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Abstract 

This paper discusses the design and implementation 
of SEQ, a database system with support for sequence 
data. SEQ models a sequence as an ordered collection 
of records, and supports a declarative sequence query 
language based on an algebra of query operators, 
thereby permitting algebraic query optimization and 
evaluation. SEQ has been built as a component of the 
PREDATOR database system that provides support 
for relational and other kinds of complex data as well. 

that could describe a wide variety of sequence data, and a 
query algebra that could be used to represent queries over se- 
quences [SLR95]. We had also observed that sequence query 
evaluation could benefit greatly from algebraic optimizations 
that exploited the order information [SLR94]. This paper de- 
scribes the issues that were addressed when building the SEQ 
sequence database system based on these ideas. 

There are three distinct contributions made in this 
paper. (1) We describe the specification of sequence 
queries using the SEQUIN query language. (2) We 
quantitatively demonstrate the importance of various 
storage and optimization techniques by studying their 
effect on performance. (3) We present a novel nested 
design paradigm used in PREDATOR to combine 
sequence ‘and relational data. 

SEQ is a component of the PREDATOR* multi-threaded, 
client-server database system which supports sequences, as 
well as relations and other kinds of complex data. The system 
uses the SHORE storage manager library [CDF+94] for low- 
level database functionality like buffer management, concur- 
rency control and recovery. A novel design paradigm provides 
query processing support for multiple data types, including 
both sequences and relations. The system implementation has 
been in progress for more than a year and is currently at ap- 
proximately 35,000 lines of C++ code (excluding the SHORE 
libraries). In this paper, the focus is on the SEQ component 
which provides the S&QUZN language to specify declarative 
sequence queries, and an optimization and execution engine to 
process them. The PREDATOR system is described in detail 
in [Ses96], and only a high-level overview is presented here. 

1 Introduction 
Much real-life information contains logical ordering relation- 
ships between data items. “Sequence data” refers to data that 
is ordered due to such a relationship. Traditional relational 
databases provide no abstractionof ordering in the data model, 
and do not support queries based on the logical sequentiality 
in the data. In earlier work, we had described a data model 
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1.1 The State Of The Art 

Financial management products like MIM [MIM94] provide 
special purpose systems for analyzing stock m,arket data. Cur- 
rent general-purpose database systems provide limited support 
for sequence data. The Order-By clause in SQL only speci- 
fies the order in which answers are presented to the user. Most 
existing support deals with temporal data. While SQL-92 pro- 
vides a timestamp data type, there are few constructs that can 
exploit sequentiality. Many temporal queries can be expressed 
in SQL-92 using features like correlated subqueries and aggre- 
gation, these are typically very inefficient to execute. Research 
in the temporal database community has focused on enhanc- 
ing relational data models with temporal semantics [TCG+93], 
but there have been few implementations. Most commercial 
database systems will allow a sequence to be represented as a 
‘blob’ which is managed by the system, but interpreted solely 
by the application program. Some object-oriented systems 
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like 02 [BDK92] provide array and list constructs that al- 
low collections of data to be ordered. The object-relational 
database system Illustra [I11941 provides database support for 
time-series data along with relational data. A time-series is 
an ADT(Abstract Data Type) value implemented a& a large 
array on disk. A number of ADT methods are implemented 
to provide primitive query functionality on a time-series. The 
methods may be composed to form meaningful queries. 

1.2 Desired Sequence Functionality 

The abstract model of a data sequence is shown in Figure 1. 
An ordering domain is a data type which has a total order and a 
predecessor/successor relation defined over its elements (also 
referred to as ‘positions’). Examples of ordering domains are 
the integers, days, seconds, etc. A sequence is a mapping 
between a collection of similarly structured records and the 
positions of an ordering domain. While every record must 
be mapped to at least one position, there is no requirement 
that there be a record mapped to every position. The ‘empty’ 
positions correspond intuitively to ‘holes’ in the sequence. The 
DBMS should efficiently process queries over large disk-based 
sequences. Further, in most applications, there is sequence 
data as well as relational and other kinds of data. Complex 
values like images, or even entire relations can be associated 
with a single position in a sequence [SLR96], and conversely, 
there can be a sequence associated with a single relational 
tuple. 

Recad-oricnted View 
, 

l-l 

i ----------- 
, (l-many nlationrhip . - . *-w----e---- n . . . 

Ordering Domain Collection of Records 

Figure 1: Data Sequence 
In [SLR95], we proposed an algebra of Positional sequence 

query operators. In terms of Figure 1, these operators “view” 
the sequence mapping from the left (positions) to the right 
(records). While we do not describe the operators in detail 
in this paper, the S&QLUN query language is based on this 
algebra. The dual mapping from right (records) to the left (po- 
sitions) leads to operators that are extensions of the relational 
algebra. Such operators have been extensively investigated in 
the temporal database community [TCG+93], and they are not 
considered here. 

2 PREDATOR ‘System Design 

Object-relational systems like Illustra [11194], and Par- 
adise [DKLPY94] allow an attribute of a relational record 
to belong to an Abstract Data Type (ADT). Each ADT defines 
methods that may be inyoked on values of that type. An ADT 
can itself be a structured complex type like a sequence, with 

other ADTs nested inside it. Relations are the top-level type, 
and all queries are posed in the relational query language SQL. 
There has been mucn research related to ADT technology, be- 
ginning with [Sto86]. 

The PREDATOR design enhances the ADT notion by sup- 
porting “Enhanced Abstract Data ‘Iypes”(E-ADTs ). Both 
sequences and relations are modeled as E-ADTs . Each E- 
ADT supports one or more of the following: 

Storage Management: Each E-ADT can provide multiple 
physical implementations of values of that type. The particular 
implementation used for a specific value may be specified by 
the user when the value is created, or determined automatically 
by the system. 
Catalog Management: Each E-ADT can provide catalogs 
that maintain statistics and store schema information. Further, 
certain values may be named. 
Query Language: An E-ADT can provide a query language 
with which expressions over values of/that E-ADT can be 
specified (for example, the relation E-ADT’may provide SQL 
as the query language, and the sequence E-ADT may provide 
SEQinN). 
Query Operators and Optimization: If a declarative query 
language is specified, the E-ADT must provide optimization 
abilities that will translate a language expression into a query 
evaluation plan in some evaluation algebra. 
Query Evaluation: If a query language is specified, the E- 
ADT must provide the ability to execute the optimized plan. 

The E-ADT paradigm is a novel contribution that differen- 
tiates PREDATOR from the traditional ADT-method based ap- 
proach to providing support for collection types in databases. 
The difference is crucial to the usability, functionality and per- 
formance of queries over complex data types like sequences. 
The ability to name objects belonging to different E-ADTs al- 
lows any E-ADT to be the top-level type. This allows users 
who are primarily interested in sequence data, for example, 
to directly query named sequences without having to embed 
the sequences inside relational tuples. While we believe that 
the E-ADT paradigm can and should be applied to provide 
database support for any complex data type, a detailed dis- 
cussion of E-ADTs is beyond the scope of this paper. In this 
current paper, we only wish to place the support for sequence 
data in the context of the larger database system. The reader 
is referred to [Ses96] for further details on E-ADTs and the 
PREDATOR system. 

The design philosophy of E-ADTs is carried directly over 
into the system architecture. PREDATOR is a client-server 
database in which the server is a loosely-coupled system of 
E-ADTs . The high-level picture of the system is shown in 
Figure 2. An underlying theme in the implementation of most 
components of the system is to allow for extensibilityby spec- 
ifying uniform interfaces. The server is built on top of a layer 
of common database utilities that all E-ADTs can use. Code 
to handle arithmetic and boolean expressions, constant values 
and functions is part of this layer. An important component 
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Figure 2: System Architecture 
of the utility layer is the SHORE Storage Manager [CDF+94]. 
SHORE provides facilities for concurrency control, recovery 
and buffer management for large volumes of data. It also 
provides a threads package that interacts with the rest of the 
storage management layers; PREDATOR uses this package to 
build a multi-threaded server. 

The core of the system is an extensible table in which E- 
ADTs are registered. Each E-ADT may (but does not have to) 
support and provide code for the enhancements described. As 
shown in the figure, some of the basic types like integers do 
not support any enhancements. Two E-ADTs that do support 
enhancements are sequences and relations. The important 
question to ask is: how does the interaction between sequences 
and relations occur? The answer is difficult to explain with 
meaningful examples at this stage because the sequence E- 
ADT has not yet been described. Instead, we first provide an 
isolated discussion of the sequence E-ADT . We then return to 
the issue of how sequences and relations interact in Section 4. 

3 The Sequence E-ADT 
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An important component of the model of a sequence is 
the ordering domain. Each ordering domain is modeled 
as a data type with some additional methods that make 
it an ordered type. LessThan(Pos1, PosZ), Equal(Pos1, 
Pos2) and GreaterThan(Posl, Pos2) allow comparisons to be 
made among positions. NumPositions(PosZ, Pos2) counts the 
number of positions between the two specified end points. 
Next(StartPos, N) and Prev(StartPos, N) compute the Nth suc- 
cessor and predecessor of the starting position. All ordering 
domains are registered in an extensible table maintained by the 
sequence E-ADT . Additionally, we need to capture the hier- 
archical relationship between various ordering domains. For 
instance, Figure 3 shows one set of hierarchical relationships 
between common temporal ordering domains. A table of Col- 
lapses is maintained by the sequence E-ADT . Each Collapse 

represents an edge in the hierarchy and provides methods that 
map a position in one ordering domain to a position or set of 
positions in the other domain. For example, a Collapse involv- 
ing ‘days’ and ‘weeks’ maps each day to the week it belongs 
in, and each week to the set of davs of that week. 

Figure 3: Sample Ordering Hierarchy 
As shown in Figure 1, a sequence models a many-to-one 

mapping between positions in the ordering domain and a set 
of records. As a simplification, we restrict each record to 
be mapped to a single position (the one-to-many abstraction 
is modeled by making copies of the record). In SEQ, the 
position mapping is maintained as an explicit attribute of each 
record. Although there are different storage implementations 
of sequences in the system, they all provide certain common 
interface methods: 

OpenScan(Cursor), GetNextfCursor), CJoseScan(Cursor). 
These methods provide a scan of the sequenca.in the forward 
order of the ordering domain. Any positions in the domain 
which are not mapped to a record are ignored in the scan. 

GetElem(Pos). This finds the record at the specified position 
in the sequence (or fails if none exists at that position). 

3.1 Experimental Database 

We wish to quantitatively demonstrate (a) some possible 
choices of storage techniques for sequences, and (b) the im- 
portance of various optimization techniques. The sequences 
used in the experimental database were generated syntheti- 
cally. While we could have used a real-life data set instead, 
it would have been more difficult to control various properties 
of each sequence. The properties of interest in each sequence 
are: (1) the cardinulity, i.e., the number of records in the se- 
quence, (2) the record width, i.e., the number of bytes in each 
record, (3) the density, i.e. the percentage of the positions in 
the underlying ordering domain that are non-empty. All the 
sequences have an hourly ordering domain and start at mid- 
night on 0100/01/01 (i.e. January 1st in the year 100 AD). We 
considered sequences with two different densities: 100% and 
20%. The cardinality of each sequence was either 1000 (IK), 
lOOOO( IOK) or lOOOOO( 1OOK) records. For sequences of each 
density, the final time-points are shown in Table I*. 

Notice that because of empty positions, the 20% density 
sequences span about 5 times as many positions as the 100% 

*The entries in the table are approximate since they only show the last day, 
not the last hout. 
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0100/08/16 0106/05/09 0162/l l/15 

Table 1: Synthetic Data Upper Bounds 
density sequences. The empty positions were chosen ran- 
domly so that the overall density was 20%. The first field 
of every sequence record is an SQL time-stamp value. Dif- 
ferent sequences were generated with 1, 5, 10 and 20 fields 
in addition to the timestamp. The values in the fields were 
4-byte integers generated randomly between 0 and 1000. All 
experiments were performed on a SUN-Sparc 10 worksta- 
tion equipped with 24MB of physical memory. The data was 
loaded into a SHORE storage volume implemented on top of 
the Unix file system. The SHORE storage manager buffer 
pool was set at 200 8K pages, which is smaller than the avail- 
able physical memory, but is realistic for this small sample 
database. Logging and recovery was turned off to mimic a 
query-only environment. In all the experiments, the queries 
used contain a final aggregate over the entire sequence, thereby 
minimizing any time spent in printing answers. Each query 
was executed four times in succession, the maximum and min- 
imum execution times were excluded, and the average of the 
other two times was used as the performance metric. 

3.2 Storage Implementation 

SEQ supports two repositories for sequence data, the Unix 
file system and the SHORE storage manager. The default 
repository is built using the SHORE storage manager library. 
Data volumes maintained by SHORE can reside either directly 
on raw disk, or on the file system; our experiments used the 
latter approach. A sequence can also be stored as an ascii 
file on the Unix file system. Much real-world sequence data 
currently exists in this format. It may be more expedient to 
directly run queries off this data, instead of first loading it into 
the database. Of course, this repository does not provide any of 
the database properties of concurrency control, recovery, etc. 
We studied three alternative implementations of a sequence 
using SHORE: 

File: SHORE provides the abstraction of a ‘file’ into which 
records can be inserted. A scan of the file returns the records in 
the order of insertion; this enabled us to implement a sequence 
as a SHORE file. One advantage of this implementation was 
that we could code it with minimal effort. The major drawback 
is that the storage manager imposes several bytes (at least 24) 
qf space overhead for every record, in addition to a large space 
overhead for creating a file. While concurrency control is 
available at the record level, inserts in the middle of a sequence 
are difficult to implement without an index. 

IdList: In order to eliminate the space overhead per file, a 
sequence is stored as an array of record-ids. Each such array 
is a SHORE large object, which can grow arbitrarily large. 
Each record-id occupies 4 bytes, and identifies the appropri- 
ate record. All records are created in a single “super” file. 

While the space overhead for each file is eliminated, the other 
drawbacks still remain (primarily, the storage overhead per 
record). Further, since the record-id is a logical identifier in 
SHORE, this needs to be mapped to an internal physical identi- 
fier when the record needs to be retrieved. This problem could 
be avoided by using the less portable solution of actually stor- 
ing the list of physical identifiers instead. Concurrency control 
is now at the level of the entire sequence, but inserts are easier 
to code because SHORE allows new data to be inserted into 
the middle of a large object. 

Array: In this implementation, a sequence is an array of 
records. The array is implemented. using a single SHORE 
large object which contains all the records. Since we expect 
many sequences to be irregular (i.e., have empty positions), 
we chose a compressed array representation in which no space 
is wasted for an empty position. This can dramatically reduce 
space utilization for data sets of very low density. However, 
this makes some operations within a sequence (like positional 
lookup, insert and delete) more expensive to implement. Vari- 
able length records require additional complex code. However, 
there are two important benefits to this implementation: the 
per-record space overhead is minimal and there is physical 
sequentiality for the records of a sequence. With fixed-size 
records in a mostly-query environment, this should be the im- 
plementation of choice. 

Experiment 1: We measured the time taken to scan each of the 
example sequences stored using each of the implementation 
techniques just described. A scan is the most basic sequence 
operation that is used in almost every query. Consequently, 
the time taken to scan a sequence is a suitable indicator of 
the efficiency of the storage implementation. The results for 
the sequences with density 100% are shown (there was no 
significant difference with the 20% density sequences, hence 
they have been omitted). The actual SEQUIN query run 
w&S: 

PROJECT count(*) 
FROM <data-sequence> 
ZOOM ALL; 

Figures 4.5, and 6 show the results for the sequences of car- 
dinality IOOK, IOK and 1K respectively. In all the graphs, the 
number of fields in each record varies along the X-axis, while 
the runtime is plotted on the Y-axis. For all the implementa- 
tions, the scan cost grows with the width of the records. Note 
that the SHORE Array implementation is the most efficient 
whatever the cardinality or width of the sequence. Therefore, 
in all the remaining experiments, this was the storage imple- 
mentation used. The SHORE File implementation is worse 
than SHORE Array because of the file handling overhead per 
record. IdList is the worst SHORE implementation primarily 
because of the added cost of converting from logical to physi- 
cal identifiers. The Unix ascii file implementation is the most 
sensitive to the width of the dam records because each attrioute 
needs to be parsed at run-time to convert it from ascii to binary 
format. 
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3.3 S&QLLM query language 

S&QUUf 3 is a declarative language for sequence queries, 
similar in flavor to SQL. The result of a S~QiZ~ query is 
always a sequence. The overall structure of a SE &!.4Zhf query 
is: 

PROJECT <project-list> 
FROM <sequences-to-be-merged-on-position> 
[WHERE <selection-conditions>] 
[OVER <start-window> TO <end-window>] 
[ZOOM <zoom-info>]; 

We now explain the various constructs using simple ex- 
amples based on the following sample database. Consider 
the sequences Stock1 and Stock2 representing the hourly 
price information on two stocks. Both sequences have 
the same schema: {&:Hour, high:Double, low:Double, 
volume:Integer}, tihere the ‘time’ field is underlined to show 
that it defines the order. 

The first query estimates the monetary value of Stock1 
traded in each hour when the low price fell below 50. The 
answer is a sequence with the monetary value computed for 
each such hour. 

PROJECT ((A.high+A.low)/2)*A.volume 
FROM Stock1 A 
WHERE A.low < 50; 

The query demonstrates the use of the PROJECT and 
WHERE clauses. The PROJECT clause with a target list 
of expressions is similar to the SELECT clause.of SQL.There 
is no output record for positions at which the WHERE clause 
condition fails; these are empty positions in the output se- 
quence. Since the resplt is a sequence of the desired values, it 
should have an ordering attribute; however none exists in the 
PROJECT list. In such cases, the ordering attribute from the 
input sequence is automatically added to the output schema. 

We now consider finding the 24-hour moving average of 
the difference between the high prices of the two stocks. 

3SEipence Query INterface. 

PROJECT avg(A.high - B.high) 
FROM Stock1 A, Stock2 B 
OVER $P-23 TO $P 

This query demonstrates the use of the FROM clause, and 
the OVER clause for moving window aggregates. When there 
is more than one sequence specified in the FROM clause, there 
is an implicit join between them on the position attribute (in 
this case, on ‘time’). Since this is a declarative query, the 
textual order of the sequences in the FROM clause does not 
matter. Note that the PROJECT clause uses the avg aggre- 
gate function. The set of records over which the aggregate 
is computed is defined by the moving window of the OVER 
clause. In this case, the window spans the last 24 hours, but 
in general, the bounds of the window can use any arithmetic 
expression involving addition, subtraction, constant integers 
and the special $P symbol representing the ‘current’ position 
for which the record is being generated. Empty positions in 
the input bquence are ignored as long as there is at least one 
valid input record in the aggegation window. 

Next, we show a rather complex query that demonstrates the 
possible variations in the FROM clause. The desired answer is 
a sequence containing for every hour, the difference between 
the 24-h?ur moving average of the high price of Stockl, and 
the high price of Stock2 at the most recent hour when the 
volume of Stock2 traded was greater than 25,000. The answer 
sequence is only of interest to the user after hour 2000. 
// first define the moving average as a view 
CREATE VIEW MovAvgStockl AS ( 

PROJECT avg(C.high) as avghigh 
FROM stock1 c 
OVER $P-23 TO $p.); 

// then use the view in the query 
PROJECT A.avghigh - B.high 
FROM MovAvgStockl A, 

Previous(yROJECT D.high 
FROM Stock2 D 
WHERE D.volume > 25,000) B 

WHERE .$P > 2000; 

Note that the sequences in the FROM clause may themselves be 
defined using another SE &uZn/ query block. This may be effected 
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using a view (as is the MovAvgStockl sequence A), or a nested query 
block defining a sequence expression (as is the sequence B). Three 
special modifiers with functional syntax are allowed in the FROM 
clause: Next, Previous and Offset. Previous (as in this example) 
defines a sequence which associates with every position the record at 
the most recent non-empty position in the input sequence. Remember 
that sequences need not be regular, and consequently there can be 
positions which are not associated with any records. The Previous 
modifier fills these ‘holes’ with the most recent record. Similarly, 
Next defines a sequence in which the holes are filled with the most 
imminent record. Both these modifiers can take a second optional 
argument which specifies how many such steps to take (which is 
1 by default); for example, Previous(S, 2) defines a sequence of the 
second-most recent input record at each position. The Offset modifier 
defines a sequence in which the position-to-record mapping of the 
input sequence is shifted by a specified number of positions. Finally, 
note that the WHERE clause can also use the $P notation to access 
the ‘current’ position attribute. 

The next query demonstrates the use of the ZOOM clause to ex- 
ploit the hierarchical relationship between ordering domains4. Here 
is the &?gUzN query to compute the daily minimum of the volume 
of Stock1 traded every hour. 

PROJECT min(A.volume) 
FROM stock1 A 
ZOOM days 

We assume that ‘days’ is the name of an ordering domain known 
to the system, and that there is a Collapse registered with the system 
from ‘hours’ (the ordering domain of the input) to ‘days’. The answer 
sequence has an implicit attribute of type ‘days’ that provides the 
ordering. If the resulting ordering domain is at a coarser granularity itl 
the hierarchy than the source ordering domain, as in this example, then 
the PROJECT clause must be composed of aggregate expressions. 

Our final example shows how the ZOOM clause can perform 
conditional collapses. Suppose that just as in the previous query, 
we want to compute the minimum volume of Stock1 traded over 
consecutive periods of time. However, these periods are not well- 
defined like ‘days’ or ‘weeks’. Instead, they depend on the data. 
Specifically, the periods may be bounded by those times when the 
high and low values werevery close (implying an hour of stability 
for the stock). This can be expressed as follows: 

PROJECT min(A.volume) 
FROM Stock1 A 
ZOOM BEFORE (A.high - A.low < 0.1); 

The query states that the aggregation window includes records 
upto but not including the record which satisfies the stability con- 
dition. If the last record is also to be included in the aggregation 
window, the word BEFORE is replaced by AFTER. As a final vari- 
ant, the ZOOM clause could simply be ‘ZOOM ALL’, specifying 
that the aggregation is to be performed on the entire sequence. These 
versions of the ZOOM operator generate sequences that are ordered 
by an implicit integer field that starts at value 1 and increases in in- 
crements of 1 (since this is the only meaningful sequence ordering 
for the result). 

In this paper, we have omitted discussion bf some other features 
of SE @,!ZN including a construct to re-define the ordering field of a 
sequence, update constructs and DDL features. A SEWZN query 

4The word “zoom” is used because the action of movivg down or Up 
through the ordering hierarchy is &nilar to zooming in and 3ut with a tens. 

is parsed into a directed acyclic graph of algebraic operators, which is 
then optimized by the query optimizer. We have described the algebra 
operators and some optimization techniques in [SLR95, SLR94]. 

3.4 Query Optimizations 

This section describes the effects of four categories of implemented 
optimizations. Each optimization is first explained in principle, and 
then demonstrated by means of a performance experiment. We have 
tried to keep the queries in the experiments as simple as possible, in 
order to isolate the effects of each optimization. 

3.4.1 Propagating Ranges of Interest 

This class of optimizations deals with the use of information that 
limits the range of positions of interest in the query answer. There 
are two sources of such information: one is from selection predicates 
in the query that use the position attribute. Experiment 2 demonstrates 
the benefits of propagating such selections into the sequence scans. 
The other source is from statistics on the valid ranges of positions 
in each sequence. These valid ranges can be propagated through the 
entire query as described in [SLR94]. Experiment 3 demonstrates 
how the valid-range can be used for optimization. 
Experiment 2: 

PROJECT count(*) 
FROM 100K~10flds~100dens S 
WHERE S.time > "<timestampl>" 
ZOOM ALL; 

This query is a variant of the query used earlier to measure the 
performance of a sequence scan. In this case, the scan is over only a 
portion of the sequence. SEQ can optimize the query by pushing the 
selection predicate into the scan of the sequence. Since the default 
implementation of sequences in SEQ expects irregular sequences and 
uses a compressed Array implementation, there is no simple way to 
directly access a speoific position. If the selection range is from Posl 
to Pos2, the first record within the range (at Posl) is difficult to locate 
exactly. Based on the density of the sequence, the valid range of the 
sequence, and the desired selection range, SEQ performs a weighted 
binary search to get close to the correct starting position. However, 
if the query is modified so that the > is replaced by a < (i.e. the 
desired range is at the beginning of the sequence), then the binary 
positioning is not needed. 

We studied the effect of varying the predicate selectivity from 
1% to 100%. We ran the experiment twice, once with the selection 
windows at the start of the valid-range (atstart), and once with 
the selection windows at the end(at-end). Three algorithms were 
considered: no selection push-down (NOPD), simple push-down 
with no binary-positioning (ORDPD), and selection push-down with 
binary positioning (BPPD). 

The results for atstart are shown in Figure 7. The predicate 
selectivity is shown on the X-axis, and the query execution time is on 
the Y-axis. While there is no difference between BPPD and ORDPD 
(since the predicate is at the start of the window), NOPD perfomls 
much worse because the entire sequence is scanned. As the selectivity 
increases, all the algorithms become more expensive because there is 
additional work being done in the final count aggregate. 

The results for at-end are shown in Figure 8. The performance of 
NOPD is the same as in the atstart experiment. The performance 
of BPPD is almost the same as in the atstart experiment, because 
it is able to use the selection information to position the scan at the 
appropriate start position. On the other hand, ORDPD cannot do 
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Figure 7: Range Selections At Start: Expmt. 2 
this, and therefore scans the entire sequence. However, ORDPD 
can apply the selection predicate at a lower level in the system and 
therefore performs better than NOPD. Note that the BPPD algo- 
rithm, which performs best, can only be applied if the valid range and 
density statistics are maintained for the sequences. 
Experiment 3: 

// View applies selection to the base sequence 
CREATE VIEW ViewSeq AS ( 

PROJECT A.fld2 
FROM a100K~10~100 A 
WHERE A.fldl > 900); 

// Merge B with offset ViewSeq' 
PROJECT count(*) 
FROM lOOK~5flds~lOOdens B, 

Offset(ViewSeq, <offset-distance>) C; 

This query joins two sequences on position; however, one of the 
sequences is first shifted by some specified number of positions. Each 
of the base sequences in this query has 1OOK records spanning an 
identical range (see Table 1). However, since one of them is shifted, 
neither of the sequences needs to be scanned in its entirety; only 
the mutually overlapping region needs to be scanned. This is shown 
intuitively in Figure 9. The valid-range propagation optimization is 
able to recognize such optimization opportunities in all SEQ queries. 

We varied the overlap from 90% of the valid-range to 109b, and 
executed the query with (RNGPROP) and without (NOPROP) the 
valid-range optimization. The results are shown in Figure 10. The 
smaller the overlap between the two sequences, the better is the 
relative performance of RNGPROP. The difference between the two 
lines is due to the work saved in scanning the sequence. 

3.4.2 Moving Widow Aggregates 

All aggregate functions in SEQ (used in both relational and sequence 
query processing) are implemented in an extensible manner. Each 
aggregate function provides three methods: Initialize(), Accumu- 
late(record), Erminutef). This abstract interface allows the aggrega- 
tion operator to compute its result incrementally, independent of the 
specific aggregate function computed. The presence of moving win- 
dow aggregates in SEQ creates new opportunities for optimization. 
Note that in relational aggregates, the input data is partitioned into 
disjoint portions over which the aggregation is performed. Contrast 
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Figure 8: Range Selections At End: Expmt. 2 
this with the moving window sequence aggregates in which there 
is an overlap between successive aggregation windows. For exam- 
ple, consider the 3-position moving average of a sequence 1,2,3,4,5. 
Once the sum 1 + 2 + 3 has been computed as 6, this computation 
can be used to reduce the work done for the next aggregate. Instead 
of adding 2 + 3 + 4, one could instead compute 6 - 1 + 4. Due to 
the small aggregation window in this example, there is little benefit. 
However, when the windows become larger and the operations are 
more expensive, there can be significant improvements due to this ap- 
proach. Importantly, the time required for aggregation is independent 
of the size of the window, 

While some aggregates like Count, Sum, Avg and Product are 
directly amenable to this optimization, others like Min. Max, Me- 
dian and Mode are not. We call this the symmetry property of an 
aggregate function. In order to exploit the symmetry property in an 
extensible manner, we require each aggregate function to provide 
two more methods: IsSynrmeftic~) and Dmp(nxo~$. Experiment 4 
demonstrates the importance of exploiting symmetric aggregates. 
Experiment 4: We considered queries of the form 

/! Define the moving aggregate 
CREATE VIEW MovAggr AS 

(PROJECT <aggr-function>(S.fldl) 
FROM <data-sequence> S 
OVER $P-<window-size> TO $P); 

// Count records to minimize printing 
PROJECT count(*) 
FROM MovAggr 
ZOOM ALL; 

Moving window aggregates are among the most important se- 
quence queries posed in stock market analysis applications. Our 
example query is the simplest form of a moving aggregate (with 
a final count operator thrown in as usual to eliminate the time 
for printing answers). This experiment was restricted to 0nIy the 
1OOKXlcolsXOdens and lOOK-1OcolsLXklens sequences. Tbe 
window size was varied from 5 to 100, while the aggregate func- 
tions tried were MIN (non-symmetric) and AVG(symmetric). 

The results for the 100% density sequence are shown in Figure 11. 
Notice that the performance of MINlOO grows linearly with the.size 
of the aggregation window. This is because the entire aggregation 
window has to be processed for each MIN aggregate computed. In 
comparison, the performance of AVG 100 is almost independent of the 
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Figure 11: Expmt.4: 100% Density 
size of the aggregation window. The slight dependence of AVGlOO 
on the window size has an interesting reason. Given a particulat 
timestamp, it is more expensive to compute the 100th previous times- 
tamp, than the 10th previous timestamp. Simple arithmetic cannot be 
applied to temporal ordering domains because the variable number 
of days in a month has to be accounted for. 

The results for the 20% density sequence are shown in Figure 12. 
Note that a moving aggregate over a sequence with holes generates 
many more records than exist in the input sequence. Assume that 
there is an input record at hour 100 and the next record is at hour 102. 
A 3-hour moving aggregate sequence has a value at hour 101 as well, 
because there is at least one record in its aggregation window from 
hour 99 to hour 101. This explains why the cost of both aggregates 
increases with window size. Since the density is low (20%). them 
are also fewer records in each aggregation window, and the relative 
difference between the AVG20 and MINZO grows more slowly with 
the size of the aggregation window. The relative difference between 
AVGZO and MIN20 at window size 100 is about the same as the 
relative difference between AVGlOO and MINlOO at window size 20. 
This is to be expected, because the ratio of the densities of the two 
sequences is also ltXk20. 
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Figure 10: Range Propagation: Expmt. 3 
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Figure 12: Expmt.4: 20% Density 
3.4.3 Common Sub-Expressions 

The same sequence may be accessed repeatedly in different parts of 
a query. For example, the following query compares the values of 
a moving average at successive positions looking for stability in the 
stock prices. 

// View: moving average over last 24 hours 
CREATE VIEW MovAvgStockl AS 

(PROJECT avg(S.high) as avghigh 
FROM Stock1 S 
OVER $P-23 to $P); 

// Check change in moving average 
PROJECT * 
FROM MovAvgStockl Tl, Offset(MovAvgStock1, 1) T2 
WHERE Tl.avghigh - T2.avghigh < 10. 

Figures 13 and 14 show two possible algebraic query graphs that 
can be constructed from this query. The meaning of each query graph 
is obvious. The difference between the two query graphs is that one 
uses a common sub-expression, while the other does not. Common 
sub-expressions occur frequently in sequence queries, so this is an 
important issue. When a query graph with a common sub-expression 

106 



------------------------ 
I 
I 

Project l 

I 
1 

I 

Select 

I 
Tl .avghigh - TP.avghigh 10 

Figure 13: Graph 1: Repeated Computation Figure 14: Graph 2: Common Sub-Expression 
is constructed for a relational query, the query optimizer chooses one rializing the intermediate result, the next experiment will show that 
of two options. One option is to repeatedly evaluate the common sub-. 
expression; this is equivalent to using the version of the query graph& 

materialization is very inefficient in general. 

without a common sub-expression(Figure 13). The other option is 
to compute the sub-expression once, store the result, and repeatedly 
access the stored result. For sequence queries, we will show that 
materializing intermediate results is not a desirable option. 

By an analysis of the query graph and the scopes of the various 
operators involved, SEQ can determine exactly how much of the 
common sub-expression result should be cached, so that the entire 
query can be evaluated with a single stream access of the common 
sub-expression. In other words, neither is the common-subexpression 
evaluated multiple times, nor is it materialized [Ses96]. 
Experiment 5: We ran the very same query shown above (except 
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Figure 15: Common Subexpressions: Expmt. 5 
that the Stock1 sequence was replaced by lOOK-lOflds-lOOdens). 
We varied the size of the aggregation window from 10 to 100; as 
the window size increases, so does the cost of the common sub- 
expression. The query execution time was measured with the SEQ 
optimization (Common-Subexp) and with repeated evaluation (Re- 
Computed). The results are shown in Figure 15. The common sub- 
expressionoptimization used by SEQ obviously performs much better 
than repeated evaluation. As the cost of the common sub-expression 
increases (i.e., as the window size grows), this optimization becomes 
extremely important. While we have ignored the possibility of mate- 

3.4.4 Operator Pipelining 

An important optimization principle in SEQ is to try and ensure 
stream access [SLR94] to the stored sequence data as well as to 
intermediate data; i.e., each sequence is read in a single continuous 
pipelined stream without materializing it. This is accomplished by 
associating buffers with each operator, tocache some relevant portion 
of the most recent data from its inputs. In our example of the hourly 
sequences, a 24-hour moving aggregate would need a buffer of no 
more than the 24 most recent input records. This ‘window’ of recent 
data is called the scope of the operator. All the operators in the 
algebra have fixed size scopes in a particular query. Consider the 
simple query below that scans a sequence and computes an aggregate 
over the entire data: 

PROJECT count(*) 
FROM -data-sequence> 
ZOOM ALL; 

Experiment 6 will show that there is a tremendous penalty to pay 
for failing to pipeline even such a simple query between the Scan 
operator and the Count operator. Experiment 7 shows that when the 
query becomes complex, with several nested operators, the relative 
importance of pipelining becomes even more clearly defined. 
Experiment 6: We ran the query shown above ovtr all the sequences 
in the sample database. The results with the pipelining optimization 
(Pipelined) and without it (Materialized) are shown in the 3-D graph 
of Figure 16. The number of columns in each record varies along 
the X-axis, while the sequence cardinal&y varies on a logarithmic 
scale on the Y-axis. The Z-axis shows the query execution time on a 
logarithmic scale. Once again, we only show the results for the 100% 
density sequences (the 20% density results are similar). Notice that 
materialization increases the cost by almost an order of magnitude! 
Experiment 7: In this experiment, we want to show the effects of 
increased query complexity on materialized execution. Section 3.3 
had several examples of non-trivial queries. By using the view mech- 
anism, many complex queries can be generated. It is difficult to 
choose a single representative for all complex queries. Instead, since 
the purpose of this experiment is to isolate and study the performance 
of pipelining and materialization, we use a query that, though not 
intuitively meaningful, can be varied in a controlled manner. We 
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Figure 16: Pipelining: Expmt. 6 
consider one particular data sequence (lOOK-lOflds-lOOdens) and 
vary the number of levels of operators in the query from 2 to 10. For 
instance: with 4 levels, the corresponding SEQUIN query is 

PROJECT count(*) 
FROM (PROJECT * 

FROM (PROJECT * 
FROM 100K~10flds~100dens),) S; 

ZOOM ALL; 

We disabled the SEQ optimization that merges consecutive scans 
which would otherwise reduce all these queries to a common form. 
The results with and without the pipelining optimization are shown 
in Figure 17. The X-axis shows the number of levels of nesting in 
each query, while the Y-axis shows the query execution time. Notice 
that while the cost of the default SEQ execution with pipelining 
grows moderately (due to the presence of more operators on the 
query execution path), the cost of the materialized execution grows 
dramatically with the complexity of the query expression. 

4 Combining Sequences and Relations 
We now return to the issue of how sequences and relations interact in 
PREDATOR. The important questions are: how does a query access 
both relational and sequence data, how does optimization of this 
query occur, and how is the query evaluated? In order to discuss 
these questions, we slightly extend the example that we used to 
explain the S&QUzn/ language in Section 3.3. Consider a relation 
Stocks of securities that are traded on a stock exchange, with the 
schema (name:String, stockAstory:Sepence) . The stockhistory is 
a sequence of hourly information on the high and low prices, and the 
volume of the stock traded in each hour. 

4.1 Nested Language Expressions 

In this example, since the sequence data is nested within the relational 
data, it is appropriate for the user to think of the relational E-ADT as 
the top-level type. A query will therefore be posed in the relational 
query language (SQL) with nested query expressions in the sequence 
query language (S&QUZV). 
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Figure 17: Pipelining: Expmt. 7 
Let us consider the SQL query to find for each stock, the number 

of hours after hour 3500 when the 24-hour moving average of the 
high price was greater than 100. 

SELECT S.name, SEQUINS 
"PROJECT count(*) 
FROM (PROJECT avg(H.high) as avghigh 

FROM $1 H 
OVER $P-23 TO $P ) A 
WHERE A.avghigh > 100 AND $P > 3500 
ZOOM ALL", 

S.stock-history) 
FROM Stocks S; 

The SQL query has the usual SELECT clause target list of ex- 
pressions. One of these. expressions is a S&QUzn/ query, whose 
syntax is functional. There is one such implicit function for every 
E-ADT language registered in the system. The first argument to the 
S&QUzn/ function is a query string in that language. Any param- 
eters to be passed from SQL (the calling language) to the embedded 
query in SEQUIN are provided as additional arguments. These 
parameters are referenced inside the embedded query using the po- 
sitional notation $1, $2, etc. In this particular query, the passed 
parameter (S.stockhistory) is a sequence. Note that the SQL lan- 
guage parser does not know about the grammar of the embedded 
language, and merely treats the S&QUZJZl subquery as a function 
call whose first argument is some string. For the SQL parser, this 
query is treated in the same manner as the following query would be: 

SELECT S.name, Foo("hello", S.stock-history) 
FRbM stocks S; 

As part of the type-check of the SQL query, the type of the 
SEQUN function is also checked. This causes the embedded 
S&QUzn/ query to be parsed by the parser of the sequence E-ADT . 
It is no longer sufficient to identify the type of every parameter 
passed. In this example, the parameter is of a sequence type, but 
this is not sufficient to type-check the embedded query. The schema 
information for the sequence must also be specified along with the 
type. This implies that throughout the system code that handles 
values and expressions, meta-information like the schema must be 
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maintained as part of the type information. The return type of the 
SEQKTN query expression is a sequence as usual. Expressions of 

, a particular type may be cast to another type using cast functions that 
are registered with the system. The cast mechanism is also used to 
convert sequences into relations. The cast from relations to sequences 
additionally requires the specification of the order attribute. 

When optimizing a nested query, each E-ADT is responsible for 
optimizing its own query blocks. Since the nested languages are intro- 
duced in the guise of functions, each optimizer must be sure to ‘plan’ 
any function invoked. Planning a function like S&QWN causes 
the optimization of the embedded query to be performed. In this ex- 
ample, the SQL optimizer is called on the outer query block, and the 
SEQUIN optimizer operates on the nested query block. There is 
currently no optimization performed across query blocks belonging 
to different E-ADTs . During execution of the SQL query, the nested 
SE &UIN expression is evaluated just as any other function would 
be. There are several other implementation details that are described 
in [Ses96]. 

4.2 Comparison with Existing Systems 

Some current systems like Illustra [I11941 support sequences (more 
specifically, time-series) as ADTs with a collection of methods pro- 
viding query primitives. A query is a composition of the primitive 
functions or methods. Here is approximately how the example of the 
last section would be written using ADT methods: 

SELECT S.name, 
count(filter("time z 3500", 

filter("high > loo", 
mov-avg(-23, 0, 

project("time,high",S.stock-history))))) 
FROM stocks S; 

The user writes the query using SQL, but the part of the query that 
manipulates the time-series uses a composition of special time-series 
primitive functions. Note that a query language based on function 
composition can be more awkward to use than a high-level language 
like S&QUZN. In just the same way, it is often easier to express a 
complex query in SQL than in the relational algebra. 

The more important observation is that there are several equiva- 
lent different functional expressions that could be used in this query. 
These different alternatives are not considered by the system. While 
queries in SE QUZN are declarative, queries based on the functional 
composition of methods have a procedural semantics. When a query 
expression involves the composition of more than one of these meth- 
ods, little or no inter-function optimization is performed, and each 
individual method is evaluated separately. While we did perform a 
performance comparison with Illustra [11194], we are not permitted to 
discuss those results. Instead, we provide a qualitative comparison. 

Experiments 6 and 7 showed that materialization can perform an 
order of magnitude worse than pipelining with stream-access. In 
the ADT-method approach, pipelining is not possible without inter- 
function optimization. The simple query of Experiment 6 is expressed 
in a form similar to Count(Scan(S)). Since methods are independently 
evaluated, the result of the scan is materialized, and then the count of 
this materialized result is computed. The optimizations that propa- 
gate valid ranges and selection predicates (Experiments 2 and 3) once 
again require the ability to push range selections from one function 
to another. Consequently, ADT-method based systems do not exploit 
these optimizations. Experiment 5 showed that the common sub- 
expression optimization could reduce query execution time by almost 

a factor of two. An ADT-method approach cannot identify common 
sub-expressions without inter-function optimization, let alone take 
advantage of them to optimize query execution. Putting these to- 
gether, the ADT-method approach is unable to apply optimization 
techniques that could result in overall performance improvements of 
approximately two orders of magnitude! We should stress that these 
differences are symptoms of a basic design difference between SEQ 
and ADT-method systems. In order for these systems to derive some 
of the efficiencies of the SEQ approach, they will have to adopt some 
or all of the system design used by SEQ. We have elaborated on this 
at length in [SLR96, Ses961. 

5 Related Research 
Research work directed at modeling time-series data [SSg7, CS92, 
St0901 provided initial direction to our efforts. The model of a time- 
series in [SS87] is similar to ours, and an SQL-like language was also 
proposed; implementation issues-were discussed in the context of how 
the model could be mapped to a relational data model.The Tangram 
Stream Processor [St0901 uses transducers and stream processing to 
query sequences in a logic programming context; there are many 
similarities between the stream processing ideas in this work and 
in SEQ. The dual nature of sequences (Positional versus Record- 
Oriented) is recognized by the temporal query language of [WJS93]. 
The extensive work on temporal database modeling, query languages, 
and query processing [TCG+93] is mostly complementary to our 
work, because it involves changes to relations and to SQL [TSQL94]. 
However, it would be interesting to study how time-ordered sequences 
can be efficiently converted into relations with time-stamps, and vice- 
versa. 

While most object-oriented database proposals include construc- 
tors for complex types likelists and arrays [VD91, BDK92], they can 
either be treated as collections, or manipulated using a primitive set 
of methods; no facilities for sequence queries are provided. The work 
described in [Ric92] is an exception, and proposes an algebra based 
on temporal jogic to ask complex queries over lists. There have also 
been languages proposed to match regular patterns over sequence 
data [GW92, GJS921, and the proposal of [GJS92] has been imple- 
mented as an event recognition system. This work is complementary 
to ours, since SEQ is oriented to more traditional database queries, 
and currently does not have powerful pattern-matching capabilities. 

6 Conclusions 
We have described the design and implementation of the support for 
sequences in SEQ. The primary contribution of this research is to 
underscore the importance of algebraic optimization for sequence 
queries along with a declarative language in which to express them. 
We have demonstrated the effects of query optimization by means of 
performance experiments. The PREDATOR system (of which SEQ 
is a component) supports relational data as well as sequence data, 
using a novel design paradigm of enhanced abstract data types (B- 
ADTs ). The system implementation based on this paradigm allows 
sequence and relational queries to interact in a clean and extensible 
fashion. 

We have compared the merits of our approach with the alternative 
ADT-method approach used by some current systems. If issues like 
usability and performance are important, our conclusion is that it is 
inadequate to rely upon procedural methods of a sequence ADT to 
express queries. 

There are many sources of sequence data that will pose future 
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challenges to the system implementation. The most exciting of 
these are real-time sequences (where the implementation of query 
eVa]UatiOn may have to be modified to use one thread to read each 
real-time sequence), sequences stored on tape (where stream access 
becomes absolutely critical for performance) and multi-dimensional 
sequences (where the zooming features may have to be enhanced 
to allow’ queries that drill down and up the dimensions). There are 
also several open research issues in the design of systems based on 
the E-ADT paradigm, and in extensions of the paradigm to handle 
optimizations that span data types. 
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