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Abstract 

The relational model is accepted for its simplicity and ele- 
gance. At the other side the simplicity causes the problem, 
that most semantic type constructs are not representable 
as a simple relation. Variant and heterogeneous structures 
belong to those constructs not adequatly supported by the 
simple relational model. In this paper we give an overview 
of the model of flexible relations that allows to model and 
process arbitrary heterogeneous structures, while preserving 
the relational philosophy of operating with a single construc- 
tor. As flexible relations support both the modeling and 
the operational aspect of variant structures seamlessly, our 
model truly helps to further bridge the gap between seman- 
tic and operational data models. 
We discuss the structural part of the model and introduce 
an algebra for flexible relations. Further we examine a sub- 
class of flexible relations, that can be processed as efficiently 
as the simple relational model, and show that this subclass 
possesses desirable structural normal form properties. In ad- 
dition, we point out that our approach exceeds the object- 
oriented paradigm in modeling power, typing precision, and 
query optimization potential. 

1 Introduction 

The relational model ([Cod70]) is the most accepted op- 

erational data model due to its mathematical founda- 
tion, its simplicity and elegance. Both elegance and 
simplicity are mmainly due to the fact that it uses a sin- 
gle constructor, the relation. A disadvantage of this 
aspect is that many useful modelling constructs are not 
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adequatly supported by the relational model ([Ken79]). 
This fact caused the development of semantic data mod- 
els (see [PM88], [HK87] for overviews). As semantic 
data models do emphasize the modelling aspect and typ- 
ically do not offer query processing or data manipulation 
facilities, they have to be mapped onto operational data 
models. As the simple relational model is too weak to 
support these modelling aspects, extensions of the rela- 
tional model have to be developed to bridge this seman- 
tic gap. The challenge that relational extensions have 
to meet is to integrate the intended modelling aspects 
without sacrifying the benefits of the original relational 
model. The most convincing extension to the simple 
relational model is the NF’ model (see [AFS89] as an 
entry point) that supports the modelling construct ag- 
gregation and association, but still employs a single con- 
structor, namely an extended relation constructor. 

The overall aim of the model described in this paper is 
to support each form of variant (and non-variant) struc- 
tures in a generic way, thus providing an “operational 
engine” for structural aspects currently not supported 
by the relational model. We will show that our model 
integrates homogeneous and heterogeneous structures 
seamlessly, thus enlarging the scope of the relational 
model without giving up the benefits of the simple re- 
lational model. 

There are several forms of variant structures occuring 
in semantic data models, and we would like to motivate 
them with an address type. The most popular variant 
type is the exclusive union telling that exactly one of 
its subtypes has to be present. An example of an 
exclusive union is the inner-town address consisting 
either of a post-office box or a street, but never of 
both. Another form of heterogenity can be motivated 
by the “electronic part” of an address composed of the 
telephone number, the telex number, and the electronic 
mail address. These attributes do not need to occur 
together nor do they exclude each other. Instead we 
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TYPE address = 
TUPLE zip code : integer; 

city : string; 
ONE OF ( post-office box : integer; ) 

( TUPLE street : string; 
OPTIONAL houseno: integer; 

END; ) 
END; 
SOME OF ( telephonno : integer; ) 

( telexno : string; ) 
( email-address : string; ) 

END; 
END; 

Figure 1: Desired representation of an address type 

would like to express that some of these attributes are 
allowed to be present which is achieved by an inclusive 
union. A third form is a single optional attribute. For 
instance, a street may be accompanied by a house- 
number, but does not need to. If one puts these 
heterogeneous structures together with the zip code 
and the city, that shall always be present, an ideal 
representation should look like the one depicted in figure 
1. There are two possibilities to map the address 
type onto the simple relational model. The first one 
is to normalize the conceptual type, i.e. to enumerate 
each allowed attribute combination, yielding 21 address 
relations’. The second alternative is to specify zip code 
and city to be not null attributes, and to allow null 
values for the other attributes. Besides the problem 
that there are several semantics for null values, the 
connection between the attributes gets completely lost2. 
Both alternatives are dissatisfying, i.e. the operational 
support of heterogeneous structures requires a proper 
extension of the relational model. 

The structural kernel of our model consists of the 
definition of a flexible scheme, an extension of a 
relational scheme that allows to specify homogeneous 
and heterogeneous structures with a single, generic 
constructor. This aspect will be discussed in section 

1 We assume here that the semantics of the some of construct in 
figure 1 is that at least one of its components has to be present, 
giving 7 possibilities for the electronic address. Multiplied with 
the three variants of the inner-town address yields 21 different 
combinations. 

2 Some approaches including SQL2 ([MS93]) provide the facil- 
ity to specify relationships between attributes as integrity con- 
straints of the form “(post-office box IS NULL AND street IS 
NOT NULL) OR . . .“. But nothing is said about the influence 
of these integrity constraints on query processing and so on. 
This aspect is considered by our model providing true integra- 
tion of variant structures into an operational data model. 

2. Section 3 deals with a corresponding extension 
of the relational algebra, putting the emphasis on 
the point that our algebra is adequate with respect 
to the structural part of our model, and preserves 
the consistency with the simple relational algebra at 
the other side. In section 4 the related aspects 
equivalence among flexible schemes, restructuring of 
flexible schemes, and structural normal forms of flexible 
schemes are discussed. Section 5 contains a comparison 
of our model to related approaches, especially to the 
object-oriented paradigm. Section 6 finishes with a 
summary and an outlook. 

2 The model of flexible relations 

There is no problem to extend the relational model 
by one constructor for exclusive disjunctions, another 
constructor representing inclusive disjunctions, a third 
constructor for optional attributes, and so on. This 
approach would not yield a satisfactory solution as 

one can easily imagine application scenarios that de- 
mand yet another form of variant structure requir- 
ing a fourth constructor with appropriate operators 
(and so on), plus 

supporting multiple constructors requires a query 
processing language whose operators are specific 
to certain constructors, i.e. in such a language it 
depends on the query context if an operator is 
applicable or not, destroying both efficiency and ease 
of use. 

The arguments show that supporting variant structures 
in a relational model raises the challenge to find a single 
constructor that is complete in the sense of being able 
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to model each possible form of heterogeneity, otherwise 
the benefits of the relational model get lost. 

It is obvious that a simple relational scheme consisting 
of a set of attributes is too weak to meet these structural 
requirements. Therefore we added two integer values 
kin and km,, that specify a range of validity. Together 
with the known set { Al , . . . , Al, } of attributes, a 
choice scheme forms a three-tuple 

<hnin,km,~,{A~ ,..., Ak}> 
The intuitive meaning of a choice scheme is that its 
domain consists of each tuple that possesses m (0 5 
kin I m I km,, ) attributes out of { AI, . . . , Ak }. 
The semantic type constructs introduced in section 1 
are mapped onto a choice scheme as follows 

l an exclusive union is represented by < 1 , 1 , { A1 , 
.‘. > Ak } >, expressing that at least 1 and at 
most 1 and therefore exactly one of the attributes 
Al, . . . , Ak has to occur. 

l an inclusive union is equivalent to the choice scheme 
<O,k,{Al,..., Ak } >, meaning that at least 
none and at most all and therefore some of the 
attributes AI , . . . , Ak may be present. Requiring 
that at least one of the attributes has to be present 
leadstothescheme<l,k:,{Ar ,..,, Al,}>. 

l a single optional attribute conforms to the choice 
scheme <0, 1, {A}>. 

l a conventional relational scheme does not leave any 
choice among the attributes and corresponds there- 
foretothechoicescheme<k,k,{Ar,...,Ak}>, 
expressing that each attribute has to be specified. 

Putting the characterized semantic constructs together, 
we are able to represent the address type of figure 1 by 
the flexible scheme depicted in figure 2. It demonstrates 
that our notation allows to express each involved 
semantic structure with a single, generic constructor. 
Note that we enhanced the notion of a choice scheme in 
figure 2 in that we do not only allow simple attributes to 
occur in the third component of choice schemes, but also 
choice schemes again. As unions occur as subtypes of 
tuples and vice versa, it is obviously necessary to define 
schemes supporting variant structures in a recursive 
manner. This recursive step leads to the final definition 
of a flexible scheme3. 

3 As usual we assume the existence of a countablyin5nite set Z-4 of 
attributes. In addition, we expect that there is a set ‘D of basic 
domains and a function dom : U - Q associating a domain 
with each attribute. As we are not particularly interestedin the 
attribute values, we omit to properly define this relationship. 

Definition 1 The set 3S of flexible schemes is the 
smallest set that satisfies 

1. AETS, ifAEZ4 

2. <kmin,kmaz,{FS~,...,FSk}>E~‘S, 
if bin , km,, , k E IN, 0 L kmin I km,, 5 k, 

FSI , . . . , F& E Fs 0 

Up to now we only have developed a syntactic charac- 
terization of flexible schemes. We still have to associate 
a domain with them. There is a direct (and very effi- 
cient) way to determine the tuples forming the domain 
of a flexible scheme (see [Ka195]), but for a basic under- 
standing it is more suitable to flatten a flexible scheme, 
with the goal to describe its domain as a set of legal at- 
tribute combinations. This representation is much like 
the Disjunctive Normal Form (DNF) of propositional 
logic. Therefore we called the algorithm that computes 
the flat representation the dnf-algorithm. It recursively 
“multiplies out” the components of a flexible scheme 
until an equivalent flat enumeration of its attributes is 
achieved. 

As the outcome of the dnf-algorithm is very intuitive, 
we omit a formal definition and present an example 
instead. The application of the dnf-algorithm to the 
scheme FS =<4,4,{A,B,<l,l,{ C,D}>, 
~2, 3, {E, F, G}> )>” yields the result 

dnf(FS) = { ABCEF, ABCEG, ABCFG, 
ABCEFG, ABDEF , ABDEG, 
ABDFG, ABDEFG) 

Using the dnf-algorithm it is now easy to define the 
domain of a flexible scheme FS: The domain of FS 
consists of each tuple that is defined on an attribute 
set X E dnfTFS), i.e. if Tup(X) denotes the set of 
tuples defined on the attribute set X, then dom(FS) = 

U XEdnf(FS) TUp(x)5. 

A second benefit that results from the dnf-function is 
that it is not only possible to map a flexible scheme 
onto a dnf, but that it is also possible to associate 
each DNF of attribute sets with a flexible scheme. 
Using elementary results of propositional logic we may 

4 For the remainder of the paper we will use the scheme FS = 
<4,4,{A,E,<l,l,{C,D}>,<2,3,{E,F,G}>}> 
as the running example. Although it looks very abstract at first 
glance, it is only slightly modified with respect to the concrete 
address scheme in figure 2. So we emphasize again that flexible 
schemes do possess practical relevance despite their somewhat 
abstract notation. 

5 Note that this flat, enumerative description of a flexible scheme 
corresponds to the “set of objkcts” approach of [SciSO] (see also 
[M&83], ch. 12). 
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address = < 4, 4, { zip-code : integer, 
city : string, 

< 1 , 1, { post-office-box : integer, 

< 2,2, { street : string, 

< 0, 1, { houseno : integer } > 

I> 
> >? 
< 1,3,{ telephoneno : integer, 

telexno : string, 
email-addr : string 

I> 
I> 

Figure 2: Representation of the address type as a flexible scheme 

conclude that flexible schemes are complete in the sense 
that arbitrary heterogeneous structures can be mapped 
onto a flexible scheme. Summing up, it may be said that 
flexible schemes satisfy the structural goals of providing 
a single, complete constructor for variant structures. 

A sample instance of a flexible relation based on the 
flexible scheme < 4, 4, { A, B , < 1, 1, { C, D } > , 
<2,3,{ E, F,C}>}>mightlookasfollows: 

inst(FR) A B C D E F G 

3 The F-algebra - an algebra for 
flexible relations 

In the previous section we have shown that flexible 
schemes provide a compact and generic description of 
heterogeneous structures. But little is gained by a 
generic constructor if it is not supported operationally. 
Therefore we developed the F-algebra, the operational 
part of the model of flexible relations, with the goal 
to provide a query processing language as powerful 
in its ability to process variant structures as flexible 
relations are on the structural side. The main emphasis 
in designing the F-algebra was put on 

l adequacy: each operator should be applicable 
to any flexible relation with arbitrarily structured 
flexible schemes. 

closeness: each operator should result in a flexible 
relation again. The emphasis had to be put on 
the result schemes, which were intended to be well- 
formed flexible schemes, i.e. a precise and compact 
description of the operator’s output. 

efficiency: the operators should not be more 
complex than their relational counterparts. 

semantic connection to the relational algebra: 
the intuitive meaning of the operators should be 
kept, and the F-algebra’s operators should be 
faithful and precise6 with respect to the relational 
algebra. 

In summary, the F-algebra comprises the relational 
operators projection, selection and Cartesian product, 
an extension operator to add a new column, the 
set operators union, minus and intersection and a 
restriction operator that checks for the presence or 
absence of attributes. 

The projection operator shall serve as an illustrative 
example and will be discussed in more detail. The other 
operators are sketched at the end of this section. 

3.1 Projection 

The intuitive meaning of a projection is to drop 
columns. To do so, one specifies a set X of attributes 
that shall survive the projection. As the result of a 
projection, a relation containing the attributes X n 

6 The notions faithful and precise are adapted from [M&83]. 
An extended operator p’ is said to be faithful to its basic 
counterpart p if both provide the same result applied to a 
non-extended relation. An extended operator pf is said to be 
precise to its basic counterpart p if there is a mapping lnap from 
the extended model Rj to the basic model such that map is a 
homomorphism for pJ and p . 
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a%(R) is produced 7. The intuition of a projection is 
directly reflected by the relational definition 

sch(ax(R)) = x n sch(R) 

insl(7fx(R)) = {t[X l-l sch(R)] 1 t E insZ(R)} 

One of the design goals of the F-algebra was to preserve 
the intuitive meaning of the relational operators. There- 
fore our extended of operator has to eliminate columns 
of a flexible relation in the very same way. This effect is 
informally presented in figure 3. Note that the projec- 
tiononto {A, C, E, F} d oes not mean that the result 
tuples are defined on each of the specified attributes. 
As { A, B , C , D , E , F , G } is a superset of the at- 
tributes of the input relation’s tuples, {A, C , E , F} is 
a superset of the output relation’s tuples consequently, 
too. This statement leads directly to the definition of 
inst(TgR)): 

inst(?r$(FR)) = {t[X n attr(t)] 1 t E insl(FR)} 

To be able to define sch(?r$(R)) analogously to the 
relational projection one needs a flat description of a 
flexible scheme. Fortunately, this can be achieved with 
the dnf-function introduced in section 2, that represents 
a flexible scheme as a set of legal attribute sets. As 
a relational scheme is merely a set of attributes, the 
result of the dnf-function can be interpreted as a set of 
relational schemes. Now the analogy to the relational 
definition can be maintained by defining that all legal 
attribute sets have to be intersected with the projection 
attributes: 

dnj(sch(w&(FR))) = {X n Y 1 Y E dnf(sch(FR))} 

The effect of this definition on the example scheme 
is shown in figure 3. This definition satisfies the 
fourth design goal, the close connection to the relational 
algebra, but it fails to satisfy the other three goals. 
The definition is neither adequate as it does not take 
a flexible scheme as input but merely a flat description 
of a flexible scheme, nor is it really closed as the output 
is again flat and not a compact flexible scheme. Finally, 
the definition is not efficient as it depends on both the 
dnf- and the dnf -‘-function which can be very costly 
in some cases. Hence the main challenge in the design 
of the projection operator (and the whole F-algebra) 
is to find scheme transformations that accept flexible 
schemes as input and map them directly onto flexible 
schemes. How this problem was solved is discussed in 
the next section. 

7 We do not require X C attr(R) here. This leads to a 

slightly modified, but eq&alent definition and better reflects 
the connection to the F-algebra. 

3.1.1 Direct computation of a projection 
scheme 

It is easier to explain the scheme transformation of 
the projection if one starts with a single level scheme 
sch(FR) = < &in , Ic,,, , { Al , . . . , Ak } >. Assume 
that the projection attributes are X = {Al , . . . , A, }. 
Due to our arguments in the previous section we know 
that {Al, . . . , A, } will be the superset of the result 
tuples’ attributes, i.e. the result scheme will look like 
sch(&(FR)) = < kAi, , k:,, , { Al , . . . , A, } >. In 
this scheme the new lower bound /&, and the new 
upper bound I&,, still have to be determined. The 
new bounds must be chosen such that exactly those 
tuples satisfying the ins&-definition are members of the 
result scheme. The computation of fAin can therefore 
be regarded as a “worst case analysis”: how many 
attributes does a tuple of the input scheme have at 
least in common with the projection attributes? The 
way how kAi, is determined is depicted in figure 
4. The upper attribute “interval” in figure 4 
represents the input scheme’s attributes, while the 
second interval shows that the projection attributes 
are the first m attributes of the input scheme. A 
tuple being member of the input scheme contains at 
least kmin attributes. To create the worst case we 
place these k,,,in attributes at “the end” of the input 
scheme’s attributes, i.e. a worst case tuple possesses the 
attributes { Ak-k,,,+l , . . . , Ak } (see third interval in 
figure 4). The projection leaves the intersection of the 
projection attributes and the attributes of the worst 
case tuple (see lower interval in figure 4). The width 
of this interval k,i, +m- k is the new lower bound. As 
emphasized by the dotted line the value kmin + m - k 
may be less than zero, i.e. the resulting interval may be 
empty. The correct lower bound of a projection scheme 
is therefore kAin = maz(k,i, + m - 6, 0). 

k A,, is obtained analogously by a best case analysis. 
A best case tuple consists of k,,, attributes located at 
“the start” of the input scheme’s attribute interval to 
share as many attributes with the projection attributes 
as possible. The intersection of the best case tuple’s 
attributes with the projection attributes results in the 
new upper bound k;,, = min(k,,, , m). 

The definition for single level schemes is now complete. 
The generalization to an arbitrary, multiple level scheme 
sch(FR) = < kmi,, , k,,, , { FSl , . . . , Fsk } > is 
achieved by the following argumentation: In the single 
level case the attributes {AI , . . . , A, } were those that 
survived the projection. In the multiple level case a 
subscheme FSi survives the projection if it contains at 
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FS=<4,4,{A,B,<1,1,{C,D}>,<2,3,{E,F,G}>}> 

1 dnf 
dnf(FS) = (ABCEF , ABCEG, ABCFG, ABCEFG, 

ABDEF,ABDEG,ABDFG,ABDEFG) 

1 n {A,C,E,F} 

dnf(?ri(FS)) = { ACEF, ACE, ACF, AEF, AE, AF} 

Jl dnf -I 

n;(FS) = <3,3, {A, <O, 1, {C}>,<l, 2, {E, F}>}> 

Figure 3: example of a projection in the model of flexible relations 

AI An: 
afir t 

a22r(a{A~ ,...,A,n}(FS)) 
& 

aqt 11 worst case” > 
t--------i-- Ak-k,;,+l 

ati+{ A1 , . . . , A, )(hvorst case”)) 
t--------j m 

* kAi, = mar(kmin + m- k,O) 

Figure 4: Computation of the lower bound kAi,, of a projection scheme 

least one of the projection attributes. The number m of 
surviving subschemes, which influences the computation 
of kAi, and kl,, (see above), has now to be chosen 
such that a2trfFSi) II X # 0 (i = l..m) and at2rfFSj) n 
X = 0 (j = m + l..k). As a surviving subscheme 
is allowed to possess attributes not contained in the 
projection attributes, those superfluous attributes have 
to be removed, too. Therefore the projection operator 
has to be applied recursively to the subschemes of a 
multiple level schemes. This argumentation leads to 
the final definition of the scheme transformation of the 
projection in the F-algebra: 

Definition 2 Let sch(FR) = < k,,,i,, , k,,, , { FSI , 
. . . , F& } > be a flexible scheme, let X be the set 
of projection attributes and assume w.1.o.g. that the 

subschemes of sch(FR) are ordered such that 

allr(FSi) n X # 0 (i = l..m) 
aitr(FSj) n x = 0 (j = m + l..k) 

Then the result scheme of a projection is defined by 

sch(&FR)) = 
<&in, k;,, , { ‘IF~(FSI), . . . , &F&n) I> 
with kAi, = maz(k,i, + m - k, 0) 
and k:,, = min(k,,,, m) 

An atomic scheme sch(FR) = A is transformed by 

sch(&(FR)) = “T’ ‘kist8’ x 
{ ’ 

0 

8 T is a special flexible scheme whose domain consi& only of the 
empty tuple <>, i.e. dam(T) = { <> } and dnf(T) = { 0}. 
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7r$(Fs) = 

?r~(<4,4,{A,B,<1,1,{C,D}>,<2,3,{E,F,G}>}>) = 

<3>3, M(A), 4(<L 1, -cc, W>), 7r$(<2, 3, {E, F, G}>)}> = 

<3,3, {A, <O,l, b$(C>b, <1,2, b&(E), $#‘)b+ = 

~373, {A, <O,l, {Cl>, ~172, {E, J’l>l> 

FS 

=<4,4, {A, B, 

operational 

?r’-definition 
Z- r;(FS) = 

<3,3, {A, I 
cl, 1, {C, D)>, 

dnfl) <2,3, w, F, m-b 

dnfTF3 
= {ABCEF,ABCEG, 

ABCFG, ABCEFG, 
ABDEF, ABDEG, 
ABDFG, ABDEFG) 

semantic 

?r’--definition 
= {ACEF, ACE, 

ACF, AEF, 
AE, AF} 

Figure 5: Direct computation of a projection scheme and its relationship to the dnf-based computation 

The application of this definition to the sample scheme 
FS = < 4,4,{ A,B,< l,l,{ C,D } >,< 
2,3,{E,F,G)>)> and the projection attributes 
X = { A, C , E , F} is depicted in figure 5. Now 
we have two definitions for the scheme transformation 
of a projection: First, there is a flat description along 
the dnf-function that realizes the connection to the rela- 
tional algebra. Secondly, we have a recursive definition 
that works directly on flexible schemes and satisfies the 
design goals adequacy, closeness and eficiency. But this 
definition does hardly resemble the relational projec- 
tion, so we need a connection to the flat definition that 
reflects the similarity to the relational algebra. This 
connection is achieved by verifying the commutativity 
of the diagram in figure 5. In this example it is easy 
to see that the dnf-function serves as a homomorphism 
between the operational and the semantic definition of a 
projection, i.e. the diagram commutes. The proof that 
this equation holds in general is contained in [Ka195]. 

3.2 Overview of the F-algebra 

In summary the F-algebra consists of the basic oper- 
ators projection, selection, Cartesian product, exten- 
sion, union, minus, intersection, and restriction. Due 
to lack of space we omit to present the algebra in de- 
tail and refer to [Ka195] for the complete definition. To 
give an impression of the F-algebra we recapitulate the 

design goals characterized at the start of this section. 
The semantic connection of the F-algebra to the rela- 
tional algebra is kept by appropriate inst- and dnflsch)- 
definitions leading to the following theorem [Ka195]: 

Theorem 1 The extended operators projection, se- 
lection, Cartesian product, union, minus, and intersec- 
tion of the F-algebra are faithful and precise with re- 
spect to their counterparts in the relational algebra. 

Of course, there are positive differences to the rela- 
tional algebra, for example the set operators can be 
applied to arbitrary input relations that do not have 
to be “set compatible”, i.e. that do not have to pos- 
sess identical schemes. The adequacy and closeness of 
the F-algebra with respect to the structural part of our 
model is achieved by operational scheme transforma- 
tions applying directly to flexible schemes. The follow- 
ing theorem guarantees the identity of the two scheme 
transformations for each operator [Ka195]: 

Theorem 2 For each operator p of the F-algebra, the 
operational definition of the scheme transformation pop 
(based upon the sch-definition) is correct with respect to 
the semantic definition pSem (based upon the dnflsch)- 
definition), i.e. for each flexible scheme FS the equation 
dnflp”P(Fs)) = psem( dnf( FS,)) holds. 0 
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As flexible relations deal with heterogeneous sets the 
structure-related operators of the F-algebra demand 
further explanation. The restriction operator 11, checks 
for the presence PA or the absence 4-A (FR) of an 
attribute A in a flexible relation FR. It can be regarded 
as a formalization of the IS NOT NULL resp. IS NULL 

test in SQL. The type guard operator 7~s~ JJS, (FR) 
takes a flexible relation FR, a subscheme FS of sch(FR), 
a restricted scheme FS’ with dom(FS’) c dom(F,‘j’) 
and selects those tuples of FR whose F&part belongs 
to the domain of FS’, i.e. inst(rFs+ FS~ (FR)) = { t 1 
t E inst(FR) A t[attr(FS)] E dom(FS’)}. Thus the 
type guard checks for specific structural variants, e.g. 
~AIlEmployees+ Technicians(Employees) extracts the tech- 

nicians out of an employee relation (with appropriately 
defined and named schemes). Formally the type guard 
can be derived from the restriction by forming the DNF 
of FS’, but mapping it onto the membership test of flex- 
ible schemes is much more efficient. 
With the aid of the type guard we can express 
that the computation of a property depends upon 
the actual structural variant, namely by prop(FR) = 
Ui eEpri(T,,h(FR) --+ v,(FR)), where ezpri is the imple- 
mentation of the property prop in the variant F/;. This 
feature allows us to integrate methods and method over- 
riding in the algebraic processing and in the algebraic 
optimization step provided that the method implemen- 
tations expri are expressible within the algebrag. Fur- 
ther it enables us to strictly separate between flexible 
relations (i.e. sets of heterogeneous tuples) plus methods 
at the logical level and implementation issues at the in- 
ternal level. To compare our approach with the object- 
oriented paradigm we have developed equivalence trans- 
formations for the type guard and we can show that in 
case of a horizontal fragmentation of a flexible relation 
into homogeneous sets each type guard can be elimi- 
nated resulting in the OO-style expression. This aspect 
can be sketched as follows: Suppose FR is partitioned at 
the internal level into homogeneous sets Si with struc- 
ture vi. Then we can put the equation FR = Ui Si 
into the expression prop(FR) described above. The first 
transformation step is to push the type guard into the 
union, which works as for the selection. Now the type 
guards are directed against the homogeneous sets di- 
rectly. All which is now left to do is to identify re- 

.dundant type guards rsseh(~~)+ vi($) = Si and un- 
satisfiable type guards r,,h(~~)+ ,(Sj) = I (i # j) 
which are eliminated by the rule FR UJ I = FR. These 
simple transformation rules yield the desired expression 

g Regarding this aspect it is advisable to consider domain 
operations in the algebra as for example [GCt89] does. 

prop(FR) = ua ezpr,(Si) which exploits the horizontal 
fragmentation. Of course our approach works for verti- 
cally fragmented or unfragmented flexible relations, too. 
Thus the F-algebra provides true data independence for 
heterogeneous relations and makes method-like compu- 
tation of properties that depend on structural variants 
accessible to the optimization component. 
To demonstrate the practical relevance of our model 
we have designed FSQL, an extension of SQL support- 
ing variant structures. Some key features of FSQL 
are: FSQL contains syntactic constructs to express type 
guards and restriction and in contrast to SQL it consid- 
ers the corresponding scheme transformations. FSQL 
supports methods whose implementation may depend 
upon structural variants and it offers a generic IF- 
THEN-ELSE and CASE construct to express depen- 
dent computation directly. An application of the generic 
CASE construct is the multi-way join joining a master 
relation with different dependent relations guarded by 
a specified condition. This operator which is the key 
aspect of [AB91] comes for free in our model. To re- 
verse the heterogeneity of flexible relations FSQL offers 
default expressions that replace missing attributes, thus 
filling up the gaps in a flexible relation. 
As FSQL is based upon the F-algebra and its derived 
operators we may conclude that our model provides 
user-friendly access to heterogeneous relations with a 
theoretically sound foundation. 

4 Restructuring and normalizing 
flexible schemes 

The question if two schemes are equivalent is an im- 
portant question in scenarios like view construction, 
schema simplification, database integration and many 
others. The formal basis of the notions information ca- 
pacity, schema dominance and schema equivalence are 

presented in [Hu186] and [AABM82]. While simple re- 
lational schemes are equivalent only if they are identi- 
cal [Hu186], the same does not hold for more complex 
data models. In the context of the FORMAT MODEL 

([HY84]), which supports tuple and set constructors in 
arbitrary order, it was shown that structurally different 
schemes may be equivalent and restructuring rules were 
presented that map schemes onto equivalent ones. In 
[AH881 a data model that extends the Format Model 
by an exclusive union constructor was considered and 
the rules were extended to capture it. A major result of 
[AH881 is that the restructuring rules transform schemes 
of this model into an unambigious normal form. 
One of the restructuring rules of [AH881 is depicted in 
figure 6. It states that a tuple constructor (represented 
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Figure 6: Example of a restructuring rule 

by @ ) with /c components whose i-th component is a 
union constructor (represented by @ ) with n compo- 
nents is equivalent to a union constructor with n com- 
ponents, each component being the tuple constructor of 
the left scheme having the i-th component replaced by 
a component of the union constructor. 

The problem of having equivalent, but syntactically 
different schemes applies to flexible relations, too. An 
example of schema equivalence in our model is depicted 
in figure 7 that contains three flexible schemes that do 
all describe the same domain, i.e. that are equivalent. 
The first scheme states in a compact way that 2 up to 3 
of the attributes {A, B , C , D } have to be present. 
The second scheme splits this information by saying 
that either exactly 2 or exactly 3 of the mentioned 
attributes may occur. The third scheme is special in 
the way that it consists of a complete enumeration of 
all valid attribute combinations. In that form both the 
&in- and the k,,, -value can be statically determined: 
Lin = km,, = 1 at the top level, kmini = k,,,, = 
card(subschemei) at the second level. Such a flexible 
scheme does therefore bear exactly the information 
computed by the &f-algorithm and we will call those 
schemes being in disjunctive normal form (DNF). 

This third scheme corresponds to the normal form 
developed in [AH88], i.e. the DNF is the result of 
the transformations described in [AH881 when these 
transformations are applied to types consisting only of 
tuple and union constructors and not possessing any set 
constructor. Besides the advantages of the DNF, that 
is being a normal form and being easy to compute, it 
has several disadvantages: 

l The storage costs of DNF schemes are exponential 
in the number of attributes. The time complexity of 
comparing two DNF schemes is exponential”, too. 

lo Usually processing costs are measured in the size n of the input 
yielding n logn for the comparison of two schemes in DNF. 
But our intention is to compare our model with the relational 
one. Therefore we have chosen the number of attributes as the 
common basis. 

l For arbitrary flexible schemes the membership test 
is in NP relative to the input size. Measured in the 
number of attributes (for a better comparison with 
the relational model) the membership test and other 
algorithms on flexible schemes including the scheme 
transformations of the algebra have exponential time 
complexity for DNF schemes. 

4.1 Minimal normal form of flexible schemes 

The disadvantages of the DNF can be avoided if one 
utilizes the capability of flexible schemes to express 
heterogeneous structures in a compact way (as the first 
scheme in figure 7 does). Hence arises the need to 
transform flexible schemes into a dense form with as 
few schema nodes as possible. Obviously, the way one 
has to pursue is to apply the restructuring rules in a 
direction that yields “smaller” schemes with less schema 
nodes, e.g. from right to left in figure 6. The challenge 
of reducing flexible schemes is to answer the question if 
applying the rules towards smaller schemes always leads 
to an unambigious normal form. 
As one can show this cannot be achieved for arbitrary 
flexible schemes. That is, there are schemes for which 
applying the restructuring rules in different orders leads 
to different final schemes. The crucial point whether 
there exists a minimal normal form is the number of 
occurences of attributes. There is a subclass of 3’S 
that we have called the class V3S of disjoint flexible 
schemes. It contains all flexible schemes that possess 
each attribute at most once, e.g. the first scheme in 
figure 7 belongs to V3S, while the other two schemes 
in figure 7 possess multiple occurences of attributes 
and belong hence to NV3S = 3S - V3S. At first 
glance one might think that members of V3S are 
normalized by definition. A counterexample is the 
scheme FS = <3,3, {A, B, <2,2, {C,D}>}>. 
FS is a member of VDTS, but it can be reduced to 
FS’ = < 4,4, {A, B, C, D} >. This reduction 
is achieved by the tuple in tuple restructuring rule 
described in [Ka195]. In summary, [Ka195] contains 
seven restructuring rules applying to schemes in V3S 
and it can be shown ([Sch94],[Ka195]) that reducing 
members of V3S by applying the rules in arbitrary 
order yields an unambigious minimal normal form. 

The second important property of V3S is that the 
time complexity of the relevant algorithms, including 
the membership test, is polynomial in the number of 
attributes. The result is due to the fact that a scheme 
in V3S with n attributes possesses o(n) schema nodes 
and that the most costly node-local operation is the 
intersection of two attribute sets which is o(n logn). 
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= <l, 1, {<2,2, {A, B, C, D}>, <3,3, {A, B, C, D}>}> 

~<1,1,{<2,2,{A,B}>,<2,2,{A,C}>,<2,2,{A,D}>,<2,2,{N,~~‘}> 

<2,2,{B,D}>,<2,2,{C,D}>,<3,3,{A,B, C}>, 

<3,3, {A,B,D}>,<3,3, {A,C,D}>,<3,3,{B,C,D)>)> 

Figure 7: Equivalent flexible schemes 

It would be a pleasant result if each flexible scheme 
could be brought into minimal normal form. Unfor- 
tunately this is not the case. First, not every flexible 
scheme possesses a representative in V3S” , e.g. there 
is no member ofV3S whose dnf is {A, AB , BC}. For 
schemes in NV3S that do not have a representative in 
V3S one can easily show that they do not possess a 
minimal normal form. There are restructuring rules ap- 
plying to members of Nv~S, like the rule depicted in 
figure 6, but the output of the reduction process is not 
unique and depends upon the order in which the rules 
are applied12. 

The seven restructuring rules mentioned above leading 
to the minimal normal form apply only to schemes 
that are already members of V3S. Hence it remains 
the question how members of NV3S can be brought 
into V3S if they possess a representative in V3S. 
We have developed an algorithm dnf-’ that takes 
a flat description of a flexible scheme and decides if 
there exists a representative in V3S possessing the 
specified DNF. A complete description of the algorithm 
can be found in [Kal95]. It is not surprising that 
the algorithm is very expensive in extreme cases as 
it involves numerous tests on common subexpressions. 
Fortunately the dnf -’ -algorithm is needed rarely as 
the algebra is closed in V3S except the union and 
the intersection operator. The remaining problem can 
be attacked with the restructuring rules applying to 
members of NVFS. These restructuring rules do often 
apply in practical cases, and serve therefore as low cost 
shorthands so that the expensive dnf-‘-algorithmmust 
rarely be employed. 

l1 Fortunatley, the class V3S is sufficiently large as there are more 
than n! members of 273s with up to n attributes. Nevertheless, 
the cardinality of N’D3S is larger, namely 22n, telling that 
there exist members of NV3S that do not possess an equivalent 
member of V3S. 

l2 An illustrative example is the scheme FS with dnf(F.9) = 
{ AB , AC, AD, BC, BD, BE ). There are threestructurally 
different minimal representations of FS, each consisting of 13 
nodes, allowing the conclusion that there is no minimal normal 
form in NV3S. 

5 Comparison to related approaches 

Some attempts have been made to suyl)ort variant 
structures in relational data models ([A R9 I], [1)(.X9]). 
These approaches share the problem that, t,hc notin 
of a precise, statically typed scheme is ab;indollcn,i 
and that the proposed query languages either do 
work only interactively when variant par& are touched 
([DCSS]) or are only able to produce query results 
that are more variant than the input leading quickly 
to useless diversified “patchwork” ([AB91]). A morr\ 
competitive approach is the data model of the LILO( ;- 
DB project ([LudSO], [BGL+Sl]) where connertiorl, 
between attributes may be specified with the boolean 
operators and, or and no& i.e. in a form “address . . . 
(HAS street AND HAS house-number AND NOT HAS 
post-office box) OR (HAS post-office box AND .” The 
major disadvantage of LILOG-DH is t,lI:lt t 11~ El; I’,\ 
algebra defined upon their model ([LW’JI]) tlrlc~ 11111 

take the structure information of the input SCII~~IIIIY 
into account. In contrast, it works on nrbitrarr~ly typed 
heterogeneous sets. Therefore it. is not evident. what the 
effort of precisely specifying schemes wrvps for. 

5.1 Comparison to object---oric~lltc!d cl;\t:t 
models 

Formal object-oriented models ([SLH $ !I:!; : I. I<\M’ 
[EA91]) typically define the domain ol’ ;I 1) 181 r to 
be the set of all objects with type T’ 5 T. \\ itI1 5 
being an appropriate subtype relationship) ([( ‘ll;%]). 
Therefore an object-oriented type is never ittl arbit~rnry 
polymorphic set, but always a complete lat tic-c. 

Let us first demonstrate that, flexible schemes are 
capable of simulating object-orient.rd types: Let r 
be a tuple-valued type consisting of the attributes 

{Al , . . . Al, } and assume that the set { .41 , . . . A, } 
of relevant attributes is known. Then the lattice 
under 7 conforms to the scheme FS = < k + 1 , k + 
1, {Al, . . . 13 Ak,<O,n-k, {A~+I, . ..A.}>}> , 

l3 Even if the set of relevant attributes is unknown or varies over 
time, the siklation does not fail: Each novel attribute A,+, 
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i.e. a flexible scheme that must contain the attributes 
{Al, . . . & } and may possess any subset of { ,&+I , 
. . . A,, }. So a lattice can be represented as a simple 
two-level flexible scheme, and it is a rather easy task to 
transform object-oriented algebras onto our model. 

Our model is not behaviourally object-oriented, i.e. 
inheritance or other dynamic aspects are not supported. 
Nevertheless, flexible relations meet the structural 
requirements to place a behaviourally object-oriented 
model on top of them. From the structural point of 
view the key property to support dynamic aspects is 
subtyping, and of course we are able to represent the 
different notions of subtyping [BW90] in our model: 
Object-oriented subtyping and subset subtyping at 
the tuple level of two flexible schemes F& and FS2 
can be expressed by appropriate relationships bgtween 
dnj(F&) and d~~flFS’2)‘~. Subset subtyping at the 
level of attribute domains is achieved in our model 
by a new form of integrity constraint which we have 
called attribute dependency. Details about attribute 
dependencies can be found in [KD95]. 

In addition to being able of simulating 00 features, 
our model exceeds the 00 approach in its modeling 
capabilities, as a flexible scheme allows to restrict the 
domain to meaningful types. The disadvantage of the 
lattice approach continues in query processing. For 
example, the result type of the union operator has to 
be defined as the least upper bound of the input types 
to be consistent with the lattice properties ([BK89], 
[SLR+93]). One can easily define a type r 5 hb(rr, 72) 
for which neither I- 5 ~1 nor r 5 72 holds, i.e. 
dom(rr Uoo 72) _> dom(rr) U dom(rz), while our algebra 
assures that dom(ri Uf ~2) = dom(rr) U dom(r2) holds. 
This causes problems in 00 data models, e.g. with 
updatable views, that we do not have. As a last point 
both our approach and 00 data models require type 
guards ([B091]) b f e ore variant parts may be accessed. 
As shown in section 3.2 we are capable of identifying 
redundant or unsatisfiable type guards at compile time, 
while 00 models have to check most of them at run 
time, as they are not able to disallow non-occuring 
subtypes. Further optimization potential similar to 
pualified relations [CP83] stems in our model from 
attribute dependencies and is discussed in [KD95]. 

can be added to FS by “upgrading” FS to the scheme < k + 1, 

k+l,{Al, . . . Ak, <o,n-k+l,{&+l, . . . Ant1 )>I>. 
Such au upgrade does not invalidate the existing member tuples 
of the scheme, so it can be done at any time. 

l4 Subset subtyping FS, 5” FS, holds when dnf(FSl) s 
dnflF.f&), and object-oriented subtyping FS, 5”” FSz holds 
when VX E dnf(FSl) 3Y E dnj(FSz) : X _3 Y. 

6 Summary 
In this paper we have introduced the basic concepts 
of the model of flexible relations that improves the 
relational model on providing modeling and operational 
support of variant structures. The central feature of 
the model is the notion of flexible schemes that allow 
to model homogeneous and heterogeneous structures 
in a uniform way. Flexible schemes combine the 
relational paradigm of providing a single constructor 
with the aspect of completeness, i.e. each heterogeneous 
structure is expressible as a flexible scheme. 

The F-algebra defined on flexible relations has been 
presented and its adequacy with respect to the structural 
part of the model and the semantic relationship to 
the relational algebra have been shown. We have 
outlined how advanced operators that process variant 
structures in a concise and elegant way can be derived 
from the basic ones. These derived operators can be 
regarded as the intermediate step towards FSQL, a 
high-level language providing user-friendly access to 
flexible relations. Due to lack of space the user-friendly 
interface to flexible relations could only be sketched 
but section 3.2 gave an impression of how method- 
like processing, generic IF-THEN-ELSE and CASE 
expressions, and default values are supported by FSQL 
and based upon the F-algebra and its derived operators. 

The need of a more powerful scheme mechanism com- 
pared to a simple relational scheme led to the prob- 
lem that equivalence among flexible schemes cannot be 
decided in structural, syntactical terms. A disjunctive 
normal form on flexible schemes could be derived from 
previous results ([AH88]). Problems of the DNF, espe- 
cially its processing costs, were identified and the con- 
dition, under which a very cheap minimal normal form 
is available, were determined. These investigations led 
to the subclass 2>FS of those flexible schemes, in which 
each attribute occurs at most once. An interesting open 
question is if a minimal normal form exists if flexible 
relations are extended by a set constructor, i.e. if our 
model is joined with the NF2 data model [AFS89]. 

Besides the aspect that structural reduction of flexible 
schemes leads exactly in VFS to the minimal normal 
form, one can show that relevant algorithms on flexible 
relations, like membership test and the algebraic oper- 
ators, possess polynomial complexity (measured in the 
number of attributes) in ZJFS, while these algorithms 
have an exponential worst case complexity for general 
flexible schemes. These results allow the conclusion that 
the simple relational model can be extended to the much 
larger class ‘D3S without losing any positive property 
of the simple relational model. 
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Finally, we compared our model with other approaches 
supporting heterogeneous structures, especially to the 
object-oriented paradigm. We did show that flexible 
relations are able to simulate object-oriented classes, 
and outperform the 00 approach in modeling and 
typing precision and provide a higher potential of query 
optimization. 
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