
The hBn-tree: A Modified hB-tree
Supporting Concurrency, Recovery and Node Consolidation *

Georgios Evangelidis David Lomet
Leoforos Stratou 13 Microsoft Corporation

GR-54639 Thessaloniki, Greece Redmond, WA 98052

Betty Salzberg
Northeastern University

Boston, MA 02115

Abstract

We describe a new access method, the hB”-tree, an
adaptation of the hB-tree index to the constraints
of the II-tree . The II-trees, a generalization of the
Blink-trees, provide high concurrency with recovery,
because they break down structure modification into
a series of short atomic actions. In addition, the II-
trees include a node consolidation algorithm. The
hB-tree is, a multi-attribute index which is highly in-
sensitive to dimensionality, but which has no node
consolidation algorithm and has a flaw in its split/post
algorithm in certain special cases. The hB”-tree cor-
rects the splitting/posting algorithm and adapts the
concurrency, recovery and node consolidation of the
II-tree to the hB-tree. The combination makes the
hBn-tree suitable for inclusion in a general purpose
database management system.supporting multi-attribute
and spatial queries.
keywords: indexing, B-trees, multi-attribute
access methods, spatial access methods, con-
currency, recovery

1 Introduction

Current DBMSs efficiently organize, access, and ma-
nipulate enormous quantities of data for traditional
applications in banks, airlines, government agencies,
hospitals, and other large organizations. Almost all of
them implement some variation of the B+-tree [2, 41.

l This work was partially supported by NSF grants IRI-
91-02821 and IRE93-03403.

Permirrion to copy without fee all or part of thir mateziol ir
grunted pwoided that the copier ure not made or dirtributedfor
direct commercial advantage, the VLDW copyright notice and
the title of the publication and itr date appear, and notice ie
given that copying ir by permirrion of the Very Lclwe Data Ware
Endowment. To copy othermire, or to republirh, nquirsr a jss
and/or rpecial permirrion from the Endowment.

Proceedings of the 2let VLDB Conference,
Zurich, Switzerland 1996

However, today new non-traditional applications,
with growing mountains of data, require innovative
solutions to storage and access problems. These in-
clude scientific applications such as those proposed
for the terabytes of meteorological, astronomical and
geographic data streaming in daily from satellites.
This data must be organized spatially by latitude and
longitude and height above the earth, for example,
rather than linearly by one attribute.

Spatial organization of large databases is a largely
unsolved problem. There have been a number of pro-
posals for multi-attribute and spatial indexing in the
past 15 years (for example, [8,15,7,18, lo]), but none
of them has been integrated into a commercial gen-
eral purpose DBMS. One reason for this is that there
are very complicated or no concurrency and recovery
methods for them.

Concurrency in B+-trees has been the subject of
many papers [3, 12, 19, 13, 111. Most of these papers,
with the exception of [13,11], have not addressed the
problem of system crashes during structure changes.

The hB”-tree is a new access method for multi-
attribute point or spatial data that is based on the
hB-tree [lo] and can be used in a general purpose
DBMS since a robust concurrency and recovery al-
gorithm is available for it [ll] (the “II-tree paper”).
This algorithm is applicable to an abstract index tree
structure, the II-tree, which is a generalization of
the Blink-tree [12]. A recent study [20] compared
the performance of various concurrency control algo-
rithms. Its conclusion was that algorithms using the
link technique provide the most concurrency and the
best overall performance. The II-tree paper improves
the Blink-tree by breaking down structure modifica-
tion operations into a series of independent atomic
actions, each of short duration and holding a small
number of Iocks. The II-tree paper includes node con-
solidation as one of the atomic actions.

The hB”-tree is a modification of the hB-tree so
that it becomes a special case of the II-tree. This
involves structural changes to the hB-tree. In addi-

551

tion, new splitting and posting algorithms were in-
vented for the hB”-tree which correct an error in the
hB-tree, and the node deletion atomic action of the
II-tree paper was adapted to the hB”-tree.

We have implemented the hBn-tree and tested
it in extensive experiments with computer-generated
skewed point data and with point data from the Se-
quoia 2000 Storage Benchmark [21]. We show that
the hB”-tree is relatively insensitive to dimension.

This paper is organized as follows. Section 2 briefly
reviews the II-tree. Section 3 introduces the hB”-
tree, which is a combination of the hB-tree and the
II-tree. Section 4 introduces the new splitting and
posting algorithms which correct the error in [lo]. Fi-
nally, Section 5 reports performance results.

2 Concurrency & recovery: the
l-I-tree

In this section we review the II-tree and its algo-
rithms. The II-tree concurrency method is effective
because it breaks down structure modification into
a series of short atomic actions, each of which holds
only a small number of locks. During recovery after
system failure, incomplete atomic actions are undone
and pending atomic actions are scheduled lazily.

2.1 II-tree structure

Briefly, the II-tree is based on a partial ordering of
nodes at each level of the tree. A binary relationship
is formed when a node splits. Part of the contents
of the node (as in the B+-tree) goes to a new sib-
ling. The sibling is said to be extracted. The old
node is said to be the container. The closure of the
container/extracted relationship is only a partial or-
dering since, for example, two new siblings can be
extracted in two separate splits from the same old
container node in such a way that neither of the two
new siblings is a container of the other.

More formally, as a generalization of the Blink-
tree [12], the II-tree is a rooted DAG. It consists of
index and data nodes. Each node is responsible for
a specific part of the key space. A II-tree node:

l Can be directly responsible for some part of
the space. In an index node, this space is dis-
tributed among its children nodes and is de-
scribed by index terms. In a data node, exist-
ing and potential data points lie in this space.

l Can also delegate responsibility for part of
the space to sibling nodes. This space is de-
scribed by sibling terms.

The index and sibling terms include pointers to
II-tree nodes. The pointers to sibling nodes are the
links that make the II-tree a generalization of the
Blink-tree.

In the II-tree it is possible for a node to be referred
to by more than one parent, unlike the Blink-tree.
This happens whenever the boundary of a parent split
cuts across a child boundary. This child is called a
multi-parent node. Nodes with only one parent are
single-parent nodes.

2.2 Searching

For exact match searches, a unique path, that may
include sibling-pointers, is followed down to the leaf
(data) level where the point in question will reside
if it exists at all. That is, exact match searches are
analogous to those in the Blink-tree.

2.3 Node splitting and index posting

A II-tree node is split when an insertion causes it to
overflow. Part of the node’s contents go to a new
sibling node and an index term that describes the
resulting space decomposition is posted to the parent
of the split node. II-tree node splitting is analogous
to B-tree node splitting.

In the II-tree node splitting and the index term
posting are performed by separate recoverable
atomic actions as follows:

Node splitting: A II-tree node is full and cannot ac-
commodate an update. This node, called the
cotitainer node, is split and part of its con-
tents are moved to a newly created node, called
the extracted node. Node splitting concludes
by storing a sibling term in the container node
(see Figures la and lb). Only the container
node need be locked during the node-splitting
atomic action.

Index term posting: An index term, that describes
the space that was extracted from the container,
is posted to the parent of the container in the
current search path (see Figure lc). An index
term posting atomic action always posts to a
single parent. When the container node is a
multi-parent node, index posting may consist of
several index term posting atomic actions (one
for each parent). Only, the ‘parent node need
be write-locked. (The child is read-locked for a
short time to see if posting is still needed.)

552

(a) Before SpliItlng A
P

(c)After Posting

(b) After Spllning A
P

(cl) Aftw Deleting B
P

Figure 1: Splitting, Posting, and Consolidating in the
II-tree.

2.4 Node consolidation

A II-tree node whose space utilization drops below
a pm-specified threshold should be consolidated with
another node (its container node or one of its ex-
tracted nodes) in order to improve storage utilization.

In the II-tree we always move the contents of an
extracted node to its container node and we deallo-
cate the extracted node. In addition to the obvious
requirement that the container node’ have sufficient
free space, we require two additional conditions for
node consolidation: (a) both the container and the
extracted nodes must be children of the same parent,
and (b) the extracted node must be a single-parent
node. These conditions simplify node consolidation
and increase the degree of concurrency since only one
parent node needs updating during a consolidation.
Only the parent and the two children are locked.

In Figure lc, we assume that node B is sparse
and can be consolidated with node A since both A
and B have P as parent. A absorbs B’s contents, the
reference to B is removed from P, and the index term
for A is adjusted (Figure Id).

2.5 System failures

When II-tree restructuring is interrupted by system
failures, the II-tree is left in a consistent state. Searchers
can always traverse or visit an extracted node by fol-
lowing a sibling pointer from its container node. The
same is true when, for a multi-parent container node,
only some of the index term posting atomic actions
have been performed. That is, two instances of the
II-tree can be structumlly diflerent but semantically
equivalent. An index term posting atomic action for a
missing index term is scheduled when a sibling pointer
to it is traversed. Node consolidations are not nec-
essary for correct search. They can be rescheduled
when a sparse node is visited.

3 The hB-tree as a II-tree

We review the hB-tree in this section and show how
we modify it to become a special case of the II-tree
and how we modify it to facilitate node consolidation.
We call the resulting tree the hBn-tree.

3.1 Multi-attribute indexing

The hB-tree [lo] is a multi-attribute point data in-
dexing method. The nodes of an hB-tree represent
bricks (i.e.., multi-dimensional rectangles), or Uholey”
bricks, that is, bricks from which smaller bricks have
been removed. An hB-tree node stores index and sib
ling terms in a unified way using kd-trees [l].

In Figures 2a and 2b we can see the organization of
an index hB-tree node Q and the corresponding space
decomposition. Each path (from the root to a leaf) in
the kd-tree of node Q describes either the space of a
sibling node or part of the space of a child node. For
example, the path (rl-left, yl-left) describes space
that has been extracted from Q (shaded region of
Figure 2b). Let S, denote the space for which Q
is directly responsible. The remaining four paths in
the kd-tree of Q describe the decomposition of S,
among Q’s children, namely nodes K, L, and M (white
regions of Figure 2b).

In order to transform the hB-tree into a case of the
II-tree we need to have pointers to extracted nodes.
In addition, so that we can find candidate siblings for
node consolidation, we need a convenient way to be
able to determine the containment order of the chil-
dren of an index node and have a means to detect
whether a node is multi-parent or not by examining
the kd-tree of its current parent. We describe four im-
portant structural modifications of the hB-tree which
transform it into the hBn-tree. The first and second
are needed to make it a II-tree. The third simplifies

553

Q In the hB-tree

>
In the hentree

K

M
(c) kd-tree (d) corresponding space

Figure 2: Intra-node organization of hB-tree and hBn-
tree nodes using kd-trees.

kd-tree management and both third and fourth aid
in node consolidation.

3.2 Side pointers

We replace external markers by pointers to extracted
nodes, called side-pointers. In Figure 2c the thick
arr,ow with the address of node R denotes the side-
pointer used in the place of the external marker. The
address of R (the node that was extracted from Q) is
known at the time of Q’s splitting.

3.3 Splitting a node at its kd-.tree root

In addition to replacing external markers, to get all
the side pointers we need, we must modify the way
node splitting is done when the kd-tree of the node
is split at its root. In the hB-tree, one of the sub
trees remains in the node that is split, and the other
one becomes the kd-tree of the newly allocated node.
The original kd-tree root disappears and there is no
pointer to the extracted node. For example, in Figure
2a, if hB-tree node Q is split at its kd-tree root zl
and the kd-subtree rooted at x2 is extracted, kd-tree
node xl is eliminated. ’

In the hB”-tree we keep the kd-tree root in the
original node and we simply extract the appropriate
kd-subtree which again becomes the kd-tree of the
new hBn-tree node. The new node is now the ex-
tracted node, whereas the original node is the con-
tainer node. This modification is necessary, because
in the II-tree a node that is split (container node)
continues to keep information that describes the key
space it is responsible for. For example, in Figure 2c,
if the kd-subtree rooted at x2 is extracted, kd-tree

node ~1 remains in Q and its right child becomes a
side-pointer to the extracted node.

3.4 Decorations

The third modification deals with the way the ad-
dresses (pointers) of child hBn-tree nodes are stored
in the kd-tree of their parent. This modification will
help us to determine whether or not there is a suitable
child for consolidation with a sparse child. Consoli-
dation can only take place when one sibling is the
container of the other. (This modification will also
help us define some simple splitting algorithms.)

In the hB-tree we may have multiple references to
a child in a node’s kd-tree (for example, in Figure 2a
K’s address is stored twice). Every ‘leaf node of the
parent’s kd-tree that refers to data directly contained
in a child node contains a pointer to the child.

In the hBn-tree, we instead identify the node within
the kd-tree that is the root of the subtree describing
the space for which a child node is responsible. That
subtree root is then tagged with the address of the
child node. We use the term decoration for this
child address. We call this subtree the decorated
subtree. We refer to pecific decorated subtrees by
means of their decorations. For example, in Figure
2c, the decorated subtree rooted at xl is referred to
as the K-subtree, the decorated subtree at y2 as the
L-subtree. Decorated subtrees are nested.

Leaf nodes now contain one of three kinds of in-
formation:

1. a child node address: no index term has been
posted for any extracted siblings of this child
and the path to this kd-tree leaf node describes
the space for which the child is responsible.

2. a sibling node address: the index node has split
and the path to this kd-tree leaf node describes
the space delegated to the sibling index node.

3. a null address: the path to this kd-tree leaf de
scribes space for which the child node that dec-
orates the smallest subtree including this node
is directly responsible.

In Figure 2c, the right child of kd-tree node yl and
the left child of kd-tree node 22 have null pointers.
They share the child node described by decoration K
at the subtree rooted at kd-tree node xl. Similarly,
the right child of kd-tree node y2 is null and describes
the space that decoration L at y2 is directly responsi-
ble for. Decorations are relevant to index nodes only.
Data nodes do not have children.

The collection of kd-tree nodes sharing a child
node decoration C form a decorated fragment that
describes the partitioning of C. These are all the

554

nodes in the C-subtree which are not nodes in a smaller
nested decorated subtree.

One can determine the containment order of the
children of a node by just examining the kd-tree in
that node.. For example, the kd-tree of node Q in Fig-
ure 2c indicates that, first node L was extracted from
I<, and later node M was extracted from L. The K-
fragment consists of kd-tree nodes zl, yl, and ~2, the
L-fragment of kd-tree node y2, and the M-fragment
is empty, indicating that either M has not been split
yet, or that no splitting of M has been posted yet.
The containment order of the children of node Q is
indicated by the arrows in the space decomposition
of Figure 2d. (Note that R is not a child of Q; R is
a sibling of Q.)

3.5 Continuation flags

To deallocate an extracted node when it is consoli-
dated with its container, we must know that it is a
single-parent node. Continuation flags in the parent
are used to make this determination.

Multi-parent nodes are created when an index hB”-
tree node is split and an undecorated kd-subtree (i.e.,
its root does not carry a decoration) is extracted. The
extracted kd-subtree is decorated with the same dec-
oration as,the split kd-subtree. After the completion
of the split, the child hBn-tree node that appears as
decoration will be a multi-parent node pointed to
by both the original node and the newly created node.

Node consolidation in the H-tree requires that the
node being deleted be referenced only by a single par-
ent. We detect whether a node is multi-parent or not
by examining its current parent. This is accomplished
by our fourth modification.

We keep a special continues-to flag with every
side-pointer. The continues-to flag of a side-pointer
is true or false indicating whether the kd-tree frag-
ment that contains that side-pointer is continued to
the sibling node or not. This is a way to determine
if the child node that appears as the decoration is
multi-parent or not. The continues-to flag of the side-
pointer to R in Figure 2c being set to TRUE indicates
that the child node I< of node Q is multi-parent, and
that node R is its other parent.

In addition, R must contain an indication that
K, the decoration at its kd-tree root, is’multi-parent.
Each new sibling node contains 8 continues-from
flag which determines whether the child decorating
its kd-tree root is multi-parent.

3.6 Terminology

Table 1 summarizes the terminology that we will be
using in the sections that follow.

Term Description

decor’d fragmnt kd-tree nodes with common decoration
decor’d subtree kd-subtree rooted at decorated node
p, c, x Parent, Container and extracted nodes
Ct+Ppath from P’s C-subtree root to C-fragment null leaf
CtoX-path from C’s kd-tree root to X’s sibling address

Table 1: Terminology.

In Figure 2c, the K-subtree is the whole kd-tree,
the L-subtree is the same as the L-fragment, and the
M-subtree is empty. If we consider Q to be the parent
node (P) and K to be the container node (C), then
we have two Cto-Ppath’s: (zl-left, yl-right) and (zl-
right, r2-left). Also, if we consider Q to be the con-
tainer node (C) and R to be the extracted node (X),
then the CtoX-path is (zl-left, yl-left).

In the figures and examples of the following sec-
tion we use the notation X and C for an extracted
node and its container node respectively, and P for
the parent of the container node where the index term
that describes the split is posted.

4 hB’-tree restructuring

In this section, we present new splitting and posting
policies which correct the flawed splitting/posting al-
gorithm of [lo]. This flaw does not appear until there
are three levels in the index above the leaves and then
only in special cases. A construction of such a four-
level tree can be found in [17] and [5]. Here we first
explain the reason for this error and then show the
new posting and splitting algorithms which correct it.

4.1 Data space boundaries

The directly contained space of a data hB*-tree node,
i.e., the space that does not include subspaces which
have been delegated to sibling nodes, can be viewed
as a union of disjoint rectangular regions correspond-
ing to the record-lists that reside in the node. We
call the boundaries of these disjoint spaces at the
data level, or of contiguous collections of them Data
Space Boundaries or DSBs. If index nodes are
split in such a way that the extracted space and the
remaining directly contained space of the nodes do
not each correspond to a union of DSBs, there will
be search correctness problems. This occurred in the
hB-tree. Figure 3 shows a data level space decom-
position and three possible space boundaries for this
decomposition. Two of them, namely (a) and (b), are
DSBs, whereas (c) is not.

What is needed to correct the hB-tree flaw is to
perform index hB-tree node splittings only at DSBs.
This can be accomplished by imposing restrictions on
splitting and/or posting. In this section we consider

555

Xl

xl

/xt
/y’\ HII

Yl

A kd-tree and the correspo@ng
data level s$,a;;eymposltlon it

q
(4

Various space boundaries

_ . Yl

Figure 3: Data level space decomposition and various
data and non-data space boundaries.

the simplest algorithm that accomplishes this. This
algorithm splits index nodes only by extracting dec-
orated subtrees (D) and we post the full CtoX-path
(fp). We call the resulting algorithm D/f@. Two other
algorithms that also split index nodes at data space
boundaries are briefly described in Section 4.4.

Notice that since data nodes do not ‘have deco-
rated subtrees, if their kd-tree has to be split, any
subtree can be extracted (as in the hB-tree).‘ Any
place in a data node’s kd-tree defines dataspace bound-
aries. Thus, the restriction we impose on splitting ap’
plies only to index nodes. Hence the space utilization
guarantees claimed for the hB-tree apply to the hB”-
tree at the leaf level (where over 95% of the storage
resides).

4.2 Splitting at decorations (0)

Splitting at decorations has the very attractive prop
erty that it makes all nodes single-parent nodes. The
hB”-tree in this case is a true tree, not a DAG. This
will make the index-term posting algorithm simpler.

For index hB*-tree nodes, when splitting at dec-
orations, the extracted subtree must be ‘a decorated
subtree. In general, the kd-tree of an index node must
be exhaustively searched in order to find the best pos-
sible decorated subtree, i.e., the one whose size is clos-
est to half the hB”-tree node size. This implies that
the one-third/two-thirds guarantee of index node uti-
lization promised by the hB-tree does not hold.

In fact, if no decorated subtree exists at all in an

index node, because none of the k-d-tree nodes carry
decorations, splitting at decorations is not possible,
and one must defer the splitting action (that would
be the case in Figure 4a if kd-tree node x10 were miss-
ing). Remember that index hB”-tree nodes are split
when they have not enough space to accommodate an
index term posted by a posting action. By deferring
a splitting action in an index node we actually defer
a posting action. Thus deferring splitting does not
affect correctness of search. However, it can reduce
search performance as each side pointer traversal ac-
cesses an extra hB”-tree node. In any case, in our
experiments, most (over 90%) of the nodes were dec-
orated, so this situation did not arise. (Most splits
post only one k-d-tree node and this node then be-
comes decorated.)

(a) C and ite space betore tne subtree rooted
at x10 is extracted to create‘node X.

(b) C and its space after X has been extracted from C.
NOTEz the dotted path is the CtoX-path.

Figure 4: Node X is extracted from node C. kd-tree nodes
from the CtoX-path will have to be posted to the parent
of c.

Here is the algorithm for splitting an index hB”-
tree node C by extracting a decorated subtree of its
kd-tree:
SPLITTING AT DECORATIONS (0)

1. find a decorated subtree in C whose size is closest
to half a node’s size, else EXIT

&. create a new node X, e&act the decorated subtree
from,C, and move it to X

3. in C, replace the e&acted subtree with a pointer to
X (this is the side-pointer)

In the next section we will show how to post the
CtoX-path of Figure 4b to the parent P of C.

556

4.3 Posting the full path (fp)

Index term posting has to correctly insert the kd-
tree nodes describing an hBn-tree node split into an
existing kd-tree in the parent hB”-tree index node.
Intuitively, a kd-tree in an hB”-tree index node is
well-formed if its kd-tree nodes appear in the same
order as the corresponding kd-tree nodes of its chil-
dren. Two kd-tree nodes correspond if (a) they are
located in consecutive hBn-tree levels, and (b) the
one at the hB”-tree parent has been created as a copy
of the one at the hBrr-tree child during an index term
posting atomic action.

In the hB-tree one posted the condensed CtoX-
path, i.e., only the kd-tree nodes that were necessary
to describe the extracted region, and had not already
been posted (see discussion in Section 4.4). In the fp
variation of the hB”-tree we simplify the index term
posting process by posting the full CtoX-path, that
is, all kd-tree nodes from the CtoX-path that have
not already been posted.

By posting the full CtoX-paths we preserve DSBs
across the levels of the hB”-tree. Any subtree (dec-
orated or not) of an hB”-tree node’s kd-tree can be
extracted because it describes a region which is de
fined by DSBs.

The resulting posting algorithm is straightforward.
All we have to do is compare the CtoPpath for X
against the CtoX-path. If it is equal or longer than
the CtoX-path, we simply X-decorate part of it. If
it is shorter than the CtoX-path;we append the ex-
tra kd-tree nodes of the CtoX-path to it, including a
pointer to X. Since we split at decorations, all hB”-
tree nodes have exactly one parent, so one need only
post the index term for a split to one hD”-tree node.

In Figures 5 through 7 we demonstrate the three
cases discussed above. Node P corresponds to the
parent of node C of Figure 4. In each case, P and the
space it is responsible for are shown before and after
the posting takes place. The dotted lines indicate
the Cto-Ppath leading to or including X that in each
case is compared to the CtoX-path of Figure 4b. The
algorithm is the following:

1. len(Cto-Ppath for X) > len(CtoX-path):
this indicates that all kd-tree nodes of the CtoX-
path had already been posted by other posting
actions. All we have to do is X-decorate the first
node of the Cto-Ppath which no longer refers to
space in C (see Figure 5).

2. len(Cto-Ppath for X) = len(CtoX-path):
again, all kd-tree nodes of the CtoX-path had
already been posted. We make the last kd-tree
node of the Cto-Ppath for X point to X (see
Figure 6).

(a) Before posting

P
I

c

x5 x10 x15

x5 x10 xl5

(b) After posting

Figure 5: len(Cto-Ppath for X) > len(CtoX-path): X-
decorate the first kd-tree node of the Cto-Ppath which no
longer refers to space in C.

P

x5 x15

EA C

D

C fl

5

(b) After posting

Figure 6: len(Cto-Ppath for X) = len(CtoX-path): make
the last kd-tree node of the Cto-Ppath point to X.

557

3. len(Cto-Ppath Tar X) < len(CtoX-path):
that is, the CtoPpath is a prefix of the CtoX-
path. We append copies of the extra CtoX-path
nodes to the Cto-Ppath, with the last posted
node.pointing to X (see Figure 7).

x15 r------m

(a) Before posting

r---T--
x15

y/* lD

J ***\,

J l **: I
(b) After posting

x5 xl5

C X

lr D

C
-7

,5

Figure 7: len(Cto-Ppath for X) < len(CtoX-path): ap
pend the extra kd-tree nodes of the CtoX-path to the
CbPpath.

4.4 Other splitting/posting algorithms

Posting the full path (h) may increase the size of the
index terms posted. When the data is skewed, we
may end up posting long CtoX-paths. The guarantees
for size of index terms posted in the hB-tree no longer
hold.

Splitting at decorations (D) requires an exhaus-
tive search of the whole kd-tree of the index hBn-tree
node to find the subtree whose size is closest to half
the size of an hB”-tree node. There is no guarantee
we can find a good quality split. If bad splits are
too frequent, the utilization of the index nodes will
decrease, and the size of the index will increase.

Despite the lack of worst case guarantees for index
term size or index node storage utilization, when al-
gorithm D/fp is used, the hB”-tree has demonstrated
good node space and range search performance in our
study(see section 5.1).

Algorithm D/fp is but one of several alternatives
one can use. There are other splitting and posting
strategies that also result in splitting only at DSBs.

We briefly describe two strategies for hB”-tree node
splitting and two strategies for index term posting.

Our two splitting strategies are: (a) split a kd-tree
at arbitrary places (strategy A = Arbitrary), or (b)
split a kd-tree only at decorated subtrees (strategy
D = Decorated). In the example of figure 2c node
Q can split anywhere if we use strategy A. If we use
strategy D it can be split only at ~2.

Our two posting strategies are: (a) post the con-
densed path as in the hB-tree, that is, only the kd-tree
nodes of the CtoX-path that are necessary to describe
the extracted space (strategy cp = condensed path),
or (b) post all kd-tree nodes, or the full CtoX-path
(strategy fp = full path). In the example of figure 2c
let us assume that the subtree decorated with L is ex-
tracted. Then, if we use strategy cp during posting we
must post only kd-tree node 22 since zr is redundant
(the extracted space contains all points with z > 22).
If we use strategy fp both 21 and 22 must be posted.

Depending on the splitting and posting strategy
that is used, there are four splitting/posting algo-
rithms: D/fp, A/fp, D/cp, and A/cp. Like D/fp,
algorithms A/fp and D/cp also split only at DSBs.
A/fp posts full paths, so any extracted subtree de-
scribes a region which is defined by DSBs (exactly
as D/fp does). In the case of D/cp, although con-
densed paths are posted, the index term that we post
when* we extract a decorated subtree describes a re-
gion which is defined by DSBs.

Algorithm A/cp corresponds to the splitting and
posting algorithm for the hB-tree described in [lo].
The strengths and weaknesses of the other algorithms
are summarized in Table 2.

Property/Algorithm D/4 1 A/fb t D/CP

Table 2: Comparison of the various splitting/posting al-
gorithms.

4.5 Node consolidation

Following the II-tree algorithm for node consolida-
tion, a sparse hBn-tree node is consolidated with a
sibling node and the parent of the deleted node is
modified to reflect the change. For reasons of sim-
plicity and efficiency we always choose to consolidate
a sparse hB”-tree node with its container node. So,
the two conditions for hBn-tree node consolidation
are: (1) the sparse (extracted) node shares the same

558

parent with its container, and (2) it is also a single-
parent node. If these conditions are not satisfied, or
if the contents of the two nodes are too large for a sin-
gle consolidated node, then node consolidation does
not take place. (Remember that node consolidation
is optional and that the goal is to preserve overall
utilization. And our two conditions are commonly
satisfied.)

Condition (1) is not true when the sparse (ex-
tracted) node’s decoration appears at the root of its
parent’s kd-tree, that is, the sparse node is the con-
tainer of all the children of that parent. This is not
very common, since in the worst case there are as
many such nodes at a given level as parent nodes
at the level above. Similarly, condition (2) is not
very restrictive either. There is a limited number of
nodes that are multi-parent when the splitting strat-
egy allows multi-parent of nodes. Since at most one
kd-tree fragment is split per hBn-tree node split, at
most one multi-parent is introduced per split. In the
worst case there will be as many multi-parent nodes
at a given level of the hB”-tree as parent nodes at
the level above. Our continuation flags are used to
detect when a node is multi-parent by checking only
a single path to the node.

Since an hB*-tree node uses a kd-tree for its intra-
node organization, we also have to reorganize the kd-
trees of the parent and container nodes of the ex-
tracted node. In [5], we show how one can determine
whether a node can be deleted by examining the kd-
tree of its parent, how deletion is performed, and how
kd-tree node pruning is used to reorganize kd-trees.

5 Performance

In this section we demonstrate the performance of the
hB”-tree on multi-attribute point data. We use both
computer-generated data and geographic data from
the Sequoia project [21] and we measure node space
utilization and range search perform.ance.

We show that the hB”-tree is insensitive to di-
mension. Thus it can be used efficiently for any high-
dimensional applications.

5.1 Point data

5.1.1 Node utilization

In the first part of our experiment, whose results are
shown in Figure 8, we inserted half a million 32byte
records (eight 4 byte attributes in each record) into
the hBn-tree.

We explored the limits.of algorithm D/fp by skew-
ing the values for all indexed attributes by 90:10, in-
stead of using a uniform distribution. With reason-

able node sizes (greater than 1K bytes) space uti-
lization is very good regardless of the number of in-
dexed attributes. The decline in utilization is due
to increased control information and not index term
size (see Section 5.2). Also, the size of the index is
very small: for node sizes 0.51<, lI<, 2K, and 41<, 5%,
2.5%, 1.4%, and 0.75% of the total number of hBn-
tree nodes&e index nodes respectively.

Finally, our performance results show that when
the hB”-tree is used as a single-attribute index it per-
forms comparably to the B+-tree.

Data node
space utilization

+

I:*

66 - 2K
\ ‘\

\ .-s.

64- \ 1K
\

\
62 -

\
‘\ \ 0.5K

\
60 - \

\
\

Index node
space utilization

t 70 -

12 4 6 6 12 4 6 6

Figure 8: Node space utilization for computer generated
data under varying node sizes and dimensions when algo-
rithm D/fp is used.

In the second part of our experiment, data from
the Sequoia 2000 Storage Benchmark [21] was in-
serted in the hB*-tree. These are 62,584 points rep-
resenting California place names. We tested two of
the splitting/posting algorithms we have described in
this paper: D/fp, and A/fp. As expected, the more
relaxed index node splitting strategy A yielded bet-
ter index node space utilization compared to splitting
strategy D (see Figure 9).

Note that the space utilization results are com-
parable to the ones we obtained when using com-
puter generated data. Also, the comparably low in-
dex node space utilization when the node size is 4Ii
is attributed to the low number of index nodes (only
6 index nodes).

5.1.2 Range searches

Finally, we have tested range search performance of
the hB”-tree. We performed the same series of 104
range searches with varying query selectivity and node
size. The query window was rectangular and was
formed by taking a randomly chosen existing point
as its center. To vary query selectivities, the extent

559

SEQUOIA 2000 Storage Benchmark Point Data
62,564 points representing California place names

hB”-tree Node Space Utillxation (NSU)

cc t I->___ ".yJ (A/@) Record format

--~~,cc-P-~
(Int. lnt, var-string)

/--- _--.--’ 4% . .
lnrlau NSU (D/fp) Average record size

29 bytes

59 ’ 512 Id24 I I b
2046 4096 node slxe in bytes

5 4 3 3 X of tree levels
359 64 20 6 t of Index nodes (A/fp)
370 05 20 6 t of index nodes (D/fp)

5777 2713 1321 646 I of data nodes

Figure 9: Node space utilization for the Sequoia 2000
Storage Benchmark point data under varying node sizes
and index node splitting strategies.

of the window for each attribute was a random frac-
tion of the domain range for that attribute.

The results, shown in Figure 10, indicate very
good range search performance for query selectivi-
ties greater than 0.5%, and sufficiently good even at
smaller query selectivities. Note that when the query
selectivity is approximately equal to the average num-
ber of records in a data node, 25% of the records re-
trived satisfy the query. This is as expected because
it is likely that in this case the query window will
overlap on average four data nodes.

Figure 10: hB”-tree range search performance in terms
of the ratio of retrieved points that satisfy the query over
total number of retrieved points per range search, under
various node sizes (0.5, 1, 2, and 4 Kbytes) and query
selectivity.

5.2 The hB”-tree in high dimensions

The hB”-tree is essentially insensitive to increases in
dimension. A kd-tree node always stores the value
of exactly one attribute. Thus, the size of a kd-tree
node (and, consequently, the size of the kd-trees that
reside in the hBn-tree nodes) does not depend on the
number of indexing attributes.

But, in addition to,a kd-tree, every hB”-tree node
stores its own boundaries (i.e., low and high values
for all attributes that describe the space the node is
responsible for). These are 2k attribute values for
a k-dimensional hBn-tree. An increase on the num-
ber of dimensions does increase the space required to
store a node’s boundaries. This additional space is
not significant for large page sizes.

Figure 11 illustrates this fact. Node space uti-
lization is defined as the ratio of the size of a node’s
kd-tree and the size of a page. The decline in uti-
lization is due to increased control information and
not index term size. With a page size of 1K bytes
and largei, there is almost no effect on the size of the
hB”-tree and the node space utilization as the dimen-
sions increase. (Page sizes larger than 2K bytes are
not shown.) It is interesting to notice that these per-
formance results were obtained using algorithm D/cp
and are comparable to the results of figure 8 where
algorithm D/j+ was used.

,*
” TIM-..
Y
Y

L

/
” hI90a.i ,,-----
” w,/5r-)
” hly.,
”

Figure 11: Index and data hB”-tree node space uti-
lization and size of the mu-tree in terms of height and
Mbytes ‘under different page sizes and dimensions (in-
dexed attributes). For page sizes greater than 1K bytes
the hBD-tr;?e is fairly insensitive to dimension. (In alI
cases the same 150,000 U-byte records were inserted with
their attribute values following a 90~10 skewed distribu-
tion.)

560

This is in contrast, for example, with the R-tree
[8], where index entries are bounding coordinates of
objects plus a pointer. Thus, in the R-Tree (and
its variants) the size of the index is proportional to
the dimension of the space. If data is uniformly dis-
tributed with respect to all index attributes, the grid
file [15] can be efficient for large dimension. How-
ever, in the case of correlated data, for example, it
can be an O(nk) size index, where n is the number
of points and k is the dimension of the space. Z-
ordering [IS] usually requires that the field expressing
the interleaved attributes is appended to each record.
This obviously results in a substantial increase in data
space consumed and hence index size, which becomes
worse as the dimension of the data increases.

6 Summary

The hB”-tree is a combination of the hB-tree [lo] and
the II-tree [ll]. It corrects the flaw in the hB-tree
and, with suitable modifications, inherits the concur-
rency, recovery and node-deletion algorithms of the
II-tree. It is insensitive to dimension and so is suit-
able for high-dimensional applications [6].

We have implemented and tested various split-
ting/posting algorithms for the hB”-tree. We found
that if we post more information than is actually
needed (the full path), or if we restrict index node
splits to certain places on their kd-tree (the decorated
fragments), our algorithms become simpler. Our ex-
periments show that even with these simpler algo-
rithms the performance is very good. We have also
developed a deletion algorithm for the hB”-tree [5].

We intend to assess the performance of additional
splitting/posting algorithms, based on even more flex-
ible splitting strategies, using polygon and graph data
from the Sequoia 2000 Storage Benchmark [21].

References

PI

PI

PI

PI
[51

J. L. Bentley. Multidimensional binary search trees in
database applications. IEEE Trans. on Software En-

ineering, SE5 4 .333-340 July 1979.
i$. Bayer and E!. LcCreight. Organization and main-
tenance of large ordered indexes. Acta Informatica,
1(3 :173-189, 1972.
R. k3 ayer and M. Schkolmck. Concurrency of opera-
tions on B-Trees. Acta Informatica, 9(i):l-21, 1977.
D. Comer. The Ubiquitous B-Tree. ACM pmputing
Surveys, 11(4):121-137, 1979.

.A

G. Evangehds, D. Lomet; and B. %&berg. Node
Deletion in the hB”-Tree. Report NU-CCS-94-04,

[7] 0. Guenther. The design of the cell tree: an object ori-
ented index structure for geometric databases. IEEE
Data Engineering Conf., 598-605, LOS Angeles, CA,
1989.

[S] A. Guttman. R-trees: A dynamic index structure
for spatial searching. ACM/SIGMOD Conf., 47-57,
Boston, MA, 1984.

[9] D. Lomet. Grow and Post Index Trees: role, tech-
niques and future potential. Symp. on Large Spa-
tial Databases (1991) Zurich. In Advances in Spatial
Databases, LN in Computer Science 525, 183-206,
Berlin, 1991. Springer-Verlag.

[lo] D. Lomet and B. %&berg. The hB-‘Dee: A muhiat-
tribute indexing method with good guaranteed perfor-
mance. ACM Trans. on Database Sys., 15(4):625-658,
Dee 1990.

[ll] D. Lomet and B. SaIzberg. Access method concur-
rency with recovery. ACM/SIGMOD Conf., 351-360,
San Diego, CA, 1992.

[12] P. Lehman and S. B. Yao. Efficient locking for
concurrent operations on B-trees. ACM Tmns. on
Database Sys., 6 4 :650-670, Dee 1981.

Jr, [13] C. Mohan and . evine. ARIES/IM: an efficient and
high concurrency index management method using
write-ahead logging. Report RJ 6846, IBM Almaden
Research Center, San Jose,.CA, 1989.

[14] J. Nievergelt and Him-i&. The Grid File: A Data
Structure to Support Proximity Queries on Spatial
Objects. Int’l Workshop on Graph Theoretic Concepts
in Computer Science, 100-113, Linz, Austria, 1983.

[15] J. Nievergelt, H. Hinterberger, and K. C. Sevcik.
The Grid File: An adaptable, symmetric, multikey
fle structure. ACM Trans. on Database Sys., 9(1):38-
71, 1984.

[16] J. A. Orenstein and T. Merrett. A class of data struc-
tures for associative searching. SIGA RT-SIGMOD
Symp. on Prin. of Database Sys., 181-190, Waterloo,
Canada, 1984.

[17] B. SaIzberg. On indexing spatial and temporal data.
Information Sys., 19(6):447-465, 1994.

[18] T. Sellis, N. Ro~opouIos, and C. Faloutsos. The
R+-tree: a dynamic index for multi-dimensional ob-
jects. VLDB Conf., l-24, Brighton, England, 1987.

[19] D. Shasha and N. Goodman. Concurrent search
structure algorithms. ACM Trans. on Database Sys.,
13(1):53-90, Mar 1988.

[20] V. Srinivasan and M. Carey. Performance of B-
tree concurrency control algorithms. A CM/SIGMOD
Conf.,, 416-425, Denver, CO, 1991.

[21] M. Stonebraker, J. Frew, K. Gardels, and
J. Meredith. The Sequoia 2000 Storage Benchmark.
ACM/SIGMQD Conf., 2-11, Washington, DC, 1993.

Northeastern Univ, Boston, MA, 1994
[6] G. Evangehdis and B. S&berg. Using the HoIey Brick

Tree for Spatial Data in General Purpose DBMSs.
IEEE Data Engineering Bult., 16(3):34-39, Sept 1993.

561

