
Near Neighbor Search in Large Metric Spaces

Sergey Brin*
Department of Computer Science

Stanford University
sergeyQcs.stanford.edu

Abstract

Given user data, one often wants to find ap-
proximate matches in a large database. A
good example of such a task is finding images
similar to a given image in a large collection
of images. We focus on the important and
technically difficult case where each data ele-
ment is high dimensional, or more generally, is
represented by a point in a large metric space-
and distance calculations are computationally
expensive.

In this paper we introduce a data structure to
solve this problem called a GNAT - Geometric
Near-neighbor Access Tree. It is based on the
philosophy that the data structure should act
as a hierarchical geometrical model of the data
as opposed to a simple decomposition of the
data that does not use its intrinsic geometry.
In experiments, we find that GNAT’s outper-
form previous data structures in a number of
applications.

Keywords - near neighbor, metric space, approx-
imate queries, data mining, Dir&let domains,
Voronoi regions.

1 Introduction

A metric space is a space with an associated distance
function which obeys certain simple properties such as

*Supported by a fellowship from the NSF and by an equip-
ment grant from Digital Equipment Corporation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is

given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

the triangle inequality (see Section 3). Hence metric
spaces are a very general concept and can be applied
to vectors (for example, under Euclidean distance) as
well as objects like strings and graphs which cannot
be easily represented as vectors (if at all). Finding
near neighbors in a metric space refers to selecting the
elements of a data set (a finite subset of the space)
which are within a certain distance of a given point.

The problem of finding the near neighbors in a large
data set has been studied well and has a number of
good solutions, if the data is in a simple (e.g. Eu-
clidean), low-dimensional vector space. However, if
the data lies in a large metric space the problem be-
comes much more difficult. By a large metric space
we mean a metric space such that the volume of a ball
grows very rapidly as its radius increases. High dimen-
sional vector spaces are an example (a ball of radius 2
in a 20 dimensional Euclidean space is over a million
times larger in volume than a ball of radius 1).

Consider the following examples as a small sample
of where the problem of finding near neighbors in a
large metric space occurs:

Genetics - Finding similar DNA or protein sequences
in one of a number of large genetics databases.

Speaker Recognition - Finding similar vocal pat-
terns (e.g., under Fourier transforms) from a
database of vocal patterns.

Image Recognition - Finding images similar (us-
ing the Hausdorff metric [HKR93]) to a given one
from a large image library.

Video Compression - Finding the image blocks of
a previous frame that are similar to blocks in a
new frame (using a simple Li or Ls metric, pos-
sibly after a DCT transform) to generate motion
vectors in MPEG video compression.

Data Mining - Finding approximate time series
matches (e.g., stock histories or year long tem-
perature).

574

Information Retrieval - Finding documents re-
lated to a given document in a digital library.

Copy Detection - Finding sentences similar to a
user’s query in a large database of documents.

All of the examples above fit into the model of find-
ing near neighbors in a large metric space. In particu-
lar, the speaker recognition, video compression, infor-
mation retrieval, and possibly data mining examples
find near-neighbors in a high dimensional vector space
under the Li or L2 metric1 (more sophisticated met-
rics could be imagined).

The remaining examples do not fit nicely into any
vector space but since we are working with the more
general concept of a metric space we will be able to ad-
dress them. The genetics and copy detection examples
above find near neighbors in the metric space of strings
under some edit distance function. The image recog-
nition example does not fit into either a vector space
or a string space but it still qualifies as near-neighbor
search in a large metric space.

Every data type above has some degree of correla-
tion in its distribution. While that correlation may be
small (i.e., the data resembles random vectors), it must
be exploited to get good performance in a near neigh-
bor search. To do this in an application independent
manner requires that the data structure capture the in-
trinsic geometry of the data (Section 3). As we will see
(Section 4), our data structure, the GNAT, captures
the geometry of data collections such as the ones men-
tioned above by hierarchically breaking it down into
regions which try to preserve fundamental geometric
structure.

2 Related Work

A large amount of work has been done to solve specific
instances of near-neighbor finding problems. Numer-
ous articles have been written regarding finding simi-
lar vectors (e.g., time-series and geographic data), text
(files and documents), images, sounds (word recogni-
tion), etc. A more limited but still substantial amount
of work has addressed the general problem of finding
near neighbors in an arbitrary metric space2. This
work has mostly fallen into two categories. In one
category, we assume that distance calculations are so
expensive that even an O(n) or 0(n log n) search al-
gorithm is acceptable as long as it reduces the num-
ber of distance calculations. This is the case as long
as the database size is fairly small compared to the

‘Recall that Lk(F, jj) = qm. So L1 is the famil-

iar city block distance and LQ is the Euclidean distance.
2Some of the papers we mention below address the problem

of finding nearest neighbors. However, their methods can be
applied to finding all near neighbors with minimal change.

range of the search [FS82] or if preprocessing is not al-
lowed and only arbitrary pre-computed distances are
given [SWSO]. For th e examples mentioned in Sec-
tion 1 neither of these hold and, while distance com-
putations are expensive, the O(n) cost of such an al-
gorithm would dominate for a large data set.

The other category of solutions are hierarchical and
typically have an O(logn) query time given Q sufi-
ciently small range (typically too small to be practi-
cal). They are of the following form: The space is
broken up hierarchically. At the top node, one or sev-
eral data points are chosen. Then the distance be-
tween each of these to each of the remaining points is
computed. Based on these distances, the points are
separated into two or several different branches. For
each branch, the structure is constructed recursively.

J. K. Uhlmann outlined the foundation for two dif-
ferent methods, more generally referred to as metric
trees [UhlSl]. 0 ne of these methods, subsequently
called VP-trees3 was implemented by P. N. Yiani-
10s [Yia93]. The basic construction of a vp-tree is to
break the space up using spherical cuts. To build it,
pick a point in the data set (this is called the vantage
point, hence the name vptree). Now, consider the me-
dian sphere centered at the vantage point with a radius
such that half the remaining points fall inside it and
half fall outside. For every other point, put it in one
branch if it is inside the sphere and in another branch
if it is outside the sphere. Now, recursively construct
the lower level branches.

This approach has benefits in that it requires only
one distance calculation when visiting a node during
a search and it automatically creates balanced trees.
However, it suffers from regions inside the median
sphere and outside the median sphere being extremely
asymmetric, especially in a high-dimensional space.
Since volume grows rapidly as the radius of a sphere
increases, the outside of the sphere tends to be very
thin, given that there are as many points on the inside
as on the outside. This limits the amount of pruning
that can be done during a search and reduces perfor-
mance. In our work, we try to avoid such asymmetries.
While the limited branching factor of 2 can also be
viewed as a weakness, we have conducted experiments
with higher degree variations of vp-trees and find little
improvement in performance (see Section 5.2).

The other method, a generalized hyperplane tree
(gh-tree), is constructed as follows. At the top node,
pick two points. Then, divide the remaining points
based on which of these two they are closer to. Now,
recursively build both branches, This method is an im-
provement in that it is symmetric and the tree struc-

3 We do not look at the enhancement of vp-trees called VP”-
trees.

575

ture still tends to be well balanced (assuming suffi-
ciently random selection of the two points). However,
it has a weakness in that it requires two distance com-
putations at every node during a search and is limited
to a branching factor of two.

An improved variation of gh-trees was implemented
at ETH Zurich [BFR+93] as naonotonovs bisector trees
(sic), MBT’s, to deal specifically with text. However,
nothing in the method would have prevented them
from dealing with arbitrary metric spaces. The key
difference between MBT’s and gh-trees is that MBT’s
only select one new point at each new ,node. They do
this by reusing the point they are associated with in
the parent node. As a result, MBT’s overcome the first
weakness but the branching factor remains a problem.

The most relevant works, however, are also the old-
est. Burkhard and Keller suggested several data struc-
tures (and algorithms) [BK73] for approximate search.
The first is very similar to vp-trees except that it re-
quires a finite number of discrete distance values such
as in string edit distance. Essentially, for every van-
tage point, a separate branch is allocated for every
possible distance value. This method, however, suffers
from the same asymmetry problem as the vp-trees.

The other two data structures, which are the closest
to the GNAT, break up the space into a number of
balls, storing the radii and centers. More specifically,
divide the data points into groups using some method
(this was left as a parameter). Pick a representative of
each group and call it the center of the group. Then,
calculate the radius (the maximal distance to another
point) from the center for each group and pruning of
searches is performed based on these radii. Recursion
is briefly mentioned but not analyzed.

The third method, an enhancement of the second,
additionally requires that the diameter (the maximal
distance between any two points) of the points in any
group be less than a constant, k, and the group is then
called a clique. In this case, consider the set of all
maximal cliques (those cliques not strictly contained
in any othehcliques). It must be a cover of the data
set since every point is in at least one maximal clique.
Then, a minimal subcover is chosen as the set of all
groups.

These two schemes act as reasonably good models
of the data space they store and if extended to a hi-
erarchical structure, theyhave an arbitrary branching
factor. However, they have several weaknesses. First,
they do not work well with non-homogeneous data,
since we could easily end up with a lot of cliques con-
taining only one point and several cliques containing
very many points. Additionally, distance computa-
tions are not fully exploited in that distance to the
center of one clique is not used to prune other cliques.
Finally, while we do not focus on the cost of prepro-

cessing in this paper, this cost was reported to be ex-
tremely high in the third method.

K. Fukunaga and P. Narendra worked out a very
similar scheme, which requires more than just a met-
ric space, to create a tree structure with an arbitrary
branching factor in 1975 [FN75] as follows. Divide the
data points into k groups. (How this is done is left
as a parameter of the structure but in tests they used
a clustering algorithm which requires more than just
a metric space.) Then compute the mean4 of each
group (once again a departure from a metric space)
and the farthest distance from that mean to a point
in the group. Then recursively create the structure
for each group. While this method tends to have nice
symmetric properties (given a reasonable clustering al-
gorithm) that reflect the space and it has an arbitrary
branching factor, it has several weaknesses. First, it
relies on more than just a metric space; second, it re-
quires many distance computations at each node and
does not use them fully; and third, it does not deal
effectively with balancing.

In this paper we present GNAT’s which can be
viewed as both a generalization of Fukunaga’s method
and a generalization of gh-trees. GNAT’s provide good
query performance by exploiting the geometry of the
data. Unfortunately, while query time is reduced, the
build time of the data structure is sharply increased.
However, if the application is query dominant (or even
if there are roughly as many queries as data points) the
relative cost of building a GNAT becomes negligible.
In tests, we find that GNAT’s almost always perform
better than both vp-trees and gh-trees, and scale bet-
ter.

3 Large Metric Spaces

To formalize the problem, we present the standard def-
initions of a metric space and near neighbors.

Definition 1 (Metric Space) A metric space is (I
set X with a distance function d: X2 + R such that:

VX,Y,Z E x,

1. d(x, y) 2 0 and d(x, y) = 0 ifl x = y. (Positivity)

2. d(x, y) = d(y, x). (Symmetry)

3. d(x, y) + d(y, z) 2 d(x, 2). (Triangle Inequality)

Definition 2 (Near Neighbors) Given a metric
space (X, d), a data set Y C X, a query point x E X,
and a range r E R, the near neighbors of x are the set
of points y E Y, such that d(x, y) 5 r.

4The mean of a set of points (vectors) in a vector space is
simply their sum divided by their number. The concept of a
mean is not meaningful for arbitrary metric spaces.

576

Since we are dealing with arbitrary metric spaces,
we assume the following model of computation: we
are given the data set Y and a “black box” Dist, to
compute the distance, d, between members of Y. We
can pre-process Y (using Dist) and then we want to be
able to answer user queries quickly. Queries will be of
the form (c, r) , requesting the members of Y which are
within P of 2. If r is fixed for all queries then it can be
taken into account in the preprocessing phase. For the
indexing schemes we present in this paper, however, r
can vary from query to query.

The first important observation is that it is impos-
sible to deal efficiently with all metric spaces. In par-
ticular, consider the metric space where the distance
between two points is 0 if they are the same point and
1 if they are different. Then our only option in find-
ing the near neighbors of a given query point with any
range less than 1 is a linear search and no fancy data
structure will save us. In fact, the more any space re-
sembles such a metric space, the more difficult it will
be to search.

Furthermore, the distribution of the data set in the
metric space is more important than the metric space
itself. If the data lies on a two-dimensional surface that
is embedded in a 50-dimensional space, query times
will behave more like that of a two-dimensional space
than that of a 50-dimensional space, given an int(elli-
gent data structure. In a sense, for a high-dimensional
space, t,he data determines the “geometry” of the space
more than the constraints of the space itself do. For
example, if we take a random set of words out of a
book, we are working in the space of all strings (over
a certain alphabet), but in this particular case we are
much more likely to encounter some strings, like “the”,
than others, like “xyzzy”. Such highly nonuniform dis-
tributions of data points will significantly affect search
performance.

Since visualizing high-dimensional data is difficult
we look at some simple measures to help us understa,nd
the geometry of a given data set. A particularly useful
measurement is the distribution of distances between
random points of the data. While the scales of these
distributions vary greatly, we can compare them by
considering at what range we would be interested in
finding near neighbors. In each of the graphs of the
distributions that follow, we have calculated the prob-
ability density function (PDF) of a random distance
calculation. To determine this we used 5000 random
distance calculations from the data set, distributed the
distances into a number of buckets, and plotted the rel-
ative probability of falling into each bucket. We use
relative probabilities so the plot does not depend upon
the bucket size and because this is the standard way
to visualize a continuous random variable. Since these
are not absolute probabilities, they may exceed one

0.35

2 0.3
e
2 0.25

2 0.2

.kY 0.15

z& 0.1

0.05

0

Dim 20 - -
Dim 50 ---

If\ \
/ ‘\

/ \
I \

:
\
\

I \

I’
\ \

/” I

\
\
I ‘.-

0 5 10 15 20 25
Distance

Figure 1: Distribution of distances between vectors
chosen uniformly from unit cubes under the L1 metric
in 20 and 50 dimensions.

1.8 1 I I I I I I I I
1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3 3.5 4

Distance
Figure 2: Distribution of distances between vectors
chosen uniformly from unit cubes under the Lz metric
in 20 and 50 dimensions.

(however, the integral of any PDF is 1).
The distributions of distances between random, uni-

formly chosen vectors in 20 and 50 dimensional hyper-
cubes of side 1 under the L1 metric are very closely ap-
proximated by Gaussian distributions because of the
Central Limit Theorem (Figure 1). For the L2 metric,
we obtain a Gaussian-like (though not exactly Gaus-
sian) distribution (Figure 2). Note that the distribu-
tions for 50 dimensions should be viewed in relation
to their’larger ranges and hence are really quite nar-
row. The fact that the peaks are narrow indicate that
the distance function has low entropy and that it may
be difficult to index the data since arbitrary distance
measurements will provide us with little information
(by contrast a uniform distribution would have high
entropy and distance measurements would give us a
lot of information).

Correlated data has somewhat different properties
and tends to have a much flatter distance distribu-

577

m
b 0.8

G 0.7

g 0.6

-$ 0.5

-g 0.4

; 0.3

‘2 0.2

2 0.1

by 16
by 50

‘-1 -\ .

‘\

0
2000 4000 6000 8000

Distance
Figure 3: Distribution of distances between 16 by 16
and 50 by 50 subimages under the L2 metric.

0.09 I I I I I I I

0.08

g 0.07
$ 0.06
e
g 0.05

; 0.04

‘fj 0.03

2 0.02

0.01

0
0 10 20 30 40 50 60 70 80 90 100

Distance
Figure 4: Distribution of edit distances in lines of text.

tion. For example, consider taking random 16 by 16
or 50 by 50 blocks from an image, then treating them
as 256 or 2500 dimensional vectors respectively by us-
ing a dimension for every pixel. Note that the dimen-
sions corresponding to adjacent pixels should be highly
correlated since adjacent pixels have very similar col-
ors very frequently. In essence, the images are using
an extremely small portion of their very high dimen-
sional space and we will capitalize on this during our
search. Taking the Lz distances between these image
vectors creates a distribution with two major maxima
(Figure 3) (the source image was a 640x480 grayscale
version of Seurat’s “A Day in the Park”). The first
maximum, near 0, indicates a great deal of clustering
in the data since small distances are so probable; the
second major maximum is one that is common to all
large metric spaces we will investigate, which indicates
that average distances are fairly likely.

As another example, consider taking lines of text
(averaging 60 characters) from a large text document
(A Tale of Two Cities in this example) and using a

Figure 5: A Simple GNAT (see Section 4)

simple edit distance function.5 We consider two dif-
ferent such functions. Both count the minimum num-
ber of operations needed to get from one line to the
other. The first distance function, InsDel allows only
inserts and deletes of single characters as operations.
The second, Edit, adds the operation of replacing one
character (which previously cost 2 operations - an in-
sert and a delete) and is consistent with what is usu-
ally used to compute distance between strings. Both
distance functions have the unfortunate property of
requiring O(n2) steps to compute where n is the num-
ber of characters, hence minimizing such calculations
is very important. When we map out their distribu-
tions (Figure 4), both turn out to be considerably less
correlated than the images and look roughly like the
uniformly chosen vectors (Figures 1 and 2).

4 GNAT’s

Our goal when designing GNAT’s was to have a data
structure that reflected the intrinsic geometry of the
underlying data. More specifically, the top node of
our hierarchical structure should give us a very brief
summary of the data as a metric space, and as we
progress down the hierarchy we get a more and more
accurate sense of the geometry of the data. This is
achieved as a hierarchical, Dirichlet domain6 based,

5Note that there is no valid distance function which will work
well for subsequence matching (finding lines of text in the data
set which contain a substring similar to a given one) because
of the symmetry requirement. To use metric spaces for this,
it is necessary to consider the data set to be the set of all the
subsequences.

6Computer scientists may know these better as the cells of a
Voronoi diagram but since we are not referring to the edge and

578

structure. Given a number of points, ~1,. . . , zk, the
Dirichlet domain of zi consists of all possible points in
the space which are closer to xi than any other point
xj (jfi).

At the top node of a GNAT, several distinguished
split points are chosen and the space is broken up into
Dirichlet domains based on those points. The remain-
ing points are classified into groups depending on what
Dirichlet domain they fall into. Each group is then
structured recursively. A simple example of such a
structure is illustrated in Figure 5. The heavier points
represent the split points of the top node and finer
points are split points of the subnodes. The thick lines
represent the boundaries of the regions of space that
belong to the top level split points and the thin lines
are those of the low level split points.

Another goal of GNAT’s is to make full use of
the distances we calculate (at least within one node).
Therefore, instead of relying on the Dirichlet structure
to perform our search, we also prune branches by stor-
ing the ranges of distance values from split points to
the data points associated with other split points dur-
ing the build. Then, if query points fall outside these
ranges by more than the range of the search, we can
prune the split point and everything under it from the
search.

For example, suppose we know that all points in
the region associated with split point q have distance
between 3 and 4 from split point p and we want to
search for points within a radius of 0.5 from a query
point x. Then if x is less than 2.5 from p, we can apply
the triangle inequality (to the points p, t, and y where
y is any point in the region of q) and safely prune the
node associated with q (see Figure 6; the notation is
explained in Section 4.1).

4.1 A Simplified Algorithm

The basic GNAT construction is as follows:

1. Choose k split points, pl, . . . ,pk from the dataset
we wish to index (this number, known as the
degree can vary throughout the tree, see Sec-
tion 4.3). They are chosen randomly but we make
sure they are fairly far apart (see Section 4.2).

2. Associate each of the remaining points in the
dataset with the closest split point. Let the set of
points associated with a split point pi be denoted

4..

3. For each pair of split points, (pi, pj), calculate the

4.

5.

ran&i, Dpj) = [min-d(Pi, DpJ), ma=-@i, Dpj)I, 4 2 .

Figure 6: Pruning branches using ranges. Here, we can
safely prune D, since Dist(x,p) + T < min-d(p, Dn).

a minimum and a maximum of Dist(pi, x) where
X E Dpj U {PjII.

4. Recursively build the tree for each Dp,, possibly
using a different degree (see Section 4.2).

A search in a GNAT is performed recursively as
follows:

Assume we want to find all points with distance
5 r to a given point c. Let P represent the set of
split points of the current node (initially the top
node of the GNAT) which possibly contain a near
neighbor of x. Initially P contains all the split
points of the current node.

Pick a point p in P (never the same one twice).
Compute the distance Dist(x,p). If Dist(x,p) < r
add p to the result.

For all points q E P, if [Dist(x, p) - T, Dist(x, p) +

4 n ~awe(p, Q) is empty, then remove q from P.

We can do this for the following reason. Let y
be any point in D,. If Dist(y,p) < Dist(x,p) -
r, then, by the triangle inequality, we have
Dist(x,y) + Dist(y,p) > Dist(x,p) and hence
Dist(x,y) > T. Alternatively, if Dist(y, p) >
Dist(x,p) + r, we can use the triangle inequal-
ity, Dist(y, x) + Dist(x, p) 2 Dist(y, p) to deduce
Dist(z, y) > T. The point y cannot fall into the
range [Dist(x,p) - r, Dist(x,p) + r] because then
range(p, D,) would intersect it. (See Figure 6.)

Repeat steps 2 and 3 until all remaining points in
P have been tried.

For all remaining pi E P, recursively search Dp,.

Selecting Split Points
vertex structure of a Voronoi diagram and are not restricting
ourselves to Euclidean spaces, we refer to these cells as Dirichlet One of the issues we had to deal with was the selec-
domains. tion of split points (step 1 in the construction). We

579

wanted split points to be more or less random, since
this way they are likely to be near the centers of clus-
ters. However, we did not want the split points to
bunch up, since if they did, distance calculations from
them would not have as much information content (dis-
tances measured from one member of a bunch would
be similar to those of another) and they would not
model the geometry of the data well. Furthermore,
if several split points were in the same cluster, they
would likely divide the cluster at too high a level.

The strategy we settled on is to sample about 3
times the number of split points we want; call these
the candidate split points. Then pick those candi-
date points that are the farthest apart (according to
a greedy algorithm). The number 3 was arrived at
empirically. More specifically this is done as follows:

Pick one of the candidate points at random. Then
pick the candidate point which is farthest away from
this one. Then pick the candidate point which is the
farthest from these two (by farthest we mean that the
minimum distance from the two is the greatest). Then
pick the one farthest from these three. And so on, until
there are as many split points as desired. A simple
dynamic programming algorithm can do this in O(nm)
time where n is the number of candidate points and m
is the final number of split points.

4.3 Choosing the Degree of a Node and Bal-
ancing the Tree

For our initial experiments we chose a degree and kept
it constant over all the nodes in a tree. This worked
reasonably well with uncorrelated data. However, for
correlated data, it sometimes unbalanced the tree sub-
stantially. Attempts to balance the size of branches
(by weighting distances to split points) tended to harm
performance more than they helped. So we consid-
ered “balancing” the tree by assigning higher degrees
to those nodes that contained too many data points.
This is done as follows:

The top node is allocated a degree k. Then each
of its children is allocated a degree proportional to the
number of data points it contains (with a certain max-
imum and minimum) so that the average degree of a
child is the global degree of k. This process works
recursively so that the children of each node have av-
erage degree k (ignoring the maximum and minimum
degrees), The minimum used in tests was 2 unless
there only was one point and the maximum was 5k or
200, whichever was smaller.

4.4 Space and Time Complexity

Unfortunately, GNAT’s are sufficiently complex that
they are unwieldy to formal analysis. Therefore the
results we present here are weak and limited.

We use the following notation:

l N - the number of data points.

l n - the number of nodes. Empty nodes are not
counted.

l s - the maximum size (space requirement) of a
data point.

l d - the maximum degree of a node.

l k - the average degree (equal to N/n).

l k2 - the second moment (the average of the
squares) of the degree.

a 1 - the average depth of a point in the GNAT.

l s - the amount of memory needed to store a data
point.

We produce the following simple results:

Space (memory) A GNAT takes O(nkz+Ns) space.
In practice, k2 does not turn out to be much
higher than k2.

Preprocessing Time This is the main disadvantage
of GNAT’s as compared to other data struc-
tures. In a perfect scenario, when the tree is
completely balanced, we get a preprocessing time
of O(Nk logk N) distance calculations which is a
factor of k/log k more than binary trees requir-
ing only one distance calculation per node. In the
real world, this can be substantially more due to
the fluctuating degrees and can be bound only by
O(NZd) distance calculations. In tests, 1 tended to
be very close to, though slightly more than ZogkN
and certainly not all nodes were of degree d so the
real preprocessing time lies somewhere between
those two extremes.

Query Time This is the most difficult performance
attribute to evaluate but it is also the most im-
portant. While there have been upper bounds in
previous works, they have either been restricted
to particular domains or have made assumptions
which make them of no practical use. As a result
of this and the added complexity of GNAT’s we
rely on the experimental results (see Section 6).

We do not address how to layout GNAT’s on disk
and analyse the performance impact of disk based stor-
age in this paper. A major reason for this is that the
layout would have to be strongly dependent on the
type of data. Recall that during a query, the distances
between the query point and the split points it en-
counters along the way (not including the ones that

580

are pruned) are computed. Hence the non-leaf nodes
must contain enough information to compute distances
to the split points. This information could easily take
up many disk blocks (in the case of 50 by 50 images
for example), be variable sized (in the case of strings),
or be a pointer to another structure (an (8,~) offset
to a large image file). Therefore it is unlikely that a
general scheme could work well in all these cases.

5 Implementation

The system used for testing GNAT’s and other data
structures underwent several major revisions, being
implemented in Mathematics, then C, and finally
C++. In each of these versions, the benefit of having
the data structure rely only on the distance function
was a tremendous advantage.

In the final version, the code to handle vectors and
text (including generation and/or loading and distance
functions) is under a hundred lines each. The code for
images is just over a hundred lines, mainly to deal with
the file format.

5.1 Data Types Supported

The data types (metric spaces) with which the system
works are as follows:

Vectors - The simplest of the data types, these are
N-dimensional vectors from a hypercube of side 1
and can be chosen in two different ways - chosen
uniformly from ‘R”, and chosen uniformly from
7Z2 and then mapped into ‘R” using a simple con-
tinuous function. Both the L1 and L2 metrics are
supported.

Image Blocks - These are 16 by 16 blocks chosen
randomly from a gray-scale image. Two images
were used in tests and they produced very similar
results despite being very different - a digitized
version of “A Day in the Park” by Seurat and a
picture of an SR71 Blackbird. Distance between
image blocks is computed very simply (since this
is’ how current MPEG motion vector estimation
.schemes do this) by considering the blocks as 256
dimensional vectors and using L1 or L2 distance.
Given that the code can handle arbitrary sized
blocks a few experiments were run on 50 by 50
pixel blocks, since they have some interesting clus-
tering properties.

Lines of Text - While the vectors and images both
fit into vector spaces, lines of text do not. These
were lines taken from a text document. Two dif-
ferent documents were attempted - all five acts
of “Hamlet”, which unfortunately totaled only
about 4000 lines, .and Dickens’ “A Tale of Two

Cities”. For Dickens, this was a less meaningful
test since taking lines out of a novel is not par-
ticularly reasonable (sentences would have been
better but they were too long for substantial sim-
ilarity to occur). Both texts were processed before
being read by normalizing whitespace and getting
rid of very short lines. Additionally, in Hamlet,
speaker names were stripped. Results for these
two were not as similar as one might expect (see
Section 6). Both the InsDel and the Edit dis-
tance functions (see Section 3) were implemented
and tested.

5.2 Data Structures Supported

The final implementation supports a number of data
structures including GNAT’s.

VP-Trees - See Section 2 for a brief description. In
the tests presented here, we did not use any sam-
pling technique to chose vantage points since we
could not be sure that we would do it identically
to [Yia93]. However, some limited tests with sam-
pling indicated that savings were in the 10% range
for images and were negligible for text and ran-
dom vectors. In graphs, these are labeled as vpz-
trees since they are the special case of vpk-trees
where k = 2.

VPk-DeeS - A generalization of vp-trees which dif-
fers in that at each node, instead of the remain-
ing data points being split into two halves based
on their distance from the vantage point, they
are split into k sections of equal size (also based
on distance from the vantage point). These were
found to perform very similarly to vp-trees (fre-
quently a little better) but there was not a suffi-
ciently large difference to warrant further investi-
gation.

GH-Trees - See Section 2 for a brief description.
They are essentially GNAT’s of constant degree 2
without the sampling for split points and degree
variation throughout the tree. Since they perform
worse than GNAT’s of degree 2, not many exper-
iments were performed.

OPT-Trees - These use a much smaller number of
distance computations for queries than any other
structure but they lose out by having far more
costly other computations (even super-linear in
the number of data points). The idea here is to
pick a number of vantage points. Measure the

‘distances from each to all the other points and
store these in a table. When a query comes along,
measure its distance to the first vantage point and
based on that weed out all of the impossible data

581

points. Then take the next vantage point and do
the same. Continue until no more data points are
pruned. Then, check each of the remaining ones
individually. Up to the choice of vantage points
this gives more or less the optimal performance, in
terms of distance calculations. This structure can
serve as a lower bound for distance calculations
but is not a realistic goal to shoot for if one wants
a scalable structure.

GNAT’s - This is the main data structure of this
paper, described in Section 4.

For each of these, we check how many distance cal-
culations are used to both build the structure and per-
form queries.

6 Tests and Results

Given the flexibility of the test-bed system, the num-
ber of possible interesting tests to run exceeded by
far the number which could be run (in a reasonable
amount of time) which in turn exceeded by far the
number of test results presented in this section. Note
that the benefits of GNAT’s varied and in this sec-
tion we try to present, the range of results that were
obtained.

Also, while opt-tree plots are in some of the graphs,
it is important to keep in mind that these structures
are only efficient in terms of distance calculations but
are very inefficient otherwise. They are provided just
to serve as a lower bound.

6.1 Random Vectors

A number of tests were performed on random vectors.
The dimension was set at 50, uniformly chosen vec-
tors were produced, and the L-J metric was used. The
range was varied and a number of different data struc-
tures were tested. The number of data points was 3000
(Figure 7) in one test and 20000 (Figure 8) in another.
The number of test queries used in every case was 100.

The first thing to note is how difficult it actually is
to perform these searches. All of the data structures
seemed to struggle with ranges above 0.3 (reasonable
queries could easily have ranges considerably above
0.5), looking at more than 50% of the data points in
many cases. This is caused by the low information
content of the distance calculations since they tend to
return very similar numbers (Figure 2).

Despite the difficulty that all these methods have,
high degree GNAT’s come out far ahead. In particular,
the GNAT’s of degrees 50 and 100 had more than a
factor of 3 improvement over vp-trees in many cases.

Query Range
Figure 7: Varying Query Range for 3000 Vectors

8 20
2 18
; 16

.s 14
$ 12
3 10
‘J 8
8 6
il * 4 .I?
n 2
* 0

0 0.1 0.2 0.3 0.4 0.5
Query Range

Figure 8: Varying Query Range for 20000 Vectors

6.2 Text

We ran a number of experiments with text with varied
success. When testing 3000 lines of Hamlet using the
InsDel distance, speedups above vp-trees were in the
factor of 2 range (Figure 9). Testing on 10000 lines of
A Tale of Two Cities with the Edit distance yielded
much more dramatic yet varied speedups, ranging from
around 50% with a query range of 10 to more than a
factor of 6 with a range of 2 (Figure 10).

6.3 Images

The performance of GNAT’s versus vp-trees on images
varied greatly but they were not nearly as dramatic as
the results for random vectors and text. For exam-
ple, for 16 by 16 block images and the L2 metric, the
higher degree GNAT’s gave only about 15% to 25%
improvement over vp-trees (Figure 11). When using
50 by 50 blocks, results were a little better, with im-
provements in the 15% to 35% range for ranges above
200 (Figure 12). Th is is a clear indication that more
work needs to be done to deal with clustered data.

582

8
20

7 18
2 16

.s 14
-g 12
y 10
v 8
8
53 6
c3
.z 4
n 2
* 0

2 3 4 5 6 7 8 9 10
Query Range

Figure 9: Varying Query Range for 3000 Lines of Ham-
let Using the ZnsDel Distance

Q
9

‘;; 8

8
7

‘5 6 d
+g 5

g 4

8 3

B 2
.I?,
n 1
* 0

0 2
Qtery Ran\,

8 10

Figure 10: Varying Query Range for 10000 Lines of
Dickens Using the Edit Distance

7 Conclusion and Future Work

In working with large metric spaces, we have proved
our intuition from low-dimensional spaces wrong in
many ways. In many cases explored in this paper the
data lies in a very large metric space whose only easily
recognizable and readily usable structure is the dis-
tance between its points, In other words, the space is
so large that it is meaningless to consider and use its
geometry and one should concentrate on the intrinsic
geometry of the actual set of data points.

Consequently, it is important to exploit the con-
straints of the distribution of data rather than rely on
those of the whole space. Therefore, GNAT’s try to
model the data they are indexing. There are several
important issues involved in doing this.

First, does one break up the space by occupation
or by population? In other words, if the data is com-
posed of a large cluster and a few outliers, should the
top node assign one branch for the cluster and a few
branches for the outliers or should it split the clus-

8
I8

; 16

g 14 .j
.$ 12

$ 10
V
8 8

2 6
.2
n 4

* 2
0 50 100 150 200 250 300 350 400 450 500

Query Range
Figure 11: Performance for 3000 16 by 16 images

8
7

4
x 6

8
3 5
rd

3 4

s 3
8
L5 2

.2
n 1

* 0
0 50 100 150 200 250 300 350 400 450 500

Query Range
Figure 12: Performance for 3000 50 by 50 images

ter immediately and not worry about the outliers un-
til later? In GNAT’s we decided to compromise by
first sampling (the by-population approach) and then
by picking out the points that were far apart (the by-
occupation approach) when choosing split points. The
current method of selecting points that are far apart
can become asymmetric and some pathological behav-
ior was observed (though it didn’t impact query per-
formance much). This remains a problem for future
work.

A second issue is how to handle balancing. In our
experiments, we found that good balance was not cru-
cial to the performance of the structure. We attempted
to improve the structure by using “weighted” Dirich-
let domains but these tended to decrease performance
rather than improving it. (They did reduce build time
though.) Intuitively, when the tree structure is altered
so that it is balanced rather than so it reflects the ge-
ometry of the space, searches tend to descend down
all branches. As a result we decided to keep the tree
depth from varying too much by adjusting the degrees
of the nodes.

For future work, we are considering new methods of

583

building the tree. Bottom-up constructions could lead
to very good query performance but their O(n2) con-
struction cost will not scale well. Consequently, we are
considering schemes where a top-down construction is
used but then is iteratively improved until it converges
to a bottom-up type construction.

Another important research direction is to begin to
use approximate distance metrics. For example, in or-
der to compute near neighbors in text using the edit
distance (an expensive computation), we can first use
the q-gram distance [Ukk92] (a relatively fast compu-
tation) to narrow the search quickly and then apply
proper edit distance to complete the search. The key
is that q-gram distance is a lower bound for edit dis-
tance. Similarly, we could linearly project down’a very
high-dimensional space (such as 50 by 50 pixel images)
to a somewhat lower dimensional space (e.g. by aver-
aging together 2 by 2 pixel blocks) and use that as an
approximation (Lq distance in the projection is a lower
bound for L2 distance in the original space). All of
these techniques, of course, rely on special knowledge
of the metric space to construct the approximations.
However, given the approximations, a general method
could be applied.

8 Acknowledgments

I thank Prof. Michael Brin, Prof. Hector Garcia-
Molina, Prof. Frank Olken, Luis Gravano, Edouard
Bugnion, and Sandeep Singhal for helpful discussions
and for listening to my endless ramblings.

References

[BFR+93] E. Bugnion, S. Fei, T. Roes, P. Widmayer,
and F. Widmer. A spatial index for ap-
proximate multiple string matching. In
Proc. First South American Workshop on
String Processing, Belo Horizonte, Brazil,
pages 43-53, nivio@dcc.ufmg.br, Septem-
ber 1993.

[BK73]

[FN75]

[FS82]

[HKR93]

[SW90]

[Uhlgl]

[Ukk92]

[YiaSS]

W. A. Burkhard and R. M. Keller. Some
approaches to best-match file searching.
Communications of the ACM, 16(4), April
1973.

K. Fukunaga and P. M. Narendra. A
branch and bound algorithm for comput-
ing k-nearest neighbors. IEEE Trans. Com-
put., C-24:750-753, July 1975.

C.D. Feustel and L. G. Shapiro. The near-
est neighbor problem in an abstract metric
space. Pattern Recognition Letters, pages
125-128, December 1982.

D. P. Huttenlocher, G. A. Klanderman, and
W. J. Rucklidge. Comparing images using
the hausdorff distance. IEEE Transactions
on Pattern Analysis and Machine Intelli-
gence, 15(3):850-63, September 1993.

Dennis Shasha and Tsong-Li Wang. New
techniques for best-match retrieval. A CM
Transactions on Information Systems,
8(2):140-158, April 1990.

J. Uhlmann. Satisfying general proximity
/ similarity queries with metric trees. In-
formation Processing Letters, 40(4):175-g,
November 1991.

E. Ukkonen. Approximate string matching
with q-grams and maximal matches. The-
oretical Computer Science, 92(1):191-211,
January 1992.

P. N. Yianilos. Data structures and algo-
rithms for nearest neighbor search in gen-
eral metric spaces. In ACM-SIAM Sym-
posium on Discrete Algorithms (A Con-
ference on Theoretical and Expem’mental
Analysis of Discrete Algorithms), pages
311-321, 1993.

584

