
Providing Database Migration Tools
A Practitioner’s View

Andreas Meier
CSS Insurance
P.0, Box 2568

CH-602 Lucerne

Abstract:
Relational databases are widely used for end-user
computing or developing new business functions.
However, most applications with very large databqes still
need hierarchical or network database systems because
companies which have already made significant
investments wish them to be protected. Although the
transition from one database system generation to the next
is important, few promising migration strategies exist..
This paper reviews and describes three of them: data and
co& conversion to assist present applications in running
entirely on new generation data&se technology; language
transformation to map one database language to another;
andfinally, data propagation to maintain the consistency
between databases of different systems. The discussion of
the pros and cons of these migration alternatives will give
the practitioner and the researcher more insight for future
work.

Keywords:
Database Migration, Data Conyersion, Code Conversion,
Language Transfonilation, Data Propagation.

1. Problems with Heterogeneous Data-
base Environments

Database technology is a keystone for* building
information systems. Most cowpanies are qsing not only
one, but several database management systems such as
hierarchical, network or relational; eventually, they may
SW to experiment with object-oriented database systems.

In practice, the variety of database systems leads to
severe problems: end-users must @al with several database
descriptions and different repoiting tools; application
developers have to be educated in distinct database
languages (e.g. DL/l, CODASYL, or SQL); and system
specialists need to apply a heterogeneous set of archive,
recovery and restart procedures to keep databases
consistent. To avoid some of &these drawbacks, database
migration has become a predominant issue for the
practitioner although its potential as yet has not been
extensively researqhed.

In this review, database migration means the process
of moving from one database technology to another

permission to copy without fee all or prb 6f this material is granted provided
that the copi., are not made or dimtributsd for direct commercial advantage.
the VLDS copyright notice and the title of the publication and ita date appear,
md notice is given that copying ie by parmi&on of the Very Lwge Data Bue
~nd~wmon(. To copy otherrims, or to rspublinh, require. a fee and/or l pscial
psrmiwion from the Endowment.

without manually rewriting all existing applications. Two
technical problems need to be tackled. First, it has to be
decided which database system is the target and how data
can be transferred to it: and second, how applications can
be converted smoothly without affecting availability or
performance. It fs important to not forget the significant
investments already put into both data and application.

In contrast to multibase or client-server applications,
migration strategies aim to give up one database system
generation in favor of another. In practice, this tieans not
only avoiding unneces+y licence costs but also.profiting
from one homogeneous iofnvare environment. Computer
specialists as well as end-users are then no longer
confronted with different methods, database descriptions,
query languages and reporting tolls.

This paper gives practical solutions to database
migration by describing three important software
strategies: data and code conversion, language
transformation, and, data propagation. The discussion of
the pros and cons of these migration strategies will not
only help the practitioner but .hopefully will also
stimulate the academic into doing prospective research.

2. Survey of Database Migration
Strategies

To apply progressive database technology, companies are
faced with the challenge of migrating data and, in most
cases, applications as well (Rodgers 1989). A few
promising database migration strategies already exist
which can protect the investment of present information
systems and avoid the effort and risk involved in
converting databases and applications. Figure 1 shows
data~dcode conversion, language Usnsformation and data
propagatibn between two d&&ase mafiagement systems,
A and B, ‘Cvith, their respective query languages, AQL and
BQL; Norniaily, A. and B are two distinct database
systerllsl, e.g.’ hitirarchical, n&work, relational or even
object-oriented.

1 If achema eyolution and/or data replication are not
supported by the database management systems. both
systems A and B may be chosen from identical database
technology. In this case, data and code conversion as well as
data propagation are a$plicable. As an example. in relational
technol6gy. delta changes from a relation of system A could
be. propagalted to the. appropriate relation of system B, either
synchronously or asjmchronously.

635

BQL-
Application

AQL-
I Application I

BQL-
Appligation

Fig. 1: Overview of database migration strategies

Data and code conversion for database application
programs is a reasonable migration strategy,, especially
when applied to data which is accessed by a relatively
small number of”prqgrams.,First, the database itself has to
be migrated from system A to system B. Second, :database
requests in application programs have to be inspected by a
code-converter software package before calls in AQL can
be replaced by new generation language statements in
BQL. When source code conversion is applied to all
application programs, the advantage of this migration
strategy is that it needs only one single copy of data.
However, converted source code is not very easy to
maintain and has been known to exhibit performance
difficulties.

Language transformation allows for the mapping of
one database language to another and vice-versa, e.g. from
AQL to BQL or from BQL to AQL. The direction of the
language transformation is important. Mapping from
AQL to BQL leads to the target database system B-while

the opposite direction, keeps the existing database
technology A. Both directions of language interfaces have
proven. to be very difficult and not applicable in general,
and only partial solutions supporting a controlled and
limited number of database commands are to be found on
the market. Indeed, for very large databases, language
transformation may not be adequate. In addition,
unacceptable operational risks are associated with the
necessary switch-over situation when using language
transformation and where a large number of significant
simultaneous changes are involved.

Data propagation aims to maintain the consistency
between two or more data copies of different database
systems by propagating only delta changes from one copy
to the;other. Forward data propagation enables automatic
and selective transfer of changed data from one database
generation A to another database generation B without
having to convert existing applications. Reverse data
propagation sends delta changes from the latest database
generation B to A in order to maintain a company’s
investment in well-functioning application software. Data
propagation allows for the ‘performance of a stepwise
migration of update programs but often takes years until it
is completed.. On the other hand, it .avoids the efforts and
risks involved in converting and interfering with well-
tuned applications.

For all three migration strategies, commercial products
or partial solutions can be found on the market which
reflect the importance of database migration for the
practitioner.

3. Steps fiok- Data and> Code’:%onversion _

Instead of rewriting all or part oflexisting applications by
hand, databases as well as database applications can be
converted automatically by appropriate software tools (see,
e.g. Gillenson 1990, Larson 1983, and Sockut 1985). To
illustrate this approach, data and code ‘conversion from
record-based database Systems (hierarchical, network) and
languages (DL/l, CODASYL) to relational systems with
the database language SQL will be described.

The first t&k to be solved is defining the conceplual
schema of the target database system: In order to automate
this process, general mapping types have to be applied.

GeneLal’mapping types
Type 1 mapping brings a”spccific record type to one or
several relations ‘(see Figure 2). Type la is a one-to-one
mapping between records and tuples, possibly restricted to
specific fields or attributes. Type lb separates the record
type C in’twd or more’relations based on,a predicate. In
practice, mapping of Tee’, 1 b is very helpiful in order to
allow a redesign of existing hi+zrar&hical or network
databasef.214; for instance, several entity types have been
combined in one’ segment or record type for historical
reasons, Type lb may be used to satisfy the normal
forms or to support a classification Cl and C2 of entity
type C.

636

A
EcCFT3 B C

Fig. 2: Mapping between single record -type and
reiatiofl(s)

Type 2 is for mapping dependent record types to relations
(see Figure 3). First, two record types, A and B, with a
(1 ,c)-association are considered (c indicates conditional,
i.e. c=O or c=l). This means that for a specific record in A
there exists, at most, one (c) in B, and every record in B
has exactly one (1) corresponding in A. Normally, record
type A is mapped to relation A (by applying mapping
Type la of Figure 2) and record type B to relation B,
where relation B includes a foreign key A# to reference
relation A. Instead, by using mapping Type 2a of Figure
3, the two record types A and B are combined into one
single relation A/B. Since not everyrecord in A has a
corresponding record in B, null values will be introduced
in relation A/B.

A
1 A/B

&b

C

B C

TvDe

Fig. 3: Mapping between dependent record types
relation(s)

and

Although mapping Type 2a initially appears to be
superfluous, it is necessary in practice. Very often, e.g. in
hierarchical databases, segment extensions have been
avoided in order to keep the application programs
unchanged. Additional segment types have then been
introduced as dependent segment types. Mapping m 2a
allows this deficiency (inherited load) to be overcome by
combining two dependent record types from the same
entity into one single relation.

Mapping Type 2b takes two record types with a
hierarchical (l,m)-association and puts them into one
nested relation (see Figure 3). If the relational database
system does not support nested relations, record type A

has to be mapped to relation A, and record type C to
relation C including a reference through foreign key A#;
this leads to mapping Type 2c.

Jvoe 3a

Fig. 4: Mapping between repeating group and relation(s)

Finally, mapping of Type 3 is necessary to transform
record types with repeating groups into one nested relation
(Type 3a) or to a set of relations (Type 3b) according to
Figure 4. Repeating groups are very often used in
hierarchical and network databases. With Type 3 they can
be mapped into relations depending on the decision of the
database administrator staff.

Some of .these mapping types are supported by re-
engineering tools. In the database area, the purpose of re-
engineering tools is to recreate and enhance the
specification of existing databases (Bachman 1989).
Appropriate tools try to filter out the database schema
information in such a way that the specification is
independent of the database technology used in the original
information system.

The BACHMAN toolset from Bachman Information Systems
Inc., Cambridge with the DatPAnalyst and the Database-
Administrator components allow, for instance, reverse and
forward database sdhema engineering for hierarchical IMS/DB
and relational DB2 databases.

Most re-engineering tools in place today convert the data
structure and schema information among different database
technologies, i.e. 8 between hierarchical, network or
relational database systems. Because an inventory of a
company’s application network may consist of several
hundred to a few thousand programs (see also Figure 8),
the main task of database migration is to convert not only
the data structure but also the application code.

Converting application code
In Figure 5, the process of code conversion for programs
with a procedural database language to programs using the
set-oriented language SQL is illustrated. The database
description’of the hierarchical or network database gives
the starting point for the conversion process. The database
administrator first chooses appropriate mapping types in
order to produce the desired relational schema. An
application of the migration tool not only produces the
schema definition and stores it in the catalogue of the
relational system, but also generates a corresponding SQL
statement for every database call type (in DL/l or
CODASYL).

637

CODA.sYl
ND...
ocalize a record

ODIFY...
:hange data values

I record 1 -

GET UNIQUE...
l navigate and read

a sepcific segment

REPLACE...
l update fields within

a segment

SELECT...
l select a tuple by

a predicate

UPDATE...
l change attribute

values of a tuple

t

From pU1 to SQL

:I From CODASYL to SQL I-

Conversion Routines

Fig. 5: Conversion of database application programs

Based on the mapping types, the converter software
inspects the code of the record-based programs and replaces
every database call with the corresponding SQL call. This
process can be automated, as long as the record types in
the source applications are not redefined individually and a
set of type conversion routines are available (e.g., to
convert basic data types and/or date formats). After having
converted the application programs, function and stress
tests have to be taken.

DL/l- or CODASYL-programs are record-based, allow
navigation and perform a database request record by Ford.
In contrast, a relational database system supports a set-
oriented approach where sets of tuples can be performed
with a single SQL statement. Most converter software
tools, however, cannot profit from sets of tuples. In
addition, physical aspects such as, clustering, index
definitions or access path selections are quite different for
hierarchical, network and relational database systems.
Therefore, performance-critical applications have to be
tuned after the conversion process. In summary, data and
code conversion is a practical migration strategy if used
for noncritical and well-behaved applications.

Products from the SWS Software Services GmbH in Germany,
such as HIREL (migration from IMS/DB to DB2 or SQL/TX)
and IXREL (migration from IMS/DB to Unix-based relational
database systems such as Informix) support data and code
conversion.

4. Language Transformation Interfaces

According to Figure 1, a relational database should provide
a procedural language interface (DL/l or CODASYL) and
a hierarchical or network database should allow for access
and modification of data by an SQL interface (Date 1986).
For instance, a pn>cedural language interface for relational
databases would keep all existing applications untouched
and protect prior investment. At the same time, one could
profit from the relational database technology without any
restriction. The only task would be to unload the
hierarchical or network databases and to reload the data
into relations. Unfortunately, both language interfaces are
cumbersome for the following reasons:

- A lot of data types with Dill, CODASYL ,and SQL
are not compatible. Even worse, different data types for
one field or for overlapping fields work with
hierarchical or network databases but have, for good
reasons, no analogy in SQL.

- Specific data types such as DATE (date format for year,
month, and day), TIME (timestamp given by hours,
minutes, and seconds), NULL (null values for data
which is not yet known) or VARCHAR (character
string of variable length) have no equivalence in DL/l
or CODASYL and therefore have to be simulated.

- With the exception of the ORDER-BY-clause, SQL
does not support alphabetical, chronological or physical
order of attribute values. In addition, temporal support
for databases still remains a requirement for most
commercial products. .At least, hierarchical and network
database systems allow for navigation with search
arguments, application of GET-NEXT commands and
insertion of physical records by order relations such as
FIRST, LAST, or HERE.

- Some important SQL commands cannot-be supported
directly by a language interface for hierarchical and
network database systems. Consider the following
examples: predicates with the logical OR; comparison
operators other than EQUAL and NOT EQUAL; LIKE
and IS NULL; IN or EXISTS in a subquery; or
GROUP BY and HAVING clauses.

- Integrity constraints and processing rules with DWl
and CODASYL are quite different compared to
referential integrity or trigger mechanisms in relational
technology. For instance, the SQL commands for
restricted deletion, cascaded deletion, or deletion with
nullify ‘are not exactly the same in DL/l or
CODASYL.

- External views of database schemes are different in
definition and application in hierarchical, network, and
relational technology, SQL, for instance, has
restrictions for updating with views.

- If SQL commands are embedded in a programming
language, the cursor concept is used in order to perform
record by record. .DL/l or CODASYL give a direct
control of hierarchical or network data structure as
stated above. On the other hand, most relational
database systems still fail to handle repeating groups or

638

nested relations, transitive closure, and complex objects
which are in part possible with hierarchical or network
databases.

The list of difficulties for both language interfaces could
be extended by other examples, with the result that the
transformation of language commands between non-
relational and relational database ~languages cannot be
solved entirely. Therefore, only partial solutions are
currently available on the market.

As examples of the language transformation approach, the
CODASYL-like database system UDS from Siemens supports
an SQL interface called UDS/SQL, or the ADABAS-system
from Software AC offers a family of 1,anguage interfaces to
different database systems, e.g. the ADABAS DL/l-Bridge.

5. Forward and Reverse Data
Propagation

Data propagation ,maintains the consistency between two
databases by propagating the updates (deltachanges) of
one database to the other. Data propagation can be
implemented with application program logic. In practice,
such an approach is both work and maintenance intensive,
can be very error-prone and may require changes to
numerous application programs. It is therefore preferable
to propagate data using a generalized software package
(Meier et al. 1994) which keeps data consistent without
modifying existing application programs.

Data propagation enables the coexistence of
applications from heterogeneous database management
systems accessing the same data. For obvious reasons
when considering market suitability, data Iuopagation
tools between hierarchical, network and relational systems
are necessary. Forward data propagation is applicable if
relational database technology is to ,be used for new
applications or decision-support systems without
converting existing applications. Reverse data propagation
from relational to hierarchical or network allows for a
smooth migration path by reflecting delta changes from
SQL applications back to pre-existing applications. With
asynchronous data propagation, changes are applied later,
i.e. not in the same unit of work as the original update
calls. It is typically ‘used when decision-support
applications need point-in-time data.

Forward, as well as reverse data propagation, work in
three phases namely design, extract/load and propagation
(see Figure 6). For simplicity, the three phases for forward
propagation are described.

Design phase
The database administrator has first to specify which
databases, record types and fields should be propagated and
how they should be mapped to corresponding relations,
tuples and attribute. The result of the mapping definitions
will be stored in a mapping directory. For this definition
phase, general mapping types are provided in order to map
data consistently from non-relational to relational and

vice-versa. It is important to note that the same mapping
types 1 to 3 (see Figures 2, 3, and 4) may be used for
forward as well as for reverse data propagation, if fully
concatenated keys are enclosed with the relations.

hierarchical
or network
database
system

-Ii

T

relational
database
system

-base)

0 1 definition of mapping cases/propagation requests

0 2 initialization and control of data propagation phase

0 3 forward and reverse data propagation

Fig. 6: Data propagation provides system-controlled
consistency

After having selected the hierarchical or network databases,
mapping types and corresponding relations, the database
administrator has to inform the system of these definitions
by one or more propagation requests. A propagation
request has to be specified for each entity type in order to
declare the propagation type (forward or reverse
propagation), record type and corresponding relational
structure, and the desired mapping types. It should also be
possible to specify multiple sets of propagation requests.
In a computerconfiguration for example, one may wish to
propagate records to a first set of relations used for
operational applications; and/or to propagate some of the
same record types using a second set of propagation .
requests to a second set of relations used for decision-
support applications.

The major task of the design phase is to generate and
maintain the propagation request definitions in the
mapping directory. This can be done by a mapping
verification and generation utility which acts as a driver,
validates the propagation requests, stores the mapping
definitions into the directory and generates SQL update
modules, For performance reasons, it is very important
that, for each request and every call type, the

639

corresponding SQL update module is generated in advance.

Exzract and loadphase
The data extract and load phase have to synchronize the
chosen databases of the hierarchical or network and the
relational system prior to propagating changes. To start
this phase, the database administrator has to run a specific
status change utility. This sets those databases involved to
read-only status and ensures that all, subsystems have
released their update authorization. After having extracted
the designated databases by an’ extract utility and having
generated the input for the load utility, this data is then
loaded into the appropriate database.

Propagation phase
Once the mapping definitions and initial extract and load
phase have been completed, the hierarchical or network
databases will be ready for updating, and data propagation
using an SQL update program can begin.

Figure 6 focuses on synchronous data propagation
because some system components act differently in the
asynchronous case (Meier et al. 1994). If the database
description of a hierarchical or network database includes a
data propagation exit, a data capture function presents’all
changed records to the appropriate SQL update program.
While processing the first update to a specific record type
of the executing application program (i.e. insert, replace,
or delete), the SQL update program receives mapping
information. After having determined the current
propagation status of the desired propagation requests, it
then evokes the relational database system for updating the
corresponding relations.

The data propagation software package has to guarantee
system-controlled consistency. If propagation fails
following a specific propagation request, the SQL update
program should not only provide diagnosis information
but has to back out all updates performed by the updating
program since the previous commit-point.

With data propagation, a stepwise migration for database
management systems can be performed. Forward
propagation is used while read-only applications may
access the data copy in the relational databases. If read and
write on the relational system are necessary and the same
data is affected by existing applications, reverse
propagation is recommended. Once data propagation is
established, it is possible to convert one application
program at a time. This can last for years but can
conveniently be done when an application area needs a
major redesign. Over time, data propagation, allows an
evolutionary and low-risk migration of applications to
new generation database technology.

The DataRefresher and DataPropagator. MVS/ESA product
family from IBM, for in+mce, allows forward and reverse
data propagation between the hierarchical database’ systym
IMS/DB and the relationa DB2, synchrondu$y” or
asynchronously. The InfoReplicator and InfoPropagator
products from Platinum Techndlogy perform a total rkffesh or
incremental data changes of IMS and DB2 databases.

6. Planning a Database Migration
Process

The main trend of database migration is to take increasing
advantage of currentrelational database technology (see
Figure 7). An empirical study for Europe, carried out by
the Plenum Institute and the University of Wtirzburg
(Hildebrand 1992), illustrates that today’s data is mainly
stored in file systems and partly kept in relational or
hierarchical database systems. However, in the next few
years, relational systems will become the predominant
storage technology.

m planned

hierar- net; others
system tional chical work!

Fig. 7. Relevance of database technology in practice

Database migration is not a single task but a process
which can last several months or even a few years. The
reason for this time- and cost-consuming process can be
seen by some relevant parameters reflecting the
investigations companies have put into their information
systems. Figure 8 illustrates typical figures of the
workload a,$ the complexity of a possible database
migration process. Bere, mid-range companies are
assumed to be those in$itutions, with at least a thousand
employees, and large &ripanies are. those which provide
employment for more than ten thousand.

The migration ‘parameters’ show that company
investments in their information and database systems
may reach several million dollars.’ Therefore, a database
migration path has to follow some rules in order to
succeed.

1. Study the key business areas of the corporate strategy
and derive corresponding, data architecture.
2. Define the mapping between the installed databases and
the databases which support the corporate-wide data model.
3. Choose the most appropriate migration strategies from
data and code conversion, database language transformation
or data propagation.
4. Ask for a steering committee to accept the business
plan for database migration with time-table, costs, human
re&urces and skills needed.

There is no doubt, that database migration is not only a
te.chnicaI but also an organizational chailenge. It, does not
make sense to convert data structures and business
functions into a new technology platform without
considering the key success factors of the company. This

640

data volume in Gigabytes JlOO > 1’000

of record types 5300 > 1’000

of data elements =‘5’000 > 10’000

of application programs = 1’000 > 10’000

of transactions per second 50-80 > 100

Fig. 8: Important parameters for database migration

leads to the discussion of a corporate-wide data
architecture. The core of that architecture is a data model
which is independent of existing hardware or software
solutions yet is based on the ti business plan of the
company.

7. Suggestions for Future Research

Database technology remains the basis for developing new
applications and for optimizing business processes. As
relational, object-oriented and expert database products
come into increasing demand from both the industrial and
service sectors, database migration will need to evolve.
The’ following key areas should therefore be extensively
studied, both by practitioners and msearchers:

Data and, application re-engineering will become a hot
issue in the second half of the ninety’s, along with the
business process redesigns of competitive companies. If a
company has invested hundreds of person years for its
applications, it doesn’t have the time, money and human
resource to redevelop these applications from scratch. On
the other hand, time to market, customer orientation and
core business concentration will force companies to invest
in future database and information technology.

As mentioned above, database migration is not only a
technical task but also an organizational challenge for
most companies. Therefore, the design ofa corporate-wide
data architecture becomes a strategic necessity before new
database or information technology can be implemented.
Most companies, however, still fail to develop and
maintain a corporate-wide data model derived from their
business plan.

More specifically, schema evolution is’ a database
research domain still in its infancy. Even with object-
oriented technology, little progress has been seen. With
relational database technology, at least new relations can
be created, existing ones dropped, and new attributes added.
The semantics of a class hierarchy in object-oriented
technology however is more complicated and not yet
successfully adopted for schema evolution.

Finally, data replication and data propagation should
become common functions of commercial database
systems. While data replication has been studied in depth,
this is not the case with data propagation. In practice,
huge amounts of unstructured and badly documented data
is kept on different platforms. Most application
programmers, specialists of information centers, as well
as field experts and casual users of a company are totally
lost when database queries, reports, or documents need to
be generated for business decisions. Extracting and
copying data without strong system control of periodicity
and data semantics leads to complete data chaos.

Acknowledgements: Most of this work is based on
experience gained from the migration of all DATACOM/DB-
applications to the relational DB2 at CSS Insurance Company
as well as from the design and development of the software
package DataPropagator MVSJESA (which has become an
IBM program product) at Swiss Bank Corporation. I would
lie to thank all my professional colleagues for ,the successful
database migration phases in practice. For obvious reasons, I
can mention only ‘a few by name: I send special thanks to
Peter Bachmanir.‘Urs Bebler, Camillo Ceppi. Rolf Dippold,
Bob Eckerlin, Toni Kreienbtihl and Pete Uhrowczik. Peter
Lockemann and Rudolf Marty encouraged me to submit this
paper to the industrial track of VLDB’95. I am also grateful to
an unknown referee of the VLDB program committee and to
Liz Gosselin who was not tired to reshape my text.

Literature:
Bachman, C. W.: A Personal Chronicle - Creating Better

Information Systems, with Some Guiding
Principles. IEEE Transactions on Knowledge and
Data Engineering, Vol. 1, No. 1, 1989, pp. 17-31.

Date, C. J.: Why Is It So Difficult to Provide a Relational
Interface to IMS.. In: Date, C. J.: Relational
Database - Selected Writings. Addison-Wesley,
1986, pp. 241-257.

Hildebrand, K.: Information Management - Status Quo
and Future Issues (in German). Wirtschafts-
informatik, Vol. 34, No. 5, 1992, pp. 465471.

Gillenson, M. L.: Physical Design Equivalencies in
D,atabase Conversion. Communications of the
ACM, Vol. 33, 1990, pp. 120-131.

Larson, J. A.: Bridging the Gap between Network and
Relational Database Management Systems. IEEE
Computer, Vol. 16, 1983, pp. 82-92.

Meier, A., Dippold, R., Mercerat, J., Muriset, A.,
‘Untersinger, J.-C., Eckerlin, R., Ferrara, F.:
Hierarchical to Relational Database Migration. IEEE
Software, Vol. 11, No. 3, 1994, pp. 21-27.

Rodgers, J.: Database Coexistence - Requirements and
Strategies. Proc. of the 18th Mini-G.U.I.D.E.
Conference, Florence 1989, pp. 117-142.

Sockut, G. H.: A Framework for Logical-level Changes
within Database Systems. IEEE Computer, Vol. 18,
1985, pp. 9-27..

641

