
Efficient Snapshot Differential Algorithms for Data
Warehousing

Wilburt Juan Labio
Computer Science Dept.

Stanford, CA 94305
wilburt@cs.stanford.edu

Abstract

Detecting and extracting modifications from
information sources is an integral part of
data warehousing. For unsophisticated
sources, it is often necessary to infer mod-
ifications by periodically comparing snap
shots of data from the source. Although
this snapshot differential problena is closely
related to traditional joins, there are signif-
icant differences, which lead to simple new
algorithms. In particular, we present algo-
rithms that perform compression of records.
We also present a window algorithm that
works. very well if the snapshots are not
“very different.” The algorithms are studied
via analysis and an implementation of two
of them;‘the results illustrate the potential
gains achievable with the new’ algorithms.

1 Introduction

Warehousing is a promising technique for retrieval
and integration of data from distributed, au-
tonomous and possibly heterogeneous information
sources [Squ95]. A warehouse is a repository of inte-
grated information that is available for queries. As
relevant information sources are modified, the new

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributedfor direct conimercinl
advantage, the VLDB copyrightnotice and the title of the publication and
its date appear; and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 22nd VLDB Conference
Mumbai(Bombay), India, 1996

Hector Garcia-Molina
Computer Science Dept.

Stanford, CA 94305
hector@cs.stanford.edu

information is extracted, and translated to the data
model of the warehouse, and integrated with the ex-
isting warehouse data. In this paper, we focus on the
detection and the extraction of the modifications to
the information sources.

The detectio! and extraction of modifications de-
pends on the facilities at the source. If the source is
sophisticated, say a relational database system with
triggers, then this process is relatively easy. In many
cases, however, the source does not have advanced
facilities available for detecting and recording mod-
ifications (e.g., legacy sources). If this is the case
there are essentially three ways to detect and ex-
tract modifications [IC94]:

1. The application running on top of the source is
altered to send the modifications to the ware-
house.

2. A system log file is parsed to obtain the rele-
vant modifications (as done in the IBM Data
Propagator [Go195]) to the application.

3. The modifications are inferred by comparing
a current source snapshot with an earlier one.
We call the problem of detecting differences be-
tween snapshots the snapshot differential prob-
lem; it is the problem we address in this paper.

Although the first two methods are usually pre-
ferred, both methods have limitations and disadvan-
tages. The first method requires that existing code
be altered. In most cases, however, the code is so
shopworn that additional modifications are problem-
atic. The second method also has its difficulties. For
instance, it is often the case that DBA privileges are
required to access the log, so site administrators are
reluctant to provide access.

We stress that we are not arguing in favor of snap
shot differentials as the best solution for reporting
modifications to a warehouse. It clearly does not
scale well: as the volume of source data grows, we

63

have to perform larger and larger comparisons. We
are saying, however, that it is a solution we are stuck
with for the foreseeable future, and because differ-
entials are such inherently expensive operations it is
critical that we perform them as efficiently aa pos-
sible. In this paper we will present very efficient
differential algorithms; they perform so well because
they exploit the particular semantics of the problem.

1.1 Problem Formulation

We view a source snapshot as a file containing a
set of distinct records. The file is of the form
{RI, R2 , . ..R.,} where Ri denote the records. Each
Ri‘is of the form < K, B >, where K is the key and
B is the rest of the record representing one or more
fields. Without loss of generality, we refer to B as
a single field in the rest of the paper. (In [LGM95]
we extend the algorithms presented in this paper to
the case where records do not have unique keys.)

For the snapshot differential problem we have two
snapshots, J’l and F2 (the later snapshot). Our goal
is to produce a file FOUT that also has the form
{RI, R2, . ..R.,} and each modification record & has
one of the following three forms.

1. < Update, Ki, Bj >
2. < Delete, Ki >
3. < Insert, Ki, Bi >

The first form is produced when a record < Ki, Bi >
in file Fi is updated to < Ki, Bj > in file F2. The
second form is produced when a record < Ki, Bi >
in Fl does not appear in F2. Lastly, the third form
is prodhced when a record < Ki, Bi > in F2 was not
present in Fl. We refer to the first form as updates,
the second as deletes and the third as inserts. The
first field is only necessary in distinguishing between
updates and inserts. It is included for clarity in the
case of deletes.

Conceptually, we have represented snapshots as
sets because the physical location of a record within
a snapshot file may change from one snapshot to an-
other. That is, records with matching keys are not
expected to be in the same physical position in Fl
and F2. This is because the source is free to reorga-
nize its storage between snapshots. Also, insertions
and deletions may also change physical record posi-
tions in the snapshot.

The snapshot differential can be performed at the.
source itself. That is, a snapshot is taken peri-
odically and stored at the source site. A daemon
process then performs the snapshot differential pe-
riodically and sends the detected modifications to
the warehouse. The snapshot differential can also
be performed at an intermediate site. That is, the

source sends the full snapshots to an intermediate
site where the snapshot differential process is per-
formed. In any case, the exact procedure for sending
these modifications to the data warehouse is imple-
mentation dependent.

It is important to realize that there is no unique
set of modifications that captures the difference be-
tween two snapshots. At one extreme, a deletion
can be reported for each record in Fl and an in-
sertion can be reported for each record in F2. Ob-
viously, this can be wasteful. We capture this no-
tion of wasted messages by defining useless delete-
insert pairs and useless insert-delete pairs. A useless
insert-delete pair is a message sequence composed
of < Insert, Ki, Bi > followed (not necessarily im-
mediately) by < Delete, Ki >, produced when the
two snapshots both have a record < Ki, Bi > or
when the earlier snapshot has < Ki, Bj > and the
later one has < Ki, Bi >. A useless insert-delete
pair introduces a cbrrectness problem. When the
insert is processed at the warehouse, it will most
likely be ignored since a record with the same key al-
ready exists. Thus, when the delete is processed, the
record with the key Ki will be deleted from the ware-
house. On the other hand, a useless delete-insert
pair does not compromise the correctness of the
warehouse. However, it introduces overhead in pro-
cessing messages since either no modifications were
needed (when the two snapshots both have a record
< Ki, Bi >) or the modification could have been
reported more succinctly by < Update, Iii, Bi >.

Since useless pairs are not an effective way of
reporting changes, one may be tempted to require
snapshot differential algorithms to generate no use-
less pairs. However, strictly forbidding useless
delete-insert pairs turns out to be counterproduc-
tive! Allowing the generation of “some” useless
delete-insert pairs gives the differential algorithm
significant flexibility and leads to solutions that can
be very efficient in some cases. We return to these is-
sues later when we quantify the savings of “flexible”
differential algorithms over algorithms that do not
allow useless delete-insert pairs. Thus, in this paper
we do allow useless delete-insert pairs, with the ulti-
mate goal of keeping their numbers relatively small.

However, we do want to avoid useless insert-delete
pairs since they may compromise correctness. Use-
less insert-delete pairs can be eliminated by batching
the deletes together and sending the deletes first to
the warehouse for processing. In essence, we have
transformed the insert-delete pairs into delete-insert
pairs. This method also amortizes the overhead cost
of sending the modifications over the network. We
assume for the rest of the paper that all useless’

64

insert-delete pairs are eliminated.

1.2 Differences with Joins

The snapshot differential problem is closely related
to the problem of performing a join between two
relations. In particular, if we outerjoin Fl and F2
on their common K attribute on the condition that
their B attributes differ, we can obtain the update
records required for the differential problem.

Outerjoin is so closely related to the differen-
tial problem that the traditional, ad hoc, join al-
gorithms ([ME92],[HC94]) can be adapted to our
needs. Indeed, in Section 3 we show these modifica-
tions. However, given the particular semantics and
intended application of the differential algorithms,
we can go beyond the ad hoc solutions and obtain
new and more efficient algorithms. The three main
ideas we exploit are as follows:

l Some useless delete-insert pairs are acceptable.
Traditional outerjoin algorithms do not have
useless delete-insert pairs. The extra flexibil-
ity we have allows algorithms that are “sloppy”
but efficient in matching records.

l For some data warehousing applications, it may
be acceptable to miss a few of the modifications.
Thus, for differentials we can use probabilis-
tic algorithms that may miss some differences
(with arbitrarily low probability), but that can
be much more efficient. Again, traditional al-
gorithms are not allowed any “errors,” must be
very conservative, and must pay the price.

l Snapshot differentials are an on-going process
running at a source. This makes it possible to
save some of the information used in one differ-
ential to improve the next iteration.

2 Related Work

Snapshots were first introduced in [AL80]. Snap
shots were then used in the R* project at IBM Re-
search in San Jose [Loh85]. The data warehouse
snapshot can be updated by maintaining a log of
the modifications to the database. This approach
was defined to be a differential refresh strategy in
[KR87]. If snapshots were sent periodically, this was
called the full refresh strategy. In this paper we only
consider the case where the source strategy is full re-
fresh. [Lea861 1 p a so resented a method for refreshing
a snapshot that minimizes the number of messages
sent when refreshing a snapshot. The method re-
quires annotating the base tables with two columns
for a tuple address and a timestamp. We cannot

adopt this method in data warehousing since the
sources are autonomous.

Reference [CRGMW96] investigates algorithms to
find differences in hierarchical structures (e.g., docu-
ments, CAD designs). Our focus here is on simpler,
record structured differences, and on dealing with
very large snapshots that may not fit in memory.

There has been recent complementary work on
copy detection of files and documents ([MW94],
[BDGM95], [SGM95]). The snapshot differential
problem is concerned with detecting the specific dif-
ferences of two files as opposed to measuring how dif-
ferent two files are. Also related are [BGMF88] and
[FWJ86], which propose methods for finding differ-
ing pages in files. However, these methods can only
detect a few modifications.

The snapshot differential problem is also related
to text comparison, for example, as implemented by
UNIX di# and DOS camp. However, the text com-
parison problem is concerned with a sequence of the
records, while the snapshot differential problem is
concerned with a set of records. Reference [HT77]
outlines an algorithm that finds the longest common
subsequence of the lines of the text, which is used in
the UNIX difl Report [LGM95] takes a closer look
at how this algorithm can be adopted to solve the
snapshot differential problem, although the solution
is not as efficient as the ones presented here.

The methods for solving the snapshot differential
problem proposed here are based on ad hoc joins
which have been well studied; [ME921 and [Sha86]
are good surveys on join processing. The snap-
shot differential algorithms proposed here are used in
the data warehousing system WHIPS. An overview
of the system is presented in [HGMW+95]. After
the modifications of multiple sources are detected,
the modifications are integrated using methods dis-
cussed in [ZGMHW95].

Note that knowledge of the semantics of the infor-
mation maintained at the warehouse may help make
change detection simpler. An outline of these special
cases is in report [LGM95].

3 Using Compression

In this section we first describe existing, ad hoc, join
algorithms but we do not cover all the known varia-
tions and optimizations of these algorithms. We be-
lieve that many of these further optimizations can
also be applied to the snapshot differential algo-
rithms we present.

After extending the ad hoc algorithms to handle
the differential problem, we study record compres-
sion techniques to optimize them. In the sections

65

below, we denote the size of a file F as IFI blocks
and the size of main memory as]M] blocks. We also
exclude the cost of writing the output file in our cost
analysis since it is the same for all of the algorithms.

3.1 Outer Join Algorithms

The basic sort merge join first sorts the two input
files. It then scans the files once and any pair of
records that satisfy the join condition are produced
as output. The algorithm can be adapted to perform
an outerjoin by identifying the records that do not
join with any records in the other file. This can
be done with no extra cost when two records are
being matched: the record with the smaller key is
guaranteed to have no matching records.

Since differentials are an on-going process running
at a source, it is possible to save the sorted file of the
previous snapshot. Thus, the algorithm only needs
to sort the second file, Fz. This can be done using
the multiway merge-sort algorithm. This algorithm
constructs runs which are sequences of blocks with
sorted records. After a series of passes, the file is
partitioned into progressively longer runs. The al-
gorithm terminates when there is only one run left.
In general, it takes 2 * 1 F I* IoglMl 1 F I IO operations
to sort a file with size 1 F 1 ([UllSS]). However, if there
is enough main memory (JM] > a), the sorting
can be done in 4 * IF I IO operations (sorting is done
in two passes). The second phase of the algorithm,
which involves scanning and merging the two sorted
files, entails)Fl I + IFzl IO operations for a total of
I Fl I + 5 * I Fz I IO operations.

The IO cost can be reduced further by just pro-
ducing the sorted runs (denoted as F-J ,,,,) in the
first phase. The first step of the algorithm produces
the sorted F-J runs, at a cost of only 2 * IF21 IOs.
(File Fl has already been sorted at this point.) The
sorted F-J file, needed for the next run of the al-
gorithm l, can then be produced while matching
FZ run8 with Fl. In producing the sorted F2 file,
we read into memory one block from each run in
F2 rUnd (if the block is not already in memory), and
select the record with the smallest K value. The
merge process then costs 2 * IF21 + IFI I ZOs. The
total cost incurred is I Fl I + 4 * I F2l ZOs.

Another method that we discuss here is the parti-
tioned hash join algorithm. In the partitioned hash
join algorithm, the input files are partitioned into
buckets by computing a hash function on the join
attribute. Records are matched by considering each

‘Actually the sorted F2 runs will suffice. Producing the
F2 runs reduces the IO cost but requires more memory during
the matching phase

pair of corresponding buckets. First, one of the
buckets is read into memory and an in-memory hash
table is built (assuming the bucket fits in memory).
The second bucket is then read and a probe into the
in-memory hash table is made for each record in an
attempt to find a matching record in the first bucket.
A more detailed discussion of the partitioned hash
algorithm is found in [LGM96] where we show that
the IO cost incurred is IF11 + 3 * lF21.

3.2 Compression Techniques

Our compression algorithms reduce the sizes of
records and the required IO. Compression can be
performed in varying degrees. For instance, com-
pression may be performed on the records of a file by
compressing the whole record into n bits. A block or
a group of blocks can also be compressed into n bits.
There are also numerous ways to perform compres-
sion such as computing the check sum of the data
and hashing the data to obtain an integer. Compres-
sion can also be lossy or lossless. In the latter case,
the compression function guarantees that two differ-
ent uncompressed values are mapped into different
compressed values. Lossy compression functions do
not have this guarantee but have the potential of
achieving higher compression factors. Henceforth,
we assume that we are using a lossy compression
function. We ignore the details of the compression
function and simply refer to it as compress(z).

There are a number of benefits ‘from processing
compressed data. First of all, the compressed inter-
mediate files, such as the buckets for the partitioned
hash join, are smaller. Thus, there will be fewer IO
when reading the intermediate files. Moreover, the
compressed file may be small enough to fit in mem-
ory. Even if not, some of the join algorithms may
still benefit. For example, the compressed file may
result in buckets that fit in memory which improves
the matching phase of the partitioned hash join al-
gorithm.

Compression is not without its disadvantages. As
mentioned earlier, a lossy compression function may
map two different records into the same compressed
value. This means that the snapshot differential,al-
gorithm may not be able to detect all the modifi-
cations to a snapshot. We now show that this can
occur with a probability of 2~“, where n is the num-
ber of bits for ‘the compressed value. Assume that
we are campressing an object (which may be the B
field, or the entire record, or an entire block, etc.) of
b bits (b > n). There are then 2’ possible values for
this object. Since there are only 2” values that the
compressed object can attain, there are 2’12”’ origi-
nal values mapped to each compressed value. Thus

66

for each given original value, the probability that
another value maps to the same compressed value
is ((26/2n) - 1)/2b, which is approximately 2~” for
large values of b. For sufficiently large values of n,
this probability can be made very small. The ex-
pression 2~“ , henceforth denoted as E, gives the
probability that a single comparison is erroneous.
For example, if the B field of the record < Ii, B > is
compressed into a 32-bit integer, the probability that
a single comparison (of two B fields) is erroneous is
2-32 or approximately 2.3 * 10-l’. However, as we
compare more records, the likelihood that a modi-
fication is missed increases. To put this probability
of error into perspective, let us suppose we perform
a differential on two 256 MB snapshots daily. We
now proceed to compute how many days we expect
to pass before a record modification is missed. We
first compute the probability (denoted as pd,,v) that
there is no error in comparing two given snapshots.
Let us suppose that the record size is 150 bytes
which means that there are approximately 1,789,570
records for each file.

Pday = (I- ~)rec(~) = (I- 2.3 * io-10)1~7sg~570 (1)

Using this probability, we can compute the expected
number of days before an error occurs.

Ngood day8 = (I-pdny)*~i*&; = &- (2)
l<i day

This comes out to be 2,430 days, or more than 6.7
years! We believe that for some types of warehousing
applications, such as data mining, this error rate will
be acceptable.

It is evident from the equations above that as the
number of records increases, the expected number of
days before an error occurs goes down. However, as
the number of bits used for compressing is increased,
the expected number of years before an error occurs
can be made comfortably large even for large files.

For the algorithms we will present here, we con-
sider two ways of compressing the records. For both
compression formats, we do not compress the key,
and we denote the compressed B field as b. The
first format is simply compress a record < K, B >
into < K, b >. For the second form, the only differ-
ence is that a pointer is appended forming the record
< K, b, p >. The pointer p points to the correspond-
ing disk resident uncompressed record. The use of
the pointer will be explained when we describe the
algorithms. We use u to represent the ratio of the
size of the original record to that of the compressed
record. So, if an uncompressed file is size IFI, the
compressed size will be IJ’I/u blocks long.

Algorithm 3.1
Input fl sorted, F2

Output Fout (the snapshot differential), f2 sorted
Method
(1) F2 runs t SortZntoRuns(F2)
(2) rl t read the next record from fl sorted

(3) r2 t read the next record from F2 runs;
f2 sorted b Ou&Ut(< r2.K, COmpreSS(r2.B) >)

(4) while ((t-1 # NULL) A (r2 # NULL))
(5) if ((r-1 = NULL) V (r1.K > r2.K)) then

(6) Fout t Output(< Insert, r2.K, r2.B >)
(7) t-2 t read the next record from F2 runs;

f2 sorted + Ou@ut(< r2.K, COmpreSS(r2.B) >)

(8) else if ((rz = NULL) V (rl .I< < r2.K) then

(9) F,,,, t Output(< Delete, r1.K >)
(10) t-1 t read the next record from fl sOrted
(11) else ii(r1.K = r2.K) then
(1‘4 ’ if (r1.b # Compress(r2.B)) then

(13) Fo,,t t Output(< Update, r2.K,r2.B >)
(14) rl t read the next record from fl sorted

(15) r-2 t read the next record from F2 runJ;
f2 sorted + Output(< r2.K, COmpreSS(r2.B) >)

Figure 1: Sort Merge Outerjoin Enhanced with the
< I<, b > Compression Format

3.3 Outerjoin Algorithms with Compression

We now augment the sort merge outerjoin with com-
pression (shown in Figure 1). The algorithm dif-
fers from the standard sort merge algorithm in that
it reads a compressed sorted Fl file (denoted as
fr sorted, with a size of) FI I/u). Also, when detecting
the updates in step (12), the compressed versions of
the B field are compared. Lastly, steps (3), (7) and
(15) now first compress the B field before producing
an Output into f-2 8orted.

The sorting phase of the algorithm incurs 2 * IF21
IOs. The matching phase (steps (4) onwards) incurs
I F2l + \fr I ZOs since the two files are scanned once.
Lastly, the sorted f2 sorted must be produced for the
next differential, which costs I f2l ZOs. The total cost
is then Ifi1 + 3 * IF21 + If21 ZOs.

<Greater improvements may be achieved by com-
pressing not only the first snapshot but also the sec-
ond snapshot before the files are matched. When
the second snapshot arrives, it is read into mem-
ory and compressed sorted runs are written out. In
essence, the uncompressed F2 file is read only once.
The problem introduced by compressing the second
snapshot is that when insertions and updates are
detected, the original uncompressed record must be
obtained from F2. In order to find the original (un-
compressed) record, a pointer to the record must be
saved in the compressed record. Thus, for this al-
gorithm, the < K, b,p > compression format must

67

Algorithm 3.2
Input fi sorted, FZ
Output Fout (the snapshot differential), f2 sorted
Met hod
(1) f2 rUnS C SortZntoRuns 0 Compress(&)
(2) t-1 t read the next record from fi sorted
(3) r2 c read the next record from f2 runs;

fi sorted t OutPut(< rz.K, rz.b, r2.p >)

(4) while ((rl # NULL) A (r-2 # NULL))
(5) if ((rl = NULL) V (r1.K > r2.K)) then *

(54 rfull c read tuple in F2 with address r2.p

167))
F,,t t Output(< Insert, rz.K, r-full .Z3 >)
r2 t read the next record from f2 runs;
f2 sorted t Output(< rz.K, rz.b, r2.p >)

(8) . else d ((r-2 = NULL) V (r1.K < r2.K)) then

(9) F,,t t Output(< Delete, rl.Z(>)

00) rl t read the next record from fi sorted
(11) else if (r1.K = r2.K) then

02) if (r1.b # r2.b) then

024 r-full t read tuple in F2 with address r2.p

(13) Faut c Output(< Update, r2.K, rf,,a.B >)

(14) rl t read the next record from fi sorted

(15) r2 t read the next record from f2 rtLn*;
fi sorted t Output(< r2.K,rz?.b,r2.p >)

Figure 2: Sort Merge Outerjoin Enhanced with the
< K, b, p > Compression Format

be used. The full algorithm is shown in Figure 2.
Step (5a) (step(l2a)) shows that when an insertion
(update) is detected, the pointer p of the current
record is used to obtain the original record in order
to produce the correct. output.

AGE QUEUE_,,----,

BUFFER 2

Figure 3: The window Algorithm Data Structures

Step (1) of Algorithm 3.2 only incurs IF21 + Ifi/
IOs instead of 2 * IF21 ZOs. Steps (4) through (15)
incur Ifi (+ IfsI + U + I IOs, where U and I are
the number of updates and insertions found. An
iqdditional I f2 I IOs are needed to write out the sorted
f2 file. As a result, the overall cost is Ifi1 + IF21 +
3*lfzl+U+I. Th e savings in IO cost is significant
especially if there are few updates and inserts.

Algorithm 3.3
Input Fl, F2, n (number of blocks in the input buffer)
Output Fout (the snapshot differential)
Method
(1) Input Buff erl t Read n blocks from Fl
(2) Input Buffer-2 t Read n blocks from F2
(3) while ((Znput Buffer-1 # EMPTY) A

(Input Buffer2 # EMPTY))
(4) Match Input Buf ferl against Input Buf ferz
(5) Match Input Buffet-1 against Aging Buffet-2
(6) Match Input Buff er2 against Aging Buff et-1
(7) Put contents of Input Buffer-1 to Aging Buffet-1
(8) Put contents of Input Buf fer2 to Aging Z3uf fer2
(9) Input Buf ferl t Read n blocks from Fl
(10) Input Buff er2 t Read n blocks from F2
(11) Report records in Aging Z3u f f erl as deletes
(12) Report records in Aging Buf ferz as inserts

Figure 4: Window Algorithm

The partitioned hash outerjoin is augmented with
compression in a very similar manner to the sort
merge outerjoin. We show in [LGM96] that the over-
all cost is reduced to Ifi1 + 3 * IF21 + Ifi1 ZOs if the
buckets are compressed after the matching phase.
If the buckets are compressed before the matching
phase, we also show in [LGM96] that the overall cost,
is lfil+ IF21 + 2 * If21 + I + U 10s.

The performance gains can even be greater if the
compression factor u is high enough such that all
of the buckets of Fl fit in memory. In this case, all
the buckets for Fl are simply read into memory (Ifi I
IOs). The file F-J is then scanned, and for each record
in F2 read, the in-memory buckets are probed. The
compressed buckets for F2 can also be constructed
for the.next differential during this probe. The over-
all cost of this algorithm is only Ifi I + (F21+ If;! I ZOs.

4 The Window Algorithm

In the previous section, we described algorithms that
compute the differential of two snapshots based on
ad hoc join algorithms. We saw that the snapshots
are read multiple times. Since the files are large,
reading the snapshots multiple times can be costly.
We now present an algorithm that reads the’snap-
shots exactly once. This new algorithm assumes
that matching records are physically “nearby” in the
files. As mentioned in Section 1, matching records
cannot be expected to be in the same position in
the two snapshots, due to possible reorganizations
at the source. However, we may still expect a record
to remain in a relatively small area, such as a track.
This is because file reorganization algorithms typi-
cally fearrange records within a physical sub-unit.
The window algorithm takes advantage of’ this, and

68

of increasing main memory capacity, by maintain-
ing a moving window of records in memory for each
snapshot. Only the records within the window are
compared in the hope that the matching records oc-
cur within the window. Unmatched records are re-
ported as either an insert or a delete, which can lead
to useless delete-insert pairs. As discussed in Section
1, a small number of these may be tolerable.

For the window algorithm, we divide available
memory into four distinct parts as shown in Fig-
ure 3. Each snapshot has its own input buffer (input
buffer i is for Fl) and agihg buffer. The input buffer
is simply the buffer used in transferring blocks from
disk. The aging buffer is essentially the moving win-
dow mentioned above.

The algorithm is shown in Figure 4 and we now
proceed to explain each step. Steps (1) and (2) sim-
ply read a constant number of input block of records
from file Fl and file F2 to fill input bufler 1 and in-
put bufler 2, respectively. This process will be done
repeatedly by steps (9) and (10). Befcre the input
buffers are refilled, the algorithm guarantees that
they are empty. Steps (4) through (6) are concerned
with matching the records of the two snapshots. In
Step (4), the matching is performed in a nested loop
fashion. This is not expensive since the input buffers
are relatively small. The matched records can pro-
duce updates if the B fields differ. The slots that
these matching records occupy in the buffer are also
marked as free. In step (5), the remaining records
in input buffer 1 are matched against aging buffer 2.
Since the aging buffers are much larger, the aging
buffers are actually hash tables to make the match-
ing more efficient. For each remaining record in in-
put bufler 1, the hash table that is aging bu#er 2
is probed for a match. As in step (4), an update
may be produced by this matching. The slots of the
matching records are also marked as free. Step (6)
is analogous to step (5) but this time matching in-
put buffer 2 and aging bufler 1. Steps (7) and (8)
clear both input buffers by forcing the unmatched
records in the input buffers into their respective ag-
ing buffers. The same hash function used in steps (4)
and (5) is used to determine which bucket the record
is placed into. Since new records are forced into the
aging buffer, some of the old records in the aging
buffer may be displaced. These displaced records
constitute the deletes (inserts) if the records are dis-
placed from aging buffer 1 (aging buffer 2). The dis-
placement of old records is explained further below.
The steps are then repeated until both snapshots are
processed. At that point, any remaining records in
the aging buffers are output as inserts or deletes.

In the hash table that constitutes the aging buffer

Name Description Default
M Memory Size 32 MB
B Block Size 16K
F File Size 256 or 1024 MB

II

R Record Size 150 bytes
rec(F) # of Records 1,789,569 or

I I 7,158,279
r 1 Compressed 1 10 or 14 bytes

IO Number of IOs N/A
x Intermediate N/A

File Size
E Prob. of Error N/A

Figure 5: List of Variables

there is an embedded “aging” queue, with the head
of the queue being the oldest record in the buffer,
and the tail being the youngest. Figure 3 illustrates
the aging buffer. Each entry in the hash table has
a timestamp associated with it for illustration pur-
poses only. The figure shows that the oldest record
is at the head of the queue. Whenever new records
are forced into the aging buffer, the new records are.
placed at the tail of the queue. If the aging buffer is
full, the record at the head of the queue is displaced
as a new record is enqueued at the tail. This action
produces a delete (insert) if the buffer in question is
aging buffer 1 (aging buffer 2).

Since files are read once, the IO cost for the win-
dow algorithm is only 1 FlI + 1 F2 1 regardless of mem-
ory size, snapshot size and number of updates and
inserts. Thus the window algorithm achieves the op-
timal IO performance if compression is not consid-
ered. However, the window algorithm can produce
useless delete-insert pairs in Steps 6 and 7 of the
algorithm. Intuitively, the number of useless delete-
insert pairs produced depends on how physically dif-
ferent the two snapshots are.

To quantify this difference, we define the distance
of two snapshots. We want the distance measure to
be symmetric and independent of the size of the file.
The equation below exhibits the desired properties.

distance =, c RlcF1,RlrFa,match(R1,Ra) bdR1) -~s(R2)i

maz(rec(Fl),rec(F2))2/2
(3)

The function pos returns the physical position of a
record in a snapshot. The boolean function match
is true when records Ri and Rz have matching keys.
The function ret returns the number of records of

69

a snapshot file. Thus, this equation sums up the
absolute value of the difference in position of the
matching records and normalizes it by the maximum
distance for the given snapshot file sizes. The max-
imum distance between two snapshots is attained
when the records in the second snapshot are in the
opposite order (the first record is exchanged with
the last record, the second record with the second
to the last, and so on) relative to the first snapshot.
If rec(Fi) = rec(Fz), it is easy to see that in the
worst case the average displacement of each record
is rec(Fl)/P, and hence the maximum distance is
rec(Fi)2/2. If the files are of different sizes, using
the larger of the two files gives an upper bound on
the maximum distance. Our distance metric will be
used in the following section to evaluate the window
algorithm.

IO Performance vs. File Size
901

60

70

60

50

40

30

20

10

0
0

Figure 7: IO Cost Comparison of Algorithms

5 Performance Evaluation 40

5.1 Analytical IO Comparison 35

We have outlined in the previous section algo-
rithms that can compute a snapshot differential:
performing sort merge outerjoin (SM), performing
a partitioned hash outerjoin (PH), performing a
sort merge outerjoin with two kinds of record com-
pression (SMCl, SMC2), performing partitioned
hash outerjoin with two kinds of record compression
(PHCl, PHCZ) and using the window algorithm
(W). SMCl denotes sort merge outerjoin with a
record compression format of < K, b > (similarly for
PHCl); SMC2 uses the record compression format
< I(, b, p > (similarly for PHCS). In this section, we
will illustrate and compare the algorithms in terms
of IO cost, size of intermediate files, and the proba-
bility of error. Due to space limitations, this is not
a comprehensive study, but simply an illustration of
potential differences between the algorithms in a few
realistic scenarios.

30

25

20

‘15

101, ’ ’ B * B L ’ ’ ’
2 4 6 6 10 12 14 16 16 20

Compression Factor

Figure 8: IO Cost and Compression Factor

Figure 5 shows the variables used in comparing
the algorithms. We assume that the snapshots have
the same number of records. The number of records
(ret(F)) is calculated using F/R, where R is the
record size (150 bytes). The compressed record size
is 10 bytes for the < K, b > format and 14 bytes for
the < K, b,p > format. This leads to compression
factors of 15 and 10 respectively.

pression using .the < K, b > record format achieves
a 37% reduction in IO cost over sort merge using
SMCl, and a 50% reduction using SMC2. For the
256 MB file, the compressed file fits in memory which
enables the PHCl and PHC2 algorithms to build
a complete in-memory hash table, as explained in
Section 3.3. The reduction in IO cost for these two
algorithms, in this case, surpasses even that of the
window algorithm.

Figure 6 shows a summary of the results com-
puted for the various algorithms. The two columns
labeled I0256 and 101ez4 show the IO cost incurred
in processing 256 MB and 1024 MB snapshots for the
different algorithms. Using the sort merge outerjoin
as a baseline, we can see that the partitioned hash
outerjoin (PH) reduces the IO cost by 20%. Com-

However, when the larger file is considered, the
compressed file no longer fits in the 32 MB mem-
ory. Thus the PHCl and PHC2 algorithms achieve
more modest reductions in this case (37% and 52%
respectively). ‘Other than these two algorithms, the
reductions achieved by the other algorithms are un-
changed even with the larger file.

Figure 7 compares the algorithms when the size of
the snapshots is varied. The values of other param-
eters are unchanged. Note that we have not plotted
SMCl and SMC2 since their plots are almost in-

pH _+__..

- p,,Cl__

PHC2 -+. .--..

-Window -A-.-..

500 1000 1500 2000 2500
File Size (MB)

IO Performance vs. Compression Factor

SMCl ..c---
9,.,C2 ..m.... -

.
t... ...

... * * * *
t

70

Algorithm I0256 101024 x256 (MB) x1024 (MB) Probability
n

(%savings) (%savings) of Error (E)

SM - 81,920 327,680 16384 65,536 0
SMCl 51,336 (37%) 205,346 (37%) 16,384 65,536 2.3 * 10-i’
SMC2 40,833 (50%) 163,333 (50%) 1,639 6,554 2.3 t 10-l’

PH 65,536 (20%) 262,144 (20%) 16,384 65,536 0
PHCl 18,568 (77%) 205,346 (37%) 16,384 65,536 2.3 * 10-i’
PHC2 19,660 (76%) 156,779 (52%) 1,639 6,554 2.3 * lo-i0

W 32,768 (60%) 131,072 (60%) 0 0 0

Figure 6: Comparison of Algorithms

IO Performance vs. Input and Update Rate
90

I

(. ,. ,,:;:4 + ,..... *..* * . * * . ..+.. ;...+.
F

0
0 2

I+U & or recor&fl~
8 10

Figure 9: IO Cost and Varying Update and Insertion
Rates

distinguishable from PHCl and PHC2 respectively
beyond a file size of 500 MB. Also note the disconti-
nuity in the graph for PHCl and PHCS. PHCl is
able to build an in-memory hash table if the file is
smaller than 500 MB (and files smaller than 320 MB
for PHC2). If the partitioned hash join algorithms
are able to build an in-memory hash table, they can
even outperform the window algorithm.

Clearly, the IO savings for compression algo-
rithms depend on the compression factor. Figure 8
illustrates that when the compression factor is low,
the algorithms with compression perform worse than
PH (even worse than SM in case of SMCl and
SMCZ). The other point that this graph illustrates
is that the benefits of compression are bounded.
Thus, going beyond a factor of 10 in this case does
not buy us much.

The performance of the compression algorithms
that use the pointer format (algorithms PHC2 and
SMC2) depend on the number of updates and in-
serts. If U + I is higher than what we have assumed,
PHCl and SMCl outperform PHC2 and SMCB.
Figure 9 shows the performance of the algorithms

,with different U + I. This shows that PHC2 and

SMC2 are only useful for scenarios with relatively
few modifications between snapshots (less than say
2 percent of the records). By manipulating the IO
cost equations, it is not hard to show that if U + I
is greater than 1.7%, PHCl and SMCl incur less
IO than PHC2 and SMCB.

The next two columns in Figure 6 (x256 and
X1024) examine the size of the intermediate files. In
the case of the SM, PH, SMCl and PHCl algo-
rithms, uncompressed intermediate files need to be
saved. In the case of the SMC2 and PHC2 al-
gorithms, the compressed versions of these files are
constructed, which leads to a more economic disk
usage. The window algorithm, on the other hand,
does not construct any ‘intermediate files.

The last column (E) illustrates the probability
of a missed matching record pair. Note that both
record compression formats result in the same prob-
ability of error although the two formats have differ-
ent compression factors. This is because the B field
is compressed into a 32 bit integer for both formats.

In closing this section, we stress that the num-
bers ‘we have shown are only illustrative. The gains
of the various algorithms can vary widely. For ex-
ample, if we assume very large records, then even
modest compression can yield huge improvements.
On the other hand, if we assume very large memo-
ries (relative to the file sizes), then the gains become
negligible.

5.2 Evaluation of Implemented Algorithms

In WHIPS, we have implemented the sort merge
outerjoin and the window algorithm to compute the
snapshot differentials. We have also built a snap-
shot differential algorithm evaluation system, which
we used to study the effects of the snapshot pair
distance on the number of useless delete-insert pairs
that is produced by the window algorithm. We will
also use the evaluation system to compare the actual
running times of the window algorithm and the sort
merge outerjoin algorithm.

71

Snapshot Parameters Default Values
Size of B field 150 bytes

R Size of Record 156 bytes
Number of Records 650,000

F File Size 100 MB
dWa,, 50,000 records

u Number of Updates 20% of ret(F)

Window Parameters Default Values
’ AB Aging Buffer Size 8MB

IB Input Block Size 16K

Figure 10: List of Parameters

The evaluation system has a snapshot generator
that produces a pair of synthetic snapshots with
records of the form < I<, B >. The snapshot gen-
erator produces the two snapshots based on the fol-
lowing parameters: size of the B field, number of
records, average record displacement (disp,,,) and
percentage of updates. The first snapshot is con-
structed to have ordered K fields with the specified
number of records and with the specified B field size.
Figure 10 shows the default snapshot pair parame-
ters.

Conceptually, the second snapshot is produced by
first copying the first snapshot. Each record Rj in
the second snapshot is then swapped with a record
that is, on average (uniformly distributed from 0 to
2 * diva,,), disp,,, records away from Rj. Based
on the specified percentage of updates, some of the
records in the second snapshot are modified to sim-
ulate updates. Insertions and deletions are not gen-
erated since they do not affect the number of useless
delete-insert pairs produced. Notice that disp,,,
is not the distance measure between snapshots. It
is a generator parameter that indirectly affects the
resulting distance. Thus, after generating the two
snapshots, the actual distance of the two snapshots
is theri measured.

The two snapshots along with algorithm specific
parameters are passed to the snapshot differential al-
gorithm being tested. Note that any of the previous
algorithms discussed can be used as the snapshot
differential algorithm. In the experiments that we
present here we focus on the window and the sort
merge outerjoin algorithms. By varying the aging
buffer size and the input buffer size parameters, we
can study how these parameters affect the window
algorithm. Figure 10 also shows the default window
parameters. These were used unless the parameter
was varied in an experiment.

For a system designer, it is helpful to translate
dist,,it into a critical average physical displacement.
For instance, if the designer knows that records can
only be displaced within a cylinder and the designer
can only allocate 8 MB to each aging buffer, it is
useful to know if the window algorithm produces
few useless delete-insert messages in this scenario.
We now capture this notion by first manipulating
the definition of distance (equation (3) in Section 4)

After the snapshot differential algorithm is run, . to show that distcrit of the different snapshot pairs

3 0.7
Effect of Distance on the Number of Extra Messages

8
F=50MB -
F = 75 MB -+---.

Figure 11: Effect of Distance on the Number of Ex-
tra Messages

snapshot generator synthesized the two snapshots,
it also knows the minimal set of differences of the
two snapshots. The message comparator can then
check for the correctness of the output and count
the number of extra messages.

The experiments we conducted enable us to eval-
uate, given the size of the aging buffer, and the size
and the distance of the snapshots, how well the win-
dow algorithm will perform in terms of the number
of extra messages produced. In the first experiment,
we varied the disp,,, (and indirectly the distance)
and measured the number of extra messages pro-
duced. This experiment was performed on three
pairs of snapshots whose sizes ranged from 50 MB
to 100 MB. Figure 11 shows that, as expected, as
the distance of the snapshots increases beyond the
capacity of the aging buffer, the number of extra
messages increases. As the number of extra mes-
sages sharply rises, the graphs exhibit strong fluc-
tuations. This is because the synthetic snapshots
were produced randomly and only one experiment
was done for each distance. For each snapshot size,
there is a critical distance (dist,,it) which causes the
window algorithm to start producing extra messages
with the given aging buffer size.

the output of the algorithm is compared to what was can be translated into a critical average physical dis-
“produced” by the snapshot generator. Since the placement (in terms of MB). Since there are no in-

72

Figure 12: dist,,it and disp,,i, MB

Effect of Memorv Size on the Number of Extra Messaaes

0.6

0.5 t
0.4

0.3

0.2

0.1

0

Figure 13: Effect of the Memory Size on the Number
of Extra Messages

sertions nor deletions in the synthetic snapshot pair,
we can define a critical average record displacement
(denoted as disp,,it) which is related to dist,,it as
shown in equation (5).

c RlcF~.RacF3,mo*ch(R1 ,R1) IP~RI)-P~~(W I
dist,,,t =

re~(F)~/2 (4

rec(F)*dtsp,,,~
= rec(F)wec(F)/2

disp,,,, MB = disp,rit*R = dist,,,t*(rec(F)/2)*R (6)

Using the size of the record, we can translate
the dist,,it into a critical average physical displace-
ment (denoted as disp,,it MB which is in terms of
MB) using equation (6). Figure 12 shows the result
of the calculations for the different snapshot pairs.
The dist,,it of the snapshot pairs are estimated from
Figure 11. This table shows, for example, that the
window algorithm can tolerate an average physical
displacement of about 11.2 MB given an aging buffer
size of only 8 MB to compare 100 MB snapshots.
Thus, if a system designer knows that the records
can only be displaced within, say a page (which is
normally smaller than 11.2 MB), then the designer
can be assured that the window algorithm will not
produce excessive amounts of extra messages.

In the next experiment, we focus on the 100 MB
snapshots. Using the parameters listed in Figure
10, we varied the size of the aging buffer from 1.0

Comparison of the Total Time Elapsed
iooo-

900 - Window - ,A ,/

6oo SortMerge -+---.
Read ... ,A ,/’

,,,.,I

700 - ,/
,d’

3 6oc-
,,/

,,/

E 500 -
,/’

,,/
,/

I= 400.
,,/

,/

300 -
200 _

,,*/,,”

,/,~*-~~”

,/’

1 (Jo -
_,___,. o ._,___._.....__....... 0 . -.-..-.-.-.-.--.-.-.” . . . *... .-.. ,

0 20
Size $‘Snapshoz (MB)

60 100

Figure 14: Comparison of the Total Times

MB to 16 MB. The disp,,g was set at 50,000 with
.a resulting distance of 0.34, which is well above the
dist,,it. Figure 13 shows that once the size of the ag-
ing buffer is at least 12.8 MB, no extra messages are
produced. This is to be expected since we showed
previously (Figure 12) that the tolerable dispc,it MB
for the 100 MB file is 11.2 MB. Using the .same snap-
shot pair, we also varied the input block size from 8
K to 80 K. The variation had no effect on the num-
ber of extra messages and we do not show the graph
here. Again, this is to be expected, since the size
of the aging buffer is much larger than the size of
the input block. Thus, even if the input block size
is varied, the window size stays the same. We also
varied the record size and this showed no effect on
the number of extra messages produced.

Lastly we compared the CPU time and the clock
time (which includes the IO time) that the window
algorithm consumes to that of the sort merge out-
erjoin based algorithm. We ran the experiments on
a DEC Alpha 3000/400 workstation running UNIX.
We used the UNIX sort utility in the implementa-
tion of the sort merge outerjoin. (UNIX sort may
not be the most efficient, but we believe it is ade-
quate for the comparisons we wish to perform here.)
We used the same input block size for both the win-
dow and the sort merge outerjoin algorithms (16 K).
The disp,,, of the two snapshots was set so that the
resulting distance was 0.05 (within the dist,,it for
all file sizes). The analysis in the previous section
illustrated that the window algorithm incurs fewer
IO operations than the sort merge outerjoin algo-
rithm. Our experiments showed that the window al-
gorithm is also significantly less CPU intensive than
the sort merge based algorithm (e.g., 80s compared
to 250s for a 75 MB file). As expected then, Figure
14 shows that the window algorithm outperforms the

.

73

sort merge outerjoin in terms of clock time. Figure
14 also shows the time to simply read the files into
memory, without actually processing them. Since no
differential algorithm can avoid this IO overhead, we
see that the Window algorithm has a relatively low
CPU processing overhead.

6 Conclusion

We have defined the snapshot differential problem
and discussed its importance in data warehousing.
All of our proposed algorithms are relatively simple,
but we view this as essential for dealing efficiently
with large files. In summary, we have the following
results:

l By augmenting the outerjoin algorithms with
record compression, we have shown that very
significant savings in IO cost can be attained.

l We have introduced the window algorithm
which works extremely well if the snapshots are
not too different. Under this scenario, this al-
gorithm outperforms the join based algorithms
and its running time is comparable to simply
reading the snapshots once.

We have incorporated the window and the sort merge
outerjoin algorithms into the initial WHIPS proto-
type. The production version of the algorithm takes
as input a “format definition” that describes the
record format of the snapshots and identifies the
key field(s). Th e f ormat allows for complex value
fields, but the window algorithm will consider the
entire record as a single field. We also plan to imple-
ment a post-processor that filters out useless delete-
insert pairs before they are sent to the warehouse.
The differential algorithm and the warehouse itself
are implemented within the Corba distributed ob-
ject framework, using ILU, an implementation from
Xerox PARC [CJS+94]. For our system demonstra-
tions, we use the window algorithm to extract modi-
fications from a legacy source that handles financial
account information at Stanford.

References
[AL801 M.E. Adiba and B.G. Lindsay. Database snapshots.

In VLDB, October 1980.

[BDGM95] S. Brin, J. Davis; and H. Garcia-Molina. Copy
detection mechanisms foi digital documents. In
SIGMOD, May 1995.

[BGMFSS] D. Barbara, H. Garcia-Molina, and B. Feijoo. Ex-
ploiting symmetries for low-cost comparison of file
copies. In Proceedings of the Int. Conference on
Distributed Computrng Systems, June 1988.

[CJS+ 941 A. Courtney, W. Janssen, D. Severson, M. Spre-
itzer, and F. Wymore. Inter-language unification,
release 1.5. Technical Report ISTL-CSA-94-01-01,
Xerox PARC, May 1994.

.

[CRGMWSG]

[FWJ86]

[Go1951

[HC94]

[HGMW+95]

[HT77]

[IC94]

[Km71

[Lea861

[LGM95]

[LGM96]

[Loh85]

[ME921

[MW94]

[SGM95]

[Sha86]

[%u951

[U1189]

[ZGMHW95]

S. Chawathe, A. Rajaraman, H. Garcia-Molina,
and J. Widom. Change detection in hierarchically
structured information. In SIGMOD, June 1996.

W.K. Fuchs, K. Wu, and Abraham J. Low-cost
comparison and diagnosis of large remotely located
fries. In Proceedings of the Fifth Sympostum on
Reliabilrty in Distributed Software and Database
Systems, January 1986.

Rob Goldring. Ibm datapropagator relational ap
plication guide. IBM White Paper, l(l), 1995.

L. Haas and M. Carey. SEEKing the truth about
ad hoc join costs. Technical report, IBM Almaden
Flsearch Center, 1994.

J. Hammer, H. Garcia-Molina, J. Widom,
W. Labio, and Y. Zhuge. The Stanford Data Ware-
housing Project. IEEE Data Englneerrng Bul-
letrn, June 1995.

J.W. Hunt and Szymanski T.G. A fast al-
gorithm for computing longest common subse-
quences. CACM, 20(5), 1977.

W.H. Inmon and E. Conklin. Loading data into
the warehouse. Tech Toprc, l(ll), 1994.

B. Kahler and 0. Risnes. Extending logging for
database snapshot refresh. In VLDB, September
1987. .

B.G. Lindsay and et al. A snapshot differential
refresh algorithm. In SIGMOD, May 1986.

W.J. Labio and H. Garcia-Molina. Comparing
very large database snapshots. Technical Report
STAN-CS-TN-95-27, Computer Science Depart-
ment, Stanford University, June 1995.

W.J. Labio and H. Garcia-Molina. Efficient snap-
shot differential algorithms for data warehousing.
Technical Report STAN-CS-TN-96-36, Computer
Science Department, Stanford University, June
1996.

G.M Lehman. Query processing in R*. In Query
Processing in Database Systems, Berlin, West
Germany, March 1985.

P. Mishra and M. Eich. Join processing in re-
lational databases. ACM Computtng Surveys,
24(l), 1992.

U. Manber and S. Wu. Glimpse: A tool to search
through entire file systems. In Proceedrngs of the
winter USENIX Conference, January 1994.

N. Shivakumar and H. Garcia-Molina. Scam: A
copy detection mechanism for digital documents.
In Proceedings of the 2nd Int. Conference rn The-
ory and Practice of &&al Llbrartes, Austin,
Texas, June 1995.

L. Shapiro. Join processing in database systems
with large main memories. ACM Tronsoctrons on
Database Systems, 11(3), 1986.

C. Squire. Data extraction and transformation for
the data warehouse. In SIGMOD, May 1995.

J.D. Ullman. Prmctples of Database and
Knowledge-Base Systems. Computer Science
Press, Rockville, MD, 1989.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance m a warehousmg
environment. In SIGMOD, May 1995.

74

