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Abstract 

Detecting and extracting modifications from 
information sources is an integral part of 
data warehousing. For unsophisticated 
sources, it is often necessary to infer mod- 
ifications by periodically comparing snap 
shots of data from the source. Although 
this snapshot differential problena is closely 
related to traditional joins, there are signif- 
icant differences, which lead to simple new 
algorithms. In particular, we present algo- 
rithms that perform compression of records. 
We also present a window algorithm that 
works. very well if the snapshots are not 
“very different.” The algorithms are studied 
via analysis and an implementation of two 
of them;‘the results illustrate the potential 
gains achievable with the new’ algorithms. 

1 Introduction 

Warehousing is a promising technique for retrieval 
and integration of data from distributed, au- 
tonomous and possibly heterogeneous information 
sources [Squ95]. A warehouse is a repository of inte- 
grated information that is available for queries. As 
relevant information sources are modified, the new 
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information is extracted, and translated to the data 
model of the warehouse, and integrated with the ex- 
isting warehouse data. In this paper, we focus on the 
detection and the extraction of the modifications to 
the information sources. 

The detectio! and extraction of modifications de- 
pends on the facilities at the source. If the source is 
sophisticated, say a relational database system with 
triggers, then this process is relatively easy. In many 
cases, however, the source does not have advanced 
facilities available for detecting and recording mod- 
ifications (e.g., legacy sources). If this is the case 
there are essentially three ways to detect and ex- 
tract modifications [IC94]: 

1. The application running on top of the source is 
altered to send the modifications to the ware- 
house. 

2. A system log file is parsed to obtain the rele- 
vant modifications (as done in the IBM Data 
Propagator [Go195]) to the application. 

3. The modifications are inferred by comparing 
a current source snapshot with an earlier one. 
We call the problem of detecting differences be- 
tween snapshots the snapshot differential prob- 
lem; it is the problem we address in this paper. 

Although the first two methods are usually pre- 
ferred, both methods have limitations and disadvan- 
tages. The first method requires that existing code 
be altered. In most cases, however, the code is so 
shopworn that additional modifications are problem- 
atic. The second method also has its difficulties. For 
instance, it is often the case that DBA privileges are 
required to access the log, so site administrators are 
reluctant to provide access. 

We stress that we are not arguing in favor of snap 
shot differentials as the best solution for reporting 
modifications to a warehouse. It clearly does not 
scale well: as the volume of source data grows, we 

63 



have to perform larger and larger comparisons. We 
are saying, however, that it is a solution we are stuck 
with for the foreseeable future, and because differ- 
entials are such inherently expensive operations it is 
critical that we perform them as efficiently aa pos- 
sible. In this paper we will present very efficient 
differential algorithms; they perform so well because 
they exploit the particular semantics of the problem. 

1.1 Problem Formulation 

We view a source snapshot as a file containing a 
set of distinct records. The file is of the form 
{RI, R2 , . ..R.,} where Ri denote the records. Each 
Ri‘is of the form < K, B >, where K is the key and 
B is the rest of the record representing one or more 
fields. Without loss of generality, we refer to B as 
a single field in the rest of the paper. (In [LGM95] 
we extend the algorithms presented in this paper to 
the case where records do not have unique keys.) 

For the snapshot differential problem we have two 
snapshots, J’l and F2 (the later snapshot). Our goal 
is to produce a file FOUT that also has the form 
{RI, R2, . ..R.,} and each modification record & has 
one of the following three forms. 

1. < Update, Ki, Bj > 
2. < Delete, Ki > 
3. < Insert, Ki, Bi > 

The first form is produced when a record < Ki, Bi > 
in file Fi is updated to < Ki, Bj > in file F2. The 
second form is produced when a record < Ki, Bi > 
in Fl does not appear in F2. Lastly, the third form 
is prodhced when a record < Ki, Bi > in F2 was not 
present in Fl. We refer to the first form as updates, 
the second as deletes and the third as inserts. The 
first field is only necessary in distinguishing between 
updates and inserts. It is included for clarity in the 
case of deletes. 

Conceptually, we have represented snapshots as 
sets because the physical location of a record within 
a snapshot file may change from one snapshot to an- 
other. That is, records with matching keys are not 
expected to be in the same physical position in Fl 
and F2. This is because the source is free to reorga- 
nize its storage between snapshots. Also, insertions 
and deletions may also change physical record posi- 
tions in the snapshot. 

The snapshot differential can be performed at the. 
source itself. That is, a snapshot is taken peri- 
odically and stored at the source site. A daemon 
process then performs the snapshot differential pe- 
riodically and sends the detected modifications to 
the warehouse. The snapshot differential can also 
be performed at an intermediate site. That is, the 

source sends the full snapshots to an intermediate 
site where the snapshot differential process is per- 
formed. In any case, the exact procedure for sending 
these modifications to the data warehouse is imple- 
mentation dependent. 

It is important to realize that there is no unique 
set of modifications that captures the difference be- 
tween two snapshots. At one extreme, a deletion 
can be reported for each record in Fl and an in- 
sertion can be reported for each record in F2. Ob- 
viously, this can be wasteful. We capture this no- 
tion of wasted messages by defining useless delete- 
insert pairs and useless insert-delete pairs. A useless 
insert-delete pair is a message sequence composed 
of < Insert, Ki, Bi > followed (not necessarily im- 
mediately) by < Delete, Ki >, produced when the 
two snapshots both have a record < Ki, Bi > or 
when the earlier snapshot has < Ki, Bj > and the 
later one has < Ki, Bi >. A useless insert-delete 
pair introduces a cbrrectness problem. When the 
insert is processed at the warehouse, it will most 
likely be ignored since a record with the same key al- 
ready exists. Thus, when the delete is processed, the 
record with the key Ki will be deleted from the ware- 
house. On the other hand, a useless delete-insert 
pair does not compromise the correctness of the 
warehouse. However, it introduces overhead in pro- 
cessing messages since either no modifications were 
needed (when the two snapshots both have a record 
< Ki, Bi >) or the modification could have been 
reported more succinctly by < Update, Iii, Bi >. 

Since useless pairs are not an effective way of 
reporting changes, one may be tempted to require 
snapshot differential algorithms to generate no use- 
less pairs. However, strictly forbidding useless 
delete-insert pairs turns out to be counterproduc- 
tive! Allowing the generation of “some” useless 
delete-insert pairs gives the differential algorithm 
significant flexibility and leads to solutions that can 
be very efficient in some cases. We return to these is- 
sues later when we quantify the savings of “flexible” 
differential algorithms over algorithms that do not 
allow useless delete-insert pairs. Thus, in this paper 
we do allow useless delete-insert pairs, with the ulti- 
mate goal of keeping their numbers relatively small. 

However, we do want to avoid useless insert-delete 
pairs since they may compromise correctness. Use- 
less insert-delete pairs can be eliminated by batching 
the deletes together and sending the deletes first to 
the warehouse for processing. In essence, we have 
transformed the insert-delete pairs into delete-insert 
pairs. This method also amortizes the overhead cost 
of sending the modifications over the network. We 
assume for the rest of the paper that all useless’ 

64 



insert-delete pairs are eliminated. 

1.2 Differences with Joins 

The snapshot differential problem is closely related 
to the problem of performing a join between two 
relations. In particular, if we outerjoin Fl and F2 
on their common K attribute on the condition that 
their B attributes differ, we can obtain the update 
records required for the differential problem. 

Outerjoin is so closely related to the differen- 
tial problem that the traditional, ad hoc, join al- 
gorithms ([ME92],[HC94]) can be adapted to our 
needs. Indeed, in Section 3 we show these modifica- 
tions. However, given the particular semantics and 
intended application of the differential algorithms, 
we can go beyond the ad hoc solutions and obtain 
new and more efficient algorithms. The three main 
ideas we exploit are as follows: 

l Some useless delete-insert pairs are acceptable. 
Traditional outerjoin algorithms do not have 
useless delete-insert pairs. The extra flexibil- 
ity we have allows algorithms that are “sloppy” 
but efficient in matching records. 

l For some data warehousing applications, it may 
be acceptable to miss a few of the modifications. 
Thus, for differentials we can use probabilis- 
tic algorithms that may miss some differences 
(with arbitrarily low probability), but that can 
be much more efficient. Again, traditional al- 
gorithms are not allowed any “errors,” must be 
very conservative, and must pay the price. 

l Snapshot differentials are an on-going process 
running at a source. This makes it possible to 
save some of the information used in one differ- 
ential to improve the next iteration. 

2 Related Work 

Snapshots were first introduced in [AL80]. Snap 
shots were then used in the R* project at IBM Re- 
search in San Jose [Loh85]. The data warehouse 
snapshot can be updated by maintaining a log of 
the modifications to the database. This approach 
was defined to be a differential refresh strategy in 
[KR87]. If snapshots were sent periodically, this was 
called the full refresh strategy. In this paper we only 
consider the case where the source strategy is full re- 
fresh. [Lea861 1 p a so resented a method for refreshing 
a snapshot that minimizes the number of messages 
sent when refreshing a snapshot. The method re- 
quires annotating the base tables with two columns 
for a tuple address and a timestamp. We cannot 

adopt this method in data warehousing since the 
sources are autonomous. 

Reference [CRGMW96] investigates algorithms to 
find differences in hierarchical structures (e.g., docu- 
ments, CAD designs). Our focus here is on simpler, 
record structured differences, and on dealing with 
very large snapshots that may not fit in memory. 

There has been recent complementary work on 
copy detection of files and documents ([MW94], 
[BDGM95], [SGM95]). The snapshot differential 
problem is concerned with detecting the specific dif- 
ferences of two files as opposed to measuring how dif- 
ferent two files are. Also related are [BGMF88] and 
[FWJ86], which propose methods for finding differ- 
ing pages in files. However, these methods can only 
detect a few modifications. 

The snapshot differential problem is also related 
to text comparison, for example, as implemented by 
UNIX di# and DOS camp. However, the text com- 
parison problem is concerned with a sequence of the 
records, while the snapshot differential problem is 
concerned with a set of records. Reference [HT77] 
outlines an algorithm that finds the longest common 
subsequence of the lines of the text, which is used in 
the UNIX difl Report [LGM95] takes a closer look 
at how this algorithm can be adopted to solve the 
snapshot differential problem, although the solution 
is not as efficient as the ones presented here. 

The methods for solving the snapshot differential 
problem proposed here are based on ad hoc joins 
which have been well studied; [ME921 and [Sha86] 
are good surveys on join processing. The snap- 
shot differential algorithms proposed here are used in 
the data warehousing system WHIPS. An overview 
of the system is presented in [HGMW+95]. After 
the modifications of multiple sources are detected, 
the modifications are integrated using methods dis- 
cussed in [ZGMHW95]. 

Note that knowledge of the semantics of the infor- 
mation maintained at the warehouse may help make 
change detection simpler. An outline of these special 
cases is in report [LGM95]. 

3 Using Compression 

In this section we first describe existing, ad hoc, join 
algorithms but we do not cover all the known varia- 
tions and optimizations of these algorithms. We be- 
lieve that many of these further optimizations can 
also be applied to the snapshot differential algo- 
rithms we present. 

After extending the ad hoc algorithms to handle 
the differential problem, we study record compres- 
sion techniques to optimize them. In the sections 
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below, we denote the size of a file F as IFI blocks 
and the size of main memory as ]M] blocks. We also 
exclude the cost of writing the output file in our cost 
analysis since it is the same for all of the algorithms. 

3.1 Outer Join Algorithms 

The basic sort merge join first sorts the two input 
files. It then scans the files once and any pair of 
records that satisfy the join condition are produced 
as output. The algorithm can be adapted to perform 
an outerjoin by identifying the records that do not 
join with any records in the other file. This can 
be done with no extra cost when two records are 
being matched: the record with the smaller key is 
guaranteed to have no matching records. 

Since differentials are an on-going process running 
at a source, it is possible to save the sorted file of the 
previous snapshot. Thus, the algorithm only needs 
to sort the second file, Fz. This can be done using 
the multiway merge-sort algorithm. This algorithm 
constructs runs which are sequences of blocks with 
sorted records. After a series of passes, the file is 
partitioned into progressively longer runs. The al- 
gorithm terminates when there is only one run left. 
In general, it takes 2 * 1 F I* IoglMl 1 F I IO operations 
to sort a file with size 1 F 1 ([UllSS]). However, if there 
is enough main memory (JM] > a), the sorting 
can be done in 4 * IF I IO operations (sorting is done 
in two passes). The second phase of the algorithm, 
which involves scanning and merging the two sorted 
files, entails )Fl I + IFzl IO operations for a total of 
I Fl I + 5 * I Fz I IO operations. 

The IO cost can be reduced further by just pro- 
ducing the sorted runs (denoted as F-J ,,,,) in the 
first phase. The first step of the algorithm produces 
the sorted F-J runs, at a cost of only 2 * IF21 IOs. 
(File Fl has already been sorted at this point.) The 
sorted F-J file, needed for the next run of the al- 
gorithm l, can then be produced while matching 
FZ run8 with Fl. In producing the sorted F2 file, 
we read into memory one block from each run in 
F2 rUnd (if the block is not already in memory), and 
select the record with the smallest K value. The 
merge process then costs 2 * IF21 + IFI I ZOs. The 
total cost incurred is I Fl I + 4 * I F2l ZOs. 

Another method that we discuss here is the parti- 
tioned hash join algorithm. In the partitioned hash 
join algorithm, the input files are partitioned into 
buckets by computing a hash function on the join 
attribute. Records are matched by considering each 

‘Actually the sorted F2 runs will suffice. Producing the 
F2 runs reduces the IO cost but requires more memory during 
the matching phase 

pair of corresponding buckets. First, one of the 
buckets is read into memory and an in-memory hash 
table is built (assuming the bucket fits in memory). 
The second bucket is then read and a probe into the 
in-memory hash table is made for each record in an 
attempt to find a matching record in the first bucket. 
A more detailed discussion of the partitioned hash 
algorithm is found in [LGM96] where we show that 
the IO cost incurred is IF11 + 3 * lF21. 

3.2 Compression Techniques 

Our compression algorithms reduce the sizes of 
records and the required IO. Compression can be 
performed in varying degrees. For instance, com- 
pression may be performed on the records of a file by 
compressing the whole record into n bits. A block or 
a group of blocks can also be compressed into n bits. 
There are also numerous ways to perform compres- 
sion such as computing the check sum of the data 
and hashing the data to obtain an integer. Compres- 
sion can also be lossy or lossless. In the latter case, 
the compression function guarantees that two differ- 
ent uncompressed values are mapped into different 
compressed values. Lossy compression functions do 
not have this guarantee but have the potential of 
achieving higher compression factors. Henceforth, 
we assume that we are using a lossy compression 
function. We ignore the details of the compression 
function and simply refer to it as compress(z). 

There are a number of benefits ‘from processing 
compressed data. First of all, the compressed inter- 
mediate files, such as the buckets for the partitioned 
hash join, are smaller. Thus, there will be fewer IO 
when reading the intermediate files. Moreover, the 
compressed file may be small enough to fit in mem- 
ory. Even if not, some of the join algorithms may 
still benefit. For example, the compressed file may 
result in buckets that fit in memory which improves 
the matching phase of the partitioned hash join al- 
gorithm. 

Compression is not without its disadvantages. As 
mentioned earlier, a lossy compression function may 
map two different records into the same compressed 
value. This means that the snapshot differential,al- 
gorithm may not be able to detect all the modifi- 
cations to a snapshot. We now show that this can 
occur with a probability of 2~“, where n is the num- 
ber of bits for ‘the compressed value. Assume that 
we are campressing an object (which may be the B 
field, or the entire record, or an entire block, etc.) of 
b bits (b > n). There are then 2’ possible values for 
this object. Since there are only 2” values that the 
compressed object can attain, there are 2’12”’ origi- 
nal values mapped to each compressed value. Thus 
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for each given original value, the probability that 
another value maps to the same compressed value 
is ((26/2n) - 1)/2b, which is approximately 2~” for 
large values of b. For sufficiently large values of n, 
this probability can be made very small. The ex- 
pression 2~“ , henceforth denoted as E, gives the 
probability that a single comparison is erroneous. 
For example, if the B field of the record < Ii, B > is 
compressed into a 32-bit integer, the probability that 
a single comparison (of two B fields) is erroneous is 
2-32 or approximately 2.3 * 10-l’. However, as we 
compare more records, the likelihood that a modi- 
fication is missed increases. To put this probability 
of error into perspective, let us suppose we perform 
a differential on two 256 MB snapshots daily. We 
now proceed to compute how many days we expect 
to pass before a record modification is missed. We 
first compute the probability (denoted as pd,,v) that 
there is no error in comparing two given snapshots. 
Let us suppose that the record size is 150 bytes 
which means that there are approximately 1,789,570 
records for each file. 

Pday = (I- ~)rec(~) = (I- 2.3 * io-10)1~7sg~570 (1) 

Using this probability, we can compute the expected 
number of days before an error occurs. 

Ngood day8 = (I-pdny)*~i*&; = &- (2) 
l<i day 

This comes out to be 2,430 days, or more than 6.7 
years! We believe that for some types of warehousing 
applications, such as data mining, this error rate will 
be acceptable. 

It is evident from the equations above that as the 
number of records increases, the expected number of 
days before an error occurs goes down. However, as 
the number of bits used for compressing is increased, 
the expected number of years before an error occurs 
can be made comfortably large even for large files. 

For the algorithms we will present here, we con- 
sider two ways of compressing the records. For both 
compression formats, we do not compress the key, 
and we denote the compressed B field as b. The 
first format is simply compress a record < K, B > 
into < K, b >. For the second form, the only differ- 
ence is that a pointer is appended forming the record 
< K, b, p >. The pointer p points to the correspond- 
ing disk resident uncompressed record. The use of 
the pointer will be explained when we describe the 
algorithms. We use u to represent the ratio of the 
size of the original record to that of the compressed 
record. So, if an uncompressed file is size IFI, the 
compressed size will be IJ’I/u blocks long. 

Algorithm 3.1 
Input fl sorted, F2 

Output Fout (the snapshot differential), f2 sorted 
Method 
(1) F2 runs t SortZntoRuns(F2) 
(2) rl t read the next record from fl sorted 

(3) r2 t read the next record from F2 runs; 
f2 sorted b Ou&Ut(< r2.K, COmpreSS(r2.B) >) 

(4) while ((t-1 # NULL) A (r2 # NULL)) 
(5) if ((r-1 = NULL) V (r1.K > r2.K)) then 

(6) Fout t Output(< Insert, r2.K, r2.B >) 
(7) t-2 t read the next record from F2 runs; 

f2 sorted + Ou@ut(< r2.K, COmpreSS(r2.B) >) 

(8) else if ((rz = NULL) V (rl .I< < r2.K) then 

(9) F,,,, t Output(< Delete, r1.K >) 
(10) t-1 t read the next record from fl sOrted 
(11) else ii(r1.K = r2.K) then 
(1‘4 ’ if (r1.b # Compress(r2.B)) then 

(13) Fo,,t t Output(< Update, r2.K,r2.B >) 
(14) rl t read the next record from fl sorted 

(15) r-2 t read the next record from F2 runJ; 
f2 sorted + Output(< r2.K, COmpreSS(r2.B) >) 

Figure 1: Sort Merge Outerjoin Enhanced with the 
< I<, b > Compression Format 

3.3 Outerjoin Algorithms with Compression 

We now augment the sort merge outerjoin with com- 
pression (shown in Figure 1). The algorithm dif- 
fers from the standard sort merge algorithm in that 
it reads a compressed sorted Fl file (denoted as 
fr sorted, with a size of ) FI I/u). Also, when detecting 
the updates in step (12), the compressed versions of 
the B field are compared. Lastly, steps (3), (7) and 
(15) now first compress the B field before producing 
an Output into f-2 8orted. 

The sorting phase of the algorithm incurs 2 * IF21 
IOs. The matching phase (steps (4) onwards) incurs 
I F2l + \fr I ZOs since the two files are scanned once. 
Lastly, the sorted f2 sorted must be produced for the 
next differential, which costs I f2l ZOs. The total cost 
is then Ifi1 + 3 * IF21 + If21 ZOs. 

<Greater improvements may be achieved by com- 
pressing not only the first snapshot but also the sec- 
ond snapshot before the files are matched. When 
the second snapshot arrives, it is read into mem- 
ory and compressed sorted runs are written out. In 
essence, the uncompressed F2 file is read only once. 
The problem introduced by compressing the second 
snapshot is that when insertions and updates are 
detected, the original uncompressed record must be 
obtained from F2. In order to find the original (un- 
compressed) record, a pointer to the record must be 
saved in the compressed record. Thus, for this al- 
gorithm, the < K, b,p > compression format must 
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Algorithm 3.2 
Input fi sorted, FZ 
Output Fout (the snapshot differential), f2 sorted 
Met hod 
(1) f2 rUnS C SortZntoRuns 0 Compress(&) 
(2) t-1 t read the next record from fi sorted 
(3) r2 c read the next record from f2 runs; 

fi sorted t OutPut(< rz.K, rz.b, r2.p >) 

(4) while ((rl # NULL) A (r-2 # NULL)) 
(5) if ((rl = NULL) V (r1.K > r2.K)) then * 

(54 rfull c read tuple in F2 with address r2.p 

167)) 
F,,t t Output(< Insert, rz.K, r-full .Z3 >) 
r2 t read the next record from f2 runs; 
f2 sorted t Output(< rz.K, rz.b, r2.p >) 

(8) . else d ((r-2 = NULL) V (r1.K < r2.K)) then 

(9) F,,t t Output(< Delete, rl.Z( >) 

00) rl t read the next record from fi sorted 
(11) else if (r1.K = r2.K) then 

02) if (r1.b # r2.b) then 

024 r-full t read tuple in F2 with address r2.p 

(13) Faut c Output(< Update, r2.K, rf,,a.B >) 

(14) rl t read the next record from fi sorted 

(15) r2 t read the next record from f2 rtLn*; 
fi sorted t Output(< r2.K,rz?.b,r2.p >) 

Figure 2: Sort Merge Outerjoin Enhanced with the 
< K, b, p > Compression Format 

be used. The full algorithm is shown in Figure 2. 
Step (5a) (step(l2a)) shows that when an insertion 
(update) is detected, the pointer p of the current 
record is used to obtain the original record in order 
to produce the correct. output. 

AGE QUEUE_,,----, 

BUFFER 2 

Figure 3: The window Algorithm Data Structures 

Step (1) of Algorithm 3.2 only incurs IF21 + Ifi/ 
IOs instead of 2 * IF21 ZOs. Steps (4) through (15) 
incur Ifi ( + IfsI + U + I IOs, where U and I are 
the number of updates and insertions found. An 
iqdditional I f2 I IOs are needed to write out the sorted 
f2 file. As a result, the overall cost is Ifi1 + IF21 + 
3*lfzl+U+I. Th e savings in IO cost is significant 
especially if there are few updates and inserts. 

Algorithm 3.3 
Input Fl, F2, n (number of blocks in the input buffer) 
Output Fout (the snapshot differential) 
Method 
(1) Input Buff erl t Read n blocks from Fl 
(2) Input Buffer-2 t Read n blocks from F2 
(3) while ((Znput Buffer-1 # EMPTY) A 

(Input Buffer2 # EMPTY)) 
(4) Match Input Buf ferl against Input Buf ferz 
(5) Match Input Buffet-1 against Aging Buffet-2 
(6) Match Input Buff er2 against Aging Buff et-1 
(7) Put contents of Input Buffer-1 to Aging Buffet-1 
(8) Put contents of Input Buf fer2 to Aging Z3uf fer2 
(9) Input Buf ferl t Read n blocks from Fl 
(10) Input Buff er2 t Read n blocks from F2 
(11) Report records in Aging Z3u f f erl as deletes 
(12) Report records in Aging Buf ferz as inserts 

Figure 4: Window Algorithm 

The partitioned hash outerjoin is augmented with 
compression in a very similar manner to the sort 
merge outerjoin. We show in [LGM96] that the over- 
all cost is reduced to Ifi1 + 3 * IF21 + Ifi1 ZOs if the 
buckets are compressed after the matching phase. 
If the buckets are compressed before the matching 
phase, we also show in [LGM96] that the overall cost, 
is lfil+ IF21 + 2 * If21 + I + U 10s. 

The performance gains can even be greater if the 
compression factor u is high enough such that all 
of the buckets of Fl fit in memory. In this case, all 
the buckets for Fl are simply read into memory (Ifi I 
IOs). The file F-J is then scanned, and for each record 
in F2 read, the in-memory buckets are probed. The 
compressed buckets for F2 can also be constructed 
for the.next differential during this probe. The over- 
all cost of this algorithm is only Ifi I + (F21+ If;! I ZOs. 

4 The Window Algorithm 

In the previous section, we described algorithms that 
compute the differential of two snapshots based on 
ad hoc join algorithms. We saw that the snapshots 
are read multiple times. Since the files are large, 
reading the snapshots multiple times can be costly. 
We now present an algorithm that reads the’snap- 
shots exactly once. This new algorithm assumes 
that matching records are physically “nearby” in the 
files. As mentioned in Section 1, matching records 
cannot be expected to be in the same position in 
the two snapshots, due to possible reorganizations 
at the source. However, we may still expect a record 
to remain in a relatively small area, such as a track. 
This is because file reorganization algorithms typi- 
cally fearrange records within a physical sub-unit. 
The window algorithm takes advantage of’ this, and 
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of increasing main memory capacity, by maintain- 
ing a moving window of records in memory for each 
snapshot. Only the records within the window are 
compared in the hope that the matching records oc- 
cur within the window. Unmatched records are re- 
ported as either an insert or a delete, which can lead 
to useless delete-insert pairs. As discussed in Section 
1, a small number of these may be tolerable. 

For the window algorithm, we divide available 
memory into four distinct parts as shown in Fig- 
ure 3. Each snapshot has its own input buffer (input 
buffer i is for Fl) and agihg buffer. The input buffer 
is simply the buffer used in transferring blocks from 
disk. The aging buffer is essentially the moving win- 
dow mentioned above. 

The algorithm is shown in Figure 4 and we now 
proceed to explain each step. Steps (1) and (2) sim- 
ply read a constant number of input block of records 
from file Fl and file F2 to fill input bufler 1 and in- 
put bufler 2, respectively. This process will be done 
repeatedly by steps (9) and (10). Befcre the input 
buffers are refilled, the algorithm guarantees that 
they are empty. Steps (4) through (6) are concerned 
with matching the records of the two snapshots. In 
Step (4), the matching is performed in a nested loop 
fashion. This is not expensive since the input buffers 
are relatively small. The matched records can pro- 
duce updates if the B fields differ. The slots that 
these matching records occupy in the buffer are also 
marked as free. In step (5), the remaining records 
in input buffer 1 are matched against aging buffer 2. 
Since the aging buffers are much larger, the aging 
buffers are actually hash tables to make the match- 
ing more efficient. For each remaining record in in- 
put bufler 1, the hash table that is aging bu#er 2 
is probed for a match. As in step (4), an update 
may be produced by this matching. The slots of the 
matching records are also marked as free. Step (6) 
is analogous to step (5) but this time matching in- 
put buffer 2 and aging bufler 1. Steps (7) and (8) 
clear both input buffers by forcing the unmatched 
records in the input buffers into their respective ag- 
ing buffers. The same hash function used in steps (4) 
and (5) is used to determine which bucket the record 
is placed into. Since new records are forced into the 
aging buffer, some of the old records in the aging 
buffer may be displaced. These displaced records 
constitute the deletes (inserts) if the records are dis- 
placed from aging buffer 1 (aging buffer 2). The dis- 
placement of old records is explained further below. 
The steps are then repeated until both snapshots are 
processed. At that point, any remaining records in 
the aging buffers are output as inserts or deletes. 

In the hash table that constitutes the aging buffer 

Name Description Default 
M Memory Size 32 MB 
B Block Size 16K 
F File Size 256 or 1024 MB 

II 

R Record Size 150 bytes 
rec( F) # of Records 1,789,569 or 

I I 7,158,279 
r 1 Compressed 1 10 or 14 bytes 

IO Number of IOs N/A 
x Intermediate N/A 

File Size 
E Prob. of Error N/A 

Figure 5: List of Variables 

there is an embedded “aging” queue, with the head 
of the queue being the oldest record in the buffer, 
and the tail being the youngest. Figure 3 illustrates 
the aging buffer. Each entry in the hash table has 
a timestamp associated with it for illustration pur- 
poses only. The figure shows that the oldest record 
is at the head of the queue. Whenever new records 
are forced into the aging buffer, the new records are. 
placed at the tail of the queue. If the aging buffer is 
full, the record at the head of the queue is displaced 
as a new record is enqueued at the tail. This action 
produces a delete (insert) if the buffer in question is 
aging buffer 1 (aging buffer 2). 

Since files are read once, the IO cost for the win- 
dow algorithm is only 1 FlI + 1 F2 1 regardless of mem- 
ory size, snapshot size and number of updates and 
inserts. Thus the window algorithm achieves the op- 
timal IO performance if compression is not consid- 
ered. However, the window algorithm can produce 
useless delete-insert pairs in Steps 6 and 7 of the 
algorithm. Intuitively, the number of useless delete- 
insert pairs produced depends on how physically dif- 
ferent the two snapshots are. 

To quantify this difference, we define the distance 
of two snapshots. We want the distance measure to 
be symmetric and independent of the size of the file. 
The equation below exhibits the desired properties. 

distance =, c RlcF1,RlrFa,match(R1,Ra) bdR1) -~s(R2)i 

maz(rec(Fl),rec(F2))2/2 
(3) 

The function pos returns the physical position of a 
record in a snapshot. The boolean function match 
is true when records Ri and Rz have matching keys. 
The function ret returns the number of records of 
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a snapshot file. Thus, this equation sums up the 
absolute value of the difference in position of the 
matching records and normalizes it by the maximum 
distance for the given snapshot file sizes. The max- 
imum distance between two snapshots is attained 
when the records in the second snapshot are in the 
opposite order (the first record is exchanged with 
the last record, the second record with the second 
to the last, and so on) relative to the first snapshot. 
If rec(Fi) = rec(Fz), it is easy to see that in the 
worst case the average displacement of each record 
is rec(Fl)/P, and hence the maximum distance is 
rec(Fi)2/2. If the files are of different sizes, using 
the larger of the two files gives an upper bound on 
the maximum distance. Our distance metric will be 
used in the following section to evaluate the window 
algorithm. 

IO Performance vs. File Size 
901 
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Figure 7: IO Cost Comparison of Algorithms 

5 Performance Evaluation 40 

5.1 Analytical IO Comparison 35 

We have outlined in the previous section algo- 
rithms that can compute a snapshot differential: 
performing sort merge outerjoin (SM), performing 
a partitioned hash outerjoin (PH), performing a 
sort merge outerjoin with two kinds of record com- 
pression (SMCl, SMC2), performing partitioned 
hash outerjoin with two kinds of record compression 
(PHCl, PHCZ) and using the window algorithm 
(W). SMCl denotes sort merge outerjoin with a 
record compression format of < K, b > (similarly for 
PHCl); SMC2 uses the record compression format 
< I(, b, p > (similarly for PHCS). In this section, we 
will illustrate and compare the algorithms in terms 
of IO cost, size of intermediate files, and the proba- 
bility of error. Due to space limitations, this is not 
a comprehensive study, but simply an illustration of 
potential differences between the algorithms in a few 
realistic scenarios. 

30 
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Figure 8: IO Cost and Compression Factor 

Figure 5 shows the variables used in comparing 
the algorithms. We assume that the snapshots have 
the same number of records. The number of records 
(ret(F)) is calculated using F/R, where R is the 
record size (150 bytes). The compressed record size 
is 10 bytes for the < K, b > format and 14 bytes for 
the < K, b,p > format. This leads to compression 
factors of 15 and 10 respectively. 

pression using .the < K, b > record format achieves 
a 37% reduction in IO cost over sort merge using 
SMCl, and a 50% reduction using SMC2. For the 
256 MB file, the compressed file fits in memory which 
enables the PHCl and PHC2 algorithms to build 
a complete in-memory hash table, as explained in 
Section 3.3. The reduction in IO cost for these two 
algorithms, in this case, surpasses even that of the 
window algorithm. 

Figure 6 shows a summary of the results com- 
puted for the various algorithms. The two columns 
labeled I0256 and 101ez4 show the IO cost incurred 
in processing 256 MB and 1024 MB snapshots for the 
different algorithms. Using the sort merge outerjoin 
as a baseline, we can see that the partitioned hash 
outerjoin (PH) reduces the IO cost by 20%. Com- 

However, when the larger file is considered, the 
compressed file no longer fits in the 32 MB mem- 
ory. Thus the PHCl and PHC2 algorithms achieve 
more modest reductions in this case (37% and 52% 
respectively). ‘Other than these two algorithms, the 
reductions achieved by the other algorithms are un- 
changed even with the larger file. 

Figure 7 compares the algorithms when the size of 
the snapshots is varied. The values of other param- 
eters are unchanged. Note that we have not plotted 
SMCl and SMC2 since their plots are almost in- 
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Algorithm I0256 101024 x256 (MB) x1024 (MB) Probability 
n 

(%savings) (%savings) of Error (E) 

SM - 81,920 327,680 16384 65,536 0 
SMCl 51,336 (37%) 205,346 (37%) 16,384 65,536 2.3 * 10-i’ 
SMC2 40,833 (50%) 163,333 (50%) 1,639 6,554 2.3 t 10-l’ 

PH 65,536 (20%) 262,144 (20%) 16,384 65,536 0 
PHCl 18,568 (77%) 205,346 (37%) 16,384 65,536 2.3 * 10-i’ 
PHC2 19,660 (76%) 156,779 (52%) 1,639 6,554 2.3 * lo-i0 

W 32,768 (60%) 131,072 (60%) 0 0 0 

Figure 6: Comparison of Algorithms 
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Rates 

distinguishable from PHCl and PHC2 respectively 
beyond a file size of 500 MB. Also note the disconti- 
nuity in the graph for PHCl and PHCS. PHCl is 
able to build an in-memory hash table if the file is 
smaller than 500 MB (and files smaller than 320 MB 
for PHC2). If the partitioned hash join algorithms 
are able to build an in-memory hash table, they can 
even outperform the window algorithm. 

Clearly, the IO savings for compression algo- 
rithms depend on the compression factor. Figure 8 
illustrates that when the compression factor is low, 
the algorithms with compression perform worse than 
PH (even worse than SM in case of SMCl and 
SMCZ). The other point that this graph illustrates 
is that the benefits of compression are bounded. 
Thus, going beyond a factor of 10 in this case does 
not buy us much. 

The performance of the compression algorithms 
that use the pointer format (algorithms PHC2 and 
SMC2) depend on the number of updates and in- 
serts. If U + I is higher than what we have assumed, 
PHCl and SMCl outperform PHC2 and SMCB. 
Figure 9 shows the performance of the algorithms 

,with different U + I. This shows that PHC2 and 

SMC2 are only useful for scenarios with relatively 
few modifications between snapshots (less than say 
2 percent of the records). By manipulating the IO 
cost equations, it is not hard to show that if U + I 
is greater than 1.7%, PHCl and SMCl incur less 
IO than PHC2 and SMCB. 

The next two columns in Figure 6 (x256 and 
X1024) examine the size of the intermediate files. In 
the case of the SM, PH, SMCl and PHCl algo- 
rithms, uncompressed intermediate files need to be 
saved. In the case of the SMC2 and PHC2 al- 
gorithms, the compressed versions of these files are 
constructed, which leads to a more economic disk 
usage. The window algorithm, on the other hand, 
does not construct any ‘intermediate files. 

The last column (E) illustrates the probability 
of a missed matching record pair. Note that both 
record compression formats result in the same prob- 
ability of error although the two formats have differ- 
ent compression factors. This is because the B field 
is compressed into a 32 bit integer for both formats. 

In closing this section, we stress that the num- 
bers ‘we have shown are only illustrative. The gains 
of the various algorithms can vary widely. For ex- 
ample, if we assume very large records, then even 
modest compression can yield huge improvements. 
On the other hand, if we assume very large memo- 
ries (relative to the file sizes), then the gains become 
negligible. 

5.2 Evaluation of Implemented Algorithms 

In WHIPS, we have implemented the sort merge 
outerjoin and the window algorithm to compute the 
snapshot differentials. We have also built a snap- 
shot differential algorithm evaluation system, which 
we used to study the effects of the snapshot pair 
distance on the number of useless delete-insert pairs 
that is produced by the window algorithm. We will 
also use the evaluation system to compare the actual 
running times of the window algorithm and the sort 
merge outerjoin algorithm. 
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Snapshot Parameters Default Values 
Size of B field 150 bytes 

R Size of Record 156 bytes 
Number of Records 650,000 

F File Size 100 MB 
dWa,, 50,000 records 

u Number of Updates 20% of ret(F) 

Window Parameters Default Values 
’ AB Aging Buffer Size 8MB 

IB Input Block Size 16K 

Figure 10: List of Parameters 

The evaluation system has a snapshot generator 
that produces a pair of synthetic snapshots with 
records of the form < I<, B >. The snapshot gen- 
erator produces the two snapshots based on the fol- 
lowing parameters: size of the B field, number of 
records, average record displacement (disp,,,) and 
percentage of updates. The first snapshot is con- 
structed to have ordered K fields with the specified 
number of records and with the specified B field size. 
Figure 10 shows the default snapshot pair parame- 
ters. 

Conceptually, the second snapshot is produced by 
first copying the first snapshot. Each record Rj in 
the second snapshot is then swapped with a record 
that is, on average (uniformly distributed from 0 to 
2 * diva,,), disp,,, records away from Rj. Based 
on the specified percentage of updates, some of the 
records in the second snapshot are modified to sim- 
ulate updates. Insertions and deletions are not gen- 
erated since they do not affect the number of useless 
delete-insert pairs produced. Notice that disp,,, 
is not the distance measure between snapshots. It 
is a generator parameter that indirectly affects the 
resulting distance. Thus, after generating the two 
snapshots, the actual distance of the two snapshots 
is theri measured. 

The two snapshots along with algorithm specific 
parameters are passed to the snapshot differential al- 
gorithm being tested. Note that any of the previous 
algorithms discussed can be used as the snapshot 
differential algorithm. In the experiments that we 
present here we focus on the window and the sort 
merge outerjoin algorithms. By varying the aging 
buffer size and the input buffer size parameters, we 
can study how these parameters affect the window 
algorithm. Figure 10 also shows the default window 
parameters. These were used unless the parameter 
was varied in an experiment. 

For a system designer, it is helpful to translate 
dist,,it into a critical average physical displacement. 
For instance, if the designer knows that records can 
only be displaced within a cylinder and the designer 
can only allocate 8 MB to each aging buffer, it is 
useful to know if the window algorithm produces 
few useless delete-insert messages in this scenario. 
We now capture this notion by first manipulating 
the definition of distance (equation (3) in Section 4) 

After the snapshot differential algorithm is run, . to show that distcrit of the different snapshot pairs 

3 0.7 
Effect of Distance on the Number of Extra Messages 

8 
F=50MB - 
F = 75 MB -+---. 

Figure 11: Effect of Distance on the Number of Ex- 
tra Messages 

snapshot generator synthesized the two snapshots, 
it also knows the minimal set of differences of the 
two snapshots. The message comparator can then 
check for the correctness of the output and count 
the number of extra messages. 

The experiments we conducted enable us to eval- 
uate, given the size of the aging buffer, and the size 
and the distance of the snapshots, how well the win- 
dow algorithm will perform in terms of the number 
of extra messages produced. In the first experiment, 
we varied the disp,,, (and indirectly the distance) 
and measured the number of extra messages pro- 
duced. This experiment was performed on three 
pairs of snapshots whose sizes ranged from 50 MB 
to 100 MB. Figure 11 shows that, as expected, as 
the distance of the snapshots increases beyond the 
capacity of the aging buffer, the number of extra 
messages increases. As the number of extra mes- 
sages sharply rises, the graphs exhibit strong fluc- 
tuations. This is because the synthetic snapshots 
were produced randomly and only one experiment 
was done for each distance. For each snapshot size, 
there is a critical distance (dist,,it) which causes the 
window algorithm to start producing extra messages 
with the given aging buffer size. 

the output of the algorithm is compared to what was can be translated into a critical average physical dis- 
“produced” by the snapshot generator. Since the placement (in terms of MB). Since there are no in- 
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Figure 12: dist,,it and disp,,i, MB 
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Figure 13: Effect of the Memory Size on the Number 
of Extra Messages 

sertions nor deletions in the synthetic snapshot pair, 
we can define a critical average record displacement 
(denoted as disp,,it) which is related to dist,,it as 
shown in equation (5). 

c RlcF~.RacF3,mo*ch(R1 ,R1) IP~RI)-P~~(W I 
dist,,,t = 

re~(F)~/2 (4 

rec(F)*dtsp,,,~ 
= rec(F)wec(F)/2 

disp,,,, MB = disp,rit*R = dist,,,t*(rec(F)/2)*R (6) 

Using the size of the record, we can translate 
the dist,,it into a critical average physical displace- 
ment (denoted as disp,,it MB which is in terms of 
MB) using equation (6). Figure 12 shows the result 
of the calculations for the different snapshot pairs. 
The dist,,it of the snapshot pairs are estimated from 
Figure 11. This table shows, for example, that the 
window algorithm can tolerate an average physical 
displacement of about 11.2 MB given an aging buffer 
size of only 8 MB to compare 100 MB snapshots. 
Thus, if a system designer knows that the records 
can only be displaced within, say a page (which is 
normally smaller than 11.2 MB), then the designer 
can be assured that the window algorithm will not 
produce excessive amounts of extra messages. 

In the next experiment, we focus on the 100 MB 
snapshots. Using the parameters listed in Figure 
10, we varied the size of the aging buffer from 1.0 
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Figure 14: Comparison of the Total Times 

MB to 16 MB. The disp,,g was set at 50,000 with 
.a resulting distance of 0.34, which is well above the 
dist,,it. Figure 13 shows that once the size of the ag- 
ing buffer is at least 12.8 MB, no extra messages are 
produced. This is to be expected since we showed 
previously (Figure 12) that the tolerable dispc,it MB 
for the 100 MB file is 11.2 MB. Using the .same snap- 
shot pair, we also varied the input block size from 8 
K to 80 K. The variation had no effect on the num- 
ber of extra messages and we do not show the graph 
here. Again, this is to be expected, since the size 
of the aging buffer is much larger than the size of 
the input block. Thus, even if the input block size 
is varied, the window size stays the same. We also 
varied the record size and this showed no effect on 
the number of extra messages produced. 

Lastly we compared the CPU time and the clock 
time (which includes the IO time) that the window 
algorithm consumes to that of the sort merge out- 
erjoin based algorithm. We ran the experiments on 
a DEC Alpha 3000/400 workstation running UNIX. 
We used the UNIX sort utility in the implementa- 
tion of the sort merge outerjoin. (UNIX sort may 
not be the most efficient, but we believe it is ade- 
quate for the comparisons we wish to perform here.) 
We used the same input block size for both the win- 
dow and the sort merge outerjoin algorithms (16 K). 
The disp,,, of the two snapshots was set so that the 
resulting distance was 0.05 (within the dist,,it for 
all file sizes). The analysis in the previous section 
illustrated that the window algorithm incurs fewer 
IO operations than the sort merge outerjoin algo- 
rithm. Our experiments showed that the window al- 
gorithm is also significantly less CPU intensive than 
the sort merge based algorithm (e.g., 80s compared 
to 250s for a 75 MB file). As expected then, Figure 
14 shows that the window algorithm outperforms the 

. 
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sort merge outerjoin in terms of clock time. Figure 
14 also shows the time to simply read the files into 
memory, without actually processing them. Since no 
differential algorithm can avoid this IO overhead, we 
see that the Window algorithm has a relatively low 
CPU processing overhead. 

6 Conclusion 

We have defined the snapshot differential problem 
and discussed its importance in data warehousing. 
All of our proposed algorithms are relatively simple, 
but we view this as essential for dealing efficiently 
with large files. In summary, we have the following 
results: 

l By augmenting the outerjoin algorithms with 
record compression, we have shown that very 
significant savings in IO cost can be attained. 

l We have introduced the window algorithm 
which works extremely well if the snapshots are 
not too different. Under this scenario, this al- 
gorithm outperforms the join based algorithms 
and its running time is comparable to simply 
reading the snapshots once. 

We have incorporated the window and the sort merge 
outerjoin algorithms into the initial WHIPS proto- 
type. The production version of the algorithm takes 
as input a “format definition” that describes the 
record format of the snapshots and identifies the 
key field(s). Th e f ormat allows for complex value 
fields, but the window algorithm will consider the 
entire record as a single field. We also plan to imple- 
ment a post-processor that filters out useless delete- 
insert pairs before they are sent to the warehouse. 
The differential algorithm and the warehouse itself 
are implemented within the Corba distributed ob- 
ject framework, using ILU, an implementation from 
Xerox PARC [CJS+94]. For our system demonstra- 
tions, we use the window algorithm to extract modi- 
fications from a legacy source that handles financial 
account information at Stanford. 
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