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Abstract 

With the advent of the Internet, access to 
database servers from autonomous clients will 
become more and more popular. In this paper, 
we propose a monitoring service that could be 
offered by such database servers, and present 
algorithms for its implementation. In contrast 
to published view maintenance algorithms, we 
do not assume that the server has access to 
the original materialization when computing 
differential view changes to be notified. We 
also do not assume any database capabilities 
on the client side and therefore compute pre- 
cisely the required differentials rather than 
just an approximation, as is done by cache 
coherence techniques in homogeneous client- 
server databases. The method has been im- 
plemented in ConceptBase, a meta data man- 
agement system supporting an Internet-based 
client-server architecture, and tried out in 
some cooperative design applications. 

1 Introduction 

Facilitated by the Internet, wide-area access to 
database servers by autonomous clients (which may 
or may not have local databases) is becoming more 
and more popular (figure 1). To reduce application 
programming effort, such clients demand more sophis- 
ticated services than the simple read and write trans- 
actions offered by current standards such as RDA. 
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An obvious candidate is a monitoring service. The 
client does not only request the initial answer to a 
certain query but also notifications about changes in 
this answer over an extended period of time, with a 
specified quality of service in terms of precision and 
actuality. 

Database monitoring is not a new problem. Even in 
central databases, it is needed for notifying application 
programs or end-users about integrity violations [l] , or 
to assist users in supervising complex processes (stock 
trading, power plants, . ..). A more recent example is 
group awareness in cooperative engineering: design- 
ers working on a certain aspect of a product should 
be made aware of concurrent changes in requirements 
or by other designers. Yet another step towards the 
open electronic Internet market is change propagation 
in data warehousing [23, lo]. 

Traditional database systems leave the responsibil- 
ity of keeping informed about updates largely to the 
client. Since the client cannot know what changes have 
happened, it must repeat queries in a polling mode. 
Even worse, although the server must re-compute the 
whole query each time, the client usually must in addi- 
tion compute the differentials to highlight themto the 
end-user, thus duplicating a lot of DBMS functionali- 
ties. 

Active database technology offers a partial solu- 
tion by triggers that can produce effects outside the 
database. Distributed programming languages such 
as Java moreover allow the server to add certain func- 
tionalities to client programs, e.g. ensuring that they 
can accept change notifications and relate them to the 
original query. Recently, our group has also developed 
a ‘coherency index’ and corresponding extensions to 
distributed transaction management by which timeli- 
ness of service can be tailored to customer wishes [3]. 

However, the question how to compute the neces- 
sary changes is not answered by these base technolo- 
gies if the view definition is reasonably complex or if 
views are defined on top of each other (possibly with 
recursion). The corresponding trigger programs be- 
come so complex that it is not conceivable they could 
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Figure 1: Client-server architecture for database applications 

be written by client developers. 
The published view maintenance algorithms [5] do 

not fully solve the monitoring problem since they as- 
sume that views are materialized logically within the 
database, either within the server or by endowing the 
client with DBMS capabilities plus a local database 
cache (AP3 in figure 1). Such a cache gives the sys- 
tem a lot of flexibility when to propagate changes, and 
with what precision [15, 81, but is easily possible only 
within a homogeneous environment. Moreover, it just 
shifts the problem from the client-server communica- 
tion to the database-interface communication within 
the client. 

In this paper, we present two related algorithms 
for a monitoring service. The first one, reported in 
section 3, assumes that the server maintains a local 
view materialization in addition to the external one. , 
It achieves the precision of state-of-the-art incremen- 
tal view maintenance techniques by a purely declara- 
tive rule program, rather than resorting to procedural 
components [6] or meta predicates [9]. 

This declarative approach is important because it 
is a prerequisite for the second algorithm in which the 
server only remembers the view definition to be moni- 
tored (section 4); we have not found a solution for this 
problem in the literature. The algorithm neither main- 
tains a server-side materialization nor has it access to 
the external client-side materialization. It also elimi- 
nates the need for client-side computing of view differ- 
entials as these are precisely computed and sent by the 
server. The basic idea is to further rewrite the mainte- 
nance rules into trigger rules that selectively re-derive 

the pieces of an externally materialized view needed for 
computing the client-view differentials, using a stan- 
dard DBMS query evaluator. As a consequence, the 
approach advocated here could also be used by a medi- 
ator that operates on top of a collection of distributed 
source databases [22]. 

The embedding of the algorithm in a full monitoring 
service is illustrated in section 5, by briefly describing 
its implementation and initial application experiences 
in ConceptBase, a meta database management system 
supporting a deductive object data model and oper- 
ating in an Internet-based client-server architecture 
Section 6 discusses related work and open issues. 

2 Notations and Example 

2.1 Notation and Prerequisites 

The algorithms in this paper are presented in a Data- 
log formalism [21] although they apply equally to other 
extended relational database languages’. A deductive 
database consists of a set of base relations EDB and a 
set of rules defining intensional relations IDB: These 
rules are of the form 

p(T+h(&) ,‘..) L(.c) 
where p is a predicate symbol corresponding to a 

relation in IDB, the Zi are literals of the form ri or 7 ri 
for relations pi and 2, Zi are non disjunct sequences 
of constants and variables. For readability, we omit 
variables in the following. We assume that all rules 
are safe: variables occuring in the rule head occur in 

‘For example, our implementation uses the deductive object 
language Telos [ 121. 
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Figure 2: (a) Changes in the database (b) Changes in the view 
the rule body, too, and variables appearing in negated 
predicates are bound through some additional positive 
literals in the rule body. 

Intensional relations may represent views of appli- 
cations; in this case, we call the derivation rules viev 
definitions. Query optimization algorithms such as the 
magic set transformation [21] convert these view defi- 
nitions into sets of query rules which are more suited 
for an efficient bottom-up query evaluation procedure. 
An intensional relation is materialized if its derived 
extension is stored in the database. 

Update transactions on base relations have to be 
propagated through the rules towards the view rela- 
tions in order to provide notifications to the affected 
client applications. The base data updates for a re- 
lation r are assumed to be available as relations rins 
and rde’. They are applied to r after the process of 
computing their consequences on derived views. In 
general, the set of views that has to be checked for 
changes is based only on a restricted subset of the IDB 
rules that can be determined easily, e.g. by a rule/goal 
graph [21]. 

2.2 Incremental View Maintenance: An Ex- 
ample 

The following simple scenario illustrates the problem 
of maintaining views on the database managed by ex- 
ternal client tools. An extensional database relation 
edge represents a directed graph, and a view main- 
tained by a graph display tool contains the transitive 
closure of this graph. The view definition defines an 
intensional relation closure by two Datalog rules: 

RI : closuTe(z, y) : - edge(z, y). 
R2 : closwe(z, y) : - edge(z, z), closure(t, y). 

A sample extension of edge is shown in figure 2 (a). 
It has a subgraph G’ where g is the only node that is 
connected with nodes occuring in G’. G’ is interpreted 

as the rest of relation edge which is not touched by up- 
date operations. G’ may be a very large graph and the 
computation of its transitive closure G’* is expensive. 

When starting up, the graph display tool asks the 
database to compute the extension of closure(z, y). It 
loads the result into its memory, transforms it into its 
local data structure and displays it on the screen as in 
figure 2 (b). 

Now consider the following updates on the base 
relation edge: a delete operation for the tuple 
{edge(b,c)}; and an insert operation with the tuple 
{edgeh 4). 

The recent literature on incremental view mainte- 
nance seems to converge on a three-step consensus pro- 
cedure [9,6] that computes view differentials for a wide 
range of view definitions, including negation and ag- 
gregate functions: 

l estimate the consequences of deletions 
The deletion cuts off the relationship between 
nodes b and c which results in an elimination of 
the links {(a,c>,(a,g>,(b,c>,(b,g)). 

l prune those derived deletions for which al- 
ternative derivations exist 
Despite of the cut link (b, c) e and f are still con- 
nected with c and g since there are additional cor- 
responding paths in the graph via node d. 

l add the consequences of insertions 
The insertion yields three new links 
Wv%h4>hd~. 

Some special cases allow for faster counting algo- 
rithms, some complex cases (e.g. duplicates) require 
additional treatment. While most formal results have. 
been developed in a Datalog context, results have 
also been transfered to active relational databases [2], 
multi-databases and data warehouses [23, lo]. 
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3 Incremental Maintenance of Materi- 
alized Views: A Declarative Solution 

In this section, we present the first group of algorithms 
which assumes that views are in fact materialized not 
only in the external client but also in the server. 

Our algorithm (section 3.1) follows the three-step 
approach just shown. However, it rewrites the origi- 
nal view definitions to a purely declarative program of 
maintenance rules rather than one that is mixed with 
procedural steps [S]. We also need less assumptions 
than [9] who uses meta predicates for control and ad- 
ditionally requires not only the old state but also the 
new state of all extensional and intensional relations 
to be completely available. 

3.1 Generating Maintenance Rules 

Generating view maintenance rules requires rewriting 
the original view definitions in order to incorporate 
differentials in the rule bodies and heads. A given 
view definition 

(0) :p:-rl,...,m. 
is rewritten to a set of maintenance rules whose eval- 

uation will compute the set of implicit insertions and 
deletions to be propagated. The rules are formulated 
in a way that mimicks the rough algorithm mentioned 
in the previous section. 

The first subset of maintenance rules consists of the 
following rules (1 <_ i 1. n): 

(0;) :pdel:- Tl,..., Ti-l,Tp’,Ti+l,..., Tn. 
(A$) : pnew : - p, 1pd=l. 

The (Di) 1 d ru es erive all possible deletions of tuples 
in relation p caused by deleted tuples in body relations. 
If ri is a base predicate, rpL contains the explicitly 
deleted facts in ri otherwise it contains a superset of 
the tuples to be deleted in ri due to deletions caused 
by other rules. The rule (Ni) computes those tuples 
that definitely remain for p in the new database state. 
For all base predicates among the ri a rule (N,!) does 
exactly the same’: 

@vi) : ry=w :-r;, +. 
Rule R checks which tuples in pde’ have alterna- 

tive derivations on the “minimal” new database state 
gained so far. Those tuples are put back into pflew by 
rule (Ns). 

(R) : p=d: - pd=l,r;ew,. . . ,?-new. 
(Nz) : pn=w : - p=d, 

The next rules propagate insertions of base relation 
tuples towards the intensional relations. This is done 
by ordinary semi-naive rewriting, i.e. by constructing 
rules (1;) that join new tuples inserted into one body 
relation with full extensions of all others. The newly 
derived insertions in addition have to be put by (iVs) 

2A corresponding rule for intensional predicates is generated 
when compiling one of their defining rules. 

into the .new state of p The same must also be done 
for all base predicates among the ri by rules (N,!‘). 

(Ii) : pins : - TTew,. . ,Tr:r,Tfns,T$;U,. ,T,new. 
(I%) : p”‘W : - pins. 
(N:‘) : ryW : - p, 

Finally, the net insertions and deletions have to be 
computed by relations pPluJ and pminus. Those tu- 
ples with only additional derivation paths are no real 
(but idle) insertions. Tuples loosing a derivation path 
but still being supported by others or even newly in- 
troduced ones are no real (but phantom) deletions. 
Note, that the other two types of update abnormali- 
ties, namely idle deletions and phantom insertions are 
already prevented by rule (Ni) resp. may arise in case 
of negated body predicates only. The latter case is 
discussed below and can be overcome by stratification 
and a suited initialization of the ins and de1 predicates 
on each evaluation layer. 

(El) : pplua : - pi**, 1p. 

Example 1 (Generating view maintenance rules) 
We continue the example from section 2.2 by rewrit- 

ing rule RI as follows: 

(01) : doswede (x, y) : - edgede’(x, y). 
(Nl) : closureneW (2, y) : - closure(x, y), ~closuredel(x, y). 
(IV:) : edgeneW(x, y) : - edge(x, y), Tedgede’(x, y). 
(R) : closurered (x,y):-closurede’(x,y),edgeneW(x,y). 
(N2) : clo~u~~~~~(x, y) : - cloyered(x, y). 

(II) : closwe’*‘(x, y) : - edgefns(x, y). 

(N3) : closufenew(x, y) : - closurein*(x, y). 
(IV;) : edge”““ (x,y):-edgeinS(x,y). 

(El) : closu7-eP*~b(x, y) : - closurein”(x, y), 72losure(x, y). 
(Ez) : closure”“““* (x, y) : - closure de’b,Y), 

-closwe~~~, “yi, 
Tclosure 2, . 

Transformation of rule R2 yields the following ad- 
ditional rules3 

(Dl) : clo.9wede’(x, y) : - edgede’(x, z), closvre(e, y). 
(D2) : doswede* (2, y) : - edge(x, z), closurede’(z, y). 
(R) : closurered(x, y) : - clo.w-ede’(x, y), edgenew(x, z), 

closweneW(z, y). 
(II) : closweins(x, y) : - edge’““(x, t), closwenew(z, y). 
(12) : closweina(x, y) : - edgenew(x, z), closureins(~, y). 

0 

Algorithm 1 summarizes the transformations dis- 
cussed so far. 

Algorithm 1 (Generating maintenance rules) 
Input: Aruleoftheform (0) :p:-TI,...,T,. 

Output: A set M of maintenance rules for (0). 

3The rules (N;),(Ni),(N,!I) and (Ei) are the same for both 
RI and R2. 
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begin 
M := 0; 
for i:= 1 to n do 

generate rules (0;) and (Ii); 
M := MU {(oi), (A)} od; 

for j:= 1 to n 
if rj is base relation then do 

generate rules (N,!) and (NJ!‘); 
:= Mu{(iV!) (I’?‘)} od 

generate rulZ (I%), (Nz), (kj, $31, (El), (Ez); 

M := M U {WI), Vz), (RI, W3), (Ed, (~72)); 
return M 
end Cl 

The following theorem shows that evaluating the 
rewritten rules generated by algorithm 1 is a sound 
and complete procedure for computing the differen- 
tials between the database states before and after an 
extensional update operation takes place. 

Theorem 1 Let Sold and 27”“” be the old resp. new 
database state concerning a given set of base data up- 
dates. Moreover, assume SpOld and Siew to be the 
tuples belonging to a relation p, where Ssld is mate- 
rialized for each p as its extension. Then for each 
p the evaluation of the rules generated by algorithm 
1 yields the exact positive and negative differentials 
splus and sminus as extension of pPlus and pminUs 
&, that ,,:W = sold \ ShWS " SPlUS and pinus c 

Sold A Sold n SPluS = 0 where SPluS .- .- UpStus and 
sminus := Up cginw. 

Proof. The proof is given in [17]. cl 

3.2 Evaluation with Access to View Caches 

The maintenance rules in example 1 make obvious that 
it is necessary to access the old contents of closure 
before the base data update operations took place. 
Bottom-up evaluation approaches like [6] therefore re- 
quire that the intensional relations involved are com- 
pletely materialized. The view maintenance process 
then consists of an evaluation of the generated mainte- 
nance rules, without using the initial view definitions. 

Some of the generated rules contain negated predi- 
cates in the body even though the original rules were 
pure Datalog rules. For evaluating these rules the 
predicates have to be partitioned into strata such that 
no two predicates in one stratum depend negatively on 
each other and predicates may only called negatively 
by predicates of a higher stratum. Note, that algo- 
rithm 1 guarantees stratifiability because the transfor- 
mation itself keeps this property and the newly intro- 
duced predicates may not cause side effects with other 
rules. The evaluation proceeds stratum-by-stratum 
starting with the extensional predicates. 

Example 2 (Evaluating view maintenance rules) 
For our example the following strata can be ob- 

tained: 
SO = {edge, closure, edgedel, edgeins} 
SI = {doswede’, edgenew} 
Sz = {closureneW, Closurered, closureinS, dosuTepl”s} 
S3 = {cZosu~eminus} 

Let edge = ((f,e),(e,d),(e,a),(a,b),(d,c),(b,c), 
(c, g)} U edge’ as in subsection 2.2 where edge’ (with 
closure edge’*) represents the independent subgraph 
G’ (G’*, resp.). The transitive closure of edge is the 
relation closure as displayed in figure 2. The exten- 
sional update relations are given by edgede’ = {(b, c)} 
and edgeins = {(h, d)}. 

s1: 
It. 1: 

It. 2: 
It. 3: 
It. 4: 
s2: 
It. 1: 

It. 2: 

It. 3: 

s3: 

cZosuredel := {(b, c), (b, g)} 
edgenew := {if,~ij(e,d),(e,a),(a,b),(d,c), 

C, 
dosuredel *- dosuredel U {(a, c), (a, g)} .- 
cZosuredel := dosuredel U {(e, c), (e, g)} 
doswede := doswede U {(f, c), (f, g)} 

~oSu~enew = ((c,g),(d,g),(d,c),(erd),(e,a), 
(e,bL(f,e),(f,4 
(f,b),(f,d))uedge’* 

closureins := {(h 4, (h 4 (h 9)) 
closurered = 
(gosurenew ,&!~;g$l 

U Ue,c>, (e~g>~ 
dosureP1us := {(h, d), (h, c), (h, g)} 
closurered := closurered U {(f,c), (f,g)} 
closurenew := closure”ew U {(f, c), (f, g)} 

closureminus by> := {jba~;~lb~d> (b>c), 
> 

Hence, the result is the same ‘r&in fig. 2(b). 0 

4 Incremental View Maintenance with 
Rederivation on Demand: The ROD 
Algorithm 

We now turn to the case where the view is material- 
ized only externally. Change propagation in this case 
requires partial re-derivation of the externally materi- 
alized views on demand. To achieve this, we further 
rewrite the maintenance rules from section 3 into a set 
of triggers. While section 4.1 describes these steps for 
standard Datalog section 4.2 shows that adding nega- 
tion is not a major problem. Since view maintenance 
and deductive query processing can both handle ag- 
gregate functions like negation [6, 111, our approach 
covers a fairly large class of view definition languages. 
An evaluation algorithm that jointly exploits the main- 
tenance and the query rules for view maintenance at 
runtime is presented in section 4.3. 
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4.1 Rederivation on Demand: ROD 

For evaluating rules (Oi), (R), (Ii), (El), it is necessary 
to access both the extensional and the intensional rela- 

tions of the old database state (either directly or indi- 
rectly). If the view caches are not accessible, we need a 
further transformation of the maintenance rules which 
rederives the relevant parts of the intensional relations 
on demand. 

The basic idea is similar to the supplementary 
magic set algorithm [21]: we need ,a triggering fact in 
each rule that enables firing and propagates constants. 
The magic set algorithms employ magic predicates for 
this p&pose. For maintenance rules, this role can be 
played by the newly introduced update predicates pdel 
and pins 

4.1.1 Rewriting deletion rules 

Starting with a rule 
(D;):pd”‘:-Tl,... de1 

,ri-l,Ti ,Ti+l,...,Tn. 

the insertion of tuples into rpl means instantiat- 
ing the arguments of rpl and of all predicates rj that 
share variables with r?l. Hence, their bindings have 
to be propagated from right to left towards ri, as well 
as from left to right towards rn. This propagation cor- 
responds to a computation of joins in a given order4. 
The join results for each (Oi) are expressed as supple- 
mentary derived relations: 

de1 (q-l) : sup;eI :-r&l,?-; . 
(Dy-2) : sup~~z:-ri-2,sup~-p 
. . . 
(@) : sup::- n,s’1Lp:. 

p& : SU$+l : - P;Ti+1. 

I : su *+2:- supi+1, Ti+s. 

. . . 

(0;) : sup~:-sup;-l,rn. 

Finally, the two “streams” from rte’ to ri and to r, 
have to be joined: 

(0;) : pdel : - sup:, sup;‘. (if j 6 (1, nl) 
P 

de1 .--sup:. (if j = 1) 

P 
de1 :-sup:. (if j = n) 

Informally, the head arguments of each of (j # 
i) are those variables that do not occur further left 
(j < i) or right (j > i) with respect to ri and are not 
needed for performing the final join. More precisely 
the arguments A of sup: are given as follows: 
if j < i - 1 A contains all variables Y of rj and 

st~p~+~ with $<k<,, v appears in rk 
or &<k<j 21 appe&s in rk or v ap- 
pears-in pde’ 
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4As the example at the end of this section shows, almost no 
rewriting is necessary when n = 1 or n = 2. The adaption of 
rewriting is obvious and not discussed in detail for space reasons. 

if j > i + 1 A contains all variables v of SUP& 
and r-j with &<k<i v appears in rk 
or 3j<k<n w appears in rk or v ap- 
pears in pdel 

if j = i - 1 A contains’all variables v of rj and 
rF1 with 3i<k<n v appears in rk - 
or &<k<i-l v appears in rk or V ap- 
pearsin pdel 

if j = i + 1 A contains all variables v of rpl and 
rj with 3 l<k<i v appears in rk 
or 3i+l<k<n w appears in rk or V ap- 
pears in pxel 

The magic-set transformation of a rule 

introduces so-called magic predicates m-gi for each in- 
tensional body predicate gi that a) propagate variable 
bindings from other body literals and b) initiate the 
derivation of all relevant tuples of gi satisfying these 
bindings. This is done by inserting the magic predi- 
cates m-gi as a kind of guard in.each rule defining gi, 
and by generating additional magic rules (with m-gi as 
conclusion) that fire whenever a subset of gi is needed 
for some join computation. 

We assume that the original-view definitions have 
already been transformed to query rules with the sup- 
plementary magic-set algorithm. In order to have the 
relevant tuples in Tj of the old database state avail- 
able for the maintenance rules (@), we have to gener- 
ate further magic rules (it4&) that trigger the defining 
query rules for each rj. The query rules can then de- 
rive exactly the needed set of tuples, using a standard 
DBMS query processor to compute the joins5. 

The right hand side of each magic rule consists 
of the join result gained from the preceding subgoals 
which is intended to be joined with rj. The magic 
predicate mrj at the left hand side takes over only 
those arguments from rj that are either constants or 
variables appearing and bound by the right hand side. 
As usual the mrj are adorned, i.e. marked with a 
pattern consisting.of a sequence of b’s and f’s for each 
position in rj depending on whether the argument is 
left out, (f) or not (b). 

(iv;;‘) : ?7Lri+1: -T-p 
(Ik?~~‘) :77&-T;-1 Z-T?’ 
(i@f2) : 7723i-2 I-SUpi-1 

. . . 
(M&) : m-r1 : - sup2 
(MAj2) : m-T;+2 : - SzLpi+l 

ii&)) : m-Tn : - supn-l 
These magic rules ensure that only those parts of 

the (old) extensions srf rj are derived that are relevant 

5Note, that for the extensional relations among the rj magic 
rules are of course not required since they are directly accessible. 



de1 for the join with ri . As a consequence evaluating the 
rules 

(ivl) : pnew : -p, 7pdel. 
(Nl) : T-p-J : - rj, 7p. 

yields only a partial extension of p and ri in the new 
database state pne”’ and ry”’ respectively. 

4.1.2 RewFiting rederivation rules 

The rederivation step (using rule R) for tuples that 
have an alternative derivation path starts with the ex- 
isting new partial extensions pne” and T-Y”“. 

join between tu- 
ples of the overestimate pde’ requires materialization 
of additional tuples from the old states of p and the 
ri. Therefore, we need a triggering mechanism which 
propagates bindings from pdel to the rre”’ predicates. 
This can be reached by rewriting (R) as follows: 

(Rl) : sup:1 : -pdei;;;e;?& 
(R2) : sup:’ : - supl ,7-z . 

(Rn) : pr=d:-s?Lpfrl_l,Ty. 
Again we have to ensure that all tuples needed to 

join szlpif-i and r3ew are available in rye”‘. This can be 
done by rederiving the candidate tuples from the old 
database &ate, i.e. in rj. This derivation is initiated 
by corresponding magic rules (MA): 

(MA) : m-?-1 : -pd=*. 
(Mi) : m-T2 : - sup:l. 
. . . 
(+I;) : m-Tn : - sup;:1 

Rules (iVi) and (Nil) then copy all tuples from rj 
that definitely remain in the new database state into 
ryW. The overestimate of deletions ry’ used by these 
rules which leads to, potentially missing tuples6 for 
ryw is corrected by rule (Nz) generated for the rules 
defining Tj . 

4.1.3 Rewriting insertion rules 

The next step of rewriting the maintenance rules con- 
cerns the rule set (Ii) which incrementally propagates 
the insertions. As already mentioned the rewriting 
from the view definition (0) to the set (Ii) is ex- 
actly standard semi-naive rewriting and has now to 
be supplemented by corresponding magic-set transfor- 
mations that are essentially the same as the transfor- 
mations for the rule set (Di) with the difference that 
the body literals now access the new database state. 

. . . 
III. (II’) : supl III . - Tyw , sup2 . 

60f course only if a rule for rj exists. 

. 
(I%?) : sup;” : - sup;!!l, 7$ew. 
(Ii) : p’nS : - SzLPl III, supf&I1. 

Since some necessary tuples may be not available in 
the partially new states rlew, we have again to rederive 
additional parts of the old state through suited magic 
rules (Mii): 

(M;;‘) : m-?-j+1 : - $s 
(My) : m-?-j-1 : - Tp 
(Mj,Y2) : m-?-;-2 : - sup,!f: 

(M:;) : mm : - sup:” 
(M;,?‘) : m-r;+2 : - sup;:: 
. . 
(MI”;) : m-Tn : - .s~lp~L!~ 

The rules (Ni) and (Nz) for each ri then ensure 
that only those tuples from the rederived set go into 
T?~'" that were not deleted or at least were rederived. z 

4.1.4 Rewriting idle checks 

The last rule to be looked at in order to provide on- 
demand access to the old database state is (El) which 
computes the net insertions as difference between pins 
and p. This rule checks whether a tuple derived as 
to be inserted into pnew in fact was not already in 
p before, i.e. is not an idle insertion. The check can 
simply be realized by adding the following magic rule: 

(M~Q) : m-p:-pins. 
This rule guarantees that all idle insertions are 

caught by trying to rederive them in the old database 
state. 

Based on these transformation steps, the complete 
transformation procedure of a rule into a set of main- 
tenance rules is given by algorithm 2. 

Algorithm 2 (The ROD algorithm) 
Input: Aruleoftheform (0) :p:-TI,...,T,. 
Output: A set M’ of maintenance rules for (0). 

begin 
generate from (0) a rule set M by algorithm 1; 
M’:=M; 
for i:= 1 to n do 

for j:= 1 to n do 
generate from (0;) E M’ rules (Di) and (ML;) 

generate from (1;) E M’ rules (I{) and (Mii); 

M’ := M’ U {(Dj), (M&J, (I;), (M$} od; 
M’ := M’ \ {(Di),(Ii)} od; 

for i.:= 1 to n do 
generate from (R) E M rules (Ri) and (Ma); 
M’ := M’ u {(R’), (Mi)} od; 

M’ := M’ \ {(R)}; 
generate from (El) E M’ (MET); 
M’ := M’ U {(MET)}; 
return M’ 
end 0 
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maintenance rules generated from RI: 

(DI) * cio.urcde’(., v) :- edgedC’(., y). 

CR) * sloaureced(r, y) : - cloauredet(r, I). 

(11) r+ clo.urei”‘(+, 8) :- edgei”‘(., y). 

(El) * slosureP’~“(.. 8) : - clos”re~“‘(z. y), -closure(r. 8). 

meelom-ebb(=, 8) : - ciosureins(z, y). 

maintenance rules generated from Rz: 

(Dl) * ciosured=‘(, 8) : - edgede’(z. z), ciosure(z. v). 

m-cw-ebf;r):- edgedei(., x). 

(Dz) =+ clo.urcd=‘(,, 8) : - edge(m) z), cloaurede’(., ~1. 

CR) * closure-d (=. y) : - sup;’ (e, y, z). clas”re”=~(.. 8). 

rup;‘(=, y, z) : - elosurede’(r, g), edge”=‘“(., z). 

mmctorurebb(z. y) :- .u~,;~(., 8, z). 

(11) * cloour~~“~(., y) : - edge’“‘(z. z), closure”ew(., u). 

mecioaurebf(z) : - edgei”‘(z. z). 

(12) * clo.urc’“‘(r, v) : - edge”=“‘(=, z), clo.~e~“~(.. v). 

relevant query rules for RI: 
cfosure(z, ,,) : - mmcloaurcbf(r), cdge(., v). 

c,osure(r. u) : --mmclosurebb(r, y). l dge(z. v). 

relevant query rules for Rz: 
clo.ure(., ") :- "P1(I, z), cloaure(*, 8). 

’ ~uPl(=, z) : - mectosurebf(r), edge(s, z). 

m-clo~“rebf(r):- S”Pl(“, z). 
clo.ure(r. “) : - suP;(z, y, z), cloouce(r. LJ). 

sup;(.. y, z): - mectosurebb(., 8). edge(.. z). 

m-closurcbb(r. 8) : - .up;(., Y, z). 

Figure 3: ROD applied to the graph example 
The following theorem states that evaluating the 

rewritten rules leads to an exact computation of the 
difference between two subsequent database states. 

Theorem 2 Let Sold, S”““, Spl“*,Sminus be defined 
as in Theorem 1, but now assume that only the ex- 
tensions of base data relations are available. Then for 
each relation p the evaluation of the rules generated by 
algorithm 2 in combination with the magic-set rewrit- 
ten original (query) rules yields the exact positive and 
negative diferentials S$us and SFinUs as extension of 

P lUS and p772i7W~ During the evaluation only those tu- 
ples from SiLd resp. Spew are {re)derived in p and pnew 
that are indispensable for determaning the differentials. 

Proof. The proof is given in [17]. 

Example 3 (Applying ROD ) 

0 

Figure 3 shows the resulting rule set of applying ROD 
to rules Ri and Ra, and relevant query rules. Since 
both original rules have only one or two subgoals, the 
transformation of (Di) ,(R) and (Ii) generates only a 
few additional magic rules. The other rules remain 
unchanged. As mentioned above, the magic predicates 
are adorned with variable bindings. cl 

4.2 ROD with Negation 

The algorithm ROD needs only to be changed slightly 
to allow negation in view definitions. In addition, 
the evaluation has to be performed with a slightly 
changed control structure that respects stratification 
of the original rule set. The first change to ROD con- 
cerns the effect of updates for predicates ri that occur 
negatively in a rule (0): 

(0) : p : - r1, . . . , lri, . . . , r,. 

Insertions into ri lead to possible deletions of the rule 
head p. Deletions from ri may allow now tuples for 
p to be derivable that were prevented before by the 
existence of certain tuples in ri. 

A consequence of this observation is a modified gen- 
eration of the basic maintenance rules (Di) and (Ii) in 
algorithm 1 for those ri that occur negatively in (0): 

(Di):pde’:- Tl,..., ri-l,Tfne,Ti+l ,... ,rn. 
(I;) : pins : - ryew,. . , rtn_e;U, rt”, rF$y,. . , rEeW 

In the generated rules (Dj) , (1j) with j # i as well 
as in (R) the predicate r resp. mew keeps its negative 
sign. All other rules handle negated predicates without 
respecting their signs. 

From an evaluation point of view, the magic set 
rewriting with supplementary relations fixes the exe- 
cution order of joins, in a manner determined by the 
formulation of the original rules. Due to the commu- 
tativity of the AND operator, the ordering of literals 
and thus the execution order is in principle free and 
could be re-organized according to some cost-based op- 
timization. This freedom becomes restricted in the 
presence of negation, as negation leads to a combina- 
tion of joins and set differences in the implementation. 

Safeness of rules restricts variables occuring in 
negated literals to be bound in a positive predicate. 
Only then, there always exists some order for join com- 
putation such that joins with relations refered to by 
negated predicates can be performed straightforward 
by standard set difference. Hence, r(d,?) W 1 s(p) 
is evaluated by (nq r(d, ?)\s(?)) W r(d, ?), i.e. r 
is projected onto the columns of s, the difference be- 
tween the result and s is computed and joined with r. 
Of course, the arguments of s must be a subset from 
those of r. 

In our approach, the ordering is determined for the 
transformation of (Di) and (Ii) by the position of the 
body predicate ri respectively its delta variant rpl and 
Tins. From there the join sequence is built up to the 
left and right. As in the general case, negated predi- 
cates have to be moved such that the transformation 
doesn’t destroy the applicability of joins. In our case, 
we could simply move all negated predicates to the 
right. After processing the positive literals7 and join- 
ing both sequences together (rules (0:) and (Ii)), the 
negative literals are processed from left to right by cor- 
responding joins with ordinary set difference*. 

The third specific aspect for handling negation is 
evaluation control. The solution is straightforward: 

‘Note, that we don’t have to deal with negated delta 
predicates. 

sAnother solution would be to give up the idea of propagating 
bindings starting from the delta literal to both sides and to move 
the delta literal to the beginning of the body literal sequence as 
it is already when transforming rule R. Then we have the same 
situation as with standard magic-set. 
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the original rule set is partitioned into strata with re- 
spect to their head predicates: if a rule calls a predi- 
cate negatively then the defining rules for that predi- 
cate belong to a lower stratum. The view maintenance 
process then starts with the lowest stratum and com- 
putes the net insertions pPlus and net deletions pminua 
of its defined predicates p. At the next layer, these 
predicates are handled like extensional predicates and 
their update relations pins and pde’ are initialized with 
the just derived net updates. One effect of this initial- 
ization is the prevention of phantom insertions. Each 
layer only has to deal with the maintenance rules gen- 
erated for its own rules. One accompanying additional 
step for ROD is therefore to generate rules (N,!) and 
(N,“) not only for extensional body predicates but also 
for predicates belonging to lower strata. 

4.3 Evaluation without Access to View 
Caches 

The layered view maintenance process and its inter- 
play with query evaluation for rederiving the relevant 
parts of the old database state are summarized by al- 
gorithm 3. This algorithm employs the notion of an 
environment ENV as a mapping from predicate sym- 
bols to sets of tuples that represent a partial database 
state. This state is the subset of the overall EDB and 
IDB contents which needs to be looked. at for main- 
taining the views of interest. The rule sets M and Q 
denote the rewritten rules used for view maintenance 
and query evaluation, respectively. Recall that we as- 
sume Q to be derived from the original rules by stan- 
dard supplementary magic-set rewriting (with respect 
to all possible binding patterns) such that the link be- 
tween both rule sets is provided by the magic rules 
generated by ROD. Whereas EDB and IDB denote the 
extensional and intensional predicates as before, SUP 
contains all delta, supplementary and magic predicates 
introduced for M and Q. Each p E EDB U I DB has 
a unique stratum number S(p) between 0 and some 
constant m. In addition we define MC*) as the set of 
rules T E M such that T is based on an original rule 
defining a predicate p E EDB U IDB with S(p) = n. 

The algorithm assumes EVAL to be a fixpoint eval- 
uator that works on a stratified set of rules and an evi- 
ronment with initializations for the relations involved. 
EVAL respects the changes of the environment pro- 
duced during the preceding evaluation in a semi-naive 
manner and returns its with additional tuples inserted 
for certain relations. When called for evaluating the 
maintenance rules EVAL only has to process the sub- 
set M(“) for a given stratum i of the original rule set. 
The second call with Q, however, is exactly as for eval- 
uating an arbitrary query but now on a partially ma- 
terialized intensional database state. The new tuples 

for the magic predicates generated in the first call of 
EVA L denote queries that have to be answered in order 
to continue the maintenance process. These queries 
may have to rederive tuples for predicates from lower 
strata that were not rederived before since they were 
not needed. Therefore, EVAL is called with the com- 
plete set of query rules Q. 

Algorithm 3 (View maintenance procedure) 
Input: 1. A set of query rules Q 

2. A set of maintenance rules M 
3. A set of view names V = (~1,. . . , w,} 
4. A set of base data changes 

Output: changes to the views in V 
begin 
for’ r E IDB u SUP do 

initialize ENV[r] := 6 od; 
for T E EDB do 

initialize ENV[rd”‘] and ENV[?‘“] with the 
base data changes; 

initialize ENV[r] with the old extension 
of r od; 

for i := 1 tomdo 
repeat 

OLD := ENV; 
ENV := EVAL(ENV M(‘)). 
ENV := EVAL(ENV; Q) ’ 

until ENV = OLD; 
for T E IDB with S(T) = i do 

ENl’[r”‘“] : = ENV[#““] ; 
ENV[rd”‘] := ENV[T”‘“~“‘] od od; 

MOD := [(ENV[@“], ENV[vi”‘“““]), . . . , 
(ENV[@‘“], ENV(v~inus])]; 

return(MOD) 
end 0 

Example 4 (View maintenance for the graph exam- 
ple) 

If we apply algorithm 3 to the graph example in 
order to maintain closure, the rules shown in figure 3 
and the base data updates (edgedel(b, c),edgeina(h, d)) 
serve as input. Since no negation occurs in the origi- 
nal rules, the evaluation enters the repeat/until loop 
only once. Query rules can be evaluated without strat- 
ification, too. In contrast to the evaluation trace for 
the maintenance rules in example 2, closure now does 
not belong to stratum Ss but to Si together with the 
new predicates sup:’ and m-closurebf. m-closurebb 
goes into 5’2 since it depends on dosureins. With- 
out demonstrating the complete evaluation it can be 
stated that exactly the relevant part of closure that 
represents the complement of subgraph G’ in section 
2.2 is rederived. Cl 

5 View Monitoring in ConceptBase 

ConceptBase [7] is a deductive object manager for 
meta data management which supports the 0-Tt 13s 
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Figure 4: The ConceptBase server architecture 

object model [12]. Textual and graphical user interface 
tools are linked to ConceptBase servers as clients over 
the Internet. We therefore experienced the problems 
addressed in this paper since the first uses of Concept- 
Base as an Internet-based cooperative modeling tool 
in the late 1980’s. 

An 0-Telos object base is semantically equivalent to 
a deductive database (Datalog with negation) which 
includes a predefined set of rules and integrity con- 
straints coding the object structure. The surface lan- 
guage syntax is frame-based or uses semantic net- 
works. Rules and integrity constraints are included 
as first-order formulas defined over a basic set of pred- 
icates describing the abstraction principles of instan- 
tiation, specialization and attribution. 

The ConceptBase server architecture [7] is shown 
in figure 4. The ROD algorithm 2 is part of the Con- 
ceptBase Query/Rule-Compiler component while al- 
gorithm 3 constitutes the ViewMonitor. 

Figure 5 demonstrates the incremental view main- 
tenance process for an example database of soft- 
ware modules, with three classes Module,Procedure 
and OperatingSystem. Procedures are def inedin 
modules and modules import procedures; they may 
depend-on particular operating systems. 

Views and queries in ConceptBase are specified as 
classes of derived data (keywords QueryClass, View) 
with necessary and sufficient membership constraints 
[19]. A view Mo&leDependency links (based-on), 
modules with those other modules from which they di- 
rectly or indirectly (via transitive closure) import pro- 
cedures. A second view IllegalOS maintains viola- 
tions of an integrity constraint. It describes incompat- 
ible based-on relationships which contain procedures 
that have a depend-on link to different operating sys- 
tems. 

The Query/Rule-Compiler of ConceptBase maps 
both view definitions to intensional relations mod-dep 
and ilLos defined by deductive rules as follows: 

moddepb, d : - module(z), module(y),procedure(p) 
import(z,p), definedin(p, y). 

moddep(z, y) : - moddep(z, z), moddep(z, y). 

ilLos(z, y, z) : - moddep(z, y), moddep(z, z), 
oplrys(o~),opsys(o2),proce~~~e(pl), 

procedure&), unequal(ol, 02), 

definedin(pl,y), 
defined-k&z, I), 
dependan( dependon( 

The ViewMonitor works on such an internal rep- 
resentation of views, queries and rules and provides 
notification messages to those applications affected in- 
directly by updates of others. Integrity views like 
IUegalOS do not necessarily lead to rejections of up- 
dates if their extension becomes non-empty. 

In figure 5, the left graph browser application dis- 
plays the contents of the view ModuleDependency 
based on the current extensional database state (dis- 
played by the browser at the top). The right graph- 
browser window shows the extension of IllegalOS. 

A check-in of some source module had the effect 
of introducing a new import link between module A 
and procedure time which leads to an operating sys: 
tern conflict with directory defined in module C on 
which A is based, too. This update also induced a 
based-on link between A and E in ModuleDependency. 
Both changes have already been notified to the graph- 
ical displays (number tag 2). 

A second update is caused by a new module D which 
imports a procedure dif f from A (number tag 3). Both 
externally materialized views have to be updated by 
inserting based-on links between D and the other mod- 
ules into ModuleDependency, and by inserting D to- 
gether with A and E into IllegalOS. 

To get a feeling-for the performance impact of the 
approach, the following table compares response times 
for complete recomputation of views and incremen- 
tal maintenance with ROD with respect to a database 
that contained descriptions of 283 modules with 1630 
exported procedures. The update operation was an 
newly inserted import link from a module to a proce- 
dure. The results indicate significant advantages for 
ROD in complex, recursive view definitions and almost 
no difference for simple ones. 

View recomp. incr. 
All modules M is based on 

1 together with all directly or 25 set 4.5 set 
indirectly imported procedures 

2 All procedures with a given 0.3 set 0.25 set 
name preiix imported by M 

3 All procedures imported by M 4.5 set 0.3 set 
with less than 10 lines of code 

4 All procedures with a given 
name imported by M directly 4.4 set 0.5 set 

or indirectly 
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Another case where ROD proved very beneficial is 
the parallel maintenance of many views or integrity 
constraints, e.g. in design applications. As already 
suggested a decade ago [16], presenting violations in 
integrity views [19] is preferable to just rejecting up- 
dates not only because of better explanation but also 
because it enables multiple levels of integrity enforce- 
ment. For example, in a commercial application of 
ConceptBase [14], a business process analysis is mon- 
itored by more than 80 integrity views. While all 
of them need to be monitored continuously, they are 
reacted to at different periods in the analysis pro- 
cess. Corrections in one view may indirectly correct 
other violations, or cause new ones. In such a set- 
ting, non-incremental view maintenance may become 
prohibitively expensive. 

6 Discussion and Outlook 

Since the early papers [20, 1, 13, 151, the incremental 
maintenance of views has received a lot of attention 
in database research. The recent survey [5] is orga- 
nized mostly according to the amount of information 
available to the maintenance tool. In the case of bII 
information which we discussed in section 3, the base 
data, the materialized view, and the derivation rule 
can all be used. 

Among the many conceivable cases of partial infor- 
mation, interest has focused on maintenance at the 
client side. In &maintainable views, the view defi- 
nition is so simple that all the consequences of a bsse- 

Figure 5: View monitoring in ConceptBase: an example 
data change can be locally computed by the client, 
without accessing the base data [4]. 

Driven by our goal of offering a standard monitoring 
service for non-database clients, we mainly focused on 
a solution for the opposite case : The maintenance 
tool has access to the base data and the view definition 
but not to the materialized view. Though this may at 
first sound contradictory to the idea of materialization 
and has therefore hardly been studied, we argued that 
there will be many uses of such a service, including 
quite traditional ones such as integrity checking or user 
interface management. 

Our solution extends known algorithms for the case 
of full information by a magic-set like rewriting of 
the generated maintenance rules such that the rele- 
vant parts of the externally materialized views can be 
rederived in the database on demand. As a prereq- 
uisite to the magic set transformation, the known al- 
gorithms had to be changed slightly such that they 
generate a pure stratified Datalog program of main- 
tenance rules. We showed that during the evaluation 
phase the magic maintenance predicates created by 
our approach interoperate nicely with the magic query 
evaluation rules created when initially computing the 
external view materialization. 

Finally, we summarized the implementation of our 
approach in ConceptBase, a deductive object manager 
for meta data management. Based on this implemen- 
tation, some practical experience has been gained with 
flexible integrity maintenance in design applications. 
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Developing the view maintenance algorithms and 
linking them to existing base technology for databases 
and distributed systems is only one step on the way 
towards the effective monitoring service we envision. It 
is obvious that there is a space-time trade-off between 
the solutions presented in sections 3 and 4 which needs 
to be investigated quantitatively, including different 
options how to materialize: fully, by view indexes, with 
or without intermediate results, etc. 

Secondly, the additional transformations required 
for complex-object views such as required for repre- 
senting a whole graph as a view need to be integrated; 
for this purpose, a two-way transformation between 
Telos and a subset of C++ has been developed [18]. 

Finally, as mentioned earlier, we plan to com- 
bine the logical view maintenance approach discussed 
here to the work on relaxed coherency in replicated 
databases by which we can tailor quality of service. 
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