
Databases and Workflow Management: What .is it All About?- 

Position Statement 

Workflow management has become a fairly hot topic 
during the past two or three years. There is an increasing 
number of new products, and in addition, numerous ven- 
dors that have been around for a while have discovered that 
what their products actually do is workflow management. 
Terminology is just as undefined as in any other field of our 
discipline, and so it is not trivial to define precisely what 
workflow actually is, which components it includes, how 
the minimal functionality can be characterized, and so on. 
A consortium of vendors, users and researchers called . 
“workflow coalition” has been established to sort out these 
issues, to find a a reference model, and come up with stan- 
dards wherever this seems possible. Although this group 
has making good progress, it has not had much influence 
on existing products yet. 

The kinds of services which are currently subsumed 
under the heading of “workflow management?’ come from 
very different origins. Some of them are functionally 
enhanced mail systems; the most notable example of this 
group is Lotus Notes. Another group is defined by TP- 
managers, which typically also have some kind of high- 
level controlflow language, such as STDL. A third group 
comprises those systems, which have been developed as 
workflow .management systems “from first principles”, 
generalizing the ideas one cannot find in production plan- 
ning systems, job control systems, etc. A typical example 
of this approach is IBM’s BlowMark system. 

Now, is there anything database-specific in workflow 
management? Consider that the key purpose of workflow 
management is to orchestrate, control, supervise and 
schedule the execution and dependencies of a large number 
of related activities, the completion of which may take a 
fairly long time. Qpically, some of the activities of a com- 
plex workflow script will execute transactions against 
some shared database, but this is not the topic of this panel. 
The key aspect is the long duration of the computation 
defined by a worktlow specification. Since such computa- 
tions can go on for days, weeks, or months, they will accu- 
mulate a large amount of “state”, which is not shared with 
anybody else, but as private that particular worktlow exe- 
cution. But because it is a long-lived computation, it must 

be guaranteed that no hardware or software failure can stop 
it or cause it to roll back, it rather has to be rolled forward 
according io the specification, which means appropriate 
recovery mechanisms and preservation of the state infor- 
mation in the presence of failures. Maintaining state is 
something database-systems are good at.; On the other 
hand, under the transaction paradigm they do roll back 
recovery in case of a failure rather than rolling things for- 
ward to the most recent state. But the obvious question is, 
where the database systems should be functionally 
enhanced in order.to support worktlow management sys- 
tems, or whether those systems should roll their own. 

The second interesting issue has to do with synchroniza- 
tion of accesses by workflow activities on shared data- 
bases. We assume that the database accesses issued by 
activities being part of the workflow are covered by con- 
ventional transactions. This means all locks are released at 
the end of the transaction, but of course the workflow still 
goes on, and most likely there are consistency constraints 
expressed in terms ef data intershare, database which are 
relevant for the workflow in the long run. So the question is 
how to maintain “long-lived” consistency constraints on 
‘shared data for individual workflowswithout making con- 
ventional-locks long-lived- because this would be an obvi- 
ously bad idea. This looks like a database problem, or at 
least it has a lot to do with databases. The third group of 
problems has to do withevent& Events play an important 
role incoordinating and synchronizing the activities within 
a workflow, and due to the recoverability requirements, 
events have to be recoverable, too. The, question here is, 
what databases can do in support of “stable” events, and 
whether this is,similar to what is discussed in’ the field of 
active databases. 

To sum it up: Even though the functional requirements 
for workilow management systems are just beginning to 
emerge, I think there is clear evidence for. the need of addi- 
tional database functionality in order to support such sys- 
tems. ,f 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct com- 
mercial advantage, the VLDB copyright notice and the title of the 
publication and its date appear, and notice ie given that copying is 
by permission of the Very Large Data Base Endowment. To copy 
otherwise, or to republish, requires a fee and/or special permission 
from the Endowment. 
Proceedings of the 91st VLDB Conference 
Zurich, Switzerland, 1996 

632 


