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Abstract 

Classification, which involves finding rules 
that partition a given da.ta set into disjoint 
groups, is one class of data mining problems. 
Approaches proposed so far for mining classifi- 
cation rules for large databases are mainly de- 
cision tree based symbolic learning methods. 
The connectionist approach based on neura.l 
networks has been thought not well suited 
for data mining. One of the major reasons 
cited is that knowledge generated by neural 
networks is not explicitly represented in the 
form of rules suitable for verification or inter- 
pretation by humans. This paper examines 
this issue. With our newly developed algo- 
rithms, rules which are similar to, or more 
concise than those generated by the symbolic 
methods can be extracted from the neural net- 
works. The data mining process using neural 
networks with the emphasis on rule extraction 
is described. ExperimenM results and com- 
parison with previously published works are 
presented. 

1 Introduction 

With the wide use of advanced database technology 
developed during past deca.des, it is not difficult to ef- 
ficiently store huge volume of data in computers a.nd 
retrieve them whenever needed. Although the stored 
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data are a valuable asset of a.n organization, most orga- 
nizations may face the problem of data rich but knowl- 
edge poor sooner or later. This situation aroused the 
recent surge of research interests in the area of data 
mining [l, 9, 21. 

One of the data mining problems is classification. 
Data items in databases, such as tuples in relational 
database systems usually represent real world entit,ies. 
The values of the attributes of a tuple represent the 
prqperties of the entity. Classification is the process 
of finding the common properties among different en- 
tit#ies and classifying them into classes. The results 
a,re often expressed in the form of rules - the classi- 
fication rules. By applying the rules, entities rep- 
resented by tuples can be easily classified into dif- 
ferent classes they belong to. We can restate the 
problem formally defined by hgrawal et al. [l] as 
follows. Let A be a set, of attributes Al, AZ,. . . , A, 
and dom(Ai) refer to the set of possible values for at- 
tribute Ai. Let C be a set of classes cl, ~2, . . . , cm. We 
are given a data set, the training set whose members 
are (n+ 1)-tuples of the form (al, as,. . . , a,, ck) where 
ai E dom(Ai),(l 5 i < n) and ck E C(l 5 k 5 m). 
Hence, the class to which each tuple in the training 
set belongs is known for supervised learning. We are 
also given a second large database of (n. + I)-t$uples, 
the testing set. The classification problem is to obtain 
a set of rules R using the given training data set. By 
applying these rules to the testing set, the rules can 
be checked whether they generalize well (measured by 
the predictive accuracy). The rules that generalize well 
can be safely applied to the application database with 
unknown classes to determine each tuple’s class. 

This problem has been widely studied by re- 
searchers in the A.1 field [28]. It is recently re- 
examined by database researchers in the context of 
large database systems [5,7, 14, 15, 131. Two basic ap- 
proaches to the classification problems studied by AI 
researchers are the symbolic approach and the connec- 
tionist approach. The symbolic approach is based on 
decision trees and the connectionist approach mainly 
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uses neural networks. In general, neural networks 
give a lower classification error rate than the deci- 
sion trees but require longer learning time [17, 24, 181. 
While both approaches have been well received by 
the AI community, the general impression among the 
database community is that the connectionist ap- 
proach is not well suited for data mining. The major 
criticisms include the following: 

1. Neural networks learn the classification rules by 
multiple pssses over the training data set so that 
the learning time, or the training time needed for 
a neural network to obtain high classification ac- 
curacy is usually long. 

2. A neural network is usually a layered graph with 
t#he output of one node feeding into one or many 
other nodes in the next layer. The classification 
rules are buried in both the structure of the graph 
a,nd the weights assigned to the links between the 
nodes. Articulating the classification rules be- 
comes a difficult problem. 

3. For the same reason, available domain knowledge 
is rather difficult to be incorporated to a neural 
network. 

Among the above three major disadvantages of the 
connectionist approach, the articulating problem is the 
most urgent one to be solved for applying the tech- 
nique to data mining. Without explicit representation 
of classification rules, it is very difficult to verify or 
interpret them. More importantly, with explicit rules, 
tuples of a certain pattern can be easily retrieved us- 
ing a database query language. Access methods such 
as indexing can be used or built for efficient retrieval 
as those rules usually involve only a small set of at- 
tributes. This is especially important for applications 
involving a large volume of data. 

In this paper, we present the results of our study 
on a.pplying the neural networks to mine classification 
rules for large databases with the focus on articulating 
the classification rules represented by neural networks. 
The contributions of our study include the following: 

l Different from previous research work that ex- 
cludes the connectionist approach entirely, we ar- 
gue that, the connectionist approach should have 
its position in data mining because of its merits 
such as low classification error rates and robust- 
ness to noise [17, 181. 

l With our newly developed algorithms, explicit 
classification rules can be extracted from a neural 
network. The rules extracted usually have a lower 
classification error rate than those generated by 
the decision tree based methods. For a data set 

with a strong relationship among attributes, the 
rules extracted are generally more concise. 

l A data mining system, NeuroRule, based on neu- 
ral networks was developed. The system success- 
fully solved a number of classification problems in 
the literature. 

To better suit large database applications, we also 
developed algorithms for input data pre-processing 
and for fast neural network training to reduce the time 
needed to learn the classification rules [22, 191. Lim- 
ited by space, those algorithms are not presented in 
this paper. 

The remainder of the paper is organized as follows. 
Section 2 gives a discussion on using the connection- 
ist approach to learn classification rules. Section 3 
describes our algorithms to extract classification rules 
from a neural netswork. Section 4 presents some exper- 
imental results obtained and a comparison with previ- 
ously published results. Finally a conclusion is given 
in Section 5. 

2 Mining classification rules using neu- 
ral networks 

Artificial neural networks are densely interconnected 
networks of simple computational elements, neurons. 
There exist many different network topologies [lo]. 
Among them, the multi-layer perceptron is especially 
useful for implementing a classification function. Fig- 
ure 1 shows a three layer feedforward network. It con- 
sists of an input layer, a hidden layer and an output 
layer. A node (neuron) in the network has a number 
of inputs and a single output. For example, neuron Hj 
has x:,x;, . . . ,z: as its input and ,j as its output. A 
link in the network is associate! with a weight. The 
input links of Hj has weights til, u$, . . .,&i. A node 
computes its output, the activation value by summing 
up its weighted inputs, subtracting a threshold, and 
passing the result to a non-linear function f, the acti- 
vation function. Outputs from neurons in one layer 
are fed as inputs to neurons in the next layer. In this 
manner, when an input tuple is applied to the input 
layer, an output tuple is obtained at the output layer. 
For a well trained network which represents the clas- 
sification function, if tuple (x1,22,. . . , 2,) is applied 
to the input layer of the network, the output tuple, 
(Cl,%*-., cm) should be obtained where ci has value 
1 if the input tuple belongs to class ci and 0 otherwise. 

Our approach that uses neural networks to mine 
classification rules consists of three steps: 

1. Network tmining 
A three layer neural network is trained in this 
step. The training phase aims to find the best set 
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of weights for the network which allow the net- 
work to classify input tuples with a satisfactory 
level of accuracy. An initial set of weights are 
chosen randomly in the interval [-l,l]. Updating 
these weights is normally done by using informa- 
tions involving the gradient of an error function. 
This phase is terminated when the norm of the 
gradient of the error function falls below a pre- 
specified value. 

2. Network pruning 
The network obtained from the training phase is 
fully connected and could have too many links and 
sometimes too many nodes as well. It is impossi- 
ble to extract concise rules which are meaningful 
to users and can be used to form data.base queries 
from such a network. The pruning phase aims 
at removing redundant links and nodes without 
increasing the classification error rate of the net- 
work. A smaller number of nodea and links left 
in the network after pruning provide for extract- 
ing consise and comprehensible rules that describe 
the classification function. 

3. Rule extraction 
This phase extracts the classification rules from 
the pruned network. The rules generated are in 
the form of “if (alhl) and (c#va) and . . . and 
(z,&) then Ci” where ai’s are the attributes 
of an input tuple, vi’s are constants, 0’s are re 
lational operators (=, <,>, <>), and Cj is one 
of the class labels. It is expected that the rules 
are concise enough for human verification and are 
easily applicable to large databases. 

In this section, we will briefly discuss the first two 
phase. The third phase, rule extraction phase will be 
discussed in the next section. 

2.1 Network training 

Assume that input tuples in an n-dimensional space 
are to be classified into three disjoint classes d, f?, and 
C. We construct a network a9 shown in Figure 1 which 
consists of three layers. The number of nodes in the 
input layer corresponds to the dimensionality of the 
input tuples. The number of nodes in the output layer 
equals to the number of classes to be classified, which 
is three in this example. The network is trained with 
target values equal to { 1, 0, 0) for all, patterns in set d, 
(0, 1, 0) for all patterns in f?, and (0, 0, 1) for all tuples 
in C. An input tuples will be classified as a member 
of the class A, B or C if the largest activation value 
is obtained by the first, second or third output node, 
respectively. 

There is still no clear cut rule to determine the num- 
ber of hidden nodes to be included in the network. TOO 

many hidden nodes may lead to overfitting of the data 
and poor generalization, while too few hidden nodes 
may not give rise to a network that learns the data. 
Two different approaches have been proposed to over- 
come the problem of determining the optimal number 
of hidden nodes required by a neural network to solve a 
given problem. The first approach.begins with a min- 
imal network and adds more hidden nodes only when 
they are needed to improve the learning capability of 
the network [3, 11, 191. The second approach begins 
with an oversized network and then prunes redundant 
hidden nodes and connections between the layers of 
the network. We adopt the second approach since we 
are interested in finding a network with a small num- 
ber of hidden nodes as well as the least, number of 
input nodes. An input node with no connection to 
any of the hidden nodes after pruning plays no role in 
the butcome of classification process and hence can be 
removed from the network. 

ChItput Lays 

Hidden Layer 

lapot Layer 

Figure 1: A three layer feedforward neural network. 

The activation value of a node in the hidden layer 
is computed by passing the weighted sum of input 
values to a non-linear activation function. Let WY 
be the weights for the connections from input node 
e to hidden node m. Given an input pattern xi, i E 
{l,%..., k}, wherq iE is the number of tuples in the 
data set, the activation value of the m-th hidden node 
is 

C-P = f 
( 
k(x:w;1) -em , 
kl 1 

where f(.) is an activation function. In our study, we 
use the hyperbolic tangent function 

f(x) := d(x) = (es - ee5)/(ez + e+) 

as the activation function for the hidden nodes, which 
makes the range of activation values of the hidden 
nodes [-1 , 11. 

Once the activation values of all the hidden nodes 
have been computed, the p-th output of the network 

480 



for input tuple xi is comput#ed as 

where vp” is the weight of the connection between hid- 
den no& m and output node p a,nd h is the number of 
hidden nodes in the network. The activation function 
used here is the normal sigmoid function, 

u(x) = l/(1 + e-“), 

which yields activation values of the output nodes in 
the range [0, 11. 

A tuple will be correctly classified if the following 
condition is satisfied 

where $ = 0, except for iii = 1 if a? E A, ta = 1 if 
xi E a, and ti = I if xi E C, and 91 is a small pos- 
itive number less than 0.5. The ultimate objective of 
t,he training phase is to obtain a set of weights that 
make the network classify the input t,uples correctly. 
To measure the classification error, an error function is 
needed so that the training process becomes a process 
to adjust the weights (w, V) to minimize this function. 
Furthermore, to facilitate the pruning phase, it is de- 
sired f,o .have many weights with very small values so 
that. they ca.n be set to zero. This is achieved by adding 
a penalty term to the error function. 

In our training algorithm, the cross entropy func- 
tion 

qw, v) = - -& 2 (t; log% + (1 - tf, log(1 - $)) 
i=l o=l 

(2) 
is used as the error function. In this example, o equals 
to 3 since we have 3 different classes. The cross entropy 
function is chosen because faster convergence can be 
achieved by minimizing this function instead of the 
widely used sum of squared error function [26]. 

The penalty term P(w, V) we used is 

/h n h o \ 

E-2 (c c MY2 + c c tc)‘) ) 
m=l kl m=l p=l 

where ~1 aad ~2 are two positive weight decay parame- 
ters. Their values reflect. the relative importance of the 
accuracy of the network versus its complexity. With 
larger values of these two parameters more weights 

may be removed later from the network at the cost 
of a decrease in its accuracy. 

The training phase starts with an initial set, of 
weights (ZU, U) (“) and iteratively updates the weights to 
minimize E(w, V) + P( UJ, v). Any unconstrained min- 
imization algorithm ca,n be used for t,his purpose. In 
pa.rticular, the gradieut descent method has been the 
most. widely used in the training algorithm known as 
the backpropagation algorithm. A number of alterna- 
tive algorithms for neura.l network training have been 
proposed [4]. To reduce the network training time, 
which is very important in the data. mining as t,he data 
set is usually large, we employed a variant of the quasi- 
Newton algorithm [27], the BFGS method. This algo- 
rithm has a superlinear convergence rate, as opposed 
to the linear rate of the gradient descent method. De- 
tails of the BFGS algorithm can be found in [6, 231. 

The network training is t,erminated when a local 
rninimum of the function E(ul, V) + P(w, V) has been 
reached, that is when the gradient of the function is 
sufficiently small. 

2.2 Network pruning 

A fully connected network is obta.ined at the end of the 
training process. There are usually a large number of 
links in the network., With n input nodes, h hidden 
nodes, a.nd m output, nodes, there are h(m + n) links. 
It is very difficult to articulate such a network. The 
network pruning phase aims at removing some of t,he 
links without affecting the classification accuracy of 
the network. 

It can be shown that [20] if a network is fully trained 
to correctly classify an input tuple, xi, with the condi- 
tion (1) satisfied we can set WY t,o zero without deteri- 
orating the overall accuracy of the network if t,he prod- 
uct IPwLPI issufficiently small. If maxp IzIyulrI 5 4712 
and the sum (~1 + 772) is less than 0.5, then the 
network can still classify xi correctly. Similarly, if 
maxp Iup”\ 5 4q2, then up” can be removed from t,he 
network. 

Our prunung algorithm based on this result is 
shown in Figure 2. The two conditions (4) and (5) 
for pruning depend on the magnitude of the weights 
for connections between input nodes and hidden nodes 
and between hidden nodes and output nodes. It is 
imperative that during training these weights be pre- 
vented from getting too large. At the same time, small 
weights should be encouraged to decay rapidly to zero. 
Ry using penalty funct,ion (3), we can achieve both. 

2.3 An example 

We have chosen to use a function described in [2] as an 
example to show how a neural network can be trained 
and pruned for solving a classification problem. The 

481 



Table 1: Attributes of the test da.ta adapted from Agrawal et a1.[2] 

Mribute Description Value 
salary salary uniformly distributed from 20,000 to 150,000 
commission commission if salary 1 75000 -+ commission = 0 

else uniformly distributed from 10000 to 75000. 
age age uniformly distributed from 20 to 80. 
elevel education level uniformly distributed from 0 to 4. 
car make of the car uniformly distributed from 1 to 20. 
xipcode zip code of the town uniformaly chosen form 9 available zipcodes. 
hva.lue value of the house uniformaly distributed from 0.5klOOOO to 1.5k1000000 

where Ic E (0 . . .9} depends on zipcode. 
hyears years house owned uniformly distributed from 1 to 30. 
loan total amount of loan uniformly distributed from 1 to 500000. 

input tuple consists of nine attributes defined in Ta- 
ble 1. Ten classification problems are given in [2]. 
Limited by space, we will present and discuss a few 
functions and the experimental results. 

The original Function 2 classifies a tuple in 
Group A if 

Neural network pruning algorithm (NP) 

1. Let ~1 and 02 be positive scalars such that ~11 + 
772 < 0.5. 

2. Pick a fully connected network. Train this 
network until a. predetermined accuracy rate is 
achieved and for each correctly classified pattern 
the condition (1) is satisfied. Let (w,~) be the 
weights of this network. 

3. For each WY, if 

then remove ~7 from the network 

4. For each v”‘, if 

then remove up” from the network 

5. If no weight satisfies condition (4) or condition 
G-9, th en remove WY with the smallest product 
maxp Iv,“’ x wy1. 

6. Retrain the network. If accumcy of the network 
falls below an acceptable level, then stop. Other- 
wise, go t.0 Step 3. 

Figure 2: Neural network pruning algorithm 

((age < 40) A (50000 5 salary < 1000OO))V 

((40 5 age < 60) A (75000 _< salary 5 125000))V 

((age > 60) A (25000 5 salary _< 75000)). 

Otherwise, the tuple is classified in Group B. 
The training data set consisted of 1000 tuples. The 

values of the attributes of each tuple were generated 
randomly according to the distributions given in Ta- 
ble 1. Following Agrawal et al. [2], we dso included 
a perturbation factor as one of the parameters of the 
random data generator. This perturbation factor was 
set at 5 percent. For each tnple, a class label was deter- 
mined according to the rules that define the function 
above. 

To facilitate the rule extraction in the later phase, 
the values of the numeric attributes were discrctized. 
Each of the six attributes with numeric values was dis- 
cretized by dividing its range into subintervals. The 
attribute salary for example, which wits uniformly dis- 
tributed from 25000 to I50000 was divided into 6 
subintervals: subinterval 1 contained all salary values 
that were strictly less than 25000, subinterval 2 con- 
tained those greater than or equal to 25000 and strictly 
less than 50000, etc. The thermometer coding scheme 
was then employed to get the binary representations of 
these intervals for inputs to the neural network. Hence, 
a salary value less that 25000 was coded a~ {000001}, 
a salary value in the interval [25000,50000) was coded 
as {000011}, etc. The second attribute commission 
was similarly coded. The interval from 10000 to 75000 
was divided into 7 subintervals, each having a width 
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of 10000 except for the last one, [~OOOO, 750001. Zero 
commission was coded by all zero values for the seven 
inputs. The coding scheme for the other attributes are 
given in Table 2. 

Table 2: Binarization of the attribute values 

Attribute Input number Interval width 
salary xl - 556 25000 
commission z7 - 213 10000 
w 214 - z19 10 
elevel 220 - 223 

car 124 - 143 

zipcode 144 - 152 

hvalue z-s3 - 166 100000 
hyears 167 - x76 3 

loan 277 - &36 50000 

With this coding scheme, we had a total of 86 bi- 
nary inputs. The 87th input was added to the network 
to incorporate the bias or threshold in each of the hid- 
den node. The input value to this input was set to 
one. Therefore the input layer of the initial network 
consisted of 87 input nodes. Two nodes were used at 
the output layer. The target output of the network was 
{ 1,O) if the tuple belonged to Group A, and (0, 1) oth- 
erwise. The number of the hidden nodes was initially 
set as four. 

There were a total of 386 links in the network. The 
weights for these links were given initial values that 
were randomly generated in the interval [-l,l]. The 
network was trained until a local minimum point of 
the error function had been reached. 

The fully connected trained network was then 
pruned by the pruning algorithm described in Section 
2.2. We continued removing connections from the neu- 
ral network as long aa the accuracy of the network was 
still higher than 90 %. 

Figure 3 shows the pruned network. Of the 386 links 
in the original network, only 17 remained in the pruned 
network. One of the four hidden nodes was removed. 
A small number of links from the input nodes to the 
hidden nodes made it possible to extract compact rules 
with the same accuracy level its the neural network. 

3 Extracting rules from a neural net- 
work 

Network pruning results in a relatively simple network. 
In the example shown in the last section, the pruned 
network has only 7 input nodes, 3 hidden nodes, and 
2 output nodes. The number of links is 17. However, 
it is still very difficult to articulate the network, i.e., 
find the explicit relationship between the input tuples 
and the output tuples. Research work in this area has 

Figure 3: Pruned network for Function 2. Its accuracy 
rate on the 1000 training samples is 96.30 % and it 
contains only 17 connections. 

been reported [25,8]. However, to our best knowledge, 
there is no method available in the literature that can 
extract explicit and concise rules as the algorithm we 
will describe in this section. 

3.1 Rule extracting algorithm 

A number of reasons contribute to the difficulty of ex- 
tracting rules from a pruned network. First, even with 
a pruned network, the links may be still too many to 
express the relationship between an input tuple and 
its class label in the form of if.. . then . . . rules. If a 
node has n input links with binary values, there could 
be as many as 2n distinct input patterns. The rules 
could be quite lengthy or complex even with a small R, 
say 7. Second, the activation values of a hidden node 
could be anywhere in the range [-l,l] depending on the 
input tuple. With a large number of testing data, the 
activation values are virtually continuous. It is rather 
difficult to derive the explicit relationship between the 
activation values of the hidden nodes and the output 
values of a node in the output layer. 

Our rule extracting algorithm is outlined in Fig- 
ure 4. 

The algorithm first discretizes the activation values 
of hidden nodes into a manageable number of discrete 
values without sacrificing the classification accuracy of 
the network. A small set of the discrete activation val- 
ues make it possible to determine both the dependency 
among the output values and the hidden node values 
and the dependency among the hidden node activation 
values and the input values. 

From the dependencies, rules can be generated [12]. 
Here we show the process of extracting rules from the 
pruned network in Figure 3 obtained for the classifica- 
tion problem Function 2. 

The network obtained for the classification problem 
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Rde extraction algorithm (RX) 

1. Activation value discretization via clustering: 

(a) Let, E E (0,l). Let D be the number of dis- 
crete activation values in the hidden node. 
Let 51 be the activation value in the hidden 
node for the first pa.ttern in the tra.ining set. 
Let W(1) = &,counl(l) = l,sum(l) = Sl 
and set, D = 1. 

(b) For all patterns i = 2,3, . . .Ic in t,he training 
set: 

l Let S be its activation value. 
l If there exi& an index j such that 

and16 - H(?)( 5 E, 

then set count(3) := COW@) + 1, 
sum(D) := sum(D) + s 
else D = ll f I., H(D) = 6, 
counl( D) = 1, sum(D) = 6. 

(c) Replace H by the avera.ge of a.11 activation 
values that have been clustered into this clus- 
ter: 

H(j) := sum(j)/ coun.t(j), j = 1,2.. .) D. 

(d) Check the accuracy of the network with the 
activa.tion values 6” at the hidden nodes re- 
placed by Sd, the activation value of the clus- 
ter to which the activation value belongs. 

(e) If the accuracy falls below the required level, 
decrease 6 and repeat, Step I. 

2. Enumerate the discretized activation values and 
compute the network output. 

Generate perfect rules that have a perfect cover 
of all the tuples from the hidden node activation 
values to the output vnlues. 

3. For the discretized hidden node activation values 
a,ppea.red in the rules found in the above step, 
enumera.te the input values tha.t lead to them, and 
generate perfect rules. 

4. Generate rules that relating the input values and 
the output values by rule substitution based on 
the results of the above two steps. 

Figure 4: Rule extraction algorit,hm (RX) 

Function 2 (Figure 3) had three hidden nodes. The 
activation values of 1000 tuples were discretized. The 
value of E was set to 0.6. The results of discretization 
are shown in the following table. 

Node No of clust,ers Cluster activation values 

1 3 (-1, 0, 1) 
2 2 ( 07 1) 
3 3 (-1, 0.24, 1) 

The clnssificat~ion accumcy of the network was 
checked by replacing t,he individual activa.tion value 
with its diocretized a.ctivation value. The value of 
6 = 0.6 was sufficiently small to preserve the accu- 
racy of the neural network and large enough to ha.ve a 
small number of clusters. For the three hidden nodes, 
the numbers of discrete activation values (clusters) are 
3,2 and 3, or a total of 18 different outcomes art the two 
output nodes. We tabulate the outputs Crj(l < j 5 2) 
of the network according to the hidden node activation 
values (Y,, (1 < m 5 3) a¶ follows. 

01 Q2 a3 (71 c2 

-1 1 -1 0.92 0.08 
-1 1 1 0.00 1.00 
-1 1 0.24 0.01 0.99 
-1 0 -1. 1.00 0.00 
-1 0 1 0.11 0.89 
-1 0 0.24 0.93 0.07 
I 1 -1 0.00 1.00 
1 1 1 0.00 1.00 
1 1 0.24 0.00 1.00 
1 0 -I 0.89 0.11 
1 0 1 0.00 1.00 
1 0 0.24 0.00 1.00 
0 1 -1 0.18 0.82 
0 1 1 0.00 1.00 
0 1 0.24 0.00 1.00 
0 0 -1 1.00 0.00 
0 0 1 0.00 1.00 
0 0 0.24 0.18 0.82 

Following Algorithm R.X step 2, the predicted out- 
puts of the network are ta.ken to be Cl = 1 a.nd C’s = 0 
if the activation values ana’s satisfy one of the follow- 
ing conditions (since the table is small, the rules can 
be checked manually if interested): 

R~l:C1=1,CI,=O e (Y:!=o,a3=-1. 

ltl2:c1=1,c2=0 e (Y1=-1,(z2=1,a3=-1. 

R13:C1=1,C~=0 -S cr1=-1,(~2=O,ng=0.24. 

Otherwise, Cl = 0 and C2 = I. 
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The activation values of a hidden node are deter- 
mined by the inputs connected to it. In particular, 
the three activation values of hidden node 1 are deter- 
mined by 4 inputs, Zi, 213, Zls, and 217. The activation 
values of hidden node 2 are determined by 2 inputs Z2 
and 217, and the activation values of hidden node 3 are 
determined by &,Zz,Zis,Ziz and 217. Note that only 
5 different activation values appear in the above three 
rules. Following Algorithm RX step 3, we obtain rules 
that show how a hidden node is activated for the five 
different activation values at the three hidden nodes: 

Hidden node 1: 
R21 : a1 = -1 e 213= 1 
R22 : al= -1 e Zl =213=x15 = 0, 

217= 1 

Hidden node 2: 
R23 : 02 = 1 e Zz=l 
R24 : 02 = 1 -i= 217= 1 
Rz5 : 02 = 0 G Zz=Zi7=O 

Hidden node 3: 
R2ti : a3 = -1 x= x13=0 
R27 : a3 = -1 -t= x5=215= 1 
R2a : a3 = 0.24 e= Z4 = I13 = 1, 217 = 0 
Rm: (~3 = 0.24 G Z5 = 0, 113 = Xl5 = 1 

With all the intermediate rules obtained above, we 
can derive the classification rules as in Algorithm RX 
step 4. For example, substituting rule R11 with rules 
R25, R26, and R27, we have the following two rules in 
terms of the original inputs: 

Rl:Ci=l,Cz=O + Z2=Z17=0,&3=0 

R; : Cl = l,Cz = 0 + x2 = Zi7 = 0,&j = Z15 = 1 

Recall that the input values of 214 to 11s represent 
coded age groups where 215 = 1 if age is in [60, 80) 
and 217 = 1 if age is in [20, 40). Therefore rule Ri 
is in fact can never be satisfied by any tuples, hence 
redundant. 

Similarly, replacing rule Rn with RZI, R22, 
l&s, Rz4, R26 and R27, we have the following two rules: 

R2 : Cl =l,Cz=O .& 25=213=215=1. 

R3 : Cl = 1, Cz = 0 e Zi = Z13 = Z15 = 0,217 = 1. 

Substituting R13 with R21, Rzz,R25, R28 and Rzg, 
we have another rule: 

R4:Ci=l,Cz=O e 22=217=O,Z4=Z13=1. 

It is now trivial to obtain the rules in terms of the 
original attributes. Conditions of the rules after sub- 
stitution can be rewritten in terms of the original at- 
tributes and classification problem as shown in Fig- 
ure 5. 

Given the fact that salary 1 75000 e 
commission = 0, the above four rules obtained by 
the pruned network are identical to the classification 
Function 2. 

3.2 Hidden node splitting and creation of a 
subnetwork 

After network pruning and activation value discretiza- 
tion, rules can be extracted by examining the possible 
combinations in the network outputs as shown in the 
previous section. However, when there are still too 
many connections between a hidden node and input 
nodes, it is not trivial to extract rules, even if we can, 
the rules may not be easy to understand. To address 
the problem, a three layer feedforward subnetwork can 
be employed to simplify rule extra&ion for the hidden 
node. The number of output nodes of this subnet- 
work is the number of discrete values of the hidden 
node, while the input nodes are those connected to 
the hidden node in the original network. Tuples in the 
training set are grouped according to their discretized 
activation values. Given d discrete activation values 
&,Da,..-, Dd, all training tuples with activation val- 
ues equal to Dj are given a d-dimensional target value 
of all zeros expect for one 1 in position j. A new hidden 
layer is introduced for this subnetwork. This subnet- 
work is trained and pruned in the same ways as is the 
original network. The rule extracting process is ap- 
plied for the subnetwork to obtain the rules describing 
the input and the discretized activation values. 

This process is applied recursively to those hidden 
nodes with too many input links until the number of 
connection is small enough or the new subnetwork can- 
not simplify the connections between the inputs and 
the hidden node at the higher level. For most problems 
that we have solved, this step is not necessary. One 
problem where this step is required by the algorithm is 
for a genetic classification problem with 60 attributes. 
The details of the experiment can be found in [21]. 

4 Preliminary experimental results 

Unlike the pattern classification research in the AI 
community where a set of classic problems have been 
studied by a large number of researchers, fewer well 
documented benchmark problems are available for 
data mining. In this section, we report the experi- 
mental results of applying the approach described in 
the previous sections to the data mining problem de- 
fined in [2]. As mentioned earlier, the database tuples 
consisted of nine attributes (See Table 1). Ten classifi- 
cation functions of Agrawal et al. [2] were used to gen- 
erate classification problems with different complexi- 
ties. The training set consisted of 1000 tuples and the 
testing data sets had 1000 tuples. Efforts were made 

485 



- 
Rule 1. 
Rule 2. 

If (salary < 100000) A (commission = 0) A (age 5 40), then Group A. 
If (salary 1 25000) A ( 

R.ule 3. If (salary < 125000) A 
commission > 0) A (age >_ 60), lhen Group A. 
( 

Rule 4. 
commission = 0) A (40 5 age < 60), then Group A. 

If (50000 < salary < 100000) A (age < 40), then Group A. 
Default Rule. Group B. 

ITigure 5: Rnles generated by NeuroRule for Function 2. 

to generate the data sets as described in t,he original 
functions. Among 10 fmlctions described, we found 
t#hat function 8 and LO produced highly skewed data 
that made classifica.tion not mea,ningful. We will only 
discuss functions other than these two functions. To 
assess our approach, we compare the results with that, 
of C4.5, a decision tree-based classifier [16]. 

4.1 Classification accuracy 

The fnllowing ta.ble reports the classificatiou accuracy 
using both our system and C4.5 for eight funct,ions. 
Here, classification accuracy is defined a,9 

accrrracy = 
no tuples correctly classi jied 

lotal number of tlnples (6) 

- 
F’runed Networks 

Training 11 Testing 
98.1 100.0 
96.3 100.0 
98.5 100.0 
90.6 92.9 
90.4 93.1 
90.1 90.9 
91.9 91.4 
90.1 90.9 

Tmining 11 Testing 
98.3 100.0 
98.7 96.0 
99.5 99.1 
94.0 89.7 
96.8 94.4 
94.0 91.7 
98.1 93.6 
94.4 91.8 

From the table we can see that the classification ac- 
curacy of the neural net,work based approach and C4.5 
is comparable. In fa.ct, the network obtained after the 
training phase has higher accuracy than what listed 
here, which is mainly determined by the threshold set 
for the network pruning phase. In our experiments, it 
is set, bo 90%. That is, a network will be pruned u&i1 
further pruning will cause the accuracy to fall below 
this threshold. For applications where high classifi- 
cation accuracy is desired, the threshold can be set 
higher so that less nodes and links will be pruned. Of 
course, this may lead to more complex claqsificatiou 
rules. Tradeoff between the accuracy and the com- 
plexit,y of the classification rule set is one of the design 
issues. 

4.2 R.des extracted 

Here we present. some of the classification rules cx- 
tracted from our experiments. 

For simple classification functions, the rules cx- 
tracted are exactly the same <as the classification func- 
tions. These include functions 1, 2 and 3. One in- 
t.eresting example is Function 2. The Mailed pro- 
cess of finding the classification rules is described as 
an example in Section 2 and 3. The resulting rules 
are the same as the original functions. As reported 
by Agrawal it cnl. [2], lD3 generated a. rela.tivcly la.rge 
number of strings for Function 2 whrn the decision tree 
is built. We observed similar results when (:Li.Srules 
was used (a memhcr of ID3). C4.5rules generat.cd 18 
rules. Among the 18 rules, 8 rules define the condi- 
tions for Group A. Another 10 rules define Group 11. 
Tuples that do not sa,tisfy the conditions specified a.re 
classified as default, class, Group B. Figure 6 shows the 
rules that define tuples to be a member of Group A. 

By comparing the rules generated by C4.5rllles 
(Figure 6) with the rules generated by NeuroR.ule in 
Figure 4, it is obvious that our approach gcnrrates 
better rules in the sense that they are more compact., 
which makes t,he verification and applica.tion of t.hc> 
rules much ea.sier . 

Functions 4 and 5 are anothrr two funct,ious 
for which ID3 generates a la.rge number of strings. 
CVDP [2] also g enera,es a relatively large number of t 
strings than for ot,her functions. The original classi- 
fication funct,ion 4, the rule sets that, define Group A 
tuples extracted using NeuroRule and C4.5, respcc- 
tively are shown in Figure 7. 

The five rules extracted by NeuroRute are not ex- 
actly the same as the original function descriptions 
(Function 4). To test the rules extracted, the rules 
were applied to t,hree dat,a sets of different sizes, shown 
in Table 3. The column Total is the total number of 
t#uples that, are classified as group A by each rule. ‘1’11~ 
column Correct is the percentage of correctly classified 
tuples. E.g., rule RL classifies all tuples correctly. On 
the other hand, among 165 tuples that, were classified 
a.s Group A by rule Ra, 6.1% of the~n in fact, should 
belong to Group R, i.e. they were misclassified. 
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Rule 16: 
R.ule 10: 
R.ule 13: 
Rule 6: 
Rule 20: 
Rule 7: 
Rule 26: 
Rule 4: 

(salary > 45910) A ( commission > 0) A (age > 59) 
(51638 < salary 5 98469) A (age age 5 39) 
(salary 5 98469) A ( commission 5 0) A (age < 60) 
(26812 < salary 5 45910) A (age > 61) 
(98469 < salary 5 121461) A (39 < age 5 57) 
(45910 < salary 5 98469) A ( commission 5 51486) A (age < 39) A (hval 5 705560) 
(125706 < salary 5 127088) A (age < 51) 
(23873 salary 5 26812) A (age > 61) A (loan > 237756) 

Figure 6: Group A rules generat,ed by C4.5rules for Function 2. 

(a) Original classification rules defining Group A tuples 

Group A: ((age < 40)A 
(((elevel E [0..1])?(2511 5 salary L: 75Ji)) : (501< 5 salary < 1OOK))))V 
((40 5 age < 60)A 
(((elevel E [1..3])?(501< < salary 5 lOOI<)) : (751< 5 salary 5 125K))))V 
((age L 6O)A 
(((elevel E [2..4])?(501- 5 salary 5 lOOIT)) : (251i; 5 salary 5 7510))) 

(b) Rules generated by NeuroRule 

Rule 1: if (40 5 age < 60) A ( .l e eve1 5 1) A (75K 5 salary <lOOK) then Group A 
Rule 2: if ( age <60) A ( .l e eve1 2 2) A (5Oy 5 salary <lOOK) then Group A 
Rule 3: if (age <60) A (elevel < I.) A (50K 5 salary < 75K ) then Group A 
Rule 4: if (age 2 60) A ( 1 e eve1 5 1) A (salary <75K) then Group A 
Rule 5: if (age 1 60) A ( e eve1 2 2) A (50K < salary < 100K) then Group A 1 

(C) Rules generated by C4.5rules 

Rule 30: 
Rule 25: 
Rule 23: 
Rule 32: 
Rule 57: 
Rule 37: 
Rule 14: 
Rule 16: 
Rule 12: 
Rule 48: 

(elevel = 2) A (50762 < salary 5 98490) 
(elevel = 3) A (48632 < salary 5 98490) 
(elevel = 4) A (60357 < salary 5 98490) 
(33 < age < 60) A (48632 < salary < 98490)A (elevel = 1) 
(age > 38) A (102418 < salary < 124930 A (age 5 59) A elevel = 4) 
(salary > 48632) A ( commission > 18543) 
(age 5 39) A (elevel = 0) A (salary < 48632) 
(age > 59) A (elevel = 0) A (salary 5 48632) 
(age > 65) A (elevel = 1) A (salary 5 48632) 
(car = 4) A (98490 < salary 5 102418) 

Figure 7: Classification function 4 and rules extracted. 
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Table 3: Accuracy rates of the rules extracted for function 4 

Rule 

Rl 
R2 
R3 
R4 
R5 

Test data size 
1000 5000 10000 

Total Correct (%) Total Correct (%) Total Correct (%) 
22 100.0 111 100.0 239 100.0 
165 93.9 753 92.6 1463 92.3 
46 82.6 247 78.4 503 78.3 
51 82.4 305 87.9 597 89.4 
71 100.0 385 100.0 802 100.0 

From Table 3 , we can see that two of the rules 
extracted classify the tuples correctly without errors. 
They are exactly the same as some rules in the orig- 
inal functions. Because the accuracy of the pruned 
network is not lOO%, other rules extracted are not the 
same as the original ones. However, the rule extract- 
ing phase preserves the classification accuracy of the 
pruned network. It is expected that, with higher ac- 
curacy of the network, the accuracy of the extracted 
rules will be also improved. 

When the same training data set was used as 
the input of C4.5rules, twenty rules were generated 
among which 10 rules define the conditions of Group 
A (Figure 7). Again, we can see that NeuroRule 
generates better rules than C4.5rules. Furthermore, 
rules generated by NeuroRule only reference those at- 
tributes appeared in the original classification func- 
tions. C4.5rules in fact picked some attributes, e.g. 
car , that does not appear in the original function. 

5 Conclusion 

In this paper we reported NeuroRule, a connection- 
ist approach to mining classification rules from given 
da.tabases. The approach consists of three phases: (1) 
training a neural network that correc0y classifies tu- 
ples in the given training data set to required accuracy; 
(2) pruning the network while maintaining the classifi- 
cation accuracy; and (3) extracting explicit rules from 
the pruned network. The proposed approach was ap- 
plied to a set of classification problems. The results 
of applying it to a data mining problem defined in [2] 
was discussed in detail. The results indicate that, US- 

ing the proposed approach, high quality rules can be 
discovered from the given ten data sets. While con- 
siderable work on using neural networks for classifi- 
cation has been reported, none of them can generate 
rules with the quality comparable to those generated 
by NeuroRule. 

The work reported here is our first attempt to apply 
the connectionist approach to data mining. A number 
of related issues are to be further studied. One of 

the issues is to reduce the training time of neural net- 
works. Although we have been improving the speed 
of network training by developing fast algorithms, the 
time required for NeuroRule is still longer than the 
time needed by the symbolic approach, such as C4.5. 
As the long initial training time of a network may be 
tolerable, incremental training and rule extracting dur- 
ing the life time of an application database seems im- 
portant. With incremental training that requires less 
time, the accuracy of rules extracted can be improved 
along with the change of database contents. 
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