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Abstract 

Data in relational databases is frequently stored and 
retrieved using B-Trees. In &cis,ion isugprt 
applications the key of the B-Tree frequently involves the 
concatenation of several fields of the relationdl’ table. 
During retrieval, it is desirable to be able to access a 
small subset of the table based’ on partial key 
information, where some fields of the key may either not 
be present, involve ranges, or lists ‘of values. It is also 
advantageous to altow. this type, of access-with gen&il 
expressions involving any combination of disjuncts on 
key columns. This paper &scribes a method whereby B- 
Trees can be eficiently used to retrieve small subsets, 
thus avoiding large scans of potentially huge tables. 
Another benefit is the ability of this method to reduce the 
need for additional secondary indexes, thus saving 
space, maintenance cost, and random accesses. 

Introduction 
In the last few years various factors have resulted in 
Decision Support Systems (DSS) gaining popularity. 
Some of these factors have been: 
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A downward trend in hardware server and disk 
COStAS. 

The evolution of database products, which are giving 
improved paformance oh an increasing number of 
hardware platforms. 

Use of information for competitive advantage. This 
trend has been. prompt&,by a &ire TV provide 
higher levels of service to customers or improve 
targeting of customers .to draw them away Ikom 
increased .eompetition. This has manifested itself in 
promotions such as the freqwnt flyer or buyer 
programs. Also, information ‘is being used to 
d&ease costs such as store inventory, etc. 

The advantage of seeing more and more detail 
combined with improved performance has prompted 
many users to move to DSS platforms. If the 
movement of men’s jeans off the shelf were being 
monitored before, now it is the size 32, black, brand 
X, style Y, men’s jeans that is under close scrutiny. 
AIso, the time dimension being considered has 
slowly shrunk from quarterly trends to monthly, 
weekly, and now daily trends. In a word, micro- 
marketing is in vogue. Multidimensional databases 
that hosted such DSS often cannot support such 
level of detail. 

Increased availability of client tools that provide 
easier access to the information along with desktop 
tds that facilitate the further filtering, 
summarization, and present&m of the information. 
Multidimensional front end tooIs are also gaining 
popularity that provide the capabilities previously 
available in multidimensional databases, but now are 
targeted towards large relational data warehouses. 
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The above is by no means an exhaustive list, but it is a 
reality today that Decision Support Systems are being 
implemented by many DP shops and the sixes of DSS 
databases often dwarf the size of the largest operational 
databases. This trend can be substantiated by many 
studies done by firms such as the Gartner Group and the 
Meta Group. 

Along with the above trend has been the increase in 
dimemionul modeling. This is the design of the database 
based on key dimensions of ‘the business. These 
dimensions may ,be time, geography, product, and so 
forth. Epically such dimensions are used to query these 
large databases first for smmnary information and then 
for detail information as the user drills down to 
increasing levels of detail. Summary information 
provides high level trends, but many’ important insights 
offering competitive advantage can only, be discovered 
from the details. 

When providing the criteria for these dimensions in a 
query, a user may or may not provide values for all the 
dimensions. So for a Sales table with dimensions such as 
Date, Store and Item the user may want sales. for a week 
for an item across all stores. No matching criteria may 
be provided for the Store dimension, or for a particular 
dimension the user may provi& a set of i7alues. So ‘the 
user may want information for 4 weeks of sales for a 
group of stores for certain items. The criteria specified 
for these dimensions may vary considerably from one 
query to another based on the type of user. A buyer for a 
large retailer has different objectives from a person in the 
marketing or inventory control departments accessing the 
same database. There is also a difference between users 
consistently submitting similar queries for operational 
decisions versus those users who are looking for strategic 
information. The latter type of user is data mining or 
data surfing, or in other words looking for some 
correlation or trend which may not be obvious from 
standard reports, and is best found by detailed 
investigation of anomalies. All of this leads to a 
challenge in in&x &sign. When the database is very 
large (100 GB to Terabytes)’ this may mean alternate 
indexes are prohibitively expensive. So one has to rely 
on a single in&x (the B-tree clustering in&x) to meet 
the requirements of these varied demands. 

Typically most DBMSs have to scan the whole table 
when faced with the kind of queries mentioned above -- 
with a set of values specified for multiple columns of the 
in&x, ranges on intervening columns, or no predicates 
specified for leading or intervening key columns. 

This is where the MultiDimensional Access Method 
(MDAM) steps in. It is a new access method that works 
efficiently with such multidimensional access against 
standard B-Tree based tables. 

Multidimensional B-Trees 
A multidimensional B-Tree is one that is defined on 
multiple columns (dimensions). 

Subsets of data can be read efficiently from a B-Tree 
becquy $ey qre clustered according to the values 
contains in their key columns. This is because records 
imaining stpxssive lgey values are stored in one or 
more blocks of the B-Tree. So, many records are read by 
a shigle’access of these contiguous blocks. 

In ,figure 1 below a B-Tree is represented with three 
dimensions (or columns). The,!@.l number of rows in 
this table is 27. Each dim&ion has.three values. Note 
that for dimension 2 each- value is repeated for each value 
qf dimension 1. The first (smallest labeled a) shaded 
area shows how much is retrieved for an equal predicate 
on all three dimensions (dimenisiori~l ‘= 1 and 
dimension-2 = 2 and dimension-3 = 2). The second 
shaded area (b) shows how much is retrieved for equal 
predicates on the first two dimensions (dimension-l = 2 
and dimension~2 = 2). and the third shaded area (c) 
shows how much is retrieved for an equal predicate on 
dimension 1 (dimension-l = 3).,, 

dimension 1 dimension 2 d+ension3 

0 

Figure 1 

Figure 2 shows the same B-Tree, but shows what is 
retrieved when there is only a predicate on the third 
column (dimension3 = 2). 
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In this case (dimension,3 = 2) the same value for 
dimension~3 exists for each value of dimension-2 (1, 2 
and 3) and each value of dimension-l (1,2 and 3). 

MDAM can do this type of access (with a predicate only 
on the third dimension) using an index, whereas other 
data base management systems using B-Trees would 
have to read the entire table or require ti secondary in&x. 

dimension 1 dimension 2 dimension 3 

Pigure 2 

Multidimensional Access to B-Trees 
Much has been written over the years about B-Trees. 
Almost all vendors implement them as the primary type 
of in&x structure. They perform well for a large variety 
of applications. The updating, balancing, caching, and 
management of B-Trees have well understood solutions. 
B-Trees have been the foundation ‘of very large On-Line 
Transaction Pr&essiug (OLTP) systems and have 
facilitated very high transaction processing rates, ,as 
demonstrated by various TPC-C benchmarks. These 
benchmarks have demonstrated that B-Trees support 
highly available, scalable, distributed transaction 
processing applications. 

However multidimensional access has generally been leti 
to new types of ind@hg methods rather than leveraging 
the existing and useful B-J”. . *. 

As shown in this paper multidimensional access of 
existing B-Trees can be efficient for a large range of 
multidimensional queries. B-Trees have already proven 
their usefulness in dealing with large volumes of updates 
across large databases. _! 

Tandem allows use of B-Trees for both the base table and 
secondary indexes. In the base table the leaf nodes are 
the data blocks that contain the data records. In a 

samdaty index, each record in the leaf node block 
contains primary index columns that identify an 
individual data record in the base table. Both the base 
table and secondary indexes cau be range partitioned by 
the leading key columns of the primary and secondary 
index respectively. 

MDAM makes existing B-Tree indexes much more 
useful by extending their use to a broad range of queries 
that can use them efficiently, thus improving response 
time and reducing the need for additional secondary 
iu*es. When the need for secondary indexes is reduced 
the disk requirements for large dat&ses are also 
R!dUCed. In addition the choices for database 
organization are expanded. (i.e. Columns of the base 
table that do not contain mauy unique values and are not 
oftea referenced in queries can now be used as leading 
key columns of an index.) 

This paper demonstrates how MDAM exploits existing 
B-Tree indexes for many more queries far more 
efficiently than previous B-Tree access methods. 

Major Features ofMDAM 
Earlier discussipns. alludq to some of MDAM’s 
advantages. Th$y are yqma&ed here: 

Range predicates on leadiug or intervening key 
cohmlns. 

Missing predicates on leading or intervening key 
cohnnns. 

IN lists-on multiple key cohimns. 

NOT equal (0) predicates. 

Multivalued predicates. 

Elimination of redundant predicates. 

Elimination of empty sets. 

Pre-execution duplicate elimination. 

Preserving in&x order for rows retrieved. 

Sparse or Dense Access 

The significant point is that while providing all these 
capabilities MDAM reads the minimal set of records 
required to process the query. Also, it transforms the 
original set of predicates into predicates on disjoint 

712 



ranges. This avoids the overhead of reading the same 
row many times and then having to eliminate duplicates. 
The ranges are ordered according to the order of the 
index. So MDAM maintains the order of the rows 
returned to that of the in&x. This facilitates efficient 
grouping , merge joins, and reduces the sorts sometimes 
necessary to order the data, 

dept.=lO, date=“O6/04/95”, item-class=20, store = 250 

Each of the above features is discussed below. The table 
used to illustrate the features L: 

We call this retrieval of a set of rows an access. After it 
gets all the rows that satisfy such an access, it searches 
for the next value of date for dept 10 which is greater 
than 06/04/95. We call this search a probe. It fmds 
06/11/95. Next it retrieves all rows that are qualiied by 
the following set of predicates: 

dept=lO, date=“O6/1 l/95”, item&tss=20, store=250 
SALES with the columns: 

l dept 

’ date 

0 item-class 
l StOE 

l item 
l total-sales 

In this manner, it continues processing the next value for 
date in the database and so on, 

With a key on columns dept., date, item&tss, and store. 

Even when a large number of rows are being processed 
(often thousands to millions), the overhead of each access 
to find the next value for the column in the database, as 
illustrated in the above example, is minuscule. If there 
are many item classes and stores MDAM will have 
avoided accessing thousands, if not millions, of rows. 

Intervening Range Predicates 
An intervening range predicate ,is a range predicate 
specifkd on a leading or intermediate column of an 
in&x. Columns preceding and following thii column 
may have equality predicates .specitied on them. An 
example of a query with such predicates is: 

SELECT date, sum(total~sales) 
FROM sales 

WHERE dept=lO 

No access was required to another dimension table to 
determine all the possible values for date in that range 
and then perform a join to accomplish the same thing. 
Besides, the values resulting from such a table may be all 
possible values for the column, whereas the database may 
have only a subset of such values. Because MDAM 
maintains the order of the index, the aggregation 
spe4ified in the query can be performed very efficiently, 
without a sort being necessary. 

and date between “06/01/95” and “06/30/95” 
and item&ss = 20 
and store = 250 

Missing Key Predicate 

GROUP BY dept, date; 
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When no predicates have been slx+kd for a leading or 
intervening hey Column, MDAM can still use the 
subsequent columns for keyed access. The following 
query is an example: 

Normally the predicates on column item-class and store 
cannot be used as keys by most DBMS because of the 
intervening range predicate on date. However MDAM 
allows the use of. all four hey columns. 

MDAM processes range predicate8 b$ stepping through 
the values, existing in the table, for, the column on which 
the range has been spe4Sed. Assume that the values for 
date in the database between 06/01/95 and 06/30/95 are 
06/04/95,06/11/95,06/18/95, and 06/25/95. 

MDAM frost searches for the value a date greater than or 
equal to 06/01/95 and less than or equal to 06/30/95 
where dept equals 10. It finds the value 06/04/95. Then 
it retrieves all rows that are qualified by the following set 
of predicates: 

Note that no predicate has been provided for the fust key 
cohmm dept., Most DBMSs would not be able to use’ the 
in&x for keyed access and would have toresort to a full 
table scan for such a query. However, MDAM can 
handle this query effrcietly. , It treats the missing 
predicate for dept ,as an implied range of MIN-VALUE 
to MAX-VALUB (note that this includes NULL values). 

SELECT date, sum(total~ales) 
FROM sales 

date between ‘Ufj/O1/95” and “06/30/95” 
and itemclass = 20 
and store*250 

GROUP BY dept, date; 



These are respectively the minimum and maximum 
permissible values supported for the datatype of the 
missing key column. 

So let us assume that the values for ,the column dept in 
the table range from 1 through 100. MDAM first 
searches for a dept greater than MIN_vALuE, It fmds 
the value 1. Next it finds the first value for date as 
describe above and then uses the following set of 
predicates for its fust access: 

dept=l, date=“06/04/95”, item-classz20, store-250 

After retrieving the rows for this access, it will vary the 
value for the column date, as discussed earlier, to do the 
following accesses against the table: 

deptzl, date=“O6/11/95”, item&iss=20, store=250 
depbl, date=“O6/18/95”, item~class=2O, store=250 
dept~l, date=“O@25/95”, item&ss=20, store=250 

Having covered the range of dates, it then increments the 
previous value for dept by 1 to do the following accesses, 
starting with the first date value ‘again: 1 

dept=2, date=“O6/04/95”, item_class=20, store=250 
dq~td, date="o6/11/95", item&tss=20, store=250 
dept=I& date=“o6/1 g/95”, item&ss=20, store=250 
deptd, date=“O6/25/95”, item&ss=2O, store=250 

This results in 4 probes per dept for 100 departments, 
for a total of 400 accesses, each of them requiring a probe 
to determine the next date value to retrieve. Hxtra probes 
are not required to retrieve values for the column dept., 
other than to get the starting value because thii is a dense 
column. Dense columns do not need to be probed to 
determine their next value. (see Sparse vs Dense later in 
this paper.) 

IN Lists 
IN liits are essentially IN predicates specified for a key 
ColUmn. The preditite could also be of the form 
item~class=20 OR itemAass=35 OR itemAass=fiO . . . 
Such a predicate is also considered an IN list. So let us 
see how MDAM processes IN lists using the following 
query as an example: 

SE!ECT date, item:class, store, sum(total~sales) 
FROM sales 

WHERE 
date between ‘W/01/95” and “06/30/95” 

and item-class IN (20,35,50) 
and store IN (200,250) 

GROUP BY de@, date, item&ss, store; 

Key columns dept and date are handled as discussed 
before. However, instead of using just the predicates 
itemAass=20 and store=250 with each access, multiple 
accesses are done for each value provided in the IN list 
for these columns. So the following access in the 
previous example: 

dept-1, date=“O6/04/95”, item~class=20, store=250 

is done for each value of item-class. For each value of 
item&ss, each value of store results in an access as 
well. so the following accesses are done for the first 
values of dept and date: 

dept=l, date=“O6/04/95”, item&Lss=20, store=200 
deptl, date=“O6/04/95”, item-class=20, store=250 
dept=l, date=“O6/04/95”, item-class=35, store=200 
dept~l, date=“06/04/95”, itemAass=35, store=250 
dept=l, date=“O6/04/95”, item&ss=50, store=200 
depbl, date=“OfXW95”, item,class=50, store=250 

Since the values for iten@ass and store have been 
provided in the query, no extra accesses are required 
against ‘the table to determine their next values. 

During’all of this MD&4 preserves the original order of 
the index, making the computation of ‘aggregates very 
efficient. Materialization of a hashed or sorted 
intermediate is not required for forming groups. -- 

For the above query MDAM would perform 2400 
accesses. If Sales is a small table the SQL optimizer 
might decide to just read the entire table. When there are 
thousands or millions of rows qualifying for each access, 
however, MDAM may prove to be very efficient 
considering the rows it does not have to access. The 
mwii iesultiig’fr~ tlje 2400 accesses may be a small 
subr+t, of the entire table and’ may,result in the query 
being executed in minutes instead of,the hours it might 
take to do a full table scan. Note, that since the rows to 
be read for each access are, clustered, MDAM can read 
these at very high scan rates using very efficient bulk I/Q, 
pre-fetch, and virtual’buffering capabilities. 

Tables on Tandem systems are partitioned on a part or all 
of the primary or clustering key columns. Typically, 
DSS queries involve predicates on the key columns, with 
one or more of the key columns having range or In list 
predicates. 

If the same query uses paraRe execution, the 2400 access 
may not seem that confounding. If the sales table 
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contains 100 GB spread across 50 partitions, and is 
partitioned by dept, each partition is accessed by an 
executor server process in parallel. Therefore the 
number of acuxses per process is now 48 (2400/50). 
Since each partition contains 2GB, and we are accessing 
only a small part of each partition, this query may 
actually be executed in seconds. 

“NOT =” Pddicates 
Most DBMSs would not consider “NOT =” predicates to 
be very useful for keyed access. Predicates of the form 
NOT IN (3, 5, 8) which translates to NOT = 3 AND 
NOT = 5 AND NOT = 8 also fall into this category. 
MDAM can use such predicates for keyed access as well, 
Their efficiency depends on the selectivity of the cohmm 
or the number of unique values in the table for the 
column. Consider a predicate of the form: 

WHERE dept NOT IN (3,5,8) 

Now, if there are 100 departments (as we assumed 
before) use of this as a key would not have much benefit 
because it eliminates only 3% of the de&s. However, if 
there are only 10 departments, the impact on the 
execution time of using this predicate k a .mduction of 
about 30%. The lower the number of unique values for 
the column and the higher the number of values in such a 
NOT list specifii by a query the more the benefit from 
MDAM. MDAM uses the “NOT = predicate by 
transforming it into a set of ORed predicates. So dept 
NOT=3 is transformed into dept c 3 OR dept > 3. For 
the query specified above the predicateis transformed to: 

WHERE! (dept<3 OR dept >3) 
and (dept<5 OR dept>5). 
and (dept<8 OR dept>8) 

MDAM will access departments 1, 2, 4, 6, 7, 9 and 10. 
Not doing the access for departments 3, 4 and 8 can 
reduce the time needed to complete the query versus 
making a full table scan. 

Multi-Valued Predicates 
Multi-valued predicates (or in SQL92 terminology ‘Row 
Value Constructors”) can also be ‘used by MDAM. A 
predicate of the form (dept, date, item&ss ,store) ‘= (10, 
“06/04/95”, 20, 250) is considered the equivalent of 
equality predicates on each of the ‘columns in the 
following form: 

dept= 10 

and date = “06/04/95” 
and item-class = 20 
and store = 250 

Such a multi-value predicate is processed as discussed in 
earlier sections. However, when a range is expressed in a 
multi-value predicate (using one of the operators >, >=, 
c, c=) the transformation is quite different. A multi- 
value predicate of the form (dept, date, item-class) > (10, 
“06/01/95”, 20) gets transformed to: 

(dept=lO and date=“O6/01/95” and item&tss>20) 
OR (dept=lO and date>“O6/01/95”) 
OR (depbl0)’ 

These predicates can be used by MDAM as will be 
discussed under General OR Optimization. Since the 
multi-value predicate has been converted to singlevalue 
predicates, they now can be combined with *other single 
valued predicates. 

General OR Optimization 
One of the most.. powerb~l aspects of MDAM is that it 
supports predicates with any combination of ORs and 

This is accomplished by associating the 
ales &with different predicate sets in a variant of 
disjunctive normal form. IN liits are treated as a group. 
Therefore, the resulting predicate sets are not truly in 
disjunctive normal form. We .will call each predicate set 
a disjunct. So let us take the following complex 
expression as an example: 

((item+ss=lO and date between “06/04/95” and 
06/25/95) OR dept IN (2,4,5)) 

and 
((depth and item+ss=5) OR ~. 
(item-class IN(5,lO) and (date=“O6/04/95” OR 

dw=W 

The above expression will have its predicates associated 
with the following disjuncts: 

(dept=4 and date between “06/04/95” and “06/25/95” 
and item~class=lO and item&ss=5) 

OR (date between “06/04/95” and “06/25/95” and 
date=“06/04/95” and item&rss=lO and 
item-class IN (5,lO)) 

OR (dept~2 and date between “06/04/95” and “06/25/95” 
and item-class=10 and item&tss IN (5,lO)) 

OR (dept IN (2,4,5) and dept=4 and item&ss=5) 
OR (dept IN (2,4,5) and date=“O6/04/95” 
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and item-class IN (5,lO) 
OR (dept IN(2,4,5) and dept=2 and item-class IN ($10)) 

As you can see, the above disjuncts contain IN lists, 
which are actually OR expressions. So the expression 
which is finally processed is not truly. in disjunctive 
normal form. &lDAM essentially retrieves a UNION of 
the results of each disjunct to satisfy the query. 

Why did we take such a complex expression as an 
example -- it does not look like one any human would 
code. When queries are generated by tools and/or queries 
are made against views with. predicates and/or 
parameters or host variables are used complex 
expressions that contain mauy redundant predicates can 
be generated. We.cannot always ask the user to simplify 
the query. The main reason though is to demonstrate 
how MDAM can handle even complexexpressions such 
as the one above. 

The next two sections will show how MDAM eliminatt 
redundant predicates and does duplicate elimination 
beforeanydataisread. ,I ./, 

Elimination of Redundant Predicates .I :. 
I 

We will put the previous, example of disjuncts into 
tabdar form in table 1 to make it more understandable: 

Afkz values are assigned to parameters and host 
variables, MDAM resolves expressions and then 
eliminates any redundant predicates. 

MDAM eliminates the redundant predicates in each of 
the disjuncts. In the first disjunct for item&tss it finds 
two conflicting predicates. Item-class cannot be 10 and 
5 at the same time. Therefore, this disjunct will not 
qualify auy rows and will ‘result in an empty set. So 
MDAM eliminates that disjunct altogether ‘. 

; 
For the second disjunct ‘it picks the predicate 
date=“O6104/95” o+ek the date range and Item&ss=lO 
since a row with Item~class~5 will not qualii. It also 
finds that there is no prodica~!’ specifti for dept and it 
assumes a range~predicate on the c&mm of the form 
>=MIN-VALIlR and <=MAX-VALUl3 ( >=lo & <=hi 
are used in the following examples to mean the same 
thing). 

Aftfqrocdsing each disjuact similarly, it computes the 
followingdisjuncts as shown in table 2: 

j .f. 
&j-t .? D&& ” Date 1 ItemJJass 

2 ‘&lo & =“06/04/95” 1 =lO 
-<=hi.. i ,. 

3 =2 >= “06/04~95” =lO . ,” 
& _ ’ <= “06225l95” , 4 4, * , >&lo $&hi =5 

5 (=2o&4 &xj/&/9s’ ’ =5 ()r=lO 
or =5) I I 

6 =2 5” 1 r5or=lO 

Table 2 

Note that the first disjunct no longer appears in the list of 
disjuncts. Since itemAass cannot be both = 5 and =lO it 
is completely eliminated. 

Duplicate Elimipation 
&lDAM removes du&.&s ,before,re.ading the data, so it 
does not have to do,*any post read operations to 
accomplish dupl@t~.ehm&tion (a common; problem 
with OR optimi&on). 

Table 1 _,, MDAM combines overlapping ranges among the 
disjmcts and separates the disjuncts into non- 

716 



overlapping accesses. So the disjuncts shown in table 2 
are transformed into the following set of retrievals: 

Retrieval 1 Dept 1 Date I Item~class 
-1 In 1 =“06/04~5” 1 =lO I 2 1 =2 r 1 <“06/04/95” 1 3 or =lO 
3 I =2 I >=“06/04/95” I =lO 

I 
<=“06/25/95” 

4 =2 .90&5/95ll ‘=5or=lO _ 
5 >2&<4 =“46104195” =lO 

,6 ,=4 <"06/04/95" =5 
7. =4 ~“06;1o;;ilps’ ,‘: “;J&=l() 
8 =4 >“06/04/95” =5 

Table 3 

This set of retrievals (shown in table 3), cannot return 
duplicate rows. It eliminates fhe overhead of reading 
duplicate rows, which would have’been incurredby- the 
query had it used the disjuncts in the form shown in table 
2. Also, then there is no overhead incurred to remove the 
duplicates after reading. 

Maiqte~~ce of Index Order i 
In .the process of creating non-overlapping disjuncts 
MDAM orders the retrievals, as you can see in the table, 
in the order of the index being access& The order may 
be ascending or descending. That is, MDAM maintains 
the index order even if it were reading the index 
backwards to satisfy the ordering requirements for the 
query to avoid a sort 

Sparse versus Dense 1 
When range predicates exist for leading key columns (or 

’ there are no medicates available foVhese key -cohmms) 
MDAM must go through the index and locate each value 
in the range. It does Thai in one of two possible ways, 
depending on whether a column is sparse or dense. \ ‘,. 
A dense key column is one which has all (or almost all) : 
of tlie Ipossible values for the column. If a c&mu has 
100 unique values and the column ranges from 0 to 99, 
then this cohnnn is dense. 

When a dense column is recognized then MDAM only 
has to add 1 to the previous value, and look for any 
value3 that satisfy the predicates for ‘the mmaining key 
~01~s. This was demonstrated by the example under 
the section Missing predicates. This method will adapt 
to the actual values found in the database, and switch to 
the sparse method if it doesn’t find that data ,is actually 
dense. 

I 

A colti is recognized as sparse if it is missing at least 
10 percent of its possible values. MDAM treatsa sparse 
colti differently than a dense one. Using the present 
key value it probes to find the next value in the in&x for 
this column. Thii value is inserted as a key value for that 
column and the required data is retrieved An example 
of a sparse key column was the date cohunn that had four 
non-conseclltiye values for the range specified. Access 
based on the sparse method was demonstrated by the 
example under the section Intervening Range Predicates. 
An example of a dense key cohunn was the dept column 
with 100 values from 1 to 100. 

z 

Benefits 
As mentioned in the introduction and demonstrated in 
&e paper, the benefits of MDAM can be substantial for a 
multitude of querie+ this is specially the case for large 
(GB$TBsize)databasesdesignedtobeaccessedby 
multidimensional queries. 

The following section shows how MDAM on B-Trees is 
an improvement ov,er hashed based databases. 

I 
wing vs. ,B-Tree 
Even after demonstrating that B-Trees can after all be 
used efficiently for multidimensional access in large 
DSS, some may suggest that a hashed file organization is 
still be& thr&BiTree &uctures for large scale DSS. B- 
Trees have many advantages over hashed structures: 

l B-Trees can handle’&rts and set updates better 
thanhashed~structures can. .’ .a 

l With many hashed structures all tables have to be 
spread equally over available disk storage. This 
cxeates I problem in a constantly growing 
environment where frequent and massive 
reorganization may be necessary to redistribute data 
across a larger number of disks. Most of the 

‘kiiplementati6ins today render . the database 
unavailable “during such re-organizations. With 
range ptitiomng of B:T?ee structures there is a lot 

‘I ‘of flexibility in h’ow data is spread across available 
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disks. Incremental growth in the database can be 
acwmmodatc4l by various partition management 
utilities that allow partition splits, merges additions, 
deletions, movement, and changes in partition 
boundaries. All this reorganization can be done on- 
line while the system is available 24 x 7. 

The chosen in&x better be a good one to yield a 
balanced hashed organization. Otherwise, there is a 
problem in managing data distribution evenly. With 
B-Trees, partition boundaries can be specified based 
on the data distribution across key values to achieve 
balanced distribution. 

Queries needing sets of data that can be retrieved 
contiguously benefit from a B-Tree organization. 
MDAM extends this benefit to a broad class of 
queries. Bulk I/O, pm-fetch, and buffering 
capabilities can *be used to take advantage of 
accessing clustered data with fewer I/OS. 

All B-Tree queries do not have to be executed in 
parallel if they can be satisfied by accessing a single 
partition. Sometimes only a few partitions need be 
accessed to satisfy the query instead of the entire 
table. Between the clustered bulk I/O benefit 
mentioned above and the reduction in partitions 
accessed, less CPU and disk resources are necessary 
to satisfy the query workload on’ the system -- a 
pricdperformance advantage. 

Hashed organizations have the problem that 
multidimensional queries with predicates missing, or 
range predicates on leading I or intervening key 
columns, will result in full table scans which are 
resource intensive. 

Hashed structures do have a perceived benefit ‘over B- 
Trees in the automatic balancing of partitions across 
disks, as long as a good in&x is chosen. They are also 
perceived as promoting parallel+ (Note that one of the 
bullets above discusses the benefit of not having to be 
parallel all the time.) However I&AM and B-Trees can 
help provide the same benefits, but do it more efficiently. 

There are two types of database organization on B-Trees 
that can provide thii type of benefit. Both allow a 
leftmost column added to the, primary index. I, 

l The leftmost column added to the primary in&x is 
used to “hash” distribute the rows of a table. This 
can be an existing column of low unique entry count 
or an artificial column created by hashing ‘columns 

of the table. The table can be partitioned on this 
column. 

l The leftmost column can be assigned a value in a 
round robin fashion so that each row falls into a 
different partition. This will ensure even 
distribution of the data across partitions. 

So we can achieve a balanced “hashed” distribution of 
rows across B-Tree partitions for ease of partition 
management. Thii is an improvement over the perceived 
advantage of hashed structures over B-Trees. So how do 
we access this table with a leftmost ‘column that will 
probably have no predicates for it? MDAM will treat this 
column for all queries as a cohmm -with missing 
predicates and will deal with it as demonstrated above. 
The key then is to have a low number of unique values 
per partition for the leftmost column so that the number 
of probes to fmd the next values for it is smaIl. At the 
same time, there should be a sufficient number of values 
for the column per partition, so that the partition cau be 
split at a later date, to accommodate a growing database. 
With on-line utilities to m-organize the database and 
manage the%partitions,.MDAM offers you the best of both 
worlds using B-tree structures. 
jl 

Performawe 
The following performance figures shown in table 4 
compare MDAM performance to reading the entire table 
and reading through an alternate in&x. The tests were 
run with a Wisconsin table of 75,OtXl records occupying 
18.15 MB. The table was created with the key columns 
of four, ten, twenty and onepct. The unique entry counts 
for these columns are 4,10,20 and 750. The following 
query was executetk 

SELZT sum(unique1) FROM k75tnp WHE!RE 
<pred>; 

cpr& was varied to be (ten=l, twenty=1 and onepct=l). 
Secondary indexes were created for the columns ten, 
twenty and onepct. 

<pied> Table sedonaaij .mAM MDAM 
Scan. IndexTime Accesses Time 
Time 

ten=1 . 9secs 38.0 sea 4 4.3 sea 
twenty=1 9 sets 24.0 sea 40 3.4 se42 
onepctil 9secs ,2.5 seca 800 1.6 sea 

Table 4 
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This simple experiment scales up to large databases. It 
shows that MDAM can significantly extend the use of B- 
Trees and give excellent performance. 

summary 
The MDAM access method has been shown to extend the 
usefulness of the already important B-Tree index 
organization. Multidimensional access using B-Trees 
allows efficient clustered access to databases. Support of 
columns with no predicates allows users to extend the 
types of database &sign that can be used with B-Trees, 
allowing extremely efficient access and maintenance. 
The general processing of MDAM, allowing keyed access 
of extremely complex queries involving ranges, IN lists 
and arbitrary ORs allows queries to,be expressed in an 
arbitrary manner, and still be executed effr&ntly, as 
MDAM will retrieve a record only once and still 
maintain in&x order. We have alsoshow the multiple 
benefits of B-Trees for large databases using MDAM. 
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