
Of Objects and Databases: 
A Decade of Turmoil 

Michael J. Carey 
IBM Almaden Research Center 

650 Harry Road, K55/Bl 
San Jose, CA 95120 

carey@almaden.ibm.com 

Abstract 

A decade ago, the connection between ob- 
jects and databases was new and was be- 
ing explored in a number of different ways 
within our community. Driven by the per- 
ception that managing traditional business 
data was largely a solved problem, projects 
were investigating ideas such as adding ab- 
stract data types to relational databases and 
building extensible database systems, object- 
oriented database systems, and toolkits for 
constructing special-purpose database sys- 
tems. In addition, work was underway else- 
where in the computer science research com- 
munity on extending programming languages 
with database-inspired features such as persis- 
tence and transactions. 

In this paper, we take a look at where our 
field was a decade ago and where it is now 
in terms of database support for objects (and 
vice versa). We look both at research projects 
and at commercial database products. We 
share our vision and our biases about the fu- 
ture of objects and databases, and we identify 
a number of research challenges that remain 
to be addressed in order to ultimately achieve 
our vision. 

Permission to copy without fee all 07 part of this material is 
granted provided that the copies are not made or distributed for 

direct commercial advantage, the VLDB copyright notice and 
the title of the publication and its date appear, and notice is 
given that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, 07 to republish, requires a Joe 
and/or special permission from the Endowment. 

Proceedings of the 22nd VLDB Conference 
Mumbai(Bombay), India, 1996 

David J. Dewitt 
Computer Sciences Department 

University of Wisconsin-Madison 
Madison, WI 53706 
dewitt@cs.wisc.edu 

1 Introduction 

Ten years ago, the database field was on the verge of an 
interesting but confusing new era - the era of objects 
and databases. As in much of the rest of computer sci- 
ence, the term “object” meant different things to dif- 
ferent people in the database community. In addition, 
there are multiple ways in which object-oriented tech- 
nology can impact database systems (both internally 
and externally), and explorations of many of them 
were newly underway at that time. Most of the work 
going on then can be grouped into four rough areas: 

1. Extended relational database systems 

2. Persistent programming languages 

3. Object-oriented database systems 

4. Database system toolkits/components 

Research on extended relation,al database systems 
had been in progress for several years in 1986, and it 
was beginning to bear significant fruit [StonSba]. Al- 
though work on persistent programming languages had 
also been underway for some time in the programming 
languages community [Atki87], work on applying those 
ideas to object-oriented languages was just taking off. 
Object-oriented database systems were a brand new 
idea, having just been born [Cope84], and nobody was 
quite sure what they should be yet. Finally, work on 
database system toolkits and component architectures, 
including our own EXODUS project [Care86b], had 
also just begun. For those wishing to gain a deeper 
perspective into the field at that time, [Ditt86] pro- 
vides an interesting and reasonably accurate snapshot 
of objects and databases as of 1986. 

A decade later, things are much clearer, at least 
in our view. Not all of the above areas have panned 
out, though each has produced an interesting stream 
of research results that will likely outlast their specific . 

3 



areas. In fact, we anticipate a not-too-distant future 
with only one real survivor remaining from the above 
list; this survivor, of course, will have benefited from 
both the successes and the mistakes of the others. The 
goal of this paper is to take an informal look at where 
we have been, where we are now, and where we are 
headed - in our “unbiased” opinion, of course! We 
caution the reader that this is not intended as a schol- 
arly work, and as such, our references are spotty and 
incomplete. We refer interested readers to resources 
such a+ [ZdongO, Ston94, Kim951 as well as to the pro- 
ceedings of conference series like VLDB and SIGMOD 
for more information about topics and results that we 
can only touch upon here. 

The remainder of this paper is organized as follows. 
Section 2 reviews the state of objects and databases as 
of a decade ago, examining the various ways in which 
these two technologies were being combined. Section 3 
looks at where we are today, looking at how the differ- 
ent combinations have panned out in terms of research 
accomplishments, commercial database systems, and 
standards. In Section 4, we present our views about 
where objects and databases are heading and how we 
as researchers can help the field to get there from here. 
Finally, Section 5 concludes the paper. 

2 Objects & Databases in 1986 

As we have just explained, the world of objects and 
databases was an exciting but confusing place in 1986. 
Traditional database researchers were extending their 
favorite data model - relational - to incorporate new, 
more complex types of data. Programming language 
researchers were busily adding persistence (permanent 
data storage) to their favorite programming languages, 
and object-oriented languages were rapidly gaining 
their favor. Other researchers were proposing more 
radical approaches to accommodating the data man- 
agement needs of new applications: One camp be- 
lieved that combining key features from both object- 
oriented programming languages and database man- 
agement systems would yield a new generation of one- 
size-fits-all database systems. Another camp felt that 
the right answer was a toolkit to aid system develop 
ers in building domain-specific database management 
systems; this camp saw objects as an important con- 

s tributing technology to such a toolkit. 

2.1 Extended Relational Database Systems 

The first approach proposed for moving databases be- 
yond the realm of traditional business applications was 
an evolutionary approach: open up the type system 
of a relational database system to allow for the addi- 
tion of new, user-defined abstract data types (ADTs). 

To define a new ADT, a user was required to imple- 
ment the type - defining its representation and writing 
its functions - in an external programming language 
(e.g., C). The type would-then be registered with the 
database system, making the system aware of its size 
and its available functions; included among the func- 
tions provided would be functions to input and output 
instances of the new ADT. Once registered with the 
system, an ADT could be used - just like a built-in 
type - in defining the type of an attribute of a re- 
lation. ADT functions could be used in queries and 
would be dynamically loaded as needed at runtime. 
This approach was pioneered by the ADT-Ingres ef- 
fort at UC-Berkeley in the early 1980’s [Ong84].’ 

In the mid-1980’s, the Postgres project began as a 
follow-on to Ingres, initially laying out an approach 
to providing query optimizers with information about 
the properties of ADTs and their functions [Ston86a]. 
Another goal of Postgres was to provide support for 
storing and querying complex objects. Here, the Post- 
gres project advocated a somewhat radical “proce- 
dure .as a data type” approach [Ston86b], and rejected 
the CODASYL-like “pointer spaghetti” that they felt 
characterized systems that supported inter-object ref- 
erences (such as object-oriented database systems). 
Precomputation and query rewriting techniques were 
held up as possible approaches to avoiding the over- 
heads that might otherwise cause problems for their 
procedure-centered proposal. 

2.2 Persistent Programming Languages 

A different approach for addressing the needs of 
complex, data-intensive applications was advocated 
by the programming language community: take the 
type system and programming model of an object- 
oriented programming language such as Smalltalk, 
CLOS, CLU, Trellis/Owl (a CLU descendent), or C++ 
and add features to make its data persistent and its 
program executions atomic. The argument for this ap 
preach was that some applications just need to manage 
permanent data, and would be happy with the imper- 
ative programming model of such a language if only 
its type system were available for use in constructing 
complex persistent data structures; in particular, such 
applications would benefit significantly from losing the 
“impedance mismatch” that arises at the boundary 
when a programming language type system meets a 
(relational) database type system. A good survey of 
the state of this area asof a decade ago, when ob- 
jects were entering the persistent language scene, can 
be found in [Atki87]. 

1 In many respects, the recent “Third Manifesto” of Darwen 
and Date [Da-w951 seems to be some combination of e rediscov- 
ery and an elaboration of this approach. 



Work in this area involved addressing alternative so- 
lutions to a number of problems: orthogonality (e.g., 
can any type be made persistent?), persistence mod- 
els (e.g., persistence by reachability versus persistence 
by allocation), binding and namespace management 
for persistent roots, type systems and type safety, and 
alternative implementation techniques for supporting 
transparent navigation, maintenance, and garbage col- 
lection of persistent data structures. 

2.3 Object-Oriented Database Systems 

A more radical approach to addressing the perceived 
needs of non-traditional database applications, partic- 
ularly engineering applications, emerged at this time 
in the database community: combine all of the fea- 
tures of a modern database system with those of 
an object-oriented programming language, yielding an 
object-oriented database (OODB) system. Three early 
OODB projects laid the foundation in this area - Gem- 
stone [Cope84, Maie86], which was based on Smalltalk, 
Vbase [Andr87], which was based on a C’LU-like lan- 
guage, and Orion [Bane87], which was based on CLOS. 
Again, a major motivation was to reduce or elimi- 
nate the impedance mismatch cited in our- discussion 
of persistent programming language work. What dis- 
tinguished the work on object-oriented databases from 
work on persistent languages was a focus on support 
for queries and indexing as well as navigation, as well 
as a focus on addressing the version management needs 
of engineering applications. 

A decade earlier, in the early days of relational 
database systems, there was a single, clearly defined 
data model - relations, which were sets of tuples with 
simple attributes. Similarly, two competing relational 
query languages emerged early on - Quel and SQL. 
The early days of OODB systems were very differ- 
ent; there was no agreement on the details of the data 
model (e.g., on the underlying language type system), 
nor on a query model/language, nor on the version 
management features to be provided by such systems. 
However, there was a general agreement within the 
OODB community that this was‘the right direction to 
support engineering applications; there was also quite 
a bit of commonality among the approaches if viewed 
from the appropriate altitude. The emerging OODB 
revolution spawned work on many aspects of these sys- 
tems, including data model details, query languages, 
indexing techniques, query optimization and process- 
ing techniques, system architectures, user interfaces, 
and pretty much every other aspect of database sys- 
tems that one could readily imagine. 

2.4 Database System Toolkits/Components 

The last major approach proposed at the time was 
based on the belief that it was unlikely that any one 
type of DBMS would be able to meet the functional- 
ity and performance requirements of a broad range of 
next-generation applications. Instead, this camp ad- 
vocated a different approach: provide a DBMS that 
can be extended at almost any level, e:g., an exten- 
sible DBMS, often based on a set of kernel facili- 
ties plus tools to aid developers in “rapidly” build- 
ing a domain-appropriate DBMS. Members of this 
camp envisioned database systems specialized to ap- 
plication domains - documents would likely be man- 
aged by document-oriented database systems, while 
geographic data would be managed by geographic in- 
formation systems. Such domain-appropriate DBMSs 
would likely have a number of fundamental differ- 
ences, such as different query languages, different ac- 
cess methods, different storage organizations, and per- 
haps even different transaction mechanisms. 

Key projects representing this approach were our 
EXODUS project [Care86b], the GENESIS project 
[Bato86], and the DASDBS project [Depp86]. EXO- 
DUS provided a storage manager for objects [Care86a] 
and provided a persistent programming language (E, 
based on C++) that was to be used for writing new 
access methods and query operators; it also provided 
a query optimizer generator for generating an opti- 
mizer for a domain-appropriate query language from 
a rule-based language specification. GENESIS pro- 
vided a set of composable storage and indexing primi- 
tives and a “database system compiler” for assembling 
an appropriate storage manager from a specification. 
DASDBS provided a complex object storage manager 
with a novel, multi-layered transaction facility as a ker- 
nel upon which a domain-appropriate data model and 
query layer could be built; this layering was modeled 
after the RSS/RDS separation used in System R. 

Another important project that started at this time 
was the IBM Starburst project [Schw86]. Starburst 
can be classified partly as a component-based DBMS, 
as support for new storage and indexing components 
was a major goal, but it can also be classified as an ex- 
tended relational DBMS, as it was still centered on the 
relational model in terms of both its query language 
(SQL) and its models for query optimization and ex- 
ecution. One of the key goals of Starburst was-to de- 
velop a clean architectural model to facilitate storage 
and indexing (and related) extensions; it also explored 
the use of a rule-based approach to providing an ex- 
tensible query processing subsystem. 

5 



2.5 Summary 

It should be clear that there was much turmoil in the 
database research community in 1986 - there were 
various competing approaches for leveraging object- 
oriented ideas in the database world, each with its 
own believers. Meanwhile, the commercial world was, 
for the most part, about ten years behind. Relational 
database system technology was finally maturing, in 
terms of commercial products, and relational systems 
were finally starting to be adopted for use in seri- 
ous enterprise-scale applications. There were no ex- 
tended relational, persistent programming language, 
or database toolkit products, and only two tiny OODB 
companies - Servio Logic (of Gemstone fame) and On- 
tologic (of Vbase fame, now Ontos) - who were at- 
tempting to market and refine their first product of- 
ferings. Over the next few years, panels at database 
research conferences debated the virtues and evils of 
objects and argued about how they should be utilized 
and packaged in the database world. 

3 Objects & Databases in 1996 

We now fast-forward to where we are today, roughly 
ten years after the initial object explosion in the 
database field. Among the different approaches be- 
ing considered back then, which have died? Which 
appear to be wounded? What else has cropped up in 
the meantime? Which approaches still appear to be 
healthy and growing. 7 Our view, in a nutshell, is as 
follows: 

1. 

2. 

3. 

4. 

Two of the approaches, database system toolkits 
and persistent programming languages, generated 
a number of interesting results. However, both ap- 
proaches have essentially proven to be dead-ends 
in a practical (commercial) sense. 

Another of the approaches, object-oriented 
database systems, led to many research results 
from the academic community and product of- 
ferings from small startup companies. However, 
this approach has failed to live up to its original 
commercial expectations. 

A new approach, based on generating language- 
specific object wrappers for relational databases, 
has emerged on the commercial database scene. 
This approach appears to be important - at least 
for now - for building object-oriented, client-side 
applications. 

The last of the 1986 approaches, extended re- 
lational database systems, has been renamed. 
Object-relational database systems, as they are 

now called, appear likely to emerge as the ul- 
timate winner in terms of providing objects for 
mainstream (enterprise) database applications. 

In this section, we will look more closely at each of 
these points. We will also briefly touch upon some re- 
lated developments, namely CORBA, OLE, Java, and 
middleware, that have appeared on the scene in the 
past few years. 

3.1 Two Casualties 

As mentioned above, one of the casualties of the past 
decade - perhaps ironically, given the reason for this 
paper - was the database toolkit approach. Toolk- 
its such as EXODUS, G’ENESIS, and DASDBS have 
essentially fallen by the wayside; we are aware of no 
serious ongoing work in this area. One reason for this 
is that too much expertise ended up being required 
to use them; another is that each ended up being 
a bit too inflexible, awkward, or incomplete in cer- 
tain dimensions of the database system design space. 
Still another reason is that object-oriented and objdt- 
relational database systems have managed to provide 
enough extensibility that it has not proven worthwhile 
for most builders of domain-oriented data management 
facilities to simply start from scratch, even given a 
toolkit to simplify the process. 

To illustrate these problems, we look briefly at our 
own EXODUS experiences. EXODUS provided a full- 
function client/server storage manager for handling 
object storage, a persistent variant of C++ to sim- 
plify the management of objects as well as the con- 
struction of new access methods and query operations, 
and a rule-based query optimizer generator to sim- 
plify the development of efficient query processors. A 
number of other research projects, plus one startup 
company that we know of, made use of the EXO- 
DUS storage manager. One common problem was 
that most wanted to use EXODUS to implement their 
own object servers; thus, the EXODUS storage man- 
ager’s client/server architecture tended to get in the 
way, introducing an unwanted level of indirection for 
their systems [Care94]. Some projects also made use of 
the E programming language, but “serious” database 
implementors would have preferred more control over 
low-level details (e.g., buffering, concurrency, recov- 
ery), and application-oriented programmers found it 
a bit too low71evel (no collections, queries, etc.). The 
EXODUS query optimizer generator was very general, 
but it was inefficient and too hard to use; it still left 
too much (e.g., predicates’and logical query rewrites) 
to the implementor when applied to a full-function lan- 
guage such as SQL. 

We ourselves put EXODUS to the test on what 
would now be characterized as an object-relational 



data model (EXTRA) and query language (EXCESS) 
that we designed mid-way through the EXODUS 
project [Caregg]. To make a long story short, we 
found that there was still way too much to do in 
building such a system to declare EXODUS as hav- 
ing succeeded in that regard. Luckily, the good news 
is that the EXODUS project nonetheless managed to 
produce a number of interesting research by-products 
- including system design, implementation, and per- 
formance studies of direct relevance to object-oriented 
and object-relational database system5 - as well as a 
steady stream of first-rate graduate students. 

We have also characterized the persistent program- 
ming language area as one of the casualties of the 
decade-long object wars. Unlike toolkits, this area 
of research is still active, at least in academia. Our 
characterization stems from the fact that we are aware 
of no commercial implementation of what could prop 
erly be characterized as a pure persistent programming 
language. This bad news is balanced by good news, 
however - as work in persistent languages has had a 
significant impact on the navigational programming 
interface5 of many of today’s object-oriented database 
products. In addition, the results from this area on 
topic5 such as persistence models, pointer swizzling 
schemes, and garbage collection schemes for persistent 
data have also been directly transferable to object- 
oriented databases. But, there’s more bad news, as 
the next subsection of this paper will discuss - because 
the transfer target, the object-oriented database field, 
has not expanded commercially at the rate or in the 
way that its founders and contributors had expected. 

3.2 Object-Oriented Database Systems 

A tremendous amount has happened in the object- 
oriented database area in the past decade. One early 
milestone, which helped to focus both research and de- 
velopment, was a general prescription - developed by 
a collection of leading database system and language 
researcher5 - for what constitutes an object-oriented 
database system [AtkiSO]. It was agreed that such sys- 
tems must support all of the following: complex ob- 
jects, object identity, encapsulation, inheritance and 
substitutability, late binding, computationally com- 
plete methods, an extensible type system, persistence, 
secondary storage management, concurrency control, 
recovery, and ad hoc queries. Optionally, they might 
also choose to support: multiple (versus only single) 
inheritance, static versus dynamic type checking, dis- 
tribution, long transactions, and version management. 
Open to individual choice were: the programming 
paradigm (and language choice, obviously), the exact 
detail5 of the type system, the degree of fanciness of 
the type system (e.g., templates), and the degree of 

uniformity (or purity) of the object model. 
Much resekch energy has been expended in the 

object-oriented database area, and many interesting 
results have been produced. A variety of data model 
issues have been examined, including basic object 
models, support for composite objects, and schema 
evolution. Quite a few object-oriented query lan- 
guage proposals have appeared, as have a number of 
papers on the query processing issues for such lan- 
guages (e.g., handling of path expressions and nest- 
ing). Many schemes have been designed for indexing 
object-oriented databases, addressing issues such as ef- 
ficient handling of path expressions (and updates along 
paths) and queries over portions of a class hierarchy. 
Pointer-based join methods and complex object assem- 
bly schemes have been studied for queries over large 
object bases. Alternative client/server architectures 
have been proposed and studied, including schemes for 
transactional data caching, and several client/server 
crash recovery algorithms have been designed for use 
in the da&shipping environments common to object- 
oriented database systems. A series of OODB bench- 
marks have been published and used to characterize 
the performance of such systems, Finally, a number 
of version and configuration management models have 
been proposed and implemented. 

On the systems side, several other significant sys- 
tems followed the three ground-breaking prototypes; 
important later systems included 02, ObjectStore, 
and ODE, all of which have had significant degrees 
of OODB research impact. There are numerous com- 
mercial OODB products available on the market to- 
day; current players in the OODB marketplace include 
Gemstone, Objectivity, ObjectStore, Ontos, 02, Poet, 
and Versant. In addition, a consortium of the OODB 
product vendors banded together - under the leader- 
ship of Rick Cattell of SunSoft - in the early 1990’s 
and formed the Object Database Management Group 
(ODMG). This group has worked to draft OODB stan- 
dards for an object data language (ODL), an ob- 
ject query language (OQL), and a C++ program- 
ming interface for manipulating and querying object 
databases. The latest version of their specification, 
called ODMG-93 Release 1.2, was published earlier 
this year [Catt96]. 

With all that research, and all these companies - 
plus a draft standard - what could possibly be wrong? 
Several things. First, despite a decade of hard work, 
it has been nearly impossible to gain complete agree- 
ment on anything having to do with object-oriented 
database systems. Today, there are still differences 
between many of the OODB products in terms of de- 
tails of their programming interfaces, implementation 
twists, and query support. Although the ODMG stan- 
dard has been out in some form for approximately 

7 



three years, vendors do not truly support it as a stan- 
dard - it has been divided into pieces, corresponding 
to the chapters of the standard, and many vendors 
are choosing to support only this piece or that piece. 
AS an example, we are aware of only one vendor (02) 
who supports the object query portion of the standard 
(OQL). Second, object-oriented database products are 
still quite a bit behind relational database products 
in some respects - e.g., none provides a view facil- 
ity, and in fact the prerequisite research in that area 
is still unfinished in our opinion. Schema evolution 
is much more painful in the OODB world, and many 
of the OODB products still rely on a CODASYL-like 
schema/application compilation cycle. The coupling 
between an OODB and its application programming 
language tends to be tight; most are single-language 
(most commonly C++) systems for all intents and 
purposes. In addition, the robustness, scalability, and 
fault-tolerance of most OODB products still cannot 
match those of relational database products. 

Other problems have to do with the availability of 
application development tools and how client/server 
computing environments have evolved. In the tools 
area, there are obviously fewer end-user tools and ap 
plication development tools available in the object- 
oriented database world. Such tools are widely 
used today for application development in the rela- 
tional world. Moreover, PC-based applications talking 
ODBC to relational servers have emerged as a common 
architecture. for database applications; this has dra- 
matically reduced the number of programmers writing 
lower-level database code (e.g., embedded SQL). This 
in turn has diminished the impact of the impedance 
mismatch, and has also led the dominant computing 
environment to be one with thin clients and fat servers 
- which is the opposite of the design point for object- 
oriented database systems. In response, most OODB 
system vendors have developed ODBC connectivity so- 
lutions, but such solutions cannot exploit the object- 
oriented features of their underlying database systems. 

Partly as a result of the aforementioned problems, 
the commercial OODB market has grown quite a bit 
more slowly than expected. Some of the expected con- 
sumers of OODB technology, e.g., CAD system ven- 
dors, have been slower than expected to move away 
from relying on files to store their data. Meanwhile, 
in the commercial database world, some large enter- 
prises have barely finished embracing relational tech- 
nology wholeheartedly, and a& therefore not anxious 
to undertake yet another major paradigm shift. 

3.3 Object-Relational Database Systems 

In parallel, with the explosion of work in the object- 
oriented database system area, extended relational 

8 

database systems have matured. Products are avail- 
able today from several vendors (e.g., CA-Ingres, IBM, 
Illustra, and UniSQL). In fact, over time these systems 
have adopted some of the more attractive data model 
and query language features from the OODB world; 
this trend will no doubt continue. 

The path that object-relational database systems 
(as extended relational database systems are now 
known [Ston96]) h ave followed was foretold in a docu- 
ment drafted by a different set of leading database re- 
searchers [CommSO] in response to the “OODB Mani- 
festo” cited earlier [AtkiSO]. This document gave three 
main tenets for so-called “third-generation” database 
systems: provide support for richer object structures 
and rules, subsume second generation (i.e., relational) 
DBMSs, and be open to other subsystems, e.g., tools 
and multidatabase middleware products. It then laid 
out a set of more detailed propositions about what 
third-generation database systems should provide: a 
rich type system, inheritance, functions and encapsu- 
lation, optional unique ids, and rules/triggers; a high- 
level query-based interface, stored and virtual collec- 
tions, updatable views, and separation of data model 
and performance features; accessibility from multiple 
languages, layered persistence-oriented language bind- 
ings, SQL support, and a query-shipping client/server 
interfaoe.l 

Object-relational systems differ from object- 
oriented database systems in many of the above ways. 
They start with the relational model and its query lan- 
guage, SQL, and build from there. In terms of object 
features, current (early!) products provide support for 
two types of objects - ADTs, a la Section 2.1, and TOW 

types (or composite types). ADTs are user-defined base 
types, as discussed earlier. Their role is to enable the 
set of built-in types of the DBMS to be extended with 
new data types such as text, image, audio, video, time 
series, point, line, polygon, and so on. They enable 
the DBMS to manage new ‘kinds of facts about the 
entities in the enterprise that the database is intended 
to model; e.g., an Employee can have a resume and a 
photograph in addition to a name and a salary. 

Row types are a direct and natural extension of the 
type system for tuples. They make it possible for. rows 
in tables to enjoy object-like properties (such as named 
types, and functions/methods). In addition to other 
base type attributes, “row objects” are permitted to 
contain reference-valued attributes. Model-wise, such 
typed row references (e.g., ref(Dept) are treated as an- 

2Another paper that we would recommend to interested read- 
ers is (Kim93]; it explains how object-oriented and relational 
database technologies should be combined from the perspective 
of UniSQL’s founder. 



other flavor of base type. 3 Also supported are multi- 
valued attributes, i.e., attributes whose values can be 
sets, bags, arrays, or lists of base type elements4 
Lastly, inheritance is also supported to enable nat- 
ural variations among row types to be captured in 
the schema (e.g., Persons, Students, Employees, and 
WorkStudyStudents have much in common). The top 
most level of an object-relational database schema is 
still a collection of named relations. However, the ob- 
jects in the relations can now be as rich as those sup 
ported by OODB systems. SQL extensions for ob- 
ject queries include such features as path expressions, 
method-like function invocation syntax, and support 
for nested sets in the fromclause. 

As for OODB systems, the past decade has seen 
both research results and work on prototypes of object- 
relational database systems. Since they build upon re- 
lational database technology, their basic foundation al- 
ready existed. Many of the required system extensions 
have been explored in the contexts of the Postgres 
project at UC Berkeley, the EXTRA/EXCESS effort 
within the EXODUS project at Wisconsin, the Star- 
burst project at IBM Almaden, and the current Par- 
adise project at Wisconsin. Moreover, in some dimen- 
sions, such as object query support, object-relational 
systems will be able to benefit rather directly from 
work in the OODB area. As mentioned above, vendors 
are already offering products with degrees of object- 
relational functionality: IBM’s DBZ/CS V2 system 
supports user-defined base types and functions, rules, 
and large objects, as does the CA-Ingres system (which 
was the first commercial system to offer those fea- 
tures). UniSQL does not support user-defined base 
types, but it does provide support for row objects and 
inheritance (including view support, in fact). Illustra 
is currently the most complete product, functionality- 
wise, in the object/relational market; it supports all 
of these features in some form. In addition to these 
server products, vendors are starting to market ready- 
made, ADT-based type extension packages for manag- 
ing data types such as image and text (e.g., Illustra’s 
DataBlades and IBM’s Database Extenders); some 
predict that these add-on packages will be the primary 
early driver for the acceptance of object-relational 
database technology. 

Object-relational database systems today suffer to 
some extent from the same problem that plagues 
OODB systems - there are too many differences from 

aNotice that object-relational database systems have ended 
up adopting the “pointer spaghetti” approach that Postgres 
worked to avoid, but that were advocated and studied elsewhere, 
e.g., [Zani83, Care88]. 

eIt is interesting to note that the foundation for many of 
the row type extensions predatetl the initial object revolution by 
several years, having been laid in part by dforts such as Daplex 
[Ship811 and GEM [Zaui83]. 

vendor to vendor. However, the SQL3 standards ef- 
fort is working hard to standardize most of these fea- 
tures; it has included an ADT concept for some time, 
and was amended recently to include support for row 
objects and references as well. Moreover, unlike the 
OODB marketplace, the major database vendors are 
all pushing in this direction (and are very concerned 
about standards). Among the major vendors, IBM 
currently provides some significant object-relational 
features and is working on implementing further ex- 
tensions; Informix recently purchased Illustra, and is 
promising customers a merged “universal server” prod- 
uct in late 1996; and, Oracle is promising that Version 
8 will be out, with substantial object support, in a 
similar timeframe. 

3.4 Object-Oriented Client Wrappers 

In addition to the approaches being actively studied a 
decade ago, another approach has recently been gain- 
ing favor in the commercial world - the use of object 
wrappers for relational databases to support the de- 
velopment of object-oriented, client-side applications 
working against legacy databases. A number of ven- 
dors offer such products today, including Persistence 
Software, Ontologic, HP, Next, and others. Most of 
these products are language-specific; they generate ei- 
ther C++ or Smalltalk classes that act as proxies for 
data in the underlying database, permitting program- 
mers to interact with the data in a more natural way 
for their programming tools. They come with tools to 
aid developers in defining/constructing objects from 
the underlying database, and rely on key-to-OID map 
pings to.maintain correspondences between program- 
ming objects and database data. 

The attractiveness of the wrapper approach is that 
it enables object-oriented applications to be written to- 
day against enterprise data, making an object-oriented 
design methodology available for implementing busi- 
ness objects. There are disadvantages as well, how- 
ever. One is that these products tend to be very weak 
on the query side, requiring ad hoc queries to be posed 
in SQL against the underlying relational schema; this 
creates a paradigm mismatch for application program- 
ming and querying. Another is that they force both 
design and paradigm choices when it comes to rep 
resenting business logic - should one utilize the un- 
derlying database system’s triggers, procedures, and 
constraints to enforce data integrity, or code the busi- 
ness rules and procedures outside the DBMS in C++ 
or Smalltalk on the client side? The need to make such 
a decision is an unfortunate reality of 1996. 

9 



3.5 Related Developments 

Before moving on to what lies ahead, we must men- 
tion that there have been a number of related develop- 
ments in the object area that are likely to have some 
impact on the database world. Namely, technologies 
such as CORBA, OLE, and Java have been attracting 
much industry attention. Another recent trend is the 
growing importance of database middleware. We will 
discuss each of these technologies briefly here. 

The CORBA standards, developed by the Object 
Management Group (OMG, not to be confused with 
ODMG!), are focused on solving problems that arise 
when developing large, distributed, object-oriented ap 
plications. Their biggest success has been in defining 
the standards for an interoperable object RPC mech- 
anism; in addition, they have developed useful stan- 
dards for services like registering and locating named 
resources in a distributed environment. We expect 
that CORBA will continue to be important in these 
respects. In addition, OMG has attempted to define a 
number of factorable object services, including a per- 
sistence service, a collection service, an indexing ser- 
vice, a transaction service, and so on. Here, we pre- 
dict that OMG will fail, as years of database research 
have not been able to separate the majority of these 
services (e.g., indexing and transactions, or collections 
and queries) in a manner capable of providing anything 
approaching reasonable performance. Also, there are 
some who advocate the use of CORBA for fine-grain 
access to database data, making each database object 
a CORBA object. We expect such approaches will per- 
form poorly and will ultimately fail as well. CORBA 
should stick to coarse-grained object RPC and related 
support services in our opinion. 

Another set of de facto object standards are Mi- 
crosoft interfaces such as OLE and its underlying ob- 
ject model, COM and Distributed COM (the Microsoft 
answer to CORBA). Given their source, it goes with- 
out saying that these standards cannot be ignored. 
OLE is a key technology for those who build and man- 
age desktop data in the Wintel world; all major ven- 
dors are working to integrate OLE support into their 
database engines and tools, and it is clear that support 
for OLE/COM ADTs will be important in the future. 
Also looming on the horizon is Microsoft’s OLE DB 
work [Blak96], which offers an approach to separating 
query optimization from execution in a world where 
data lives elsewhere in addition to databases. We will 
comment further on OLE DB in Section 4.2.4. 

Obviously, no discussion of object trends would be 
complete without touching upon the Java furor that 
has recently been sweeping the computer industry 
for the past year or two. Java is essentially a safe 
subset of C++ together with a standard, machine- 

independent, pcode-like representation for executable 
Java programs. Java was designed to enable safety 
checks and guarantees that make shipping Java code 
(applets) around the Internet both possible and rea- 
sonable; this is the reason for the current Java furor. 
HOW will Java impact database systems? We will men- 
tion Java again in Section 4, but certain potential im- 
pacts are clear - for example, Java would be an ideal 
language for writing ADTs that can be executed on 
either the server side or the client side of the database 
world. 

One last trend of importance is the growing market 
for database middleware products - products that pro- 
vide a uniform interface to multiple backend database 
systems. On the client side, the best example today is 
undoubtedly Microsoft’s Access product, which pro- 
vides relational query access to any backend DBMS 
that speaks ODBC, and which permits queries that 
draw data from multiple backends. As another ex- 
ample; on the server side, IBM’s DataJoiner product 
provides a full-function relational DBMS engine, with 
facilities for accessing a variety of backend database 
products, plus a cost-based, distributed query opti- 
mizer. An early object-relational offering in this area, 
called UniSQL/M, is available as a middleware version 
of the UniSQL system. Middleware query products 
such as these - and there are a number of relational 
products available - lie in what is expected to be one of 
the fastest growing segments of the database market. 

4 Objects & Databases in 2006 

We began by looking at the past, and now we have 
seen the present. But what does the future hold for 
objects and databases? In this section, we share our 
vision in that regard. Since predicting the future is 
always difficult, we will “cheat” - by describing what 
commercial database products will look like (if.done 
“right,” i.e., our way!). Since the latency from research 
prototypes to robust products is often on the order 
of 5-10 years, that makes our job here easier. After 
describing our vision for the next decade’s database 
products, we will discuss the challenges that we - as 
researchers - now face in helping the field to get there 
from here. 

So what will the database solution of the year 2006 
look like? We envision large enterprises reaping the 
benefits of families of products that offer... 

4.1 A Fully Integrated Solution 

We predict that object-relational database systems 
will mature, and will end up delivering - scalably and 
robustly - most of what object-oriented database sy5 
terns have been promising to deliver. Object-relational 
servers will provide full support for object-oriented 

10 



ADTa, including inheritance among ADTs and the 
ability to implement them in any of a number of 
programming languages. They will also provide full 
object-oriented support for row types, with the ex- 
tended SQL features in this area being integrated 
with all of SQL’s important other features - includ- 
ing object-oriented views, authorization, triggers, con- 
straints, and so on - as per the SQL standard of 
the day (SQL4 or SQL5). To support middle-tier 
and desktop applications well, these servers will work 
together with high-function, object-oriented, caching 
client front-ends to provide a development environ- 
ment where the same object model is used to describe 
a database at all levels, both for querying and for nav- 
igational programming. Methods will be able to run 
on cached data at the client, or on the server, depend- 
ing on which is cheaper; likewise for queries and frag- 
ments thereof. And, the same will be true for trig- 
gers, referential integrity constraints, and other types 
of constraints - the business rules of the year 2006 
will be specified and implemented just once, in SQL, 
with methods written in SQL and/or the imperative 
object-oriented language of choice, and will simply run 
wherever it makes the most sense for them to run. 

Where does this leave object-oriented databases as 
we know and love them today? They will proba- 
bly remain niche solutions - e.g., embedded within 
prepackaged solution packages for problems in areas 
like engineering design, telecommunications, on-line 
trading, and web page management - serving appli- 
cations that demand a level of seamlessness and high- 
performance, for moderate databases, that a more 
heavyweight object-relational solution cannot address 
as effectively. This niche may shrink over time, espe- 
cially if the object-relational vendors offer 9ite” ver- 
sions of their products. What about object-oriented 
client wrappers - where does this leave them? They 
will have been the first step in the client-side direc- 
tion that we have sketched out above. Since the server 
will be object-relational in its data model, they will 
have much less object-mapping work to do; their job 
will be to map object-relational concepts into Java, 
Smalltalk, C++, or another object-oriented language 
of choice. And, they will be more tightly integrated 
with the engine, in the sense that they will assist in 
the early, client-side enforcement of business rules and 
execution of business logic. They will still cache data 
and updates, but they will have to become more so- 
phisticated in order to cooperatively process queries. 

4.2 Research Challenges 

If one believes this view of the world - and we cer- 
tainly do - a number of problems remain to be solved 
in order to get to the year 2006 from here. Areas need- 

ing work include server functionality and algorithm 
improvements, integrated clients, parallelization, and 
provisions for legacy data access. In addition, the 
world of database standards will need to fill certain 
holes in order to realize the full potential of our vi- 
sion. We briefly explain the open problems in each of 
these areas. 

4.2.1 Server Functionality & Performance 

Object-relational servers will continue to evolve from 
today’s SQL-based relational servers and early object- 
relational servers. Research is still needed on object 
query processing; we believe that this work will need 
to draw more fully on the large body of work on SQL 
query processing from the world of relational databases 
in order to yield industrial-strength solutions in the 
year 2006. We did some initial object-relational bench- 
marking work for a consulting client of ours a little 
over a year ago’, and it was clear from our work that 
there is still “room for improvement” in today’s sys- 
tems. Also, applied research is needed to complete the 
task of “object-ifying” SQL in the best possible way. 
Some of this can be drawn from work on OQL and sim- 
ilar languages; other work, e.g., on properly extending 
SQL’s support for views, updates, constraints, trig- 
gers, and so on, remains to be done. Object-relational 
servers of the future can also draw upon work done in 
the object-oriented database world on topics such as 
path indices and object clustering. On the ADT side, 
an important open problem is support for extensible 
access methods - this has been talked about since the 
early days of the object revolution, but there is still no 
ideal solution in sight. Industrial-strength support for 
new data types will demand solutions to this problem. 

4.2.2 Client Integration 

As mentioned above, the solution of the year 2006 will 
include a highly integrated client component. At the 
surface of this component, good mappings and pro- 
gramming interfaces will be needed to serve object- 
relational objects to programs in C++, Smalltalk, 
Java, and other such languages - with fully integrated 
object query support in addition to navigation. Open 
problems in this area include querying over the. cache 
plus the database in an intelligent way (e.g., not just 
flushing the cache or else shipping all objects to the 
client, as most systems do today). Cached objects can 
come from base tables or views; the same caching pro- 
gramming interface must be available for both, and 
must work correctly in the face of updates. Updates 

‘This benchmarking work was performed while the first au- 
thor was employed at the University of Wisconsin-Madison. We 
are hoping to publish the benchmark’s design in the not-too- 
distant future. 

11 



on the client side must trigger the appropriate triggers 
in a timely, consistent manner so that the client/server 
boundary becomes only a performance boundary and 
not a wall separating two disjoint worlds. The same 
must be true for the enforcement of constraints of all 
types. Methods must execute properly on either side, 
client or server; perhaps Java will help here. The so- 
lutions to these many problems are not obvious, given 
the interfaces that servers provide today; one potential 
solution might be for servers to provide various “coop- 
eration hooks” that can be exploited by high-function 
client tools. 

4.2.3 Parallelization 

Another place where research is needed is parallelism. 
Parallel database systems today can successfully par- 
allelize query execution for relational queries. What of 
object-relational queries? Little has been done in this 
area, and since large enterprises need parallel database 
systems, this will be important to the ultimate success 
of object-relational database systems. To the extent 
that relational query processing technology can be ex- 
tended to object queries, the same should be true of 
parallel execution techniques. However, some poten- 
tially sticky issues await, most arising from the fact 
that many important ADTs, such as large multime- 
dia (image, video, and audio) and GIS data types, will 
involve expensive operations that should themselves 
somehow be parallelized - otherwise, load imbalances 
and large execution times for queries over these types 
will plague large enterprises in 2006.6 Parallelizing 
ADT operations on these and other interesting data 
types - from both I/d and CPU perspectives - is an 
open problem, as is providing a framework to make 
this easier to do. Some of these issues are currently 
being explored for image and GIS data types in the 
context of the Paradise project at Wisconsin [DeWi94]. 

4.2.4 Legacy Data Sources 

Although it has always been our fond hope that 
databases will someday achieve world domination, we 
recognize that solutions requiring all the world’s data 
to be moved into a database system will never be uni- 
versally accepted. As a result, another important area 
of research has to do with providing access to legacy 
data sources - in older database systems (both rela- 
tional and pre-relational) and in other kinds of sys- 
tems, such as document or image management sys- 
terns. We envision a middleware solution here - we be- 
lieve that a promising approach to solving this problem 
is to place a distributed, object-relational query engine 

eFor some initial thoughts on the difficulties ass* 
ciated with parallclieing an object-relational DBMS, see 

http://vw.cs.visc.adu/~evitt/dewitt.html/rldbsm.ps. 

.2 

in between end users and their disparate data sources, 
with the goal being to make the data look as if it were 
stored in a centralized object-relational database sys- 
tem. This approach would make all the data avail- 
able through a common query interface, and would 
also make available all of the nice client-side tools that 
we expect object-relational database systems to sup- 
port. The result is a three-layer architecture, with 
clients on top and a wide variety of data sources on 
the bottom, including object-relational DBMSs, rela- 
tional DBMSs, pre-relational DBMSs (e.g., IMS), and 
various non-database data sources; in the middle, pro- 
viding the “glue,” is an object-relational middleware 
query engine. 

Research issues related to this approach to legacy 
data access include distributed query optimization 
for a mix of object-relational, relational, and other 
(“dumber”) data sources; effective handling of semi- 
structured data (e.g., structured documents and web 
pages); query semantics and query processing for data 
sources that yield relevance-ranked results; and so on. 
This approach to legacy data is being explored in the 
Garlic project at the IBM Almaden Research Center 
[Care95], while semi-structured data is a focus of the 
TSIMMIS project at Stanford [Garc95]. Meanwhile, 
the Microsoft OLE DB work [Blak96] is also address- 
ing this problem space, e.g., by defining the protocol 
for a query processor to use in talking to non-database 
data sources. 

4.2.5 Standards 

In the area of standards, SQL3 is moving in the di- 
rection that we have outlined, and it is drawing on 
OQL ‘for inspiration in some areas. However, we are 
concerned that certain important areas (where stan- 
dards are a must) are currently not being addressed 
anywhere - so we expect to see work in this area be- 
tween now and 2006. One key example is in the area 
of ADTs, particularly those ADTs defined in external 
programming languages. To process queries involving 
such ADTs well, an object-relational query processor 
must be aware of information about properties of the 
type and of its operations, selectivity estimates, and 
function costs [Ston96]. Object-relational database 
systems bring an opportunity for third-party vendors 
to provide libraries of ADTs (and also row types) that 
address certain problem domains - i.e., instead of pro 
viding special-purpose data managers, future domain- 
specialists could make a business out of providing ex- 
tensions for object-relational systems. The situation 
today is that each vendor who supports user-defined 
data types has their own interface for defining and reg- 
istering these types - fortunately, SQL3 is addressing 
this. Unfortunately, each such vendor also has differ- 



ent provisions for the additional information needed 
for query optimization, and SQL3 is not addressing 
this aspect of the ADT registration process. The ul- 
timate success of a third-party data type market will 
depend on the emergence of suitable standards in this 
area. A related area where we would like to see an 
eventual standard is the access method interface, so 
that the same vendors could be the providers of ap- 
propriate index structures for the data types in which 
they specialize. 

There are other areas where standards would be 
beneficial as well in the year 2006. One is in the 
area of client/server interfaces. It would be nice if 
the cooperative client/server interface alluded to above 
could be defined in a standard way, enabling multiple 
providers and competition in this area (rather than 
requiring each database vendor to provide full, top-to- 
bottom solutions). As mentioned in the previous sub- 
section, standardizing on an interface for query tools 
to use in accessing non-database sources could also be 
beneficial. Finally - though not necessary for suc- 
cess - wouldn’t it be nice if we could someday have 
a fresh new query language standard, where some of 
the legacy design quirks of SQL could simply be left 
behind rather than supported forever? 

5 Conclusions 

In this paper, we have taken a look (albeit biased!) 
at what has transpired in the area of objects and 
databases in the period from 1986-1996. We have 
explained why we believe that some approaches have 
fared better than others, and we have tried to pre- 
dict the future, at least commercially. We believe that 
we are on the verge of an era where object-relational 
database systems will begin taking over the enterprise, 
and that their ultimate success will be due to the work 
- past, present, and future - that our community has 
been doing in areas including extensibility, object data 
models and query languages, persistent languages, ob- 
ject mapping, etc. While not all of the approaches 
themselves have, or will, survive, we believe that many 
of their results will prove to have a lasting impact 
on the shape of the highly integrated, client/server, 
object-relational database solutions of the year 2006. 
To encourage more work towards this goal, we have 
attempted to identify some of the key research and de- 
velopment challenges that we believe lie ahead if this 
takeover is to be successful over the next ten years. 
The future of objects and databases appears bright, 
yet much is left to do... 

6 Acknowledgements 

Joel Richardson and Eugene Shekita were co-authors 
of the 1986 VLDB paper [Care86a] that led to our be- 

ing invited to write this paper. We wish to thank them 
and the many other superb University of Wisconsin 
students, staff, and faculty colleagues who we’ve had 
the pleasure of working with on projects related to the 
topic of this paper. We would also like to thank our in- 
dustrial colleagues, especially those at IBM Almaden 
and IBM Santa Teresa, for many interesting discus- 
sions on these and related issues. Finally, we would 
like to thank Nelson Mattos of IBM for reading and 
providing helpful feedback on an earlier draft of this 
paper. 

References 
[Andr87] T. Andrews and C. Harris “Combining 

Language and Database Advances in an Object- 
Oriented Development Environment ,” Proc. 1987 
tgTy OOPSLA Conference, Orlando, FL, Oct. 

[Atki87] M. Atkinson and P. Buneman, “Types and 
Persistence in Database Programming Languages,” 
ACM Computing Surveys 19(2), June 1987. 

[AtkiSO] M. Atkinson et al, “The Object-Oriented 
Database System Manifesto,” PTOC. 1st DOOD 
Conf., Kyoto, Japan, 1989. 

[Bane871 J. Banerjee et al, “Data Model Issues for 
Object-Oriented Applications,” ACM Trans. on Of- 
fice Info. Sys. 5(l), Jan. 1987. 

[Bat0861 D. Batory et al, “GENESIS: A Project to 
Develop an Extensible Database Management Sys- 
tem,” in [Ditt86]. 

[Blak96] J. Blakeley, “Data Access for the Masses 
through OLE DB,” PTOC. 1996 ACM SIGMOD Con- 
ference, Montreal, Canada, June 1996. 

[Care86a] M. Carey, D. Dewitt, J. Richardsop, and 
E. Shekita, “Object and File Management in the 
EXODUS Extensible Database System,” PTOC. 12th 
VLDB Conf., Kyoto, Japan, Aug. 1986. 

[Care86b] M. Carey et al, “The Architecture of the 
EXODUS Extensible DBMS,” in [Ditt86]. 

[CareBB] M. Carey, D. Dewitt, and S. Vandenberg, “A 
Data Model and Query Language for EXODUS,” 
Proc. 1988 ACM SIGMOD Conference, Chicago, 
IL, June 1988. 

[Care941 M. Carey et al, “Shoring Up Persistent Ap 
plications,” Proc. 1994 ACM SIGMOD Conf., Min- 
neapolis, MN, May 1994. 

[Care951 M. Carey et al, “Towards Heterogeneous 
Multimedia Information Systems: The Garlic Ap 
preach,” Proc. 1995 IEEE RIDE Workshop, Taipei, 
Taiwan, March 1995. 

[Catt96] R. Cattell (ed.), The Object Database Stan- 
danl: ODMG-93 (Release 1.2), Morgan Kaufman 
Publishers, 1996. 

13 



[CommSO] Committee for Advanced DBMS Function, 
“Third-Generation Database System Manifesto,” 

[Zani83] Carlo Zaniolo, “The Database Language 

SZGMOD Record 19(3), July 1990. 
GEM," PTOC. 1983 ACM SIGMOD Conference, San 
Jose, CA, May 1983. 

[Cope841 G. Copeland and D. Maier, “Making 
Smalltalk a Database System,“, Proc. 1984 ACM 
SIGMOD Conference, Boston, MA, June 1984. 

[Darw95] H. Darwen and C. Date, “The Third Mani- 
festo,” SIGMOD Record 24(l), March 1995. 

[Zdon90] Z. Zdonik and D. Maier, Readings in Object- 
Oriented Database Systems, Morgan Kaufmann 
Publishers, 1990. 

[Depp86] U. Deppisch, H. Paul, and J. Schek, “A Stor- 
age System for Complex Objects,” in [Ditt86]. 

[D;W+94] D. Dewitt, N. Kabra, J. Luo, J Patel, and 
u, ‘Client-Server Paradise,” PTOC. 20th 

Conference, Santiago, Chile, Sept. 1994. 
VLDB 

[Ditt86] K. Dittrich and U. Dayal (eds.), Proc. 1st 
hat?. Workshop on Object-Oriented Database Sys- 
tems, Pacific Grove, CA, Sept. 1986. 

[Garc95] H. Garcia-Molina et al, “The TSIMMIS Ap- 
proach to Mediation: Data Models and Languages,” 
Proc. 2nd Int’l. Workshop on Next Generation Info. 
Technologies and Systems, Naharia, Israel, June 
1995. 

[Kim931 W. Kim, “Object-Oriented Database Sys- 
tems: Promises, Reality! and Future,” Pmt. 19th 
VLDB Conference, Dublin, Ireland, August 1993. 

[Kim951 W. Kim (Ed.), Modem Database Systems: 
The Object Model, Interopembility, and Beyond, 
ACM Press, 1995. 

[Maie86] D. Maier et al, “Development of an Object- 
Oriented DBMS,“, Proc. 1986 ACM OOPSLA Con- 
ference, Portland, OR, Oct. 1986. 

[Ong84] J. Ong, D. Fogg; and M. Stonebraker, “Im- 
plementation of Data Abstraction in the Relational 
Database System Ingres,” SIGMOD Record 14(i), 
March 1984. 

[Schw86] P. S h c wars et al, “Extensibility in the Star- 
burst Database System,” in [Ditt86]. 

[Ship811 D. Shipman, “The Functional Data Model 
and the Data Lan uage DAPLEX,” ACM ‘ZJans. 
on Database Sys. 6 ? l), March 1981. 

[Ston86a] M. Stonebraker, “Inclusion of New Types 
in Relational Data Base Systems,” Pmt. 2nd IEEE 
Data Eng. Conf., Los Angeles, CA, Feb. 1986. 

[StonBSb] M. Stonebraker, “Object Management in 
Postgres Using Procedures,” in [Ditt86]. 

[Ston94] M. Stonebraker, Readings in Database Sys- 
tems (2nd Edition), Morgan Kaufmann Publishers, 
1994. 

[Ston96] M. Stonebraker, Object-Relational DBMSs: 
The Next Great Wave, Morgan Kaufmann Publish- 
ers, 1996. 

14 


