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Abstract 

The spatial join operation with spatial out- 
put is benchmarked using the R-tree, W-tree, 
R+-tree, and the PMR quadtree. The studied 
quantities are the time to build the data struc- 
ture and the time to do the spatial join in an 
application domain consisting of planar line 
segment data. Experiments reveal that spatial 
data structures based on a disjoint decomposi- 
tion of space and bounding boxes (i.e., the R+- 
tree and the PMR quadtree with bounding 
boxes) outperform the other structures that 
are based upon a non-disjoint decomposition 
(i.e., the R-tree and R*-tree). As the size of 
the output of the spatial join increases with 
respect to the larger of the two inputs, meth- 
ods based on a disjoint regular decomposition 
(i.e., the PMR quadtree regardless of the pres- 
ence of bounding boxes) perform significantly 
better. 
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1 Introduction 

A spatial join involves two data sets. It is one of the 
most common operations in spatial databases. The 
term “join” is usually used in conjunction with a rela- 
tional database management system [9]. In that con- 
text, a join is said to combine entities from two data 
sets into a single set for every pair of elements in the 
two sets that satisfy a particular condition. These 
conditions usually involve specified attributes that are 
common to the two sets. In the spatial variant of the 
join, the condition is interpreted as being satisfied (i.e., 
two elements are joined) when the elements of the pair 
cover some part of the space that is identical. 

Our results are distinct from other studies (e.g., [3, 
5, 6, 12, 19, 23, 241) in that we stress the fact that the 
output of a spatial join operation doesn’t just have a 
relational component; it also has a spatial component. 
Thus we don’t always want to just report the object 
pairs that intersect. In particular, we want to report 
their locations as well so that they can serve as input 
to subsequent spatial operations (i.e., a cascaded spa- 
tial join as would be common in a spatial spreadsheet). 
Therefore, we also need to construct a map for the out- 
put. In other words, the time to build the spatial data 
structure plays an important role in the benchmark, 
in addition to the time required to perform the spa- 
tial join itself whose output is not always required to 
be spatial. It is interesting to observe that the spatial 
join operation was not a part of the Sequoia bench- 
mark [8, 261 where the examples of what was termed a 
spatial join were really window operations (i.e., a spa- 
tial selection) as the second map was usually a subset 
of the entire map. Thus the contribution of our paper 
is, in part, an additional operation to the benchmark 
consisting of a spatial join with a spatial output. 

The spatial join problem has been studied both al- 
gorithmically and empirically for a variety of spatial 
data structures. Spatial join algorithms for regular 
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grid files [14] were first investigated in [3]. The grid 
file was also used as the spatial data structure when 
the spatial join was examined from the perspective of 
creating a spatial join index [24]. In this case, the spa- 
tial join index simulations were on grid files using dif- 
fering node-splitting rules (i.e., a regular or irregular 
decomposition). These simulations showed that grid 
files with a regular decomposition result in consider- 
ably fewer leaf node intersections between two joining 
structures. Spatial joins were also examined using the 
generalized tree [12], an abstracted hierarchical data 
structure similar to an R-tree [13]. Using cost models 
on artificial data, the generalization trees were shown 
to outperform join indices if there was either high data 
structure update rates, or high levels of join selectiv- 
ity. Other studies examined the R*-tree [3] in the con- 
text of spatially joining maps composed of large poly- 
gons [5,6]. In this case, various acceleration techniques 
were compared for improving cpu speed (e.g., spatial 
filtering) as well as I/O performance (e.g., plane-sweep 
search ordering). Once a candidate set of polygons was 
obtained, geometric filtering (e.g.,‘employing approx- 
imations of the polygonal object) were used prior to 
the final exact geometry testing. 

A different approach makes use of the seeded 
tree [19]. This structure was designed to speed the 
more complex spatial join process when one of the two 
maps being joined is the result of an intermediate op- 
eration such as a selection. The seeded tree is con- 
structed by copying the internal node structure of one 
map into the second map (where the second map is as- 
sumed to be the result of an intermediate operation), 
and then the features are inserted into the second map. 
This replication of the internal node structure greatly 
accelerates the join process as there is a one-to-one 
mapping between internal nodes in the two maps. The 
application of global clustering (i.e., the association of 
spatially adjacent spatial objects with physically con- 
secutive disk pages) to a modified R*-tree was studied 
in [4]. Modified R*-trees (R+-trees without forced, fea- 
ture reinsertion) with global clustering were found to 
be more expensive in terms of cpu construction costs 
and data storage requirements than the standard un- 
clustered R*-tree. Experimentation with the clustered 
R*-tree did show, however, that spatial joins were sig- 
nificantly improved, primarily because of greatly de- 
creased I/O costs. Finally, in the data-parallel domain, 
the spatial join has been studied in the algorithmic and 
empirical context [17, 181. Experimentation indicated 
that the data-parallel PMR quadtree [21] significantly 
outperformed data-parallel. R-trees and R+-trees [lo] 
primarily because the PMR quadtree’s regular decom- 
position is well-suited to the data-parallel domain. In 
the data-parallel domain, communication bottlenecks 
during a spatial join are greatly reduced by the regular 

decomposition of the PMR quadtree and the ability to 
quickly correlate a region in one map with a corre- 
sponding region in a second map. This ability to cor- 
relate regions will be seen to have a similar effect on 
the performance in the sequential domain as the size 
of the output of the spatial join increases with respect 
to the larger of the two inputs. 

The rest of this paper is organized as follows. Sec- 
tion 2 gives a brief review of the six spatial data struc- 
tures that we consider. Section 3 details the spatial 
join algorithms that are tested. Section 4 presents the 
execution times, disk I/OS, and storage requirements 
for the construction of the different data structures as 
well as their performance in a spatial join. Section 
5 contains our conclusions about the relative perfor- 
mance of the different data structures. 

2 Spatial Data Structures 

In this paper we consider representations that sort the 
data objects with respect to the space that they oc- 
cupy. This results in speeding up operations involving 
search. Our objects consist of lines. The effect of the 
sort is to decompose the space from which the data is 
drawn (e.g., the two-dimensional space containing the 
lines) into regions called buclceis. One approach known 
as an R-tree [13] buckets the data based on the con- 
cept of a minimum bounding (or enclosing) rectangle. 
In this case, lines are grouped (hopefully by proximity) 
into hierarchies, and then stored in another structure 
such as a B-tree [7]. The drawback of the R-tree is that 
it does not result in a disjoint decomposition of space 
- that is, the bounding rectangles corresponding to 
different lines may overlap. Equivalently, a line may be 
spatially contained in several bounding rectangles, yet 
it is only associated with one bounding rectangle. This 
means that a spatial query may often require several 
bounding rectangles to be checked before ascertaining 
the presence or absence of a particular line. In this 
paper, we study two methods of this type: the R-tree 
(both linear and quadratic), and the R*-tree. 

The non-disjointness of the R-tree is overcome by a 
decomposition of space into disjoint cells. In this case, 
each line is decomposed into disjoint sublines such that 
each of the sublines is associated with a different cell. 
There are a number of variants of this approach. They 
differ in the degree of regularity imposed by their un- 
derlying decomposition rules and by the way in which 
the cells are aggregated. The price paid for the dis- 
jointness is that in order to determine the area cov- 
ered by a particular line, we have to retrieve all the 
cells that it occupies. This means that an object may 
be reported as satisfying a particular query more than 
once and thus there is a need to remove duplicate an- 
swers (e.g., [2]). H ere we study two methods of this 
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type: the R+-tree [lo] and the PMR quadtree [21]. 
The R+-tree partitions the lines into groups of ar- 

bitrary sublines having disjoint bounding rectangles 
which are grouped in another structure such as a B- 
tree. The groupings are such that the bounding rect- 
angles are disjoint at each level of the structure. The 
drawback of the R+-tree is that the decomposition is 
data-dependent. This makes it more complex to per- 
form tasks that require composition of different op- 
erations and data sets (e.g., set-theoretic operations 
such as overlay). In contrast,, the PMR quadtree is 
based on a regular decomposition. The space. con- 
taining the lines is recursively decomposed into four 
equal-area blocks on the basis of the number of lines 
that it contains (termed a splitting threshold). The 
decomposition process can be, implemented by a tree 
structure. It is useful for set-theoretic operations as 
the partitions of the two data sets occur in the same 
positions. 

As mentioned above, R-trees and R+-trees are 
closely related to B-trees. An R-tree or R+-tree of 
order (m, M) has the property that each node in the 
tree, with the exception of the root, contains between 
m _< [M/2] and M entries. The root node has at least 
2 entries unless it itself is a leaf node. Often the nodes 
correspond to disk pages. All leaf nodes appear at the 
same level. Each entry in a leaf node is a 2-tuple of 
the form (R,O) such that R is the smallest rectangle 
that spatially contains line segment 0. Each entry in 
a non-leaf node is a 2-tuple of the form (R,P) such 
that R is the smallest rectangle that spatially contains 
the rectangles in the child node pointed at by P. It 
is interesting to observe that the node capacity (i.e., 
bucket capacity) M in the R-tree and R+-tree plays 
a similar role as the splitting threshold in the PMR 
quadtree. We will make use of this analogy in our 
discussion where, at times, the terms will be used in- 
terchangeably. In the rest of this section we describe 
these data structures in more detail. 

2.1 R-tree 

Figure la is an example R-tree with M = 3 and m = 2 
for the collection of line segments labeled a - i. Fig- 
ure lb shows the spatial extent of the bounding rect- 
angles of the nodes in Figure la, with broken lines 
denoting the rectangles corresponding to the subtrees 
rooted at the non-leaf nodes. Note that the R-tree is 
not unique. Its structure depends heavily on the or- 
der in which the individual line segments were inserted 
into (and possibly deleted from) the tree. 

The algorithm for inserting a line segment (i.e., a 
record corresponding to its enclosing rectangle) in an 
R-tree is analogous to that for B-trees. New line seg- 
ments are added to leaf nodes. The appropriate leaf 
node is determined by traversing the R-tree starting at 

its root and at each step choosing the subtree whose 
corresponding bounding rectangle would. have to be 
enlarged the least. Once the leaf node has been de- 
termined, check to see if insertion of the line segment 
causes the node to overflow. If yes, then split the node 
and distribute the M + 1 records in the two nodes. 
Splits are propagated up the tree. 

(a) @) 

Figure 1: (a) The spatial,,extents.of the bounding rect- 
angles and (;b) the R-tree for the example collection of 
tine segments. I 

There are many possible ways to split a node. 
Guttman [13] distributes the records among the nodes 
so that the likelihood that the nodes will be visited in 
subsequent searches will be reduced. ‘This is accom- 
plished by ‘minimizing the total area of the covering 
rectangles for the nodes (i.e., coverage). 

Node-splitting algorithms that employ this strategy 
are classified by their computational complexity [13]. 
The linear algorithm selects two seed elements, one 
for each of the two resulting nodes, by choosing the 
pair of children with the largest normalized separation 
along sny axis. This operation can be done in linear 
time. The remaining M - 1 children, where M is the 
node capacity, are then inserted in random order into 
one of the two resulting nodes whose covering rectan- 
gle will have to be expanded the least to accommo- 
date the,child. Ties are resolved by inserting the child 
into the node with the smaller area. We refer to the 
R-tree with this,node-splitting rule as the linear R- 
tree. The quadratic node-splitting algorithm, selects 
the two seed elements by choosing the two children 
whose covering bounding box would waste the most 
amount of space. This can be determined in quadratic 
time (0( M2)). The remaining M - 1 children are in- 
serted into the two nodes in an order dependent’ upon 
the magnitude of their preference (i.e., the difference 
between the area increase .required of each node for in- 
clusion of the child) for one of the two resulting nodes. 
As is done with the linear algorithm, the children are 
inserted into the node whose covering rectangle will 
have to be expanded the least to accommodate it, with 
ties being resolved by inserting the child into the node 
with the smaller area. We refer to an R-tree built with 
this node-splitting rule as the quadratic R-tree. 
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2.2 R*-tree 

The R*-tree [3] is a variant of the R-tree that uses 
more sophisticated node-insertion and node-splitting 
algorithms thereby reducing the storage requirements. 
When deciding which node i,s to contain the new line 
segment, it chooses the one for whom the resulting 
minimum bounding rectangle has the minimum in- 
crease of amount of overlap with its brothers (i.e., the 
other nodes pointed at by its father). This reduces 
the likelihood .that the remaining nodes are examined 
in subsequent searches., 

Once the node to be split has been chosen, we must 
determine the axis (i.e., z or y), it is to, be split upon, 
and the position of the split. The axis is found by ex- 
amining all possible vertical and horizontal splits (i.e., 
so each resulting node has at least m and at most 
M + 1 - m bounding rectangles), and choosing the 
split which minimizes the sum of the perimeters of the 
two constituent nodes. If there is a tie, then choose one 
of the axes at random. Once the axis has been chosen, 
say the x-axis, choose the split among the M - 2m + 2 
possibilities that results in a minimal amount of over- 
lap between the two new constituent nodes. If there 
is a tie, then choose the split that minimizes the total 
area of the two new constituent nodes. 

2.3 R+-tree 

The R+-tree [lo] partitions the lines into groups of 
arbitrary sublines having disjoint bounding rectangles 
which are grouped in another structure such as a B- 
tree. These sublines are termed q-edges [25]. The par- 
tition and the subsequent groupings are such that the 
bounding rectangles are disjoint iat each level of the 
structure. An example R+-tree is shown in Figure 2. 

(a) (b) 

Figure 2: (a) The spatial ixtents of the bounding rect- 
angles and (b) the R+-tree fof the txample collection of 
line segments. 

2.4 PMR Quadtree 

The PMR quadtree (denoting polygonal map random 
[21, 221) is an edge-based member of the PM quadtree 
family (see also edge-ExcELL [27]). It makes use of 
a probabilistic splitting rule where a block is permit- 
ted to contain a variable number of line segments. 
The PMR quadtree is constructed by inserting the line 
segments one-by-one into an initially empty structure 

consisting of one block. Each line segment is inserted 
into all of the blocks that it intersects. During this pro- 
cess, the occupancy of each affected block is checked 
to see if the insertion causes it to exceed a predeter- 
mined splitting threshold. Note that the concept of 
a splitting threshold, although closely related, is dif- 
ferent from the concept of a bucket capacity’. If the 
splitting threshold is exceeded, then the block is split 
once, and only once, into four blocks of equal size. The 
rationale for the use of a splitting threshold is to avoid 
splitting a node many times when there are a few very 
close lines in a block whose number exceeds the bucket 
capacity. In this manner, we avoid pathologically bad 
cases that would occur when a collection of line seg- 
ments has endpoints that are very close together. This 
would result in a large number of subdivisions in or- 
der to ,separate the endpoints (for more details of this 
pathological behavior, see [21]). 

Figure 3: PMR quadtree with a splitting threshold of two 
for a collection of line segments. 

Figure 3 is an example of a PMR quadtree corre- 
sponding to a set of 9 edges labeled a through i inserted 
in increasing lexicographical order. Observe that the 
shape of the PMR quadtree for a given data set is not 
unique; instead, it depends on the order in which the 
lines are inserted into it. This example assumes that 
the splitting threshold value is two. Generally, as the 
splitting threshold is increased, the construction times 
and..storage requirements of the PMR quadtree de- 
crease while the time necessary to perform operations 
on it will increase. 

It is interesting to point out that although a block 
can contain more line segments than the splitting 
threshold, this is not a problem. In fact, it can be 
shown that the maximum number of line segments in 
a block is bounded by the sum of the splitting thresh- 
old and the depth of the block (i.e., the number of 
times the original space has been decomposed to yield 
this block), provided that the block is not at the max- 
imal depth allowed by the particular implementation 
of the PMR quadtree C25]. 

The PMR quadtree often acts as an adaptive grid 
to index various blocks which contain spatial data. In 
solid modeling, the quadtree blocks contain complex 
spatial objects such as B-splines, Bezier curves, sur- 

‘In our discussions, the concept of a bucket and a block are 
the same, and we ud the terms interchangeably. 
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face patches, etc. [20]. Frequently, a bounding box 
is stored in the node so that the physical extent of 
the object can be determined easily. This is also the 
case with each of the studied R-tree variants. In the 
general case, the PMR quadtree should have a bound- 
ing box (or some other such approximation) around 
each feature. In most of the previous studies (e.g., 
[15, 16, 21, 22]), b ounding boxes were not employed 
with PMR quadtrees containing point or line data, 
though they have been with quadtrees containing more 
complex spatial objects. They were omitted for point 
and line PMR quadtrees primarily as a performance 
optimization. In this paper, in addition to the cus- 
tomary PMR quadtree we also study variant of the 
PMR quadtree which, like the R-trees, associates a 
bounding box with each feature or object identifier tu- 
ple stored in the quadtree leaf nodes. As we will see, 
incorporating the bounding box information increases 
the size of each tuple stored in the quadtree. However, 
this increase in size may be compensated by improved 
spatial join performance when the size of the output 
of the spatial join is not too large with respect to the 
larger of the two inputs. 

3 Spatial Join Algorithms 

For each spatial data structure that we consider, we 
assume that the physical representation of the spatial 
objects (in our case the coordinate values of the line 
segment endpoints) are stored in a secondary buffered 
array structure (termed the feature table). Within the 
spatial data structures, only descriptors (or pointers) 
to the objects in the feature table are stored. 

3.1 R-trees and R+-trees 

Each of the R-tree variants employed a spatial join al- 
gorithm similar to one described in [S] in the context 
of polygon map spatial joins. The spatial join algo- 
rithm uses techniques that are intended to decrease 
both cpu time consumption and disk I/O. These tech- 
niques, restricting the search space, and employing a 
local plane-sweep order with pinning are detailed in [6]. 
The R-tree2 spatial join algorithm is a coordinated tree 
traversal that begins with the two root nodes. For 
the two nodes being considered (initially the two root 
nodes), their bounding boxes are intersected to deter- 
mine the overlapping area 0 between the two nodes. 
The children of each node are then compared against 
0. If a child does not intersect 0, then it cannot in- 
tersect any children in the other map and is removed 
from further consideration. For all children in the first 
node that intersect 0, their bounding boxes are in- 

2For sake of brevity, we will use the tenn R-kee in this dis- 
cussion though the described algorithm can be applied to each 
of the four R-tree variants (including the FL+-tree). 

tersected against the bounding boxes of all children in 
the second node that also intersect 0. All intersections 
between the two sets of children are recorded. 

Once a set of intersecting children has been deter- 
mined, the node intersection process is recursively ap- 
plied to each pair of intersecting child nodes. The 
child nodes are considered in an order based upon 
their plane-sweep order with pinning. Pinning basi- 
cally keeps (or “pins”) in main memory the child node 
in one map which intersects the largest number of child 
nodes in the second map which have not yet been pro- 
cessed. By employing the pinning technique, in addi- 
tion to a plane-sweep order, a read schedule for the 
child nodes may be determined.’ 

If a pair of bounding boxes is found to intersect, 
then, if the children correspond to leaf nodes, the as- 
sociated line segment must be read from the feature ta- 
ble and the two lines are then intersected. Otherwise, 
if the two children are internal nodes, then the algo- 
rithm is recursively applied to the intersecting subn- 
odes within the two children. This process terminates 
when all intersecting nodes have been considered. 
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(a) (b) 

Figure 4: Example of two-stage child intersection detec- 
tion. 

In Figure 4a, two intersecting leaf nodes (labeled A 
and B) are shown. The bounding boxes of the objects 
contained in leaf node A correspond to the rectangles 
labeled a - f, while the bounding boxes of the ob- 
ject contained in leaf node B are labeled T - x. The 
base region of intersection between leaf nodes A and 
B is shown in Figure 4b as the light shaded region. 
The bounding boxes of objects contained in leaf node 
A that intersect the base region of intersection, cor- 
respond to the dark shaded rectangles in Figure 4b 
(objects c, d, and f). Similarly, the bounding boxes 
of objects contained in leaf node B that intersect the 
region of intersection are represented in Figure 4b by 
the dark shaded rectangles labeled T, t, and u. The 
set of bounding boxes (c, d, f) must be then inter- 
sected against the set (T, t, u). If any bounding boxes 
are found to intersect, then the corresponding features 
(lines) must be read from the feature table and an ex- 
act intersection check is performed. In Figure 4b, the 
two bounding boxes that intersect are labeled f and u. 
As will later be discussed and detailed in Table 3, this 
two-stage process dramatically reduces the number of 
intersection checks that must be performed during a 
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spatial join for the R-tree variants. 

3.2 PMR Quadtrees 

The algorithm for performing a PMR quadtree spatial 
join is basically a simple synchronized tree traversal 
at the leaf level. Each quadtree node is visited in the 
order prescribed by the tree structure. If the joining 
leaf node in each quadtree is the same size, then all of 
the line segments in the first node are intersected with 
all of the line segments in the second node. If one of 
the joining leaf nodes is larger than the other leaf node, 
then the lines in the first node are intersected with all 
the lines in the second smaller leaf node. Once all 
the intersections have been performed, then the larger 
leaf node is joined with the next smaller leaf node in 
the second map. This process is repeated for all small 
nodes that correspond to the single larger node. If 
one of the two joining nodes is empty, then the two 
nodes are skipped. The process is completed when 
each quadtree has been traversed in its entirety. 

As a performance optimization for the PMR 
quadtree with bounding boxes, before performing the 
line segment intersection, the two corresponding line 
segment bounding boxes are first checked for intersec- 
tion. This is a much simpler task and can greatly 
speed the spatial join process. dtherwise, two I/O 
operations may be required for an intersection as the 
coordinates values of the line segment endpoints are 
stored in the buffered feature table. One significant 
advantage of the PMR quadtree spatial join algorithm 
is that each node of the two joining PMR quadtrees is 
only visited once. This is in direct contrast to the R- 
tree spatial join algorithm, where any given leaf node 
may be visited many times due to the irregular decom- 
position of space. 

4 Experimental Results 

The performance of the six spatial structures (lin- 
ear R-tree, quadratic R-tree, R*-tree, R+-tree, PMR 
quadtree, and PMR quadtree with bounding boxes) is 
compared using TIGER/Line File [28] maps compris 
ing the Washington DC metropolitan area (contain- 
ing approximately 260,000 line segments3). Extracts 
from this collection of data were made in order to ob- 
tain four disjoint data sets. The first extract, termed 
roads, consists of all line segments corresponding to 
the road network of the Washington area. The roads 
data set includes 200,482 lines. The second extract, 
termed wafer, is composed of all hydrological features 
in the Washington area (37,495 lines). The third ex- 
tract, termed boundary, consists of the 18,505 lines 

3The regions comprising this data set are Washington DC, 
Montgomery Co., Prince Georges Co., Arlington Co., Alexan- 
dria, VA, Fairfax Co., Fairfax, VA, and Falls Church, VA. 

that correspond to all non-visible boundaries in this 
area (i.e., Zip Code boundaries, town boundaries, po- 
litical boundaries, etc.). The fourth extract, termed 
non-roads, contains the 59,601 lines that correspond 
to all non-road features in this area (i.e., water fea- 
tures, boundary features, railroads, pipelines, land- 
marks, etc.). The non-roads data set is a proper su- 
perset of the water and boundary data sets. In order 
to test the sensitivity of the performance of the oper- 
ations to the size of the.output (i.e., the number of 
intersections), we also constructed a number of artifi- 
cial data sets by extracting line segments at random 
from the entire data set for the Washington DC area. 

In addition to employing standard metrics for the 
performance comparisons such as disk I/OS, feature in- 
tersection tests, and data structure size, we also mea- 
sure cpu execution times (elapsed times) including the 
time to access the feature table. We have observed that 
although some structures may exhibit superior perfor- 
mance with respect to other structures in terms of disk 
I/OS, their cpu times may be significantly larger (e.g., 
data structure construction time for the R*-tree and 
R+-tree). Note that all performance tests are made 
using a buffer size of 128 KB on a 90 MHz Pentium 
(90.1 SPECint92, 72.7 SPECfp92)*. All pages are 1 
KB for the PMR quadtree while for the R-tree vari- 
ants, the number of bytes per page is 20 bytes times 
the node capacity. Tests were run a sufficient number 
of times’ to get a consistent execution time. 

Below, ‘we first discuss the time necessary to build 
the data structures followed by the time to perform the 
spatial join. The build times will be seen to be an im- 
portant factor in the performance of a spatial join with 
a spatial output. We also measure the execution time 
as a function of the size of the output (i.e., the number 
of intersections). This turns out to be the key factor 
in the performance and can be seen by examining Fig- 
ure 13. Actual conclusions about the relative merits 
of the different data’structures are made in Section 5. 

4.1 Data Structure Construction 

Table 1 details data structure construction perfor- 
mance for the six spatial structures using a node ca- 
pacity of 50 for the R-tree variants, and a splitting 
threshold of 8 for the PMR quadtrees for the roads 
data set. These values were chosen as they are com- 
monly used in previous studies (e.g., [3, 10, 13, 16]), 
and they provide a reasonable compromise between op- 
timal build and join performance. The PMR quadtree 
was implemented using a linear quadtree [l, 111 which 
is a pointer-less representation that stores the leaf 
nodes of the quadtree in a B+-tree [7]. In the table, 

4 Increasing the buffer size has not led to observed dramatic 
decreases in execution time [S]. 
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spatial structure 1 time disk I/OS splits storage 
R-tree (linear) I 304 21,922 6,482 7,110 

Table 1: Construction performance of the six spatial data 
structures on the roads data set. For the PMR quadtree, 
the node splits are B+-tree node splits. 

“node splits” for the PMR quadtrees actually corre- 
sponds to the number of B+-tree page splits in the 
linear quadtree representation. The actual number of 
quadtree node splits is 32,737. 

Mirroring results from an earlier study that com- 
pared the R*-tree, the R+-tree, and the PMR 
quadtree [16], we find that the disjoint decomposi- 
tions (i.e., the PMR quadtrees and the R+-tree) ex- 
hibit better performance in terms of cpu time rel- 
ative to the other non-disjoint decompositions (i.e., 
the R-trees and the RI-tree). Their build times are 
roughly ten times faster than that of the R*-tree, and 
20-30% faster than the linear and quadratic R-trees. 
The R*-tree’s performance suffers from several compu- 
tationally expensive operations that occur during the 
course of inserting a line segment. For example, the 
ChooseSubtree procedure (as defined by Beckmann et 
al. [3]) is used to select the appropriate insertion path. 
This insertion path selection operation requires 0(a2) 
bounding box operations for each line segment inser- 
tion, where M is the node capacity. We observed that 
this single operation consumed approximately 30% of 
the time spent constructing the structure. Addition- 
ally, the node-splitting procedure, where 30% of the 
lines are reinserted when a node overflows, resuited 
in the forced reinsertion of 343,364 line segments (an 
overhead of 171% additional line insertions). 

In terms of disk I/O, the PMR quadtree required 
the fewest operations (19,099). Its performance was 
nearly equaled by the quadratic R-tree (20,510). The 
R*-tree and the linear R-tree required approximately 
10% more disk I/OS (21,127’and 21,922 respectively), 
while the PMR quadtree with bounding boxes con- 
sumed 30% more disk I/OS (24,613). Finally, the R+- 
tree was the most disk I/O intensive, requiring over 
50% more (29,135) th an the quadratic R-tree. Incor- 
porating bounding boxes in the PMR quadtree did not 
significantly affect build times (a 5% increase), but it 
did result in increased amounts of disk I/O relative to 
the standard PMR quadtree (a 30% increase; 24,613 
versus 19,099). This increase is due primarily to hav- 
ing fewer tuples on each page of the B’-tree; 60 versus 
120 due to the need to store the bounding boxes. 

In terms of storage requirements, the R*-tree used 

the fewest resources (6,599 KB), consuming approx- 
imately 10 - 20 % less space than the other R-tree 
variants (7,110 - 8,152 KB). The R*-tree (6,599 KB) 
used 20% less space than the standard PMR quadtree 
(8,195 KB) h 1 w i e using 35% less space than the PMR 
quadtree with bounding boxes (10,051 KB). 
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Figure 5: Lines per second construction speeds on the 
roads data set. 

It is also interesting to observe the slowdown expe- 
rienced by each data structure as the number of lines 
in the structure grows. In Figure 5, the number of line 
insertions per second on the roads data set is plotted 
for all but the R*-tree structure5. From the figure, the 
R+-tree’s insertion performance is roughly 1250 lines 
per second for the first 10,000 lines of the roads data 
set. Th’ is rate falls to 735, lines per second (cumu- 
lative) by the time the build operation is completed 
after inserting 200,482 lines. Each of the other struc- 
tures exhibits similar performance decreases, though 
none as steep as the R+-tree. These decreases are 
expected and are due to the increased height of the 
tree structures. Interestingly, in an earlier study [16], 
the R+-tree was reported as exhibiting the fastest con- 
struction times relative* to the R*-tree and the PMR 
quadtree. That study was performed using data sets 
whose size was on .the order of 50,000 line segments. 
From Figure 6, we see that the R+-tree outperforms 
all other structures up through 50,000 line insertions. 
As the number of line insertions grows toward 200,000, 
we observe that the R+-tree’s performance decreases 
faster than the two PMR quadtrees. This results in 
the two PMR quadtrees outperforming the Rt-tree by 
7-12% on the larger data sets used in this study. 

Figure 6 shows the construction times for the PMR 
quadtree, both with, and without bounding boxes, for 
the roads data set. From the figure, it can be observed 
that as the splitting threshold increases, the build 
times decrease. This is due to fewer node splits and 

5The RI-tree, which is omitted from the figure, exhibits 
performance starting at 109 segments per second, and falling 
slightly to 104 segments per second by the completion of the 
build operation. 
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a shallower tree structure. As the splitting threshold 
grows past 30, build times begin to increase slightly. 
This is because the PMR quadtree nodes begin to oc- 
cupy a significant portion of the B+-tree pages, and 
PMR quadtree nodes are more likely to exist on more 
than one page. This increases the amount.of time re- 
quired to perform basic node manipulations. 
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Figure 6: Construction times for PMR uadtrees on the 
roads data set for varying splitting thres a old values. 

Figure 7 shows construction times for R-tree vari- 
ants other than the R*-tree on the roads data set as a 
function of node capacity. The figure shows that build 
times fall dramatically between node capacities 75 and 
100. This is due to the height of the R-trees decre&ing 
by one. The build times then begin to increase as the 
node capacity grows past 100 because of the increased 
expense of determining which node to insert a line seg- 
ment into, as well as the increased cost of splitting a 
node. Note the relative rate of build time increase for 
the linear and quadratic R-trees. In particular, the 
construction time for the quadratic R-tree increases at 
a faster rate than the linear R-tree because of the more 
expensive node-splitting algori,thm (i.e., O(M’) versus 
O(M), where M is the node capacity). 

50 100 150 200 
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Figure 7: Construction times for R-trees on the roads 
data set for varying node capacities. 

Figure’8 shows the construction times for the R*- 
tree on two data sets (roads and water) for various 

node capacities. As we can see, the R*-tree exhibits a 
significant decrease in construction performance as the 
node capacity M increases. This is primarily because 
the R*-tree construction algorithm requires O(M’n) 
bounding box intersections, where n is the size of the 
input data set. The double log plot of the construc- 
tion times highlights this relationship, with the perfor- 
mance curve appearing linear. For small node capaci- 
ties (i.e., 50), building the R*-tree is roughly one order 
of magnitude slower than any of the other data struc- 
tures. For larger node capacities (i.e., 200), building 
the RI-tree is approximately two orders of magnitude 
slower than the other data structures. 
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Figure 8: Dduble logarithmic plot of construction times 
for R*-trees on the roads (200,482 lines) and water 
(37,495 lines) data sets for varying node capacities. 

4.2 Spatial Join Performance 

The performance of the spatial join was measured for 
each of the six spatial structures using the four ex- 
tracted data sets (roads, non-roads, water, and bound- 
ary). Two joins are studied in greater detail. The first 
joins the roads data set and the water data set, result- 
ing in 6,404 intersections. The second joins the roads 
and the boundary data set, resulting in 10,983 inter- 
sections. Other joins were also tested so that we could 
see the effect ‘of the size of the output (the number 
of intersections). The performance of each data set 
was measured when the join resulted in the generation 
of an output map containing all points of intersection 
(termed spatial output), and when it resulted in a list 
oftuples containing identifiers of the’intersecting lines 
(termed &n-spatial output). 

4.2.1 Roads and Water Spatial Join 

Table 2 summarizes the performance of each data 
structure on the roads versus water spatial join (node 
capacity fifty, splitting threshold eight). For spa- 
tial joins which result in a spatial output, the PMR 
quadtree with bounding boxes outperformed the other 
structures in terms of cpu time (155 seconds). It was 
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spatial spatial non-spatial 
structure time I/OS 1 time I/OS 

R-tree (hear) 1 162 11,514 I 143 11,310 

Table 2: Spatial join of the roads and water data sets. 

trivially faster than the next fastest structure, the 
quadratic R-tree with 157 seconds. Adding bound- 
ing boxes to the PMR quadtree reduces the join time 
relative to the standard PMR quadtree by almost 30% 
(155 seconds versus 211 seconds). 

In terms of disk I/O, each of the PMR quadtrees 
required considerably fewer operations (6,137 - 6,233 
disk I/OS) than any of the R-tree variants (8,575 - 
11,514 disk I/OS). This is primarily due to the abil- 
ity of the PMR quadtree, as well as any other spa- 
tial structure employing a regular decomposition of 
space, to rapidly spatially correlate the contents of 
one map with another. With the regular decompo- 
sition of the PMR quadtree, there will exist either 
a one-to-one, one-to-many, or many-to-one mapping 
between the two joining data sets at the leaf level. 
This is in contrast with the R-tree variants which will 
often have a many-to-many mapping between joining 
data sets. The many-to-many mapping between leaf 
nodes among two different data sets prevents a simple 
traversal of each data set where each page is read into 
memory a single time. The more complex the many- 
to-many mapping, the more often a page must be read 
from disk. The incorporation of bounding boxes into 
the PMR quadtree accelerates the join process with 
respect to that for a PMR quadtree without bound- 
ing boxes as considerable amounts of pruning can be 
done at the leaf node level thereby saving accesses to 
the secondary storage structure (the buffered feature 
table). The more sophisticated and computationally 
expensive node-splitting rule utilized by the R*-tree 
resulted in considerably fewer disk I/OS as compared 
with the other R-tree variants (8,575 versus .11,452 - 
11,514). This large decrease in disk I/OS was offset by 
the increased amount of time necessary to construct 
the output map thereby resulting in the R*-tree taking 
27 - 34 more seconds than the other R-tree variants. 

Table 3 highlights the number of intersection tests 
that are performed on each structure during. a spatial 
join of the roads and water data sets. For example, 
the linear R-tree performs 24,814 line-to-line intersec- 
tion tests corresponding to the intersecting bounding 
boxes in the two datasets, which, of course, are the 
same for each of the other non-disjoint R-tree vari- 
ants, the quadratic R-tree and the R*-tree. The linear 

spatial 
StNcture 

linear Fl 
lines 

24,814 

pairs tested 
naivelines internal leaf 
17.325.074 1 4.582 15.674 

quad R 24;814 16;219;892 4;889 14;863 
R+ 25,583 16,554,775 3,560 16,069 
R* 24,814 14,408,052 2,903 9,805 

PMR 1,267,939 1,267,939 - 323,804 
1 PMR (bb) 1 37,118 1,267,939 1 - 323,804 

Table 3: Spatial join data for the roads and water data 
sets detailing line and node testing. In the table “R” de- 
notes R-tree; “R*” denotes RI-tree; “PMR (bb)” denotes 
PMR quadtree with bounding boxes. 

R-tree also had 4,582 internal node intersection tests 
between the joining structures, as well as 15,674 leaf 
node intersection tests. The column labeled “naive 
lines” corresponds to the number of line intersection 
tests that would be required if bounding boxes and 
spatial filtering were not employed in the spatial join 
algorithm (see Figure 4). Bounding boxes and spa- 
tial filtering are very simple techniques for spatial join 
acceleration, even for simple features such as line seg- 
ments. From Table 3, the incorporation of bounding 
boxes into the PMR quadtree reduced the join time 
by 57 seconds (27%), with the number of line versus 
line intersection tests falling from over 1.2 million to 
37,118, a 97% reduction. The trade-off is the increased 
storage requirement for the bounding boxes resulting 
in the PMR quadtree without bounding boxes occu- 
pying 1,856 KB less disk space (18.5%; see Table 1). 

The number of internal node and leaf node inter- 
section tests (as shown in Table 3) is a useful measure 
of the “goodness” of the spatial decompositions. From 
the table, the R*-tree requires the fewest node inter- 
section tests, both internally and at the leaf level as 
compared with the other R-tree variants. The R+-tree 
requires the largest number of leaf node intersection 
tests. This is not surprising as the R+-tree has a dis- 
joint decomposition which results in each line segment 
possibly being represented more than once inside the 
structure. The PMR quadtrees are not directly com- 
parable in the node intersection test sense as the tested 
quadtree implementation is pointerless thus having no 
internal nodes (as opposed to pointer-based, see [ll]), 
and the node size is much smaller given a splitting 
threshold of eight. 

Join times without spatial output are nearly equiv- 
alent for all structures except the PMR quadtree with- 
out bounding boxes (137 - 153 seconds). Surprisingly, 
for the roads and water spatial join, the quadratic R- 
tree slightly outperforms the R*-tree (137 seconds ver- 
sus 142 seconds). 

.Figures 9 and 10 show execution times for a spatial 
join with a spatial output of the roads and water data 
sets for the six structures when the node capacities 
and splitting thresholds are allowed to vary. The two 
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PMR quadtrees exhibit optimal performance at dif- 
fering splitting thresholds, In Figure 9, the standard 
PMR quadtree performs best with a splitting thresh- 
old of 8 to 12, while the PMR quadtree with bounding 
boxes performs the best with splitting thresholds of 
approximately 20. The PMR quadtree with bound- 
ing boxes outperforms the standard PMR quadtree 
primarily because the bounding boxes facilitate prun- 
ing the number of line intersection tests required to 
join two quadtrees (recall the “lines” and “naive lines” 
pairs tested entries in Table 3). 

300 

t 

PMRquadtree + 
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Figure 9: Execution times for a spatial join for the 
roads and water data sets with spatial output for PMR 
quadtrees. 

In Figure 10, we observe that the R+-tree outper- 
forms all other R-tree variants for all tested node ca- 
pacities. Interestingly, the R*-tree, which performed 
relatively poorly for the smaller node capacities (50 - 
100)) exhibited good performance for the larger node 
capacities (150 - 200). Unfortunately, the build times 
for the R*-tree are significantly larger than for the 
other data structures for large node capacities and 
larger data sets (refer to Figures 7 and 8). 
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Figure 10: Execution times for a spatial join of the roads 
and water data sets with spatial output for the R-tree 
variants. 

4.2.2 Roads and Boundary Spatial Join 

Table 4 shows performance statistics for the roads 
Figure 11 shows the disk I/O performance of the and boundary map spatial join. Summary statistics 

PMR quadtree when the node capacities and split- are shown in Despite the boundary data set having 
ting thresholds are allowed to vary in the case of spa- fewer line segments than the water data set (18,505 

tial output for the spatial join of the roads and wa- 
ter data sets. Both PMR quadtrees exhibit decreas- 
ing amounts of disk I/O as the splitting thresholds 
increase. This is due, in part, to the decreased size 
of the data structures. In particular, as the splitting 
threshold increases, the number of q-edges decreases, 
asymptotically approaching 1.0. The amount of addi- 
tional disk I/O required by the PMR quadtree with 
bounding boxes is not significant. 

I I I I I I 
8 16 24 32 
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Figure 11: Spatial join of the roads and water data 
with spatial output disk I/OS for PMR quadtrees. 

sets 

Figure 12 shows the disk I/O performance of the R- 
tree variants for different node capacities as was done 
for the PMR quadtrees in Figure 11. Not surprisingly, 
the R*-tree, with its expensive node-splitting rule, ex- 
hibits the best performance and outperforms the other 
R-tree variants. The other R-tree variants require 15 
- 75% more disk I/OS than the equivalent R*-tree. As 
the node capacity increases, the amount of disk I/O 
decreases for these structures. 
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Figure 12: Spatial join of the roads and water data sets 
with spatial output disk I/OS for the R-tree variants. 
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spatial spatial non-spatial 
structure time I/OS time I/OS 

R-tree (linear) 180 11,733 156 11,254 

Table 4: Spatial join of the roads and boundary data sets. 

spatial 
structure 

R-tree (linear) 

spatial non-spatial 
time I/OS time I/OS 
232 13,026 197 12,064 

R-tre;qkFic) 255 231 14,091 218 211 13,086 
12,785 11,828 

R.-tree 380 11,935 226 11,097 
PMR quadtree 256 7,709 224 6,290 

1 PMR (w/bboxes) 1 247 8,467 j 215 6,365 1 

Table 5: Spatial join of the roads and non-roads data 
sets. 
and 37,495 lines respectively), there were more inter- 
sections detected when joining the roads and boundary 
data sets (10,983 versus 6,404 for the roads and water 
spatial join). The most interesting difference between 
this spatial join and one described earlier (roads and 
water) is the relative performance of the RI-tree. Be- 
cause the roads and boundary spatial join has almost 
twice as many reported intersections, and the build 
time for constructitig the spatial output for R*-tree 
joins is considerably higher than for the other sp&tial 
structures, the R*-tree’s performance with a spatial 
output declines relative to the other structures. For 
the roads and boundary spatial join, the R*-tree is 52% 
slower than the fastest structure (the PM& quadtree 
with bounding boxes), while it was only 23% slower 
than the fastest structure (again the PMR quadtree 
with bounding boxes) for the smaller roads and water 
spatial join. In contrast, the performance of the R+- 
tree only declined from 6 to 9% slower than the PMR 
quadtree with bounding boxes. Based upon theBe two 
spatial joins, and coupled with the data structure build 
statistics described in Figures 7 and 8, it is clear that 
as the size of the spatial join output increases, the rel- 
ative performance of the R*-tree will continue to de- 
cline. Note that since the data sets are quite different 
in terms of locality, the number of disk I/OS may de- 
crease or show little change even though the size of the 
output increases. ,For example, see the PMR quadtree 
in Tables 2 and 4. 

4.2.3 Roads and Non-roads Spatial Join 

Table 5 corresponds to ihe spatial join of the roads 
and non-roads data sets. This is a larger spatial join, 
both in terms of both input and output map sizes 
(18,739 intersections). Many of the previously ob- 
served performance differences between the six spa- 

tial structures (see Tables 2 and 4) become even more 
pronounced with the larger data sets. Most notably, 
the spatial structures that are faster to build (the R- 
trees, the R+-tree, and the PMR quadtrees) outper- 
form the R*-tree (231 - 256 seconds versus 380 sec- 
onds, respectively). Observe again that despite com- 
parable performance when there is no spatial output, 
the R*-tree’s performance deteriorates much more, in 
a relative sense, than the other structures when there 
is spatial output. 
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Figure 13: Execution times f& a spatial join with spatial 
output according to output size. 
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Figure 13 displays the execution times of a spatial 
join with spatial output according to the number of 
intersecting !ines determined by the spatial join. The 
data is taken fro’m Tables 2, 4, add 5, as well As sotie 
artificial data sets formed by eTp!acting line segments 
at random from the entire data set for the Washing- 
ton DC area. Frsm the figure, it’ is apparent that as 
the number of intersections found in the spatial join 
increases, the disjoint decompositions outperform the 
non-disjdint decompositions. The implications of this 
conclusion are discussed in greater’ detail in Section 5. 
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Figyre 14: Disk I/OS for a spatial join with spatial output 
according to output size. 

Figure 14 shows the disk I/OS for a spatial join with 
spatial output for according to the number of intersect- 
ing lines determined by the spatial join. It is apparent 

616 



from the figure that the two PMR quadtrees with their 
regular decomposition outperform the R-tree variants 
across the spectrum of spatial join output sizes. 

5 Comparison of the Structures 

Our experiments (most notably Figure 13) have re- 
vealed a number of interesting results. Most impor- 
tantly, they show that when the output of the spa- 
tial join is spatial, then spatial data structures baaed 
on a disjoint decomposition of space (the R+-tree and 
the PMR quadtree) outperform spatial data structures 
based on a non-disjoint decomposition such .as the nu- 
merous variants of the R-tree including the R*-tree. 
This difference is primarily because of the need to build 
the data structure as part of the output. 

These differences in execution time and disk I/OS 
become more pronounced as the output becomes 
larger. In our tests, the difference became significant 
when the output size was 25% or more of the larger of 
the two inputs. This is especially true for the spatial 
data structures based on a regular decomposition such 
as the PMR quadtree with respect to the R+-tree and 
to an even greater extent with respect to the R*-tree. 
This difference is primarily because the bounding box 
information which is used so effectively in the R-tree 
variants and the PMR quadtree with bounding boxes 
to limit the number of lines that must be tested for pos- 
sible intersection is no longer as useful. The reason is 
that bounding boxes do not prune enough of the inter- 
sections when the output size is, large. An alternative 
explanation of this result is obtained by noting that 
R-trees and R+-trees are particularly useful in distin- 
guishing between occupied and unoccupied space. In 
these examples, most of the space is occupied, thereby 
diminishing the utility of these representations. 

In contrast, representations based on a regular de- 
composition are more useful in such an environment as 
they provide a correlation between occupied space in 
the two data sets that are being joined. This was ver- 
ified by our observations that as the size of the output 
increased, the use of bounding boxes with the PMR 
quadtree did not lead to a significant improvement in 
performance (Figure 13) whereas it did so when the 
output was smaller in Tables 2 and 4. Moreover, as 
the size of the output becomes larger, the bounding 
boxes in the PMR quadtree need more nodes as each 
node contains fewer line segments due to the inclusion 
of the bounding boxes. Thus more node intersections 
must be performed each of which may require a disk 
I/O operation thereby canceling the effect of the prun- 
ing resulting from the use of the bounding boxes. 

When the output of the spatial join is not required 
to be spatial, then the R*-tree has comparable perfor- 
mance to that of the R+-tree and the two variants of 

the PMR quadtree as long as the output is consider- 
ably smaller than that of the larger of the two inputs 
(10%). However, as the output gets larger, the R*-tree 
has been observed to require (not shown here) about 
50%. more time than the PMR quadtree (with and 
without bounding boxes), while having only a slightly 
worse performance than the R+-tree. 

These observations lead us to conclude that when 
the size of the output of the spatial join is of the same 
order of magnitude as the largest of the two inputs 
(e.g., larger than 25%), then regardless of whether the 
output is spatial or not, the PMR quadtrees yield sig- 
nificantly better execution time performances than any 
of the R-tree variants, However, for spatial joins that 
result in more modest sized outputs, the R+-tree and 
the PMR quadtree with bounding boxes prove supe- 
rior to the other structures. In the context of disk 
I/OS, however, the two PMR quadtrees outperform 
the R-tree variants for all output sizes. 

A case can still be made, however, for the use of 
the R*-tree in a spatial join with spatial output as its 
storage requirements are somewhat smaller than those 
of the PMR quadtree.(20%) for our example data set 
of over 260,000 line segments. Of course, the R-tree’s 
construction time is significantly higher than the other 
structures. This difference is compounded when the 
structure is used where operations are cascaded SO that 
the output of one spatial operation serves as input to 
another spatial operation. We also observe that the 
number of disk I/O operations is always lower for the 
PMR quadtree than any of the remaining structures 
at the expense of higher cpu costs for each disk I/O 
operation due to the added complexity of the opera- 
tions on each page that is retrieved since each page in 
a PMR quadtree contains many quadtree nodes while 
each page in an R-tree and an R+-tree contains just 
one R-tree or R+-tree node. 
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