
Benchmarking Spatial Join Operations with Spatial Output*

Erik G. Hoelt
Hanan Samet

Computer Science Department
Center for Automation Research

Institute for Advanced Computer Sciences
University of Maryland

College Park, Maryland 20742
hoel@cs.umd.edu and hjs@cs.umd.edu

Abstract

The spatial join operation with spatial out-
put is benchmarked using the R-tree, W-tree,
R+-tree, and the PMR quadtree. The studied
quantities are the time to build the data struc-
ture and the time to do the spatial join in an
application domain consisting of planar line
segment data. Experiments reveal that spatial
data structures based on a disjoint decomposi-
tion of space and bounding boxes (i.e., the R+-
tree and the PMR quadtree with bounding
boxes) outperform the other structures that
are based upon a non-disjoint decomposition
(i.e., the R-tree and R*-tree). As the size of
the output of the spatial join increases with
respect to the larger of the two inputs, meth-
ods based on a disjoint regular decomposition
(i.e., the PMR quadtree regardless of the pres-
ence of bounding boxes) perform significantly
better.

*This work was supportedin part by the National Science Foun-
dation under Grant IRI-92-16970 and ASC-93-18183, and by a
grant from the Computer Research and Applications Group at
Los Alamos National Laboratory.

tAuthor’s current address is Graphic Data Systems Corp., 6200
South Syracuse Way, Englewood CO 80111

Permission to copy without fee all OT part of this material is
granted pToviaea that the copies are not made OT ai5tTihtd jOT

diTeCt commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

1 Introduction

A spatial join involves two data sets. It is one of the
most common operations in spatial databases. The
term “join” is usually used in conjunction with a rela-
tional database management system [9]. In that con-
text, a join is said to combine entities from two data
sets into a single set for every pair of elements in the
two sets that satisfy a particular condition. These
conditions usually involve specified attributes that are
common to the two sets. In the spatial variant of the
join, the condition is interpreted as being satisfied (i.e.,
two elements are joined) when the elements of the pair
cover some part of the space that is identical.

Our results are distinct from other studies (e.g., [3,
5, 6, 12, 19, 23, 241) in that we stress the fact that the
output of a spatial join operation doesn’t just have a
relational component; it also has a spatial component.
Thus we don’t always want to just report the object
pairs that intersect. In particular, we want to report
their locations as well so that they can serve as input
to subsequent spatial operations (i.e., a cascaded spa-
tial join as would be common in a spatial spreadsheet).
Therefore, we also need to construct a map for the out-
put. In other words, the time to build the spatial data
structure plays an important role in the benchmark,
in addition to the time required to perform the spa-
tial join itself whose output is not always required to
be spatial. It is interesting to observe that the spatial
join operation was not a part of the Sequoia bench-
mark [8, 261 where the examples of what was termed a
spatial join were really window operations (i.e., a spa-
tial selection) as the second map was usually a subset
of the entire map. Thus the contribution of our paper
is, in part, an additional operation to the benchmark
consisting of a spatial join with a spatial output.

The spatial join problem has been studied both al-
gorithmically and empirically for a variety of spatial
data structures. Spatial join algorithms for regular

606

grid files [14] were first investigated in [3]. The grid
file was also used as the spatial data structure when
the spatial join was examined from the perspective of
creating a spatial join index [24]. In this case, the spa-
tial join index simulations were on grid files using dif-
fering node-splitting rules (i.e., a regular or irregular
decomposition). These simulations showed that grid
files with a regular decomposition result in consider-
ably fewer leaf node intersections between two joining
structures. Spatial joins were also examined using the
generalized tree [12], an abstracted hierarchical data
structure similar to an R-tree [13]. Using cost models
on artificial data, the generalization trees were shown
to outperform join indices if there was either high data
structure update rates, or high levels of join selectiv-
ity. Other studies examined the R*-tree [3] in the con-
text of spatially joining maps composed of large poly-
gons [5,6]. In this case, various acceleration techniques
were compared for improving cpu speed (e.g., spatial
filtering) as well as I/O performance (e.g., plane-sweep
search ordering). Once a candidate set of polygons was
obtained, geometric filtering (e.g.,‘employing approx-
imations of the polygonal object) were used prior to
the final exact geometry testing.

A different approach makes use of the seeded
tree [19]. This structure was designed to speed the
more complex spatial join process when one of the two
maps being joined is the result of an intermediate op-
eration such as a selection. The seeded tree is con-
structed by copying the internal node structure of one
map into the second map (where the second map is as-
sumed to be the result of an intermediate operation),
and then the features are inserted into the second map.
This replication of the internal node structure greatly
accelerates the join process as there is a one-to-one
mapping between internal nodes in the two maps. The
application of global clustering (i.e., the association of
spatially adjacent spatial objects with physically con-
secutive disk pages) to a modified R*-tree was studied
in [4]. Modified R*-trees (R+-trees without forced, fea-
ture reinsertion) with global clustering were found to
be more expensive in terms of cpu construction costs
and data storage requirements than the standard un-
clustered R*-tree. Experimentation with the clustered
R*-tree did show, however, that spatial joins were sig-
nificantly improved, primarily because of greatly de-
creased I/O costs. Finally, in the data-parallel domain,
the spatial join has been studied in the algorithmic and
empirical context [17, 181. Experimentation indicated
that the data-parallel PMR quadtree [21] significantly
outperformed data-parallel. R-trees and R+-trees [lo]
primarily because the PMR quadtree’s regular decom-
position is well-suited to the data-parallel domain. In
the data-parallel domain, communication bottlenecks
during a spatial join are greatly reduced by the regular

decomposition of the PMR quadtree and the ability to
quickly correlate a region in one map with a corre-
sponding region in a second map. This ability to cor-
relate regions will be seen to have a similar effect on
the performance in the sequential domain as the size
of the output of the spatial join increases with respect
to the larger of the two inputs.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief review of the six spatial data struc-
tures that we consider. Section 3 details the spatial
join algorithms that are tested. Section 4 presents the
execution times, disk I/OS, and storage requirements
for the construction of the different data structures as
well as their performance in a spatial join. Section
5 contains our conclusions about the relative perfor-
mance of the different data structures.

2 Spatial Data Structures

In this paper we consider representations that sort the
data objects with respect to the space that they oc-
cupy. This results in speeding up operations involving
search. Our objects consist of lines. The effect of the
sort is to decompose the space from which the data is
drawn (e.g., the two-dimensional space containing the
lines) into regions called buclceis. One approach known
as an R-tree [13] buckets the data based on the con-
cept of a minimum bounding (or enclosing) rectangle.
In this case, lines are grouped (hopefully by proximity)
into hierarchies, and then stored in another structure
such as a B-tree [7]. The drawback of the R-tree is that
it does not result in a disjoint decomposition of space
- that is, the bounding rectangles corresponding to
different lines may overlap. Equivalently, a line may be
spatially contained in several bounding rectangles, yet
it is only associated with one bounding rectangle. This
means that a spatial query may often require several
bounding rectangles to be checked before ascertaining
the presence or absence of a particular line. In this
paper, we study two methods of this type: the R-tree
(both linear and quadratic), and the R*-tree.

The non-disjointness of the R-tree is overcome by a
decomposition of space into disjoint cells. In this case,
each line is decomposed into disjoint sublines such that
each of the sublines is associated with a different cell.
There are a number of variants of this approach. They
differ in the degree of regularity imposed by their un-
derlying decomposition rules and by the way in which
the cells are aggregated. The price paid for the dis-
jointness is that in order to determine the area cov-
ered by a particular line, we have to retrieve all the
cells that it occupies. This means that an object may
be reported as satisfying a particular query more than
once and thus there is a need to remove duplicate an-
swers (e.g., [2]). H ere we study two methods of this

607

type: the R+-tree [lo] and the PMR quadtree [21].
The R+-tree partitions the lines into groups of ar-

bitrary sublines having disjoint bounding rectangles
which are grouped in another structure such as a B-
tree. The groupings are such that the bounding rect-
angles are disjoint at each level of the structure. The
drawback of the R+-tree is that the decomposition is
data-dependent. This makes it more complex to per-
form tasks that require composition of different op-
erations and data sets (e.g., set-theoretic operations
such as overlay). In contrast,, the PMR quadtree is
based on a regular decomposition. The space. con-
taining the lines is recursively decomposed into four
equal-area blocks on the basis of the number of lines
that it contains (termed a splitting threshold). The
decomposition process can be, implemented by a tree
structure. It is useful for set-theoretic operations as
the partitions of the two data sets occur in the same
positions.

As mentioned above, R-trees and R+-trees are
closely related to B-trees. An R-tree or R+-tree of
order (m, M) has the property that each node in the
tree, with the exception of the root, contains between
m _< [M/2] and M entries. The root node has at least
2 entries unless it itself is a leaf node. Often the nodes
correspond to disk pages. All leaf nodes appear at the
same level. Each entry in a leaf node is a 2-tuple of
the form (R,O) such that R is the smallest rectangle
that spatially contains line segment 0. Each entry in
a non-leaf node is a 2-tuple of the form (R,P) such
that R is the smallest rectangle that spatially contains
the rectangles in the child node pointed at by P. It
is interesting to observe that the node capacity (i.e.,
bucket capacity) M in the R-tree and R+-tree plays
a similar role as the splitting threshold in the PMR
quadtree. We will make use of this analogy in our
discussion where, at times, the terms will be used in-
terchangeably. In the rest of this section we describe
these data structures in more detail.

2.1 R-tree

Figure la is an example R-tree with M = 3 and m = 2
for the collection of line segments labeled a - i. Fig-
ure lb shows the spatial extent of the bounding rect-
angles of the nodes in Figure la, with broken lines
denoting the rectangles corresponding to the subtrees
rooted at the non-leaf nodes. Note that the R-tree is
not unique. Its structure depends heavily on the or-
der in which the individual line segments were inserted
into (and possibly deleted from) the tree.

The algorithm for inserting a line segment (i.e., a
record corresponding to its enclosing rectangle) in an
R-tree is analogous to that for B-trees. New line seg-
ments are added to leaf nodes. The appropriate leaf
node is determined by traversing the R-tree starting at

its root and at each step choosing the subtree whose
corresponding bounding rectangle would. have to be
enlarged the least. Once the leaf node has been de-
termined, check to see if insertion of the line segment
causes the node to overflow. If yes, then split the node
and distribute the M + 1 records in the two nodes.
Splits are propagated up the tree.

(a) @)

Figure 1: (a) The spatial,,extents.of the bounding rect-
angles and (;b) the R-tree for the example collection of
tine segments. I

There are many possible ways to split a node.
Guttman [13] distributes the records among the nodes
so that the likelihood that the nodes will be visited in
subsequent searches will be reduced. ‘This is accom-
plished by ‘minimizing the total area of the covering
rectangles for the nodes (i.e., coverage).

Node-splitting algorithms that employ this strategy
are classified by their computational complexity [13].
The linear algorithm selects two seed elements, one
for each of the two resulting nodes, by choosing the
pair of children with the largest normalized separation
along sny axis. This operation can be done in linear
time. The remaining M - 1 children, where M is the
node capacity, are then inserted in random order into
one of the two resulting nodes whose covering rectan-
gle will have to be expanded the least to accommo-
date the,child. Ties are resolved by inserting the child
into the node with the smaller area. We refer to the
R-tree with this,node-splitting rule as the linear R-
tree. The quadratic node-splitting algorithm, selects
the two seed elements by choosing the two children
whose covering bounding box would waste the most
amount of space. This can be determined in quadratic
time (0(M2)). The remaining M - 1 children are in-
serted into the two nodes in an order dependent’ upon
the magnitude of their preference (i.e., the difference
between the area increase .required of each node for in-
clusion of the child) for one of the two resulting nodes.
As is done with the linear algorithm, the children are
inserted into the node whose covering rectangle will
have to be expanded the least to accommodate it, with
ties being resolved by inserting the child into the node
with the smaller area. We refer to an R-tree built with
this node-splitting rule as the quadratic R-tree.

608

2.2 R*-tree

The R*-tree [3] is a variant of the R-tree that uses
more sophisticated node-insertion and node-splitting
algorithms thereby reducing the storage requirements.
When deciding which node i,s to contain the new line
segment, it chooses the one for whom the resulting
minimum bounding rectangle has the minimum in-
crease of amount of overlap with its brothers (i.e., the
other nodes pointed at by its father). This reduces
the likelihood .that the remaining nodes are examined
in subsequent searches.,

Once the node to be split has been chosen, we must
determine the axis (i.e., z or y), it is to, be split upon,
and the position of the split. The axis is found by ex-
amining all possible vertical and horizontal splits (i.e.,
so each resulting node has at least m and at most
M + 1 - m bounding rectangles), and choosing the
split which minimizes the sum of the perimeters of the
two constituent nodes. If there is a tie, then choose one
of the axes at random. Once the axis has been chosen,
say the x-axis, choose the split among the M - 2m + 2
possibilities that results in a minimal amount of over-
lap between the two new constituent nodes. If there
is a tie, then choose the split that minimizes the total
area of the two new constituent nodes.

2.3 R+-tree

The R+-tree [lo] partitions the lines into groups of
arbitrary sublines having disjoint bounding rectangles
which are grouped in another structure such as a B-
tree. These sublines are termed q-edges [25]. The par-
tition and the subsequent groupings are such that the
bounding rectangles are disjoint iat each level of the
structure. An example R+-tree is shown in Figure 2.

(a) (b)

Figure 2: (a) The spatial ixtents of the bounding rect-
angles and (b) the R+-tree fof the txample collection of
line segments.

2.4 PMR Quadtree

The PMR quadtree (denoting polygonal map random
[21, 221) is an edge-based member of the PM quadtree
family (see also edge-ExcELL [27]). It makes use of
a probabilistic splitting rule where a block is permit-
ted to contain a variable number of line segments.
The PMR quadtree is constructed by inserting the line
segments one-by-one into an initially empty structure

consisting of one block. Each line segment is inserted
into all of the blocks that it intersects. During this pro-
cess, the occupancy of each affected block is checked
to see if the insertion causes it to exceed a predeter-
mined splitting threshold. Note that the concept of
a splitting threshold, although closely related, is dif-
ferent from the concept of a bucket capacity’. If the
splitting threshold is exceeded, then the block is split
once, and only once, into four blocks of equal size. The
rationale for the use of a splitting threshold is to avoid
splitting a node many times when there are a few very
close lines in a block whose number exceeds the bucket
capacity. In this manner, we avoid pathologically bad
cases that would occur when a collection of line seg-
ments has endpoints that are very close together. This
would result in a large number of subdivisions in or-
der to ,separate the endpoints (for more details of this
pathological behavior, see [21]).

Figure 3: PMR quadtree with a splitting threshold of two
for a collection of line segments.

Figure 3 is an example of a PMR quadtree corre-
sponding to a set of 9 edges labeled a through i inserted
in increasing lexicographical order. Observe that the
shape of the PMR quadtree for a given data set is not
unique; instead, it depends on the order in which the
lines are inserted into it. This example assumes that
the splitting threshold value is two. Generally, as the
splitting threshold is increased, the construction times
and..storage requirements of the PMR quadtree de-
crease while the time necessary to perform operations
on it will increase.

It is interesting to point out that although a block
can contain more line segments than the splitting
threshold, this is not a problem. In fact, it can be
shown that the maximum number of line segments in
a block is bounded by the sum of the splitting thresh-
old and the depth of the block (i.e., the number of
times the original space has been decomposed to yield
this block), provided that the block is not at the max-
imal depth allowed by the particular implementation
of the PMR quadtree C25].

The PMR quadtree often acts as an adaptive grid
to index various blocks which contain spatial data. In
solid modeling, the quadtree blocks contain complex
spatial objects such as B-splines, Bezier curves, sur-

‘In our discussions, the concept of a bucket and a block are
the same, and we ud the terms interchangeably.

609

face patches, etc. [20]. Frequently, a bounding box
is stored in the node so that the physical extent of
the object can be determined easily. This is also the
case with each of the studied R-tree variants. In the
general case, the PMR quadtree should have a bound-
ing box (or some other such approximation) around
each feature. In most of the previous studies (e.g.,
[15, 16, 21, 22]), b ounding boxes were not employed
with PMR quadtrees containing point or line data,
though they have been with quadtrees containing more
complex spatial objects. They were omitted for point
and line PMR quadtrees primarily as a performance
optimization. In this paper, in addition to the cus-
tomary PMR quadtree we also study variant of the
PMR quadtree which, like the R-trees, associates a
bounding box with each feature or object identifier tu-
ple stored in the quadtree leaf nodes. As we will see,
incorporating the bounding box information increases
the size of each tuple stored in the quadtree. However,
this increase in size may be compensated by improved
spatial join performance when the size of the output
of the spatial join is not too large with respect to the
larger of the two inputs.

3 Spatial Join Algorithms

For each spatial data structure that we consider, we
assume that the physical representation of the spatial
objects (in our case the coordinate values of the line
segment endpoints) are stored in a secondary buffered
array structure (termed the feature table). Within the
spatial data structures, only descriptors (or pointers)
to the objects in the feature table are stored.

3.1 R-trees and R+-trees

Each of the R-tree variants employed a spatial join al-
gorithm similar to one described in [S] in the context
of polygon map spatial joins. The spatial join algo-
rithm uses techniques that are intended to decrease
both cpu time consumption and disk I/O. These tech-
niques, restricting the search space, and employing a
local plane-sweep order with pinning are detailed in [6].
The R-tree2 spatial join algorithm is a coordinated tree
traversal that begins with the two root nodes. For
the two nodes being considered (initially the two root
nodes), their bounding boxes are intersected to deter-
mine the overlapping area 0 between the two nodes.
The children of each node are then compared against
0. If a child does not intersect 0, then it cannot in-
tersect any children in the other map and is removed
from further consideration. For all children in the first
node that intersect 0, their bounding boxes are in-

2For sake of brevity, we will use the tenn R-kee in this dis-
cussion though the described algorithm can be applied to each
of the four R-tree variants (including the FL+-tree).

tersected against the bounding boxes of all children in
the second node that also intersect 0. All intersections
between the two sets of children are recorded.

Once a set of intersecting children has been deter-
mined, the node intersection process is recursively ap-
plied to each pair of intersecting child nodes. The
child nodes are considered in an order based upon
their plane-sweep order with pinning. Pinning basi-
cally keeps (or “pins”) in main memory the child node
in one map which intersects the largest number of child
nodes in the second map which have not yet been pro-
cessed. By employing the pinning technique, in addi-
tion to a plane-sweep order, a read schedule for the
child nodes may be determined.’

If a pair of bounding boxes is found to intersect,
then, if the children correspond to leaf nodes, the as-
sociated line segment must be read from the feature ta-
ble and the two lines are then intersected. Otherwise,
if the two children are internal nodes, then the algo-
rithm is recursively applied to the intersecting subn-
odes within the two children. This process terminates
when all intersecting nodes have been considered.

F
b

e

Q!!Q

f cc

&J l4

B s * I3

(a) (b)

Figure 4: Example of two-stage child intersection detec-
tion.

In Figure 4a, two intersecting leaf nodes (labeled A
and B) are shown. The bounding boxes of the objects
contained in leaf node A correspond to the rectangles
labeled a - f, while the bounding boxes of the ob-
ject contained in leaf node B are labeled T - x. The
base region of intersection between leaf nodes A and
B is shown in Figure 4b as the light shaded region.
The bounding boxes of objects contained in leaf node
A that intersect the base region of intersection, cor-
respond to the dark shaded rectangles in Figure 4b
(objects c, d, and f). Similarly, the bounding boxes
of objects contained in leaf node B that intersect the
region of intersection are represented in Figure 4b by
the dark shaded rectangles labeled T, t, and u. The
set of bounding boxes (c, d, f) must be then inter-
sected against the set (T, t, u). If any bounding boxes
are found to intersect, then the corresponding features
(lines) must be read from the feature table and an ex-
act intersection check is performed. In Figure 4b, the
two bounding boxes that intersect are labeled f and u.
As will later be discussed and detailed in Table 3, this
two-stage process dramatically reduces the number of
intersection checks that must be performed during a

610

spatial join for the R-tree variants.

3.2 PMR Quadtrees

The algorithm for performing a PMR quadtree spatial
join is basically a simple synchronized tree traversal
at the leaf level. Each quadtree node is visited in the
order prescribed by the tree structure. If the joining
leaf node in each quadtree is the same size, then all of
the line segments in the first node are intersected with
all of the line segments in the second node. If one of
the joining leaf nodes is larger than the other leaf node,
then the lines in the first node are intersected with all
the lines in the second smaller leaf node. Once all
the intersections have been performed, then the larger
leaf node is joined with the next smaller leaf node in
the second map. This process is repeated for all small
nodes that correspond to the single larger node. If
one of the two joining nodes is empty, then the two
nodes are skipped. The process is completed when
each quadtree has been traversed in its entirety.

As a performance optimization for the PMR
quadtree with bounding boxes, before performing the
line segment intersection, the two corresponding line
segment bounding boxes are first checked for intersec-
tion. This is a much simpler task and can greatly
speed the spatial join process. dtherwise, two I/O
operations may be required for an intersection as the
coordinates values of the line segment endpoints are
stored in the buffered feature table. One significant
advantage of the PMR quadtree spatial join algorithm
is that each node of the two joining PMR quadtrees is
only visited once. This is in direct contrast to the R-
tree spatial join algorithm, where any given leaf node
may be visited many times due to the irregular decom-
position of space.

4 Experimental Results

The performance of the six spatial structures (lin-
ear R-tree, quadratic R-tree, R*-tree, R+-tree, PMR
quadtree, and PMR quadtree with bounding boxes) is
compared using TIGER/Line File [28] maps compris
ing the Washington DC metropolitan area (contain-
ing approximately 260,000 line segments3). Extracts
from this collection of data were made in order to ob-
tain four disjoint data sets. The first extract, termed
roads, consists of all line segments corresponding to
the road network of the Washington area. The roads
data set includes 200,482 lines. The second extract,
termed wafer, is composed of all hydrological features
in the Washington area (37,495 lines). The third ex-
tract, termed boundary, consists of the 18,505 lines

3The regions comprising this data set are Washington DC,
Montgomery Co., Prince Georges Co., Arlington Co., Alexan-
dria, VA, Fairfax Co., Fairfax, VA, and Falls Church, VA.

that correspond to all non-visible boundaries in this
area (i.e., Zip Code boundaries, town boundaries, po-
litical boundaries, etc.). The fourth extract, termed
non-roads, contains the 59,601 lines that correspond
to all non-road features in this area (i.e., water fea-
tures, boundary features, railroads, pipelines, land-
marks, etc.). The non-roads data set is a proper su-
perset of the water and boundary data sets. In order
to test the sensitivity of the performance of the oper-
ations to the size of the.output (i.e., the number of
intersections), we also constructed a number of artifi-
cial data sets by extracting line segments at random
from the entire data set for the Washington DC area.

In addition to employing standard metrics for the
performance comparisons such as disk I/OS, feature in-
tersection tests, and data structure size, we also mea-
sure cpu execution times (elapsed times) including the
time to access the feature table. We have observed that
although some structures may exhibit superior perfor-
mance with respect to other structures in terms of disk
I/OS, their cpu times may be significantly larger (e.g.,
data structure construction time for the R*-tree and
R+-tree). Note that all performance tests are made
using a buffer size of 128 KB on a 90 MHz Pentium
(90.1 SPECint92, 72.7 SPECfp92)*. All pages are 1
KB for the PMR quadtree while for the R-tree vari-
ants, the number of bytes per page is 20 bytes times
the node capacity. Tests were run a sufficient number
of times’ to get a consistent execution time.

Below, ‘we first discuss the time necessary to build
the data structures followed by the time to perform the
spatial join. The build times will be seen to be an im-
portant factor in the performance of a spatial join with
a spatial output. We also measure the execution time
as a function of the size of the output (i.e., the number
of intersections). This turns out to be the key factor
in the performance and can be seen by examining Fig-
ure 13. Actual conclusions about the relative merits
of the different data’structures are made in Section 5.

4.1 Data Structure Construction

Table 1 details data structure construction perfor-
mance for the six spatial structures using a node ca-
pacity of 50 for the R-tree variants, and a splitting
threshold of 8 for the PMR quadtrees for the roads
data set. These values were chosen as they are com-
monly used in previous studies (e.g., [3, 10, 13, 16]),
and they provide a reasonable compromise between op-
timal build and join performance. The PMR quadtree
was implemented using a linear quadtree [l, 111 which
is a pointer-less representation that stores the leaf
nodes of the quadtree in a B+-tree [7]. In the table,

4 Increasing the buffer size has not led to observed dramatic
decreases in execution time [S].

611

spatial structure 1 time disk I/OS splits storage
R-tree (linear) I 304 21,922 6,482 7,110

Table 1: Construction performance of the six spatial data
structures on the roads data set. For the PMR quadtree,
the node splits are B+-tree node splits.

“node splits” for the PMR quadtrees actually corre-
sponds to the number of B+-tree page splits in the
linear quadtree representation. The actual number of
quadtree node splits is 32,737.

Mirroring results from an earlier study that com-
pared the R*-tree, the R+-tree, and the PMR
quadtree [16], we find that the disjoint decomposi-
tions (i.e., the PMR quadtrees and the R+-tree) ex-
hibit better performance in terms of cpu time rel-
ative to the other non-disjoint decompositions (i.e.,
the R-trees and the RI-tree). Their build times are
roughly ten times faster than that of the R*-tree, and
20-30% faster than the linear and quadratic R-trees.
The R*-tree’s performance suffers from several compu-
tationally expensive operations that occur during the
course of inserting a line segment. For example, the
ChooseSubtree procedure (as defined by Beckmann et
al. [3]) is used to select the appropriate insertion path.
This insertion path selection operation requires 0(a2)
bounding box operations for each line segment inser-
tion, where M is the node capacity. We observed that
this single operation consumed approximately 30% of
the time spent constructing the structure. Addition-
ally, the node-splitting procedure, where 30% of the
lines are reinserted when a node overflows, resuited
in the forced reinsertion of 343,364 line segments (an
overhead of 171% additional line insertions).

In terms of disk I/O, the PMR quadtree required
the fewest operations (19,099). Its performance was
nearly equaled by the quadratic R-tree (20,510). The
R*-tree and the linear R-tree required approximately
10% more disk I/OS (21,127’and 21,922 respectively),
while the PMR quadtree with bounding boxes con-
sumed 30% more disk I/OS (24,613). Finally, the R+-
tree was the most disk I/O intensive, requiring over
50% more (29,135) th an the quadratic R-tree. Incor-
porating bounding boxes in the PMR quadtree did not
significantly affect build times (a 5% increase), but it
did result in increased amounts of disk I/O relative to
the standard PMR quadtree (a 30% increase; 24,613
versus 19,099). This increase is due primarily to hav-
ing fewer tuples on each page of the B’-tree; 60 versus
120 due to the need to store the bounding boxes.

In terms of storage requirements, the R*-tree used

the fewest resources (6,599 KB), consuming approx-
imately 10 - 20 % less space than the other R-tree
variants (7,110 - 8,152 KB). The R*-tree (6,599 KB)
used 20% less space than the standard PMR quadtree
(8,195 KB) h 1 w i e using 35% less space than the PMR
quadtree with bounding boxes (10,051 KB).

50K 1OOK 150K
Cummulstive Insertions

200K

Figure 5: Lines per second construction speeds on the
roads data set.

It is also interesting to observe the slowdown expe-
rienced by each data structure as the number of lines
in the structure grows. In Figure 5, the number of line
insertions per second on the roads data set is plotted
for all but the R*-tree structure5. From the figure, the
R+-tree’s insertion performance is roughly 1250 lines
per second for the first 10,000 lines of the roads data
set. Th’ is rate falls to 735, lines per second (cumu-
lative) by the time the build operation is completed
after inserting 200,482 lines. Each of the other struc-
tures exhibits similar performance decreases, though
none as steep as the R+-tree. These decreases are
expected and are due to the increased height of the
tree structures. Interestingly, in an earlier study [16],
the R+-tree was reported as exhibiting the fastest con-
struction times relative* to the R*-tree and the PMR
quadtree. That study was performed using data sets
whose size was on .the order of 50,000 line segments.
From Figure 6, we see that the R+-tree outperforms
all other structures up through 50,000 line insertions.
As the number of line insertions grows toward 200,000,
we observe that the R+-tree’s performance decreases
faster than the two PMR quadtrees. This results in
the two PMR quadtrees outperforming the Rt-tree by
7-12% on the larger data sets used in this study.

Figure 6 shows the construction times for the PMR
quadtree, both with, and without bounding boxes, for
the roads data set. From the figure, it can be observed
that as the splitting threshold increases, the build
times decrease. This is due to fewer node splits and

5The RI-tree, which is omitted from the figure, exhibits
performance starting at 109 segments per second, and falling
slightly to 104 segments per second by the completion of the
build operation.

612

a shallower tree structure. As the splitting threshold
grows past 30, build times begin to increase slightly.
This is because the PMR quadtree nodes begin to oc-
cupy a significant portion of the B+-tree pages, and
PMR quadtree nodes are more likely to exist on more
than one page. This increases the amount.of time re-
quired to perform basic node manipulations.

350

d 300
8
8
z

8 250

200

I I I I

PMRquadtree +
+
:

PMR quadtree @boxes) -I--

:
:
:
:
:
i,

\.-I--

‘\
‘*..

‘y-._ ----L- - __-

8 16 24 32
Splitting Threshold

Figure 6: Construction times for PMR uadtrees on the
roads data set for varying splitting thres a old values.

Figure 7 shows construction times for R-tree vari-
ants other than the R*-tree on the roads data set as a
function of node capacity. The figure shows that build
times fall dramatically between node capacities 75 and
100. This is due to the height of the R-trees decre&ing
by one. The build times then begin to increase as the
node capacity grows past 100 because of the increased
expense of determining which node to insert a line seg-
ment into, as well as the increased cost of splitting a
node. Note the relative rate of build time increase for
the linear and quadratic R-trees. In particular, the
construction time for the quadratic R-tree increases at
a faster rate than the linear R-tree because of the more
expensive node-splitting algori,thm (i.e., O(M’) versus
O(M), where M is the node capacity).

50 100 150 200
Node Capacity

Figure 7: Construction times for R-trees on the roads
data set for varying node capacities.

Figure’8 shows the construction times for the R*-
tree on two data sets (roads and water) for various

node capacities. As we can see, the R*-tree exhibits a
significant decrease in construction performance as the
node capacity M increases. This is primarily because
the R*-tree construction algorithm requires O(M’n)
bounding box intersections, where n is the size of the
input data set. The double log plot of the construc-
tion times highlights this relationship, with the perfor-
mance curve appearing linear. For small node capaci-
ties (i.e., 50), building the R*-tree is roughly one order
of magnitude slower than any of the other data struc-
tures. For larger node capacities (i.e., 200), building
the RI-tree is approximately two orders of magnitude
slower than the other data structures.

3 10,ooo

gl 5ooo
s
4

1 loo0

2 500
V R*-tree (roads) +-

R*-tree (water) f-

1
looI ’ I 4 I

50 loo 150 200
Node Capacity (log scale)

Figure 8: Dduble logarithmic plot of construction times
for R*-trees on the roads (200,482 lines) and water
(37,495 lines) data sets for varying node capacities.

4.2 Spatial Join Performance

The performance of the spatial join was measured for
each of the six spatial structures using the four ex-
tracted data sets (roads, non-roads, water, and bound-
ary). Two joins are studied in greater detail. The first
joins the roads data set and the water data set, result-
ing in 6,404 intersections. The second joins the roads
and the boundary data set, resulting in 10,983 inter-
sections. Other joins were also tested so that we could
see the effect ‘of the size of the output (the number
of intersections). The performance of each data set
was measured when the join resulted in the generation
of an output map containing all points of intersection
(termed spatial output), and when it resulted in a list
oftuples containing identifiers of the’intersecting lines
(termed &n-spatial output).

4.2.1 Roads and Water Spatial Join

Table 2 summarizes the performance of each data
structure on the roads versus water spatial join (node
capacity fifty, splitting threshold eight). For spa-
tial joins which result in a spatial output, the PMR
quadtree with bounding boxes outperformed the other
structures in terms of cpu time (155 seconds). It was

613

spatial spatial non-spatial
structure time I/OS 1 time I/OS

R-tree (hear) 1 162 11,514 I 143 11,310

Table 2: Spatial join of the roads and water data sets.

trivially faster than the next fastest structure, the
quadratic R-tree with 157 seconds. Adding bound-
ing boxes to the PMR quadtree reduces the join time
relative to the standard PMR quadtree by almost 30%
(155 seconds versus 211 seconds).

In terms of disk I/O, each of the PMR quadtrees
required considerably fewer operations (6,137 - 6,233
disk I/OS) than any of the R-tree variants (8,575 -
11,514 disk I/OS). This is primarily due to the abil-
ity of the PMR quadtree, as well as any other spa-
tial structure employing a regular decomposition of
space, to rapidly spatially correlate the contents of
one map with another. With the regular decompo-
sition of the PMR quadtree, there will exist either
a one-to-one, one-to-many, or many-to-one mapping
between the two joining data sets at the leaf level.
This is in contrast with the R-tree variants which will
often have a many-to-many mapping between joining
data sets. The many-to-many mapping between leaf
nodes among two different data sets prevents a simple
traversal of each data set where each page is read into
memory a single time. The more complex the many-
to-many mapping, the more often a page must be read
from disk. The incorporation of bounding boxes into
the PMR quadtree accelerates the join process with
respect to that for a PMR quadtree without bound-
ing boxes as considerable amounts of pruning can be
done at the leaf node level thereby saving accesses to
the secondary storage structure (the buffered feature
table). The more sophisticated and computationally
expensive node-splitting rule utilized by the R*-tree
resulted in considerably fewer disk I/OS as compared
with the other R-tree variants (8,575 versus .11,452 -
11,514). This large decrease in disk I/OS was offset by
the increased amount of time necessary to construct
the output map thereby resulting in the R*-tree taking
27 - 34 more seconds than the other R-tree variants.

Table 3 highlights the number of intersection tests
that are performed on each structure during. a spatial
join of the roads and water data sets. For example,
the linear R-tree performs 24,814 line-to-line intersec-
tion tests corresponding to the intersecting bounding
boxes in the two datasets, which, of course, are the
same for each of the other non-disjoint R-tree vari-
ants, the quadratic R-tree and the R*-tree. The linear

spatial
StNcture

linear Fl
lines

24,814

pairs tested
naivelines internal leaf
17.325.074 1 4.582 15.674

quad R 24;814 16;219;892 4;889 14;863
R+ 25,583 16,554,775 3,560 16,069
R* 24,814 14,408,052 2,903 9,805

PMR 1,267,939 1,267,939 - 323,804
1 PMR (bb) 1 37,118 1,267,939 1 - 323,804

Table 3: Spatial join data for the roads and water data
sets detailing line and node testing. In the table “R” de-
notes R-tree; “R*” denotes RI-tree; “PMR (bb)” denotes
PMR quadtree with bounding boxes.

R-tree also had 4,582 internal node intersection tests
between the joining structures, as well as 15,674 leaf
node intersection tests. The column labeled “naive
lines” corresponds to the number of line intersection
tests that would be required if bounding boxes and
spatial filtering were not employed in the spatial join
algorithm (see Figure 4). Bounding boxes and spa-
tial filtering are very simple techniques for spatial join
acceleration, even for simple features such as line seg-
ments. From Table 3, the incorporation of bounding
boxes into the PMR quadtree reduced the join time
by 57 seconds (27%), with the number of line versus
line intersection tests falling from over 1.2 million to
37,118, a 97% reduction. The trade-off is the increased
storage requirement for the bounding boxes resulting
in the PMR quadtree without bounding boxes occu-
pying 1,856 KB less disk space (18.5%; see Table 1).

The number of internal node and leaf node inter-
section tests (as shown in Table 3) is a useful measure
of the “goodness” of the spatial decompositions. From
the table, the R*-tree requires the fewest node inter-
section tests, both internally and at the leaf level as
compared with the other R-tree variants. The R+-tree
requires the largest number of leaf node intersection
tests. This is not surprising as the R+-tree has a dis-
joint decomposition which results in each line segment
possibly being represented more than once inside the
structure. The PMR quadtrees are not directly com-
parable in the node intersection test sense as the tested
quadtree implementation is pointerless thus having no
internal nodes (as opposed to pointer-based, see [ll]),
and the node size is much smaller given a splitting
threshold of eight.

Join times without spatial output are nearly equiv-
alent for all structures except the PMR quadtree with-
out bounding boxes (137 - 153 seconds). Surprisingly,
for the roads and water spatial join, the quadratic R-
tree slightly outperforms the R*-tree (137 seconds ver-
sus 142 seconds).

.Figures 9 and 10 show execution times for a spatial
join with a spatial output of the roads and water data
sets for the six structures when the node capacities
and splitting thresholds are allowed to vary. The two

614

PMR quadtrees exhibit optimal performance at dif-
fering splitting thresholds, In Figure 9, the standard
PMR quadtree performs best with a splitting thresh-
old of 8 to 12, while the PMR quadtree with bounding
boxes performs the best with splitting thresholds of
approximately 20. The PMR quadtree with bound-
ing boxes outperforms the standard PMR quadtree
primarily because the bounding boxes facilitate prun-
ing the number of line intersection tests required to
join two quadtrees (recall the “lines” and “naive lines”
pairs tested entries in Table 3).

300

t

PMRquadtree +
PMR quadtree (bboxes) -+--

100 ’ I I I I I
8

Splfing ThZo*d
32

Figure 9: Execution times for a spatial join for the
roads and water data sets with spatial output for PMR
quadtrees.

In Figure 10, we observe that the R+-tree outper-
forms all other R-tree variants for all tested node ca-
pacities. Interestingly, the R*-tree, which performed
relatively poorly for the smaller node capacities (50 -
100)) exhibited good performance for the larger node
capacities (150 - 200). Unfortunately, the build times
for the R*-tree are significantly larger than for the
other data structures for large node capacities and
larger data sets (refer to Figures 7 and 8).

I ’
I I I

250 A. R-tree (linear) tt-
,..’ ,/ ..,. R-tree (quadratic) +-

x..” \, ‘\., Rttree -D--
. ..’ Rz+z-~ ..)(_____

100 150 200
Node Capacity

Figure 10: Execution times for a spatial join of the roads
and water data sets with spatial output for the R-tree
variants.

4.2.2 Roads and Boundary Spatial Join

Table 4 shows performance statistics for the roads
Figure 11 shows the disk I/O performance of the and boundary map spatial join. Summary statistics

PMR quadtree when the node capacities and split- are shown in Despite the boundary data set having
ting thresholds are allowed to vary in the case of spa- fewer line segments than the water data set (18,505

tial output for the spatial join of the roads and wa-
ter data sets. Both PMR quadtrees exhibit decreas-
ing amounts of disk I/O as the splitting thresholds
increase. This is due, in part, to the decreased size
of the data structures. In particular, as the splitting
threshold increases, the number of q-edges decreases,
asymptotically approaching 1.0. The amount of addi-
tional disk I/O required by the PMR quadtree with
bounding boxes is not significant.

I I I I I I
8 16 24 32

Splitting Threshold

Figure 11: Spatial join of the roads and water data
with spatial output disk I/OS for PMR quadtrees.

sets

Figure 12 shows the disk I/O performance of the R-
tree variants for different node capacities as was done
for the PMR quadtrees in Figure 11. Not surprisingly,
the R*-tree, with its expensive node-splitting rule, ex-
hibits the best performance and outperforms the other
R-tree variants. The other R-tree variants require 15
- 75% more disk I/OS than the equivalent R*-tree. As
the node capacity increases, the amount of disk I/O
decreases for these structures.

12,500

10.000
R-tree (linear)

R-tree (quadratic) +-
R+-tree -Et--
R”-ae ..* ..*

2500
t

h_...)(
/

I 1 I I I (

50 loo 150 200
Node Capacity

Figure 12: Spatial join of the roads and water data sets
with spatial output disk I/OS for the R-tree variants.

615

spatial spatial non-spatial
structure time I/OS time I/OS

R-tree (linear) 180 11,733 156 11,254

Table 4: Spatial join of the roads and boundary data sets.

spatial
structure

R-tree (linear)

spatial non-spatial
time I/OS time I/OS
232 13,026 197 12,064

R-tre;qkFic) 255 231 14,091 218 211 13,086
12,785 11,828

R.-tree 380 11,935 226 11,097
PMR quadtree 256 7,709 224 6,290

1 PMR (w/bboxes) 1 247 8,467 j 215 6,365 1

Table 5: Spatial join of the roads and non-roads data
sets.
and 37,495 lines respectively), there were more inter-
sections detected when joining the roads and boundary
data sets (10,983 versus 6,404 for the roads and water
spatial join). The most interesting difference between
this spatial join and one described earlier (roads and
water) is the relative performance of the RI-tree. Be-
cause the roads and boundary spatial join has almost
twice as many reported intersections, and the build
time for constructitig the spatial output for R*-tree
joins is considerably higher than for the other sp&tial
structures, the R*-tree’s performance with a spatial
output declines relative to the other structures. For
the roads and boundary spatial join, the R*-tree is 52%
slower than the fastest structure (the PM& quadtree
with bounding boxes), while it was only 23% slower
than the fastest structure (again the PMR quadtree
with bounding boxes) for the smaller roads and water
spatial join. In contrast, the performance of the R+-
tree only declined from 6 to 9% slower than the PMR
quadtree with bounding boxes. Based upon theBe two
spatial joins, and coupled with the data structure build
statistics described in Figures 7 and 8, it is clear that
as the size of the spatial join output increases, the rel-
ative performance of the R*-tree will continue to de-
cline. Note that since the data sets are quite different
in terms of locality, the number of disk I/OS may de-
crease or show little change even though the size of the
output increases. ,For example, see the PMR quadtree
in Tables 2 and 4.

4.2.3 Roads and Non-roads Spatial Join

Table 5 corresponds to ihe spatial join of the roads
and non-roads data sets. This is a larger spatial join,
both in terms of both input and output map sizes
(18,739 intersections). Many of the previously ob-
served performance differences between the six spa-

tial structures (see Tables 2 and 4) become even more
pronounced with the larger data sets. Most notably,
the spatial structures that are faster to build (the R-
trees, the R+-tree, and the PMR quadtrees) outper-
form the R*-tree (231 - 256 seconds versus 380 sec-
onds, respectively). Observe again that despite com-
parable performance when there is no spatial output,
the R*-tree’s performance deteriorates much more, in
a relative sense, than the other structures when there
is spatial output.

1500 , I I I I

Q
1000

a 2 150

1-v

5ooo 10,OLlo 25,000 50,000 100,000
Spatial Join Intersections (log scale)

Figure 13: Execution times f& a spatial join with spatial
output according to output size.

PMRquadtree +--
PMR @boxes) -+--
R-tree (linear) -D - -

R+-tree *.-
R*-tie -S..

Figure 13 displays the execution times of a spatial
join with spatial output according to the number of
intersecting !ines determined by the spatial join. The
data is taken fro’m Tables 2, 4, add 5, as well As sotie
artificial data sets formed by eTp!acting line segments
at random from the entire data set for the Washing-
ton DC area. Frsm the figure, it’ is apparent that as
the number of intersections found in the spatial join
increases, the disjoint decompositions outperform the
non-disjdint decompositions. The implications of this
conclusion are discussed in greater’ detail in Section 5.

5.ooo
I I I

so00
A

10,cQn 25,ooo 50,000 100,cMxl
Spatial Join Inte~tioos (log scale)

Figyre 14: Disk I/OS for a spatial join with spatial output
according to output size.

Figure 14 shows the disk I/OS for a spatial join with
spatial output for according to the number of intersect-
ing lines determined by the spatial join. It is apparent

616

from the figure that the two PMR quadtrees with their
regular decomposition outperform the R-tree variants
across the spectrum of spatial join output sizes.

5 Comparison of the Structures

Our experiments (most notably Figure 13) have re-
vealed a number of interesting results. Most impor-
tantly, they show that when the output of the spa-
tial join is spatial, then spatial data structures baaed
on a disjoint decomposition of space (the R+-tree and
the PMR quadtree) outperform spatial data structures
based on a non-disjoint decomposition such .as the nu-
merous variants of the R-tree including the R*-tree.
This difference is primarily because of the need to build
the data structure as part of the output.

These differences in execution time and disk I/OS
become more pronounced as the output becomes
larger. In our tests, the difference became significant
when the output size was 25% or more of the larger of
the two inputs. This is especially true for the spatial
data structures based on a regular decomposition such
as the PMR quadtree with respect to the R+-tree and
to an even greater extent with respect to the R*-tree.
This difference is primarily because the bounding box
information which is used so effectively in the R-tree
variants and the PMR quadtree with bounding boxes
to limit the number of lines that must be tested for pos-
sible intersection is no longer as useful. The reason is
that bounding boxes do not prune enough of the inter-
sections when the output size is, large. An alternative
explanation of this result is obtained by noting that
R-trees and R+-trees are particularly useful in distin-
guishing between occupied and unoccupied space. In
these examples, most of the space is occupied, thereby
diminishing the utility of these representations.

In contrast, representations based on a regular de-
composition are more useful in such an environment as
they provide a correlation between occupied space in
the two data sets that are being joined. This was ver-
ified by our observations that as the size of the output
increased, the use of bounding boxes with the PMR
quadtree did not lead to a significant improvement in
performance (Figure 13) whereas it did so when the
output was smaller in Tables 2 and 4. Moreover, as
the size of the output becomes larger, the bounding
boxes in the PMR quadtree need more nodes as each
node contains fewer line segments due to the inclusion
of the bounding boxes. Thus more node intersections
must be performed each of which may require a disk
I/O operation thereby canceling the effect of the prun-
ing resulting from the use of the bounding boxes.

When the output of the spatial join is not required
to be spatial, then the R*-tree has comparable perfor-
mance to that of the R+-tree and the two variants of

the PMR quadtree as long as the output is consider-
ably smaller than that of the larger of the two inputs
(10%). However, as the output gets larger, the R*-tree
has been observed to require (not shown here) about
50%. more time than the PMR quadtree (with and
without bounding boxes), while having only a slightly
worse performance than the R+-tree.

These observations lead us to conclude that when
the size of the output of the spatial join is of the same
order of magnitude as the largest of the two inputs
(e.g., larger than 25%), then regardless of whether the
output is spatial or not, the PMR quadtrees yield sig-
nificantly better execution time performances than any
of the R-tree variants, However, for spatial joins that
result in more modest sized outputs, the R+-tree and
the PMR quadtree with bounding boxes prove supe-
rior to the other structures. In the context of disk
I/OS, however, the two PMR quadtrees outperform
the R-tree variants for all output sizes.

A case can still be made, however, for the use of
the R*-tree in a spatial join with spatial output as its
storage requirements are somewhat smaller than those
of the PMR quadtree.(20%) for our example data set
of over 260,000 line segments. Of course, the R-tree’s
construction time is significantly higher than the other
structures. This difference is compounded when the
structure is used where operations are cascaded SO that
the output of one spatial operation serves as input to
another spatial operation. We also observe that the
number of disk I/O operations is always lower for the
PMR quadtree than any of the remaining structures
at the expense of higher cpu costs for each disk I/O
operation due to the added complexity of the opera-
tions on each page that is retrieved since each page in
a PMR quadtree contains many quadtree nodes while
each page in an R-tree and an R+-tree contains just
one R-tree or R+-tree node.

References

PI

PI

[31

D. J. Abel. A .B+-tree structure for large
quadtrees. Computer Vision, Graphics and Im-
age Processing, 27(1):19-31, July 1984.

W. G. Aref and H. Samet. Uniquely reporting
spatial objects: Yet another operation for com-
paring spatial data structures. In Proc. of the 5th
Intl. Symp. on Spatial Data Handling, pages 178-
189, Columbia, SC, Aug. 1992.

N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Ppoc.
of the 1990 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pages 322-331, Atlantic City,
NJ, May 1990.

617

PI

[51

161

PI

PI

PI

PO1

WI

P21

[I31

P41

P51

T. Brinkhoff and H. P. Kriegel. The impact
of global clustering on spatial database systems.
In Proc. of the 80th Intl. Conf. on Very Large
Data Bases, pages 168-179, Santiago, Chile, Sept.
1994.

T. Brinkhoff, H. P. Kriegel, R. Schneider, and
B. Seeger. Multi-step processing of spatial joins.
In Proc. of the 1994 ACMSIGMOD Intl. Conf. on
Management of Data, pages 197-208, Minneapo-
lis, May 1994.

T. Brinkhoff, H. P. Kriegel, and B. Seeger. Effi-
cient processing of spatial joins using R-trees. In
Proc. of the 1993 ACM SIGMOD Intl. Conf. on
Management of Data, pages 237-246, Washing-
ton, DC, May 1993.

D. Comer. The ubiquitous B-tree. ACM Comput-
ing Surveys, 11(2):121-137, June 1979.

D. J. Dewitt, N. Kabra, J. Luo, J. M. Patel, and
J. B. Yudd. Client-server paradise. In Proc. of the
20th Intl. Conf. on Very Large Data Bases, pages
558-569, Santiago, Chile, Sept. 1994.

R. Elmasri and S. B. Navathe. Fundamentals of
Database Systems. Benjamin/Cummings, Red-
wood City, CA, 2nd edition, 1994.

C. Faloutsos, T. Sellis, and N. Roussopoulos.
Analysis of object oriented spatial access meth-
ods. In Proc. of the 1987 ACM SIGMOD Intl.
Conf. on Management of Data, pages 426-439,
San Francisco, May 1987.

I. Gargantini. An effective way to represent
quadtrees. Comm. of the ACM, 25(12):905-910,
Dec. 1982.

0. Giinther. Efficient computation of spatial
joins. In Proc. of the 9th IEEE Intl. Conf. in Data
Engineering, pages 50-59, Vienna, Apr. 1993.

A. Guttman. R-trees: A dynamic index structure
for spatial searching. In Proc. of the 1984 ACM
SIGMOD Intl. Conf on Management of Data,
pages 47-57, Boston, June 1984.

K. Hinrichs and J. Nievergelt. The Grid file:
a data structure designed to support proximity
queries on spatial objects. In Proc. of the WG’83
(Intl. Workshop on Graphtheoretic Concepts in
Computer Science), pages 100-113, Linz, Austria,
1983.

E. G. Hoe1 and H. Samet. Efficient processing of
spatial queries in line segment databases. In Ad-
vances in Spatial Databases - 2nd Symp., SSD’91,
pages 237-256. Springer-Verlag, Berlin, 1991.

WI

P71

PI

WI

PO1

PI

P21

P31

PI

P51

WI

[271

WI

E. G. Hoe1 and H. Samet. A qualitative compari-
son study of data structures for large line segment
databases. In Proc. of the 1992 ACM SIGMOD
Intl. Conf. on Management of Data, pages 205-
214, San Diego, June 1992.

E. G. Hoe1 and H. Samet. Data-parallel spatial
join algorithms. In Proc. of the 1994 Intl. Conf.
on Parallel Processing, volume 3, pages 227-234,
St. Charles, IL, Aug. 1994.

E. G. Hoe1 and H. Samet. Performance of data-
parallel spatial operations. In Proc. of the 80th
Intl. Conf. on Very Large Data Bases, pages 156-
167, Santiago, Chile, Sept. 1994.

M.-L. Lo and C. V. Ravishankar. Spatial joins us-
ing seeded trees. In Proc. of the 1994 ACM SIG-
MOD Intl. Conf. on Management of Data, pages
209-220, Minneapolis, May 1994.

M. MBntyla. An Introduction to Solid Modeling.
Computer Science Press, Rockville, MD, 1987.

R. C. Nelson and H. Samet. A consistent hierar-
chical representation for vector data. Computer
Graphics, 20(4):197-206, Aug. 1986.

R. C. Nelson and H. Samet. A population analysis
for hierarchical data structures. In Proc. of the
1987 ACM SIGMOD Intl. Conf. on Management
of Data, pages 270-277, San Francisco, May 1987.

J. Orenstein. An algorithm for computing the
overlay of k-dimensional spaces. In Advances in
Spatial Databases - 2nd Symp., SSD’91, pages
381-400. Springer-Verlag, Berlin, 1991.

D. Rotem. Spatial join indices. In Proc. of the 7th
Intl. Conf. on Data Engineering, pages 500-509,
Kobe, Apr. 1991.

H. Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley, Reading, MA,
1990.

M. Stonebraker, J. Frew, K. Gardels, and
J. Meredith. The Sequoia 2000 storage bench-
mark. In Proc. of the I999 ACM SIGMOD Intl.
Conf. on Management of Data, pages 2-11, Wash-
ington, DC, May 1993.

M. Tamminen. The EXCELL method for efficient
geometric access to data. Acta Polytechnica Scan-
dinavica, 1981.

U. S. Bureau of the Census, Washington, DC.
TIGER/Line Census Files: 1990 Technical Doc-
umentation, 1991.

618

