
OS Support for VLDBs: Unix* Enhancements for the
Teradata* Database

John Catozzi Sorana.Rabinovici
AT&T Global Informatidn Solutions

El Segundo, CA 90245 USA
john.catozzi@SanDiegoCA.attgis.com

sorana.rabinovici@ SanDiegoCA.attgis.com

Abstract

This paper presents the parallel enhancements
which allowed the port of the Teradata Database
from TOS, a proprietary ldbit Operating Sys-
tem, to an SVR4 Unix system. It gives an archi-
tectural overview of how the Teradata Database
solves the main VLDB problems: performance
and reliability. We will present the transition from
the Database Computer DBC/lOlZ nodes (Inter-
face Processors-IFPs and Access Module Proces-
sors - AMPS) to the virtual processors (vprocs),
which run concurrently in, a collection of SMP
nodes. We also present the Parallel Database
Environment (PDE) add-on package to Unix that
makes this possible. We will discuss the results of
our performance enhancement work and the
directions for the future.

Introduction

Twelve years ago, the Teradata DataBase Computer or
DBC became the world’s tirst massively parallel computer
for database processing. That computer system, operating
on a large collection of uni-processor Intel x86 nodes with
a proprietary operating system (TOS), pioneered the MPP
relational database market. Today there are over 400 sites
with these systems. In this paper we describe this original
system in overview, then present the work which was
involved in m-implementing the Teradata database soft-
ware on today’s modern generation of large-scale mas-
sively parallel systems where each node of the system is a
powerful Symmetric Multi-Processor (SMP) computer

~roe..d‘ng. of th. 1l.t VLDB Confer-w-
Zurich, Switserlmd, 1996

DSU

I AMP .

DSU

Figure 1: The Original DBC

running the Unix operating system. This work was very
challenging and presented some unitlue problems. We
present here some overall architectural concepts of this
work along with a couple of implementation ‘highlights.
We then show the importance of the OS interface to the
perforniance of the database withthe results of our efforts
to maxim& the’ performance of the Teradata database
software in this envhonment. :

The Tkadata DBC/lOlZ .,

The DBC is a database management system. Its main ele-
ments are Interface Processor nodes (IFPs) and Access
Module Processor nodes (AMP@ connected by a propri-
etary network (the YNET). Each of these elements is an
x86 urn-processor with 8 to 16 megabytes of memory run-
ning a proprietary operating system (TOS) in 16 bit mode.
The IFP node provides the connection to clients through
an IBM channel or ethernet interface. An AMP has up to
10 gigabytes of attached disk TOS together with the Tera-
data Database software fully paralleliies all functions
among these simple nodes. A DBC basic configuration is
presented in Figuq 1.

In a DBC, data is represented as a collection of tables,

696

relational in nature, spread over all the configured disks,
according to a hash algorithm.

The IFPs receive user requests (queries) and translate
them in internal request steps that are forwarded over the
YNET to the AMPS. They also coordinate the responses
that come from the AMPS and pre&nt the, r&i&s to the‘
users. The AMPS receive requests from the IFPs, p&form
the required data .~manipu.lath% and, &nd appropriate
responses back over the Y%lET~Since the database tiles
are evenly distributed across the disks of all the AMPS, the
workloadisb~ed.wherlanIFfreceivesarequ~~.~,~~~~~
parser task interprets it using the data dictionay which ,.. ‘”
contains information about all&e databases/tables in the
system. It resolves symbolic names and makes integrity
checks. The request is then split into a series of data
manipulation steps whose execution is monitored by a dis-
patcher. The dispatcher sends the steps on the YN@T.
toward their destination. As mentioned befote, the rows of
a table are evenly distributed amongst all AMPS in a sys-
tem, so that all AMPS could work at the same time on the
data of a given table. If a request is for data in a single row
(i.e. “prime key” request), the IFP will transmit it toward
the AMP on which the data resides. If the request is for
multiple rows, the steps will be forwarded to all participat-
ing AMPS.

.Under normal ope&ion, e+zh node+ assigned exclusive
1 use of a subset of the, shared disks. Ip case of node failure,

the disks v&Id bpxsignq-j*o the’ remaining nodes in the
clique, thus&&@&g fuB availability of all the data. A
general diagran&o&he system is shown in Figure 4.

Given the power of the SMP node, it is necessary to
provide for imra-node parallelism as well as the inter-node
parallelism of’the DBC. We accomplish this by running
multiple instances of AMPS and/or IFPs in a node. Each
such instance constitutes a virtual processor (vproc).

L

Teradata on Unix/PDE

A multitude of factors drove us to the development of a
new system to replace TOS and to support the Teradata
database software into the future. Among them were the
emergence of 32-bit mode, supporting larger physical and
virtual memory sixes, open systems trends, and the avail-
ability of the SMP node in which multiple CPUs, sharing
memory, concur in solving the ~wo&load presented to the
node. The decision was made to build upon AT&T’s Fault
resilient MP-RAS SVB4 Unix as the base operating sys-
tem for the new version of Teradata. To this basic operat-
ing environment we ad’ded exCensi& to support a parallel
environment, to provide a sit@ system view, to support a
parallel debugger; ‘and,to m,ake it easierto port the Tera-
data datalpse softw~ from TO& We .czill these e5&n-
sions PaMel Database Envir&&ent or PDE. “&&g&eml
relationship of this software in the system. is shtin in Fig-
ure 2.

We will introduce PDE by describing two of its funda-
mental concepts - cliques and-virtual processors. The sys-
tem is made up of large, powerful SMP nodes arranged
into cliques and each running ‘multiple virtual processors.
These nodes are connected by a scalable inter-connect
called the Bynet.

A collection of processor nodes connected to shared
external data storage is termed a clique. Cliques are the
fundamental physical building blocks of this system.

Database Code

UN.jX ._ I PDE ,, .,

.- ,/
KERNEL’

Figut6.2: New System Software

The virtual piocessor concept adds a level of abstrac-
tion between. the multi-threading of a work unit, and the
phys@al layout of the computing system allowing us to
host i shared nothing database otran MPP platform made
up o@ared~~$#emory SMP nodes. This concept results in
better co$@I$ver the degree of parallelism and provides
for higher system Milability without undue programming
overhead in the application. Each virtual processor is
given its ,own private logical disk space, called a virtual
di%‘(vdisk). The vajsk may actually be a conglomeration
of, several ph@cal disk drive units. Vdisks can be
accessed by any&cessor node within a clique allowing a
vproc to be started and run anywhere within a clique.

The Teradata database code commits all transactions to
disk. In order to improve performance and at the same
time provide for the p&ibili@y of a node failure we use the
high -bandwidth, interconnect to keep the mod&d seg-
ments that belong tb one node in a backup node within the
same clique.

PDE provides the ability to run multiple virtual pmces-
sors on a processor node, Each virtual processor is isolated
from the.others on the same node. There is no shared con-
text between vprocs on the same node. This enables the
concept of location transparency where the application is
unaware of the physjzal. location of a vproc. This becomes
an important consideration allowing the system to operate
in the presence of a failed node.

697

BYNET

L .c+ :q. <.:.:. .yp .&$,,-----“‘-A-- - ,:- - - - - - J
‘Figure 4: New System ConQuration

Without Vprocs With Vprocs

Figure 3: Increased Parallelism Provided By VPROCs

The introduction of cliques end vprocs brings addi-
tional parallelism and higher availability to the system.
MO factors contribute to the additional parallelism: .I

1. Disk Utilization: If a processor node has multiple
storage devices (disk drives) attached,- a single
thread of execution might occupy only one of
those devices at a time, leaving the others
under-utilized or even idle. With vprocs, the
degree of parallelism is increased to include up to
one thread per disk, rather than one thread per
node. .:,

2. CPU Utilization: Having multiple vprocs per
node allows increased parallelism for a single
query enabling it to utilize all of the available
CPUS.

TICi is illustrated in Figure 3.

To accomplish better availability we allow for vproc
migration. In the, case of a node failure, all the vprocs
assigned to the failed node are restarted on the remaining
nodes of theclique. The resultant configuration, shown in

/ Proceyor Nodes \

Figure 5: Clique Recovery - VPROC Migration

Figure 5, operates with less processing power, but the par-

698

allel application still has the same number of vprocs and
retains full access to all data storage.

Our implementation of virtual processors is at the
operating system data structure level, and in its intercon-
nect software. By providing the virtual environment at the
data structure level, the partitioning and isolation of vprocs
can be provided at a much lower performance cost than
traditional virtual machine implementations.’

The Unix/PDE system keeps track of each task/process
and the virtual processor to which it belongs. Whenever a
task is scheduled its vproc is active, so that allocation of
per vpmc resources is unique to the vproc. This minimizes
the interference from the other tasks running in the system.
Allocated names, for example, are unique within each
vproc. Unix/PDE assigns vprocs to processor nodes at sys-
tem start-up time based on a load-balancing algorithm. At
that time a translation table of vproc <--> node is created
and stored. When a message is sent to a mailbox at a par-
ticular vproc the interconnect software looks up the vproc
-a node translation in the table, sends the message to the
designated node, and the recipient then routes it locally to
the appropriate mailbox in the proper vproc.

Implementation ’

Unix/PDE provides to the database code the same type of
services that TOS provides. Each Vproc runs approxi-
mately 100 tasks, which frequently map/unmap database
segments. The segments of the database are’ sometimes
heavily shared. There is also a class of objects called Glo-
bal Distributed Objects toward which all the processes on
a node have visibility, and which are kept in sync across
the system. This functionality is implemented as an add-on
at the kernel level because of performance, security, better
control, and debuggability.

The main SVR4 features around which we designed
PDE are SVR4’s object oriented approaches to process
scheduling and virtual memory management. We ‘intro-
duced a new scheduling class (Unix usually provides Time
Sharing, Real Time, etc.) for the tasks working for the
database. This allowed us to get control on events like
sleep, semm, preempt, wakeup, etc. This is extremely
important to the implementation of the parallel debugger.
We also introduced a virtual segment driver, which
allowed us to manage the database blocks. A virtual seg-
ment driver allows the definition of the action to be taken
when noticeable events occur, for a given virtual range (e.g
faults, change of protection, acquiring and dropping of
maps, etc.) Using this facility we were able to implement
all the mapping and interlocking mechanisms required by
the database code, without paying a high overhead price.

There are many innovations included in PDE, but in
this paper we will describe just two of them: the shared
map segments and the node flush synchronization through

shared disk. The shared map segments are important for
the handling of the database shared segments and for the
GDOs. The node flush mechanism is a critical component
for implementing cliques.

It is a well known fact, that in Unix, sharing data or
text between a large number of processes is both memory
and time consuming. In order to alleviate this problem, we
introduced a new type of segment, the shared map seg-
ment. The basic concept is to use a shared page table to
improve the management of the shared physical memory.

User 2
l-l

Physical Pages

Figure 6: Classic Shared Memory
In a system with hundreds of processes sharing in read
only mode sign&ant amounts of data (e.g. shared librar-
ies, and in the PDE case, Global Distributed Objects) the
fact that we use a single page table to gain access to the
sha&i data, saves hundreds of pages for the system. It is .

User 1 User 2

I Physical Pages

Figure 7: Shared Page Table

also much easier to track the shared data, and eventually to
change it, since there is only onemapping to change and
not hundreds. In a typicalcon8guration, we have an g-way
SMP node, with 10 to 14. vprocs and consequently around
1400 processes. In this case; using a shared map segment,
reduces the amount of memory needed for page tables by
5.6 MB for each 4MB of shared memory. This can add up
to a savings of over lOO-200MB during typical operation.
Another advantage of this schema is that the chance of hit-
ting the page table in the cache and not having to go to

699

memory for it is much improved. The overhead of the
hardware .layer of the operating system, which walks all
the mappings of a physical page, checking the referenced
and modilied bits, in order to maintain consistency, is also
very much reduced. This solution allowed us to implement
the functionality needed for ‘the Global Distributed
Objects, with very small overhead, and with substantial
savings of memory.

Another innovative technique was used for synchroniz-
ing the flushing of database segments by the primary or
the backup node, through shared disk tokens. As explained
before, the database uses a node in the same clique
(backup node) to keep a copy of the modified segments of
a primary node. This allows us to use low latency inter-
connect I/O in order to implement a write cache, saving
the performance penalty of the much slower disk Q0 when
committing updates to the database. When an exceptional
condition occurs such as a node crash, power failure, etc.
PDE has to ensure data integrity, and for this reason either
the primary or the backup, but not both, have to flush their
modified segments to disk. It is preferable to gush the pri-
mary, because it has the most recent data. To make sure
that only one node flushes, without relying on the Bynet
which may be in an error condition, the PDE uses shared
disk tokens to implement a persistent storage semaphore
and a set of flags to control this operation. We have
defined a synchronization segment on a shared disk, and
rely on the fact that we can write a primary or backup
token in two different sectors of this, segment and then
atomically read them both. The tokens have values like:
PLUSHINGJNIT, FLUSHING-WANTED,
FLUSHINGJNPROGRESS, FLUSHINGpONE. Each node
will write its token, starting with FLUSHING~WANTED,
atomically read both tokens, and depending on the token
combination, flush or watch the other node flushing. Thii
guarantees that as long as otie of the nodes is functioning a
valid state will be created on the disk Following this flush,
when the system restarts, the areas of disk which were
being handled by the failed node can be reassigned to any
other node with shared access to the disk storage.

Performance work

It was no surprise that initially the new system performed
worse than the current TOS based system. A serious effort
was put into fixing the performance bottlenecks. In doing
this we created different workloadprofiles to characterize
the system behavior. Among them were: concurrent DSS
workloads, consisting 0f.a number of concurrently running
complex DSS query streams, @in workloads with row
redistribution, full file scans, etc. Improving the perfor-
mance of a complex system is lie peeling an onion. The
removal of each bottleneck unveils the problems lurking
below. Over the period of six months we were able to con-

stantly peel away layers of the performance problem
onion. This work resulted in one and a half orders of mug-
nitude improvement in the performance of the database
software under realistic workloads. Most of the perfor-
mance bottlenecks were related to the inherent differences
in the two environments: the uni-processor small memory
of the DBC/1012 vs. the 8-way SMP and 2GB of memory
of the modem Unix server. This “fatness” of the node
requires that careful attention be paid to, the areas of flow
control and scheduling of work, system overhead, and effi-
cient access to scarce system resources through fine
grained locks.

We built tools to observe the hot points in the system
(e.g. excessive lock spinners) and to tind out the cause of
excessive idle time (pinpointing the sleep reasons of
“busy” tasks - tasks working onbehalf of a given query).
Through this work we improved the performance step by
step. Sometimes the gain of a particular improvement was
small, but some specific steps were big winners.

One of, our first observations was that having huge
physical memory (up to 2 GB) did not automatically
ensure better performance.‘The cache of the database seg-
ments grew proportionally with installed memory, and the
techniques to store and retrieve from that cache became
inadequate(e.g. the number of segments on one hash
bucket grew to 400). So, our first step was to increase by
an order of magnitude the number of hash buckets for the
database segments, and to change the locking protocols
used to access them in order to provide for liner locking
granhlafi~. We also improved the algorithm used to ran-
domize the distribution of these segments on the hash
buckets. Combined, these actions reduced’ considerably
the locking contention in the memory management inter-
face.

In order to provide for maximum throughput of the
database under intense workload conditions, the Teradata
software relies on a work flow control scheme which shuts
down the arrival of new work when the resources of a
vproc have reached a certain level of congestion. By
improving the granularity at which we controlled this
work flow we were able to increase the overall perfor-
mance of the system.

The nature of the database activity causes the pro-
cesses working on behalf of a query to go through. many
transitions of the nature: ‘running/waiting for I/O/run-
ning’. In the case of a multiprocessing system it is impor-
tanttorunataskonthesamec~asoftenaspossiblein
order to maximize the usefulness of information in the
CPU’s cache. ‘lhis was enabled by code in the scheduler to
track and maintain CPU affinity for each task

Another major gain came from the elimination of the
Unix OS control over the lower level hardware mapping
of the database memory objects. The standard UNIX code

1

700

goes to great lengths to keep track of the usage of memory
pages in order to optimize its demand paging scheme.
Since PDE controls the caching of the database segments,
these pages are not subject to demand paging and this
overhead is unnecessary.

Other performance gains were realized from not zero-
ing the scratch segments for the database (the database
code is aware and initializes only the needed areas), com-
pacting the messages, avoiding as much as possible lock-
ing contentions, and improving on the tracing system lock
granularity.

Some additional gains came from changes to the data-
base code to operate more efficiently .in this new SMP/
MPP environment. For example the merge join loop was
optimized and the overhead of row redistribution was con-
siderably r&iced by batching up to 4KB of rows to a des-
tination.

The result of our performance work is illustrated in the
perfinmance progression charts - Figures 8 and 9; These

16000

14000

12oOo

10000

8000

i ,-@@

step’s:
1. Baseline

2. File segs hash size and locking
protocols change

3. Flow control granularity

5. Bzero removal

6. Avoid message seg creates

‘7. M&race locking contention

8.9.User shared virtual memory
allocation and mapping

10. Database merge join

' 12345678910
step

Figure 8: Redistribution Joins Performance

figures show the reduction in elapsed time that was real-
ized as each of the performance enhancements was put
into place for two of the standard query workloads.

25000

loo00

1. Baseline

2: File segs hash size and locking
ptowls ’

3. Flow control granularity & sched
quantum fix

4. CPU aflinity k Bzero removal

5. Message improvements

6. User shared virtual memory
allobation and mapping

7. Database herge join enhancement

S792

”

1'2 3'4 S-6 7
step

Figure 9: Concurrent DSS Performance

Summary

The scalable; massively parallel, Teradata database has
been successfully por&d from me DBC/1012 with its
uni-p~sor, limitetj memory nodes to a new scalable
MPP system u#g large SMp nodes running the Unix
SVR4 IMP-RAS, operating. system. By building on the
object oriented features of ,SVR4, viz the scheduling
classes and segment classes, we have. created an arch&-
hu-e which provides for scalable intra-node parallelism
through vprocs and for high availability through the orga-
nization of the nodes into cliques.

We have demonstrated a way to support a scalable
shared nothing architecture on a large shared memory,
multi-processing node that results in high performance by
n$nimizing the system overhead for common functions
and ensuring maximumconcurrence for the system service
software through fine grained locking of scarce resources.
The experience that we have gained from this effort will
serve us well in the future as we look to other platforms
and the Windows NT operating system.

701

