
DB2 Query Parallel’ism : St aging and Implement at ion

Yun Wang
IBM Santa Teresa Laboratory

San Jose, CA 95161
wangQktlvml4.vnet.ibm.com

execution. All the processors within a CPC, Cen-

Abstract

Intraquery parallelism has been recognized as
a key requirement for DB2 major customers
to allow data intensive queries with acceptable
response time. DB2 delivers intraquery paral-
lelism in three stages since DB2 Version 3 Re-
lease 1 in 1993. DB2 intraquery parallelism re-
quires extensions on many DB2 components,
such as optimizer, query executor, buffer man-
ager, . ..etc. We briefly discuss the major issues
in DB2 intraquery parallelism and the mech-
anisms used in our implementation.

1 Introduction

The intraquery parallelism has been planned and im-
plement.ed in three stages.

l The first stage is Query I/O Parallelism which
allows a single query to have a parallel execu-
tion plan. A parallel execution plan may spawn
multiple pseudo subtasks, each subtask can ac-
cess a table, join tables, compute aggregates and
issue synchronous as well as asynchronous I/O re-
quests. All the subtasks are scheduled and exe-
cuted wit.hin a single MVS task. A single query
can use up to 100% CPU time of a single pro-
cessor with many I/O requests performed at the
same time.

l The second stage is CPU Parallelism.. which
spawns multiple MVS tasks for a parallel query

Ptrmission to copy without fee all 01’ part of this material is
yraated provided that the copies are not made OT distributed for
direct commtrcial advantage, the VLDB copyright notice and
fht title of the publication and its date appear. and notice is
given thuf copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT lo republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich. Swizerland. 1995

tralized Processing Complex, can be used for a sin-
gle query.

l The third stage is Scalable Query Parallelism
which spawns multiple MVS tasks over a.11 the
members in a DB2 data sharing group. Since a
DB2 data sharihg groulj can include many DB2
subsystems on many different CPCs, the number
of processors and I/O channels for a single query
are not limited by a single CPC boundary.

Stage 1 and stage 2 allow intraquery parallelism over
a DB2 shared niemory architecture while gtage 3 ex-
tends to a DB2 shared disks architecture. Many is-
sues in intraquery parallelism needs to be solved in
the context -of existing DB2 architecture so that intra-
query parallelism will work with the existing DB2 data
and applications. Most of the major design issues for
DB2 query parallelism will be briefly discussed in the
following sections, they include

l Parallel Query Execution Model

l Post Optimizer for Query Parallelism

l Resource Negotiation

l Synchroniza,tion

l Resource Control and Monitoring

A few performance measurements will be included to
show the improvements and overheads of Query I/O
Parallelism against sequential query execut,ion.

2 Parallel Query Execution Model

Parallel query execution’can be achieved through op-
era.tion pipelining and data partit.ioning. DB2 decidc~s
t.o implement the data. partit,ioning first’ due t,o the
considerations,

. DB;! support,s pa.rt,itioned t,able since Version 1.
which allows a DB2 user to tlist.ribute his large

686

table up to 64 different disks. Parallel query ex-
ecution through data partitioning will work well
for this case.

l Parallel query execution through data partition-
ing works well with simple query which accesses
large amount of data, this has been noticed as
very common situations among DB2 customers.

DB2 query processing includes two phases, a query
compilation phase and a query execution phase. The
query compilation phase takes the user query, goes
through parsing, catalog lookup, semantic check, ac-
cess path selection and ends with a runtime structure
which will be interpreted in the query execution phase.

In addition to extending DB2 query optimizer at
query compilation phase, DB2 adds a query paral-
lelism decision construct in its query runtime struc-
ture and let the ‘query execution phase to make the
final decision whether the query should be executed in
parallel mode. The appropriate degree of parallelism
bases on

l the input parameters in the query from the user,
for example, a query like ‘select * from tl where
cl > :hvar’ requires different degree of parallelism
or even simply sequential execution depending on
the value of the input parameter :hvar, such value
is not known at the query compilation time and
it is only known at the query execution time

l the available system resources at the moment,
over committed query parallelism will simply
cause resource contentions and system overheads
to degrade the query response time and system
throughputs

Based on the decision made at query.execution phase,
DB2 runtime interpreter can either run the query plan
in a sequential mode or run the query plan in a parallel
mode with preferred degree of parallelism. To run a
query plan in parallel mode,

l query subplans will be modified to cover the ap-
propriate data partitioning, each subplan will be
given t,o a subtask to execute

. a data pipe will be created so that each subt.ask
can send its result back t,o the consumer for sub-
sequent processing

In case the parallel query plan is esecuted in a sequen-
tial mode, the original query subplan will be executed
by t,he original t,ask and neither the data pipe nor the
subplans will be created.

2.1 Data Pipe

Dat*a pipe is a new DB2 query processing construct.
which provides the function to route data from mul-
tiple producers to a single consumer or multiple con-
sumers. The input from a producer task can be either
a record stream or a workfile. The output to a pro-
ducer task can be either a record stream or a. workfile.
The possible combinations include

l record input, record output, no order. In this
case, DB2 data pipe has a flow control mechanism
which will suspend the producers when consumer
takes data slower than the producers. Those sus-
pended producers will be resumed once. the low
water mark threshold is reached.

record input, record output,. natural order. For
example, ‘select * from employee where age = G5
order by empno’ where the table is partitioned on
empno and accessed by an index on empno. DB2
data pipe understands the relative order among
all the producers of a data pipe. The results of
the first one will be flow back wit.11 no buffering
while the subsequent ones will be accumulated in
data pipe buffers and workfiles when data pipe
buffers are full.

l record input, record output., key order. For exam-
ple, ‘select sum(balance), avg(balance) from ac-
counts group by branch’. In t.his case, the da.ta
aggregation will be done in two stages. The first
stage will be done by the producers of data pipe
and the second stage will be done by t.he consumer
of the data pipe. The AVG function will be han-
dled as a COUNT and SUM by the first st.age
aggregation in each producer of the data pipe.

l workfile input, record output, key order. For ex-
ample, ‘select * from employee where age = 65
order by deptno’. Each producer of the data pipe
decides to do a loca.1 sort and DB2 data pipe will
merge the results according to the needed key or-
der.

workfile input, workfile output, key order. Sort
Merge join in parallel is such an example. DB2
data pipe can accept a set, of key ranges to repart.i-
tion t#he input data into multiple output, workfiles.
Each workfile will be assigned to a difFerent sub-
plan in the subsequent, operat.ion.

The interface of data pipe is record oriented through
smart buffer allocations, which doesn’t require t.he pro-
ducer of a data pipe t.o assemble fields t.ogrther nor
the consumer of a dat,a pipe to deassemble a received
record, so that the CPU overhead will be kept t,o it.s
minimum. DB2 query compiler will assign contiguous

687

buffers for all t#he fields in a data pipe record. Such
buffer allocation scheme also works when a parallel
query plan is executed in sequential mode with no
data pipe involved. There will be no data move op-
erations between the place where data are produced
or retrieved and the place where data are consumed
because both places point to the same buffer.

3 Post Optimizer for Parallelism

DB2 query optimizer has the’ cost function in terms of
resource consumption such as t.he CPU ‘dime and I/O
time. The parallel query plan will be dete&iined by a
post optimization phase after the sequential query op-
timization. This post optimizer kxamines the sequen-
tial query plan to see how to parallelize a gequential
plan segment and estimates the overhead as welLas
the response time reduction if this plan segment is ex-
ecuted in parallel. If the overhead is below a threshold
and, the response time reduction is above a threshold,
a parallel query plan will be constructed.

3.1 Parallel Group in a Parallel Query Plan

A DB2 sequential query p1a.n consists of a chain of
operations. Each operation can be a table access, a
join, or a sort and is represented by a miniplan data
structure. DB2 post optimizer examines the sequential
query plan in its miniplan chain form to determine the
maximal plan segment which can be executed under
a single data partitioning scheme. Such a sequential
query segment can include

l single table access

l linear join of multiple tables

l aggregate, group by, order by on single table or
join of tables

The parallel query plan for a sequential plan segment
is ca,lled a parallel gro’up. which includes the constructs
for the query execution phase to

l make the decision on the degree of parallelism

0 negotiate for system resources

l establish the data pipe,

l replicate the subpla.ns and spawn subtasks

A sequential query segment for parallelism typically
start.s wit,11 a table access miniplan and continues to
cascade join miniplans until there is a sort miniplan.
A sort miniplan appears either for the,SQL group by,
order by processing or reorders the current, result set
for subsequent processing.

DBZ post. optimizer may transform a sequential
p1a.n into a para,llel query plan with multiple parallel
groups.

3.2 Decision for Degree of Parallelism

When there is no input parameter referenced in a par-
allel group, the decision for the best. degree of paral-
lelism will be made at query compilation phase. Oth-
erwise, the decision will be made at query execution
phase. The decision making includes two steps,

l step 1, the best possible response time will be es-
timated on,

- the CPU elapsed time, which will be estimated
based on the CPU time estimatiori, number of
processors available, the utilization factor of’ the
systems

- the I/O elapsed time., which will be estimated
based on the access pattern and partition size,
when a table is accessed by the query plan in phys-
ical order the prefetch I/O time will bk used on
partition level, otherwise random I/O time will be
used on table level

The best response time is the maximum among
the above.

l step 2, data ranges for subplans will be deter-
mined by the above estimation of the best re-
sponse time, once the data ranges are determined
the degree of parallelism comes out naturally

An extremely simple example for the following query
will be used to show the steps,

SELECT COUNT(*)
FROM 'ACCT, TRANSACT
WHERE ACCT.ACC# = TRANSACT.ACC#

AND ACCT.BALANCE > 5000
AND TRANSACT.AMT > 1000;

Table ACCT is a partitioned table on ACC# with 2
partitions. Partition 1 has key range from 1 to 12000
and I/O time 80 seconds. Partition 2 has key range
from 12001 to 20000 and I/O time 30seconds.

Table TRANSACT is also & partitioned ,t,able on
ACC# with 3 partitions. Partition 3 has key range
from 1 to 5000 and I/O time 50 seconds. Pa.rtition
2 has key range from 5001 to 15000 and I/O time GO
seconds. Partition 3 has key range from 15001 to 20000
and I/O time 30 seconds.

The query plan is an index access on ACCT table
on ACC#, then :join the TRANSACT table through
the index on ACC#. The estimated CPU time for t.hc
query is 20 seconds.

In t*his case, Best Possible Elapsed Time = mas(20.
80,30, 50, 60, 30) = 80 seconds. Now, what will be the

key range for the first Subplan ? The 80 secorlds I/O
t,ime on table ACCT takes key range 1 to 12000. The
80 seconds I/O t.ime on t,able TRANSACT t.akes key

688

range 1 t,o 10000, due to 50 seconds on partition 1 plus
30 seconds for half of the partition 2. So, the key range
for the first s&plan is 1 to 10000. From the previous
key range, 80 seconds I/O time on table ACCT takes
key range 10001 to 20000. The 80 seconds I/O time
on table TRANSACT t,akes key range 10001 to 20000.
So, the key range for the second subplan is 10001 to
20000, and the degree of parallelism is 2.

4 Resource Negotiation

A synchronous I/O .for a data page may take up to 20
ms while a prefetched data page only takes 2 ms. If the
buffer pool is over cqmmitted and the prefetched pages
are stolen before they are referenced, the same page
has to be retrieved again via a high cost synchronous
I/O operation. Under t,his case, a parallel execution
of a qtiery can cause more I/O contention and even
much slower than a sequential execution. More than
that, the overall system throughput can be degraded
dramatically. At the query execution phase, each par-
allel group will negotiate with the DB2 buffer manager
to understand what is the appropriate degree of par-
allelism. The planned best degree ‘will be adjusted by
the result of this resource negotiation, a parallel quexy
group may even be reduced to a sequential execution
when the system is overloaded.

Working with the resource negotiation, the buffer
manager can be asked to increase or decrease the
amount of buffers available for parallel query execu-
tion through the DB2 alter buflerpool c0mman.d. It is
possible to reduce the amount of buffers for the paial-
lel query execution in the prime time of system load, so
that para.llel query execution can be totally shut down
to allow maximal throughput for online transactions.
The parallel query executions can be restarted at off
shift by increasing the amount of buff&s for parallel
query execution.

In a scalable query parallelism environment, it is
possible t,o dynamically configure the workload for par-
allel query executions among the’DB2 members in a
DB2 dat,a sharing group by adjusting different buffer
pool thresholds on each DB2 member system. Buffer
pool can be configured to specify how much will be
used for parallel query executiops of its local DB2 sub-
system. In addition, it can also be configured to spec-
ify how much w,ill be used for paralJe1 queries from
other DB2 data sharing members. DB2 allows each
member t,o preserve the needed amount of resources for
it,s loca.1 processing and configure the global resources
which ca.n be sha.red among all the members.

5 Synchronization

5.1 Lock Manager

DB2 uses locks to serialize critical databa.se operations,
such as data set open within a DB2 member. Locks for
serialization of critical’ section should work the same
way as before. DB2 also uses locks for dat,a concur-
rency and data consistency, such as the data,base lock.
table lock, page lock, row lock, and so on.

Within a transaction, data can be insert,ed or up-
dated. When DB2 spawns multiple tasks to execute a
query in parallel, each subtask will acquire and release
locks as normal. Each subtask should be able t.o see
the inserted and updated data which are protected by
locks from other transactions to access. A simple so-
lution which maps all the subtasks into one requester
will not work. One example is that the deadlock detec-
tion will catch a false deadlock while it isn’t, subtask 1
holds lock x, subtask 2 requests lock y, another trans-
action holds lock y and waits on lock x.

DB2 extends the lock manager with compatible
class to catch not only the relationships bet,ween lock
requesters and lock holders but also the relationships
among the subtasks in the same transaction. Also,
the locks from a subtask should be able to. t.ransferred
to its parent task whell the subtask complet,es. This
procedure guarantees the isolation level of repeatable
read.

5.2 Intertask Communication

One DB2 query may include multiple parallel groups
and multiple parallel groups in a single query can be
executed concurrently. There may exist multiple DB2
queries active at the same time from a. DB2 application
program,

User may close a query; which should clean up all
the subtasks f6r all the para.llel groups in this query.
User may cancel an application, which should clean
up all the queries in all the programs in this applica-
tion. User may commit or rollba.ck t.he transaction,
which should clean up all the queries in a.ll the pro-
grams in this application. .SQL processing error, such
as overflow, divide by zero, should end the query it.-
self. DB2 severe error may occur, DB2 will att,empt its
recovery procedures. When recovery procedures can-
not recover, all the queries in all t,he programs in t.he
transaction will be stopped, cleaned and t,he transac-
tion be rollbacked Under the pa,rallel query execution.
each possible event has to be propagated and sy~~cho-

nized in between all the rela.t.ed tasks.
When DB2 executes a parallel query plan, a sub-

task can,pass its result to the data consmiler via a daba
pipe mechanism. DB2 da,ta pipe mechanisnl suppor1.s

flow cont,rol, so a subtask will suspend it.s execution

689

when a data consumer doesn’t consume the data faster
enough. Later, the data consumer will resume the sus-
pended subtask ouce the remaining data drops below
a cert.ain threshold. Of course, even when a suntask is
suspended, the subtask needs to respond with special
event,s, such as the clean up or cancel request. Also,
the consumer of the DB2 data pipe may be suspended
to wait for data from the producers of the data pipe, it
has t,o respond those special events, such as a subtask
ends abnormally. A messaging mechanism has been
adopted to maintain a posting area. When an event
happens or a message arrives, the posting area will be
updated and the needed follow-up actions will be trig-
gered. This implementation provides a very flexible
mechanism t,o serve the very complex synchronization
needs iu para.llel query executions.

6 Miscellaneous Issues

6.1 Parallelism Enabling and Control

DB2 provides a bind option to enable the query par-
a.llelism for stat.ic SQL and a SQL special register for
dynamic SQL. So, users have the full control whether
they want DB2 to exploit the query parallelism which
will reduce the query response time by fully utilizing
the system resources for a single query. For a dynamic
SQL, the query parallelism can be turned on and off
in between each SQL query.

In addition to that, DB2 Resource Limit Facility al-
lows one user to specify how aggressive he wants DB2
to exploit t,he query parallelism for his queries. Query
I/O parallelism adds minimal CPU overhead compar-
ing with t,he sequential execution, while scalable query
parallelism adds more CPU overhead in its execution.
DB2 user can limit DB2 to exploit only I/O paral-
lelism, single CPC parallelism, or scalable parallelism
by using the DB2 Resource Limit Facility.

6.2 Resource Monitoring and Control

DB% supports lock escalation threshold to avoid lock
flooding. When a query is executed in parallel, DB2
will maintain a single system image and support a
global lock escalation threshold the same as that in
t.he sequentia.l execution mode. Users and DBAs don’t
have to adjust the lock resource due to parallel query
execution. The same strategy applies to lock limit
t.lircsholcl so t,liat para.llel query execution will not mo-
uopolize the lock mana.ger’s resource. On the CPU
side, DB2 supports CPIJ limit threshold to govern
overruii queries. By the same requirement, DB2 will
monit.or a.utl limit a parallel query, as a whole, not t0

excc~rl its (-‘I’U limit t,hreshold.

6.3 Performance Monitoring

DB2 supports performance monitoring through a cou-
ple of mechanisms, each one of them will be extended
to monitor parallel query execution.

DB2 explain facility reports how a query is opti-
mized to execute in a PLAN tabfe. The PLAN ta-
ble has been extended to describe the parallel groups
in a query. New information for a parallel group in-
cludes what operations are executed in a parallel grogp
and what is the estimated best degree of parallelism
at query compilation phase.

DB2 provides several performance records on how a
parallel group is executed. The degree of parallelism at
the query execution phase, the exact ranges of the data
partitioning scheme will be reported when a parallel
group is started. The elapsed time of the parallel group
as well as the elapsed time and the CPU time for each
subtask will be reported fhen a parallel group finishes.

DB2 reports its I/O prefetch quantity adjustments
due to the parallel query workloads on each buffer
pool. DB2 also reports the results of buffer pool nego-
tiation. Information will be provided to tell the user
how to tune the buffer pool size to increase the success
rate in buffer pool negotiat,ions.

7 Performance Measurements

DB2 Query I/O Parallelism in Version 3.1 has been re-
leased to DB2 customers in 1993. DB2 Query I/O Par-
allelism has been measured on a IBM 3090-3005 with
512 MB central storage and 1024 MB expanded stor-
age against a DB2 internal query workload adopted
from a DB2 major customer. Three queries have been
picked to show the measurements in their para.llel ex-
ecutions as well as sequential executions.

l Query Ql was a simple SELECT COUNT on a
non-indexed column.

SELECT COUNT(*)
FROM T6
WHERE COLX = 19840918;

Table T6 was a partitioned table with 8 partitions
and a total of 78K pages. Partition sizes range
from 8788 to 10630 pages. The access method
used was a tablespcae scan, there was oue parallel
group and the planned degree was 8.

DB2 accounting tr&ce showed 85% elapsed time
reduction from 143.57 set to 20.93 set, while the
CPU time ‘increases from 7.64 set to i.95 set of
extra 4%.

Query Q2 was a join of two t.ables, followed by
CROIJP BY aud ORDER BY.

690

SELECT TI.C2, T5.C54, T5.C25, COUNT(*)
FROM T5, Ti
WHERE T5.C9 = 'FINALDSP'

AND TI.Cl = T5.Cl8
GROUP BY Ti.C2, T5.C54, T5.C25
ORDER BY TI.CZ, T5.C54, T5.C25;

Table T5 was a partitioned table with G parti-
tions and a total of 78K pages. Table Tl was a
non-partitioned table with 4 pages. The access
method used was a nested loop join of T5 and
Tl. Table T5 wa.s accessing via sequential scan.
Qualifying rows joined with table Tl via a one-
column matching index. There was one parallel
group which includes Tl access and T2 join. The
planned degree of parallelism was 5. Then the re-
sult, was sorted for the GROUP BY processing in
sequential mode.

DB2 accounting trace showed 73% elapsed time
reduction from 142.18 set to 39.06 set, while the
CPU time increases from 29.02 set to 31.10 set of
extra 7%.

l Query Q3 was a join of five tables, followed by
ORDER BY.

SELECT TI.C2, T6.C4, T4.C1, T4.Cl4,
TB.CI, T3.C5

FROM Tl, T6, T4, T2, T3
WHERE T6.C8 = 'C' AND T6.C6 = 'INFOR'

AND T6.CI = T2.Cl AND T2.C2 = T4.Cl
AND TI.C2 = T6.C4 AND T3.CI = T2.C2
AND T3.C2 = T2.C3 AND T3.C5 <> 'EN'
AND T3.C5 <> 'FR'

ORDER BY TI.CZ, T6.C4, T4.C2;

Table Tl wns a non-partitioned table with 4
pages. Table T2 was a non-partitioned table with
5000 pa.ges. Table T3 wa.s a partitioned table with
7 pa.rtitions and a tot’al of 96K pages, partition
size is between 12467 pages and 14186 pages. Ta-
ble T4 was a partitioned table with 7 partitions
and a tot,al of 56K pages, partition size is be-
tween 7471 pages and 8249 pages. Table T6 was
a partitioned table wit,h 8 partitions and a total
of 78K pages, partition size is between 8788 pa.ges
and 10630 pages. The access met,hod used was a
combination of nested loop joins and hybrid join.
There were two parallel groups. The first paral-
lel group included a sequentia.1 scan on Tj and
nest,ed loop join on T2. t.he degree of parallelism
was 2. The results of t.he first parallel parallel
group would be sort,ed and repartitioned into 3
workfiles. The second parallel group included a
sequential scan on each workfile, hybrid join 011

T6, nested loop join on Tl, and nested loop, join
on T4. The planned degree of parallelism was 3 in
the second parallel group. Then, t,he results were
sorted for the ORDER BY.

DB2 accounting trace showed 32% elapsed time
reduction from 215.19 set to 146.76 set, while the
CPU time increases from 75.93 set to 75.84 set of
extra 0.1%.

8 Conclusion

DB2 Query Parallelism implementation is based on

the DB2 shared disk architecture. However, it takes
full advantages,of the shared memory when the paral-
lel subtasks are execut#ed within the same Centralized
Processing Complex.

The major goal for DB2 Query Parallelism is to im-
prove the query response time by full utilizatidn of the
available system resources. The implementation al-
lows a parallel query plan to decide its degree of par-
allelism and distribution of work dynamically at, t,he
query execution phase. DB2 system resources will be
monitored, negotiated and cont,rolled for t,he best. uti-
lization to improve the query response time as well as
the system throughput.

Not all the DB2 operations have been supported by
parallelism in its first round implement,ation. SQL in-
sert, delete, update ‘and outer join are not, parallelized
yet. Feedbacks on performance and functional require-
ments will be gathered for cont,inuous enhancements
on DB2 intraquery parallelism.

9

l

l

b

0

l

References

C. ‘Mohan, H. Pira.hesh, W.G. Tang, Y. Wang.
“Parallelism in relatibnal database management
systems”, IBM System Journal Vol 33, No. 2
(1994)

A. Tsang, A. Shibamiya, “DB2 Version 3 Query
I/O Parallelism Performa.nce St,udy” , IBM Tech-
nical Report TR03.545; STL, San Jose, March
1994

IBM DATABASE 2 Version 3 Application Pro-
gramming and SQL Guide, SC26-4889-00

IBM DATABASE 2 Version 3 c’orn~wm~ and litil-
ity Reference, SC26-4891-00

IBM DATABASE 2 Version 3 Administra.tion
Guide, Volume 3, SC26-4888-00

691

