K Figure 6: Expmt.1 : Card 1K

7 0.7 .
Array - Array -

6 . IdList - . 0.6 . IdList - I
Fib ..+..... Fib . ..s....i

05. Ascii- .
8

00.5.
8

Ascii-

,” ____, “.* _____” ___.._._._.............. ..‘..“.-.‘..

1 ’ - 0.1. *
OL 0

0 5 10 15 20 0 5 10 15 20
columns columns

3.3 S&QLLM query language

S&QUUf 3 is a declarative language for sequence queries,
similar in flavor to SQL. The result of a S~QiZ~ query is
always a sequence. The overall structure of a SE &!.4Zhf query
is:

PROJECT <project-list>
FROM <sequences-to-be-merged-on-position>
[WHERE <selection-conditions>]
[OVER <start-window> TO <end-window>]
[ZOOM <zoom-info>];

We now explain the various constructs using simple ex-
amples based on the following sample database. Consider
the sequences Stock1 and Stock2 representing the hourly
price information on two stocks. Both sequences have
the same schema: {&:Hour, high:Double, low:Double,
volume:Integer}, tihere the ‘time’ field is underlined to show
that it defines the order.

The first query estimates the monetary value of Stock1
traded in each hour when the low price fell below 50. The
answer is a sequence with the monetary value computed for
each such hour.

PROJECT ((A.high+A.low)/2)*A.volume
FROM Stock1 A
WHERE A.low < 50;

The query demonstrates the use of the PROJECT and
WHERE clauses. The PROJECT clause with a target list
of expressions is similar to the SELECT clause.of SQL.There
is no output record for positions at which the WHERE clause
condition fails; these are empty positions in the output se-
quence. Since the resplt is a sequence of the desired values, it
should have an ordering attribute; however none exists in the
PROJECT list. In such cases, the ordering attribute from the
input sequence is automatically added to the output schema.

We now consider finding the 24-hour moving average of
the difference between the high prices of the two stocks.

3SEipence Query INterface.

PROJECT avg(A.high - B.high)
FROM Stock1 A, Stock2 B
OVER $P-23 TO $P

This query demonstrates the use of the FROM clause, and
the OVER clause for moving window aggregates. When there
is more than one sequence specified in the FROM clause, there
is an implicit join between them on the position attribute (in
this case, on ‘time’). Since this is a declarative query, the
textual order of the sequences in the FROM clause does not
matter. Note that the PROJECT clause uses the avg aggre-
gate function. The set of records over which the aggregate
is computed is defined by the moving window of the OVER
clause. In this case, the window spans the last 24 hours, but
in general, the bounds of the window can use any arithmetic
expression involving addition, subtraction, constant integers
and the special $P symbol representing the ‘current’ position
for which the record is being generated. Empty positions in
the input bquence are ignored as long as there is at least one
valid input record in the aggegation window.

Next, we show a rather complex query that demonstrates the
possible variations in the FROM clause. The desired answer is
a sequence containing for every hour, the difference between
the 24-h?ur moving average of the high price of Stockl, and
the high price of Stock2 at the most recent hour when the
volume of Stock2 traded was greater than 25,000. The answer
sequence is only of interest to the user after hour 2000.
// first define the moving average as a view
CREATE VIEW MovAvgStockl AS (

PROJECT avg(C.high) as avghigh
FROM stock1 c
OVER $P-23 TO $p.);

// then use the view in the query
PROJECT A.avghigh - B.high
FROM MovAvgStockl A,

Previous(yROJECT D.high
FROM Stock2 D
WHERE D.volume > 25,000) B

WHERE .$P > 2000;

Note that the sequences in the FROM clause may themselves be
defined using another SE &uZn/ query block. This may be effected

103

using a view (as is the MovAvgStockl sequence A), or a nested query
block defining a sequence expression (as is the sequence B). Three
special modifiers with functional syntax are allowed in the FROM
clause: Next, Previous and Offset. Previous (as in this example)
defines a sequence which associates with every position the record at
the most recent non-empty position in the input sequence. Remember
that sequences need not be regular, and consequently there can be
positions which are not associated with any records. The Previous
modifier fills these ‘holes’ with the most recent record. Similarly,
Next defines a sequence in which the holes are filled with the most
imminent record. Both these modifiers can take a second optional
argument which specifies how many such steps to take (which is
1 by default); for example, Previous(S, 2) defines a sequence of the
second-most recent input record at each position. The Offset modifier
defines a sequence in which the position-to-record mapping of the
input sequence is shifted by a specified number of positions. Finally,
note that the WHERE clause can also use the $P notation to access
the ‘current’ position attribute.

The next query demonstrates the use of the ZOOM clause to ex-
ploit the hierarchical relationship between ordering domains4. Here
is the &?gUzN query to compute the daily minimum of the volume
of Stock1 traded every hour.

PROJECT min(A.volume)
FROM stock1 A
ZOOM days

We assume that ‘days’ is the name of an ordering domain known
to the system, and that there is a Collapse registered with the system
from ‘hours’ (the ordering domain of the input) to ‘days’. The answer
sequence has an implicit attribute of type ‘days’ that provides the
ordering. If the resulting ordering domain is at a coarser granularity itl
the hierarchy than the source ordering domain, as in this example, then
the PROJECT clause must be composed of aggregate expressions.

Our final example shows how the ZOOM clause can perform
conditional collapses. Suppose that just as in the previous query,
we want to compute the minimum volume of Stock1 traded over
consecutive periods of time. However, these periods are not well-
defined like ‘days’ or ‘weeks’. Instead, they depend on the data.
Specifically, the periods may be bounded by those times when the
high and low values werevery close (implying an hour of stability
for the stock). This can be expressed as follows:

PROJECT min(A.volume)
FROM Stock1 A
ZOOM BEFORE (A.high - A.low < 0.1);

The query states that the aggregation window includes records
upto but not including the record which satisfies the stability con-
dition. If the last record is also to be included in the aggregation
window, the word BEFORE is replaced by AFTER. As a final vari-
ant, the ZOOM clause could simply be ‘ZOOM ALL’, specifying
that the aggregation is to be performed on the entire sequence. These
versions of the ZOOM operator generate sequences that are ordered
by an implicit integer field that starts at value 1 and increases in in-
crements of 1 (since this is the only meaningful sequence ordering
for the result).

In this paper, we have omitted discussion bf some other features
of SE @,!ZN including a construct to re-define the ordering field of a
sequence, update constructs and DDL features. A SEWZN query

4The word “zoom” is used because the action of movivg down or Up
through the ordering hierarchy is &nilar to zooming in and 3ut with a tens.

is parsed into a directed acyclic graph of algebraic operators, which is
then optimized by the query optimizer. We have described the algebra
operators and some optimization techniques in [SLR95, SLR94].

3.4 Query Optimizations

This section describes the effects of four categories of implemented
optimizations. Each optimization is first explained in principle, and
then demonstrated by means of a performance experiment. We have
tried to keep the queries in the experiments as simple as possible, in
order to isolate the effects of each optimization.

3.4.1 Propagating Ranges of Interest

This class of optimizations deals with the use of information that
limits the range of positions of interest in the query answer. There
are two sources of such information: one is from selection predicates
in the query that use the position attribute. Experiment 2 demonstrates
the benefits of propagating such selections into the sequence scans.
The other source is from statistics on the valid ranges of positions
in each sequence. These valid ranges can be propagated through the
entire query as described in [SLR94]. Experiment 3 demonstrates
how the valid-range can be used for optimization.
Experiment 2:

PROJECT count(*)
FROM 100K~10flds~100dens S
WHERE S.time > "<timestampl>"
ZOOM ALL;

This query is a variant of the query used earlier to measure the
performance of a sequence scan. In this case, the scan is over only a
portion of the sequence. SEQ can optimize the query by pushing the
selection predicate into the scan of the sequence. Since the default
implementation of sequences in SEQ expects irregular sequences and
uses a compressed Array implementation, there is no simple way to
directly access a speoific position. If the selection range is from Posl
to Pos2, the first record within the range (at Posl) is difficult to locate
exactly. Based on the density of the sequence, the valid range of the
sequence, and the desired selection range, SEQ performs a weighted
binary search to get close to the correct starting position. However,
if the query is modified so that the > is replaced by a < (i.e. the
desired range is at the beginning of the sequence), then the binary
positioning is not needed.

We studied the effect of varying the predicate selectivity from
1% to 100%. We ran the experiment twice, once with the selection
windows at the start of the valid-range (atstart), and once with
the selection windows at the end(at-end). Three algorithms were
considered: no selection push-down (NOPD), simple push-down
with no binary-positioning (ORDPD), and selection push-down with
binary positioning (BPPD).

The results for atstart are shown in Figure 7. The predicate
selectivity is shown on the X-axis, and the query execution time is on
the Y-axis. While there is no difference between BPPD and ORDPD
(since the predicate is at the start of the window), NOPD perfomls
much worse because the entire sequence is scanned. As the selectivity
increases, all the algorithms become more expensive because there is
additional work being done in the final count aggregate.

The results for at-end are shown in Figure 8. The performance of
NOPD is the same as in the atstart experiment. The performance
of BPPD is almost the same as in the atstart experiment, because
it is able to use the selection information to position the scan at the
appropriate start position. On the other hand, ORDPD cannot do

104

121 BPPD-

0 20 40 60 80 100
selectivity %

Figure 7: Range Selections At Start: Expmt. 2
this, and therefore scans the entire sequence. However, ORDPD
can apply the selection predicate at a lower level in the system and
therefore performs better than NOPD. Note that the BPPD algo-
rithm, which performs best, can only be applied if the valid range and
density statistics are maintained for the sequences.
Experiment 3:

// View applies selection to the base sequence
CREATE VIEW ViewSeq AS (

PROJECT A.fld2
FROM a100K~10~100 A
WHERE A.fldl > 900);

// Merge B with offset ViewSeq'
PROJECT count(*)
FROM lOOK~5flds~lOOdens B,

Offset(ViewSeq, <offset-distance>) C;

This query joins two sequences on position; however, one of the
sequences is first shifted by some specified number of positions. Each
of the base sequences in this query has 1OOK records spanning an
identical range (see Table 1). However, since one of them is shifted,
neither of the sequences needs to be scanned in its entirety; only
the mutually overlapping region needs to be scanned. This is shown
intuitively in Figure 9. The valid-range propagation optimization is
able to recognize such optimization opportunities in all SEQ queries.

We varied the overlap from 90% of the valid-range to 109b, and
executed the query with (RNGPROP) and without (NOPROP) the
valid-range optimization. The results are shown in Figure 10. The
smaller the overlap between the two sequences, the better is the
relative performance of RNGPROP. The difference between the two
lines is due to the work saved in scanning the sequence.

3.4.2 Moving Widow Aggregates

All aggregate functions in SEQ (used in both relational and sequence
query processing) are implemented in an extensible manner. Each
aggregate function provides three methods: Initialize(), Accumu-
late(record), Erminutef). This abstract interface allows the aggrega-
tion operator to compute its result incrementally, independent of the
specific aggregate function computed. The presence of moving win-
dow aggregates in SEQ creates new opportunities for optimization.
Note that in relational aggregates, the input data is partitioned into
disjoint portions over which the aggregation is performed. Contrast

12

10

8

6

4

2

0

- BP-PD -
ORD-PD --+---es

- NO-PD . ..m __..__

0 20 40 60 80 100
selectivity %

Figure 8: Range Selections At End: Expmt. 2
this with the moving window sequence aggregates in which there
is an overlap between successive aggregation windows. For exam-
ple, consider the 3-position moving average of a sequence 1,2,3,4,5.
Once the sum 1 + 2 + 3 has been computed as 6, this computation
can be used to reduce the work done for the next aggregate. Instead
of adding 2 + 3 + 4, one could instead compute 6 - 1 + 4. Due to
the small aggregation window in this example, there is little benefit.
However, when the windows become larger and the operations are
more expensive, there can be significant improvements due to this ap-
proach. Importantly, the time required for aggregation is independent
of the size of the window,

While some aggregates like Count, Sum, Avg and Product are
directly amenable to this optimization, others like Min. Max, Me-
dian and Mode are not. We call this the symmetry property of an
aggregate function. In order to exploit the symmetry property in an
extensible manner, we require each aggregate function to provide
two more methods: IsSynrmeftic~) and Dmp(nxo~$. Experiment 4
demonstrates the importance of exploiting symmetric aggregates.
Experiment 4: We considered queries of the form

/! Define the moving aggregate
CREATE VIEW MovAggr AS

(PROJECT <aggr-function>(S.fldl)
FROM <data-sequence> S
OVER $P-<window-size> TO $P);

// Count records to minimize printing
PROJECT count(*)
FROM MovAggr
ZOOM ALL;

Moving window aggregates are among the most important se-
quence queries posed in stock market analysis applications. Our
example query is the simplest form of a moving aggregate (with
a final count operator thrown in as usual to eliminate the time
for printing answers). This experiment was restricted to 0nIy the
1OOKXlcolsXOdens and lOOK-1OcolsLXklens sequences. Tbe
window size was varied from 5 to 100, while the aggregate func-
tions tried were MIN (non-symmetric) and AVG(symmetric).

The results for the 100% density sequence are shown in Figure 11.
Notice that the performance of MINlOO grows linearly with the.size
of the aggregation window. This is because the entire aggregation
window has to be processed for each MIN aggregate computed. In
comparison, the performance of AVG 100 is almost independent of the

105

End E

SEWENCE A SEQUENCE C SECUENCE B

FUWSSOfE=hBuSWUflWMNNdTOS9~flMd.

Figure 9: Range Propagation: Intuition

160
MINlOO -

140 - AVGlOO ----

0 20 40 60 80 100 0 20 40 60 80 100
moving window size moving window size

Figure 11: Expmt.4: 100% Density
size of the aggregation window. The slight dependence of AVGlOO
on the window size has an interesting reason. Given a particulat
timestamp, it is more expensive to compute the 100th previous times-
tamp, than the 10th previous timestamp. Simple arithmetic cannot be
applied to temporal ordering domains because the variable number
of days in a month has to be accounted for.

The results for the 20% density sequence are shown in Figure 12.
Note that a moving aggregate over a sequence with holes generates
many more records than exist in the input sequence. Assume that
there is an input record at hour 100 and the next record is at hour 102.
A 3-hour moving aggregate sequence has a value at hour 101 as well,
because there is at least one record in its aggregation window from
hour 99 to hour 101. This explains why the cost of both aggregates
increases with window size. Since the density is low (20%). them
are also fewer records in each aggregation window, and the relative
difference between the AVG20 and MINZO grows more slowly with
the size of the aggregation window. The relative difference between
AVGZO and MIN20 at window size 100 is about the same as the
relative difference between AVGlOO and MINlOO at window size 20.
This is to be expected, because the ratio of the densities of the two
sequences is also ltXk20.

2o I
RNG-PROP -

0’ 1
0 20 80 100

Figure 10: Range Propagation: Expmt. 3

160

140
i

8 120 -

w” 100 -

2

'

80-

2 6b-

40 -

20
t

M&l20 = ’ ’
AVG20 --+---

Figure 12: Expmt.4: 20% Density
3.4.3 Common Sub-Expressions

The same sequence may be accessed repeatedly in different parts of
a query. For example, the following query compares the values of
a moving average at successive positions looking for stability in the
stock prices.

// View: moving average over last 24 hours
CREATE VIEW MovAvgStockl AS

(PROJECT avg(S.high) as avghigh
FROM Stock1 S
OVER $P-23 to $P);

// Check change in moving average
PROJECT *
FROM MovAvgStockl Tl, Offset(MovAvgStock1, 1) T2
WHERE Tl.avghigh - T2.avghigh < 10.

Figures 13 and 14 show two possible algebraic query graphs that
can be constructed from this query. The meaning of each query graph
is obvious. The difference between the two query graphs is that one
uses a common sub-expression, while the other does not. Common
sub-expressions occur frequently in sequence queries, so this is an
important issue. When a query graph with a common sub-expression

106

I
I

Project l

I
1

I

Select

I
Tl .avghigh - TP.avghigh 10

Figure 13: Graph 1: Repeated Computation Figure 14: Graph 2: Common Sub-Expression
is constructed for a relational query, the query optimizer chooses one rializing the intermediate result, the next experiment will show that
of two options. One option is to repeatedly evaluate the common sub-.
expression; this is equivalent to using the version of the query graph&

materialization is very inefficient in general.

without a common sub-expression(Figure 13). The other option is
to compute the sub-expression once, store the result, and repeatedly
access the stored result. For sequence queries, we will show that
materializing intermediate results is not a desirable option.

By an analysis of the query graph and the scopes of the various
operators involved, SEQ can determine exactly how much of the
common sub-expression result should be cached, so that the entire
query can be evaluated with a single stream access of the common
sub-expression. In other words, neither is the common-subexpression
evaluated multiple times, nor is it materialized [Ses96].
Experiment 5: We ran the very same query shown above (except

200 - 2
/’ ,..’ ,/

,,/

/’ ,’
8 0150 -

,,/ /
/’ ./ _,/

iii

El00 - ,A.’

0’
0 20 40 60 80 100

aggr window size

Figure 15: Common Subexpressions: Expmt. 5
that the Stock1 sequence was replaced by lOOK-lOflds-lOOdens).
We varied the size of the aggregation window from 10 to 100; as
the window size increases, so does the cost of the common sub-
expression. The query execution time was measured with the SEQ
optimization (Common-Subexp) and with repeated evaluation (Re-
Computed). The results are shown in Figure 15. The common sub-
expressionoptimization used by SEQ obviously performs much better
than repeated evaluation. As the cost of the common sub-expression
increases (i.e., as the window size grows), this optimization becomes
extremely important. While we have ignored the possibility of mate-

3.4.4 Operator Pipelining

An important optimization principle in SEQ is to try and ensure
stream access [SLR94] to the stored sequence data as well as to
intermediate data; i.e., each sequence is read in a single continuous
pipelined stream without materializing it. This is accomplished by
associating buffers with each operator, tocache some relevant portion
of the most recent data from its inputs. In our example of the hourly
sequences, a 24-hour moving aggregate would need a buffer of no
more than the 24 most recent input records. This ‘window’ of recent
data is called the scope of the operator. All the operators in the
algebra have fixed size scopes in a particular query. Consider the
simple query below that scans a sequence and computes an aggregate
over the entire data:

PROJECT count(*)
FROM -data-sequence>
ZOOM ALL;

Experiment 6 will show that there is a tremendous penalty to pay
for failing to pipeline even such a simple query between the Scan
operator and the Count operator. Experiment 7 shows that when the
query becomes complex, with several nested operators, the relative
importance of pipelining becomes even more clearly defined.
Experiment 6: We ran the query shown above ovtr all the sequences
in the sample database. The results with the pipelining optimization
(Pipelined) and without it (Materialized) are shown in the 3-D graph
of Figure 16. The number of columns in each record varies along
the X-axis, while the sequence cardinal&y varies on a logarithmic
scale on the Y-axis. The Z-axis shows the query execution time on a
logarithmic scale. Once again, we only show the results for the 100%
density sequences (the 20% density results are similar). Notice that
materialization increases the cost by almost an order of magnitude!
Experiment 7: In this experiment, we want to show the effects of
increased query complexity on materialized execution. Section 3.3
had several examples of non-trivial queries. By using the view mech-
anism, many complex queries can be generated. It is difficult to
choose a single representative for all complex queries. Instead, since
the purpose of this experiment is to isolate and study the performance
of pipelining and materialization, we use a query that, though not
intuitively meaningful, can be varied in a controlled manner. We

107

700 1

-c

100

Figure 16: Pipelining: Expmt. 6
consider one particular data sequence (lOOK-lOflds-lOOdens) and
vary the number of levels of operators in the query from 2 to 10. For
instance: with 4 levels, the corresponding SEQUIN query is

PROJECT count(*)
FROM (PROJECT *

FROM (PROJECT *
FROM 100K~10flds~100dens),) S;

ZOOM ALL;

We disabled the SEQ optimization that merges consecutive scans
which would otherwise reduce all these queries to a common form.
The results with and without the pipelining optimization are shown
in Figure 17. The X-axis shows the number of levels of nesting in
each query, while the Y-axis shows the query execution time. Notice
that while the cost of the default SEQ execution with pipelining
grows moderately (due to the presence of more operators on the
query execution path), the cost of the materialized execution grows
dramatically with the complexity of the query expression.

4 Combining Sequences and Relations
We now return to the issue of how sequences and relations interact in
PREDATOR. The important questions are: how does a query access
both relational and sequence data, how does optimization of this
query occur, and how is the query evaluated? In order to discuss
these questions, we slightly extend the example that we used to
explain the S&QUzn/ language in Section 3.3. Consider a relation
Stocks of securities that are traded on a stock exchange, with the
schema (name:String, stockAstory:Sepence) . The stockhistory is
a sequence of hourly information on the high and low prices, and the
volume of the stock traded in each hour.

4.1 Nested Language Expressions

In this example, since the sequence data is nested within the relational
data, it is appropriate for the user to think of the relational E-ADT as
the top-level type. A query will therefore be posed in the relational
query language (SQL) with nested query expressions in the sequence
query language (S&QUZV).

600
I

0 500 -
8
w - E 400

5 300 -

2 200 -

,/

Pipelined -
,/’

Materialized -+----- ,,i.,“““”
,/’

./’
1

0 2 4 6 8
levels of nesting

Figure 17: Pipelining: Expmt. 7
Let us consider the SQL query to find for each stock, the number

of hours after hour 3500 when the 24-hour moving average of the
high price was greater than 100.

SELECT S.name, SEQUINS
"PROJECT count(*)
FROM (PROJECT avg(H.high) as avghigh

FROM $1 H
OVER $P-23 TO $P) A
WHERE A.avghigh > 100 AND $P > 3500
ZOOM ALL",

S.stock-history)
FROM Stocks S;

The SQL query has the usual SELECT clause target list of ex-
pressions. One of these. expressions is a S&QUzn/ query, whose
syntax is functional. There is one such implicit function for every
E-ADT language registered in the system. The first argument to the
S&QUzn/ function is a query string in that language. Any param-
eters to be passed from SQL (the calling language) to the embedded
query in SEQUIN are provided as additional arguments. These
parameters are referenced inside the embedded query using the po-
sitional notation $1, $2, etc. In this particular query, the passed
parameter (S.stockhistory) is a sequence. Note that the SQL lan-
guage parser does not know about the grammar of the embedded
language, and merely treats the S&QUZJZl subquery as a function
call whose first argument is some string. For the SQL parser, this
query is treated in the same manner as the following query would be:

SELECT S.name, Foo("hello", S.stock-history)
FRbM stocks S;

As part of the type-check of the SQL query, the type of the
SEQUN function is also checked. This causes the embedded
S&QUzn/ query to be parsed by the parser of the sequence E-ADT .
It is no longer sufficient to identify the type of every parameter
passed. In this example, the parameter is of a sequence type, but
this is not sufficient to type-check the embedded query. The schema
information for the sequence must also be specified along with the
type. This implies that throughout the system code that handles
values and expressions, meta-information like the schema must be

108

maintained as part of the type information. The return type of the
SEQKTN query expression is a sequence as usual. Expressions of

, a particular type may be cast to another type using cast functions that
are registered with the system. The cast mechanism is also used to
convert sequences into relations. The cast from relations to sequences
additionally requires the specification of the order attribute.

When optimizing a nested query, each E-ADT is responsible for
optimizing its own query blocks. Since the nested languages are intro-
duced in the guise of functions, each optimizer must be sure to ‘plan’
any function invoked. Planning a function like S&QWN causes
the optimization of the embedded query to be performed. In this ex-
ample, the SQL optimizer is called on the outer query block, and the
SEQUIN optimizer operates on the nested query block. There is
currently no optimization performed across query blocks belonging
to different E-ADTs . During execution of the SQL query, the nested
SE &UIN expression is evaluated just as any other function would
be. There are several other implementation details that are described
in [Ses96].

4.2 Comparison with Existing Systems

Some current systems like Illustra [I11941 support sequences (more
specifically, time-series) as ADTs with a collection of methods pro-
viding query primitives. A query is a composition of the primitive
functions or methods. Here is approximately how the example of the
last section would be written using ADT methods:

SELECT S.name,
count(filter("time z 3500",

filter("high > loo",
mov-avg(-23, 0,

project("time,high",S.stock-history)))))
FROM stocks S;

The user writes the query using SQL, but the part of the query that
manipulates the time-series uses a composition of special time-series
primitive functions. Note that a query language based on function
composition can be more awkward to use than a high-level language
like S&QUZN. In just the same way, it is often easier to express a
complex query in SQL than in the relational algebra.

The more important observation is that there are several equiva-
lent different functional expressions that could be used in this query.
These different alternatives are not considered by the system. While
queries in SE QUZN are declarative, queries based on the functional
composition of methods have a procedural semantics. When a query
expression involves the composition of more than one of these meth-
ods, little or no inter-function optimization is performed, and each
individual method is evaluated separately. While we did perform a
performance comparison with Illustra [11194], we are not permitted to
discuss those results. Instead, we provide a qualitative comparison.

Experiments 6 and 7 showed that materialization can perform an
order of magnitude worse than pipelining with stream-access. In
the ADT-method approach, pipelining is not possible without inter-
function optimization. The simple query of Experiment 6 is expressed
in a form similar to Count(Scan(S)). Since methods are independently
evaluated, the result of the scan is materialized, and then the count of
this materialized result is computed. The optimizations that propa-
gate valid ranges and selection predicates (Experiments 2 and 3) once
again require the ability to push range selections from one function
to another. Consequently, ADT-method based systems do not exploit
these optimizations. Experiment 5 showed that the common sub-
expression optimization could reduce query execution time by almost

a factor of two. An ADT-method approach cannot identify common
sub-expressions without inter-function optimization, let alone take
advantage of them to optimize query execution. Putting these to-
gether, the ADT-method approach is unable to apply optimization
techniques that could result in overall performance improvements of
approximately two orders of magnitude! We should stress that these
differences are symptoms of a basic design difference between SEQ
and ADT-method systems. In order for these systems to derive some
of the efficiencies of the SEQ approach, they will have to adopt some
or all of the system design used by SEQ. We have elaborated on this
at length in [SLR96, Ses961.

5 Related Research
Research work directed at modeling time-series data [SSg7, CS92,
St0901 provided initial direction to our efforts. The model of a time-
series in [SS87] is similar to ours, and an SQL-like language was also
proposed; implementation issues-were discussed in the context of how
the model could be mapped to a relational data model.The Tangram
Stream Processor [St0901 uses transducers and stream processing to
query sequences in a logic programming context; there are many
similarities between the stream processing ideas in this work and
in SEQ. The dual nature of sequences (Positional versus Record-
Oriented) is recognized by the temporal query language of [WJS93].
The extensive work on temporal database modeling, query languages,
and query processing [TCG+93] is mostly complementary to our
work, because it involves changes to relations and to SQL [TSQL94].
However, it would be interesting to study how time-ordered sequences
can be efficiently converted into relations with time-stamps, and vice-
versa.

While most object-oriented database proposals include construc-
tors for complex types likelists and arrays [VD91, BDK92], they can
either be treated as collections, or manipulated using a primitive set
of methods; no facilities for sequence queries are provided. The work
described in [Ric92] is an exception, and proposes an algebra based
on temporal jogic to ask complex queries over lists. There have also
been languages proposed to match regular patterns over sequence
data [GW92, GJS921, and the proposal of [GJS92] has been imple-
mented as an event recognition system. This work is complementary
to ours, since SEQ is oriented to more traditional database queries,
and currently does not have powerful pattern-matching capabilities.

6 Conclusions
We have described the design and implementation of the support for
sequences in SEQ. The primary contribution of this research is to
underscore the importance of algebraic optimization for sequence
queries along with a declarative language in which to express them.
We have demonstrated the effects of query optimization by means of
performance experiments. The PREDATOR system (of which SEQ
is a component) supports relational data as well as sequence data,
using a novel design paradigm of enhanced abstract data types (B-
ADTs). The system implementation based on this paradigm allows
sequence and relational queries to interact in a clean and extensible
fashion.

We have compared the merits of our approach with the alternative
ADT-method approach used by some current systems. If issues like
usability and performance are important, our conclusion is that it is
inadequate to rely upon procedural methods of a sequence ADT to
express queries.

There are many sources of sequence data that will pose future

109

challenges to the system implementation. The most exciting of
these are real-time sequences (where the implementation of query
eVa]UatiOn may have to be modified to use one thread to read each
real-time sequence), sequences stored on tape (where stream access
becomes absolutely critical for performance) and multi-dimensional
sequences (where the zooming features may have to be enhanced
to allow’ queries that drill down and up the dimensions). There are
also several open research issues in the design of systems based on
the E-ADT paradigm, and in extensions of the paradigm to handle
optimizations that span data types.

Acknowledgements

The persistent data support for SEQ was built on top of the SHORE
storage manager developed at the University of Wisconsin. Mike
Zwilling was very patient in tracking down SHORE ‘problems’ that
almost always turned out to be bugs in SEQ. Illustra Information
Technologies, Inc. give us a free version of their database and
time-series datablade, and free access to their user-support person-
nel. David Dewitt and Mike Carey gave helpful advice and support
during the performance evaluation of SEQ. Kurt Brown, Mike Carey,
Joey Hellerstein, Navin Kabra, Jignesh Patel, Kristin Tufte, and Scott
Vandenberg provided useful discussions on the subject of E-ADTs .

References
[BDK92] F. Bancilhon, C. Delobel. and P Kanellakis (eds). Building an

Object-Oriented Database System: The Story of 02.. Morgan Kaufmann
Publishers, 1992.

[CDF+94] M.J. Carey, D.J. Dewitt, M.J. Franklin, N.E. Hall, M. McAuliffe,
J.F. Naughton, D.T. Schuh, M.H. Solomon, C.K. Tan, 0. TsataIos,
S. White and M.J. Zwilling. Shoring Up Persistent Objects. In PIV-
ceeding of the ACM SIGMOD Conference on Management of Data, May
1994.

[CS92] Rakesh Chandm and Arie Segev. Managing Temporal Financial Data
in an Extensible Database. In Proceedings of the International Conference
on Very Large Databases(VWB), pages 238249, 1992.

[DKLPY94] D.J. Dewitt, N. Kabm, J. Luo, J.M. Pate1 and J. Yu. Client-
Server Paradise. In Proceedings of the International Conference on Very
Large Databases (VWB), Santiago, Chile, September 1994.

[MIM94] Logical Information Machines. MIM User Manual. 6869 Marshall
Road, Dexter, MI 48130.

[GJS92] N.H. Gehani, H.V. Jagadish, and 0. Shmueli. Composite
Event Specification in Active Databases: Model and Implementa-
tion. In Proceedings of the International Con)Fprence on Very Large
Databases(VWB). pages 327-338.1992.

[GW92] !I. Ginsburg and X. Wang. Pattern Matching by Rs-operations:
Towards a Unified Approach to Querying Sequenced Data. In Proceeding
of the ACM SIGMOD Conference on Management of Data, 1992.

[11194] Illustm Information Technologies, Inc. Illustra User’s Guide, June
1994. 1111 Broadway, Suite 2000, Oakland, CA 94607.

[Ric92] Joel Richardson. Supporting Lists in a Data Model. In Proceedings
of the In&national Conference on Very Large Databases(VLDB), pages
127-138.1992.

[SLR96] Praveen Seshadri, Miin Livny and Raghu Ramakrishnan. Design
and Implementation of a Sequence Database. Technical Report. Univer-
sity of Wisconsin, CS-Dept, 1996.

[Ses96] Praveen Seshadri. Management of Sequence Data. Ph.D. Thesis.
University of Wisconsin, CS-Dept. 1996.

[SLR95] Praveen Seshadri, Miron Livny and Raghu Ramakrishnan. SEQ: A
Model for Sequence Databases. In Proceedings of the IEEE Conference
on Data Engineering, March 1995.

[SLR94] Praveen Seshadri, Miron Livny and Raghu Ramakrishnan. Se-
quence Query Processing. In Proceeding of the ACM SIGMOD Confer-
ence on Management of Data, pages 430441, May 1994.

[SS87] Arie Segev and Arie Shoshani. Logical Modeling of Temporal Data.
In Proceedings of ACM SIGMOD ‘87 International Conference on Man-
agement of Data, San Francisco, CA, pages 454-466, 1987.

[St0861 Michael Stonebraker. Inclusion of New ‘I)pes in Relational Data
Base Systems. In Proceedings of the IEEE Conference on Data Engi-
neering, pages 262-269, 1986.

[Sto90] D. Stott Parker. Stream Data Analysis in Prolog. In The Practice of
Prolog, Chapter 8, MIT Press, 1990.

[TCG+93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, R. Snod-
grass (eds). Temporal Databases, Theory, Design and Implementation.
Benjamin/Cummings Publishing Company, 1993.

[TSQL94] TSQL2 Language Design Committee. TSQLZ Language Speci-
fication. In ACM SfGMOD Record, 23, No.1, pages 65-86, March 1994.

[VD91] S.L. Vandenberg and D.J. Dewitt. Algebraic Spport for Complex
Objects with Arrays, Identity, and Inheritance. In Proceedings of ACM
SIGMOD ‘91 International Conference on Management of Data, pages
158-167, 1991.

[WJS93] Sean X. Wang, Sushi1 Jajodia and VS. Subrahmanian. Temporal
Modules: An Approach Toward Federated Temporal Databases. In Pro-
ceedings of ACM SIGMOD ‘93 International Conference on Management
of Data, Washington, DC, pages 227-237, 1993.

110

