
NeuroRule: A Connectionist Approach to Data Mining

Hongjun Lu Rudy Setiono Huan Liu
Department of Information Systems Computer Science

National University of Singa.pore
{luhj,rudys,liuh}@iscs.nus.sg

Abstract

Classification, which involves finding rules
that partition a given da.ta set into disjoint
groups, is one class of data mining problems.
Approaches proposed so far for mining classifi-
cation rules for large databases are mainly de-
cision tree based symbolic learning methods.
The connectionist approach based on neura.l
networks has been thought not well suited
for data mining. One of the major reasons
cited is that knowledge generated by neural
networks is not explicitly represented in the
form of rules suitable for verification or inter-
pretation by humans. This paper examines
this issue. With our newly developed algo-
rithms, rules which are similar to, or more
concise than those generated by the symbolic
methods can be extracted from the neural net-
works. The data mining process using neural
networks with the emphasis on rule extraction
is described. ExperimenM results and com-
parison with previously published works are
presented.

1 Introduction

With the wide use of advanced database technology
developed during past deca.des, it is not difficult to ef-
ficiently store huge volume of data in computers a.nd
retrieve them whenever needed. Although the stored

Permission to copy without fee all or part of this material ir
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endoc1rmen.t. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Zlst VLDB Conference
Ziirich, Switzerland, 1995

data are a valuable asset of a.n organization, most orga-
nizations may face the problem of data rich but knowl-
edge poor sooner or later. This situation aroused the
recent surge of research interests in the area of data
mining [l, 9, 21.

One of the data mining problems is classification.
Data items in databases, such as tuples in relational
database systems usually represent real world entit,ies.
The values of the attributes of a tuple represent the
prqperties of the entity. Classification is the process
of finding the common properties among different en-
tit#ies and classifying them into classes. The results
a,re often expressed in the form of rules - the classi-
fication rules. By applying the rules, entities rep-
resented by tuples can be easily classified into dif-
ferent classes they belong to. We can restate the
problem formally defined by hgrawal et al. [l] as
follows. Let A be a set, of attributes Al, AZ,. . . , A,
and dom(Ai) refer to the set of possible values for at-
tribute Ai. Let C be a set of classes cl, ~2, . . . , cm. We
are given a data set, the training set whose members
are (n+ 1)-tuples of the form (al, as,. . . , a,, ck) where
ai E dom(Ai),(l 5 i < n) and ck E C(l 5 k 5 m).
Hence, the class to which each tuple in the training
set belongs is known for supervised learning. We are
also given a second large database of (n. + I)-t$uples,
the testing set. The classification problem is to obtain
a set of rules R using the given training data set. By
applying these rules to the testing set, the rules can
be checked whether they generalize well (measured by
the predictive accuracy). The rules that generalize well
can be safely applied to the application database with
unknown classes to determine each tuple’s class.

This problem has been widely studied by re-
searchers in the A.1 field [28]. It is recently re-
examined by database researchers in the context of
large database systems [5,7, 14, 15, 131. Two basic ap-
proaches to the classification problems studied by AI
researchers are the symbolic approach and the connec-
tionist approach. The symbolic approach is based on
decision trees and the connectionist approach mainly

478

uses neural networks. In general, neural networks
give a lower classification error rate than the deci-
sion trees but require longer learning time [17, 24, 181.
While both approaches have been well received by
the AI community, the general impression among the
database community is that the connectionist ap-
proach is not well suited for data mining. The major
criticisms include the following:

1. Neural networks learn the classification rules by
multiple pssses over the training data set so that
the learning time, or the training time needed for
a neural network to obtain high classification ac-
curacy is usually long.

2. A neural network is usually a layered graph with
t#he output of one node feeding into one or many
other nodes in the next layer. The classification
rules are buried in both the structure of the graph
a,nd the weights assigned to the links between the
nodes. Articulating the classification rules be-
comes a difficult problem.

3. For the same reason, available domain knowledge
is rather difficult to be incorporated to a neural
network.

Among the above three major disadvantages of the
connectionist approach, the articulating problem is the
most urgent one to be solved for applying the tech-
nique to data mining. Without explicit representation
of classification rules, it is very difficult to verify or
interpret them. More importantly, with explicit rules,
tuples of a certain pattern can be easily retrieved us-
ing a database query language. Access methods such
as indexing can be used or built for efficient retrieval
as those rules usually involve only a small set of at-
tributes. This is especially important for applications
involving a large volume of data.

In this paper, we present the results of our study
on a.pplying the neural networks to mine classification
rules for large databases with the focus on articulating
the classification rules represented by neural networks.
The contributions of our study include the following:

l Different from previous research work that ex-
cludes the connectionist approach entirely, we ar-
gue that, the connectionist approach should have
its position in data mining because of its merits
such as low classification error rates and robust-
ness to noise [17, 181.

l With our newly developed algorithms, explicit
classification rules can be extracted from a neural
network. The rules extracted usually have a lower
classification error rate than those generated by
the decision tree based methods. For a data set

with a strong relationship among attributes, the
rules extracted are generally more concise.

l A data mining system, NeuroRule, based on neu-
ral networks was developed. The system success-
fully solved a number of classification problems in
the literature.

To better suit large database applications, we also
developed algorithms for input data pre-processing
and for fast neural network training to reduce the time
needed to learn the classification rules [22, 191. Lim-
ited by space, those algorithms are not presented in
this paper.

The remainder of the paper is organized as follows.
Section 2 gives a discussion on using the connection-
ist approach to learn classification rules. Section 3
describes our algorithms to extract classification rules
from a neural netswork. Section 4 presents some exper-
imental results obtained and a comparison with previ-
ously published results. Finally a conclusion is given
in Section 5.

2 Mining classification rules using neu-
ral networks

Artificial neural networks are densely interconnected
networks of simple computational elements, neurons.
There exist many different network topologies [lo].
Among them, the multi-layer perceptron is especially
useful for implementing a classification function. Fig-
ure 1 shows a three layer feedforward network. It con-
sists of an input layer, a hidden layer and an output
layer. A node (neuron) in the network has a number
of inputs and a single output. For example, neuron Hj
has x:,x;, . . . ,z: as its input and ,j as its output. A
link in the network is associate! with a weight. The
input links of Hj has weights til, u$, . . .,&i. A node
computes its output, the activation value by summing
up its weighted inputs, subtracting a threshold, and
passing the result to a non-linear function f, the acti-
vation function. Outputs from neurons in one layer
are fed as inputs to neurons in the next layer. In this
manner, when an input tuple is applied to the input
layer, an output tuple is obtained at the output layer.
For a well trained network which represents the clas-
sification function, if tuple (x1,22,. . . , 2,) is applied
to the input layer of the network, the output tuple,
(Cl,%*-., cm) should be obtained where ci has value
1 if the input tuple belongs to class ci and 0 otherwise.

Our approach that uses neural networks to mine
classification rules consists of three steps:

1. Network tmining
A three layer neural network is trained in this
step. The training phase aims to find the best set

479

of weights for the network which allow the net-
work to classify input tuples with a satisfactory
level of accuracy. An initial set of weights are
chosen randomly in the interval [-l,l]. Updating
these weights is normally done by using informa-
tions involving the gradient of an error function.
This phase is terminated when the norm of the
gradient of the error function falls below a pre-
specified value.

2. Network pruning
The network obtained from the training phase is
fully connected and could have too many links and
sometimes too many nodes as well. It is impossi-
ble to extract concise rules which are meaningful
to users and can be used to form data.base queries
from such a network. The pruning phase aims
at removing redundant links and nodes without
increasing the classification error rate of the net-
work. A smaller number of nodea and links left
in the network after pruning provide for extract-
ing consise and comprehensible rules that describe
the classification function.

3. Rule extraction
This phase extracts the classification rules from
the pruned network. The rules generated are in
the form of “if (alhl) and (c#va) and . . . and
(z,&) then Ci” where ai’s are the attributes
of an input tuple, vi’s are constants, 0’s are re
lational operators (=, <,>, <>), and Cj is one
of the class labels. It is expected that the rules
are concise enough for human verification and are
easily applicable to large databases.

In this section, we will briefly discuss the first two
phase. The third phase, rule extraction phase will be
discussed in the next section.

2.1 Network training

Assume that input tuples in an n-dimensional space
are to be classified into three disjoint classes d, f?, and
C. We construct a network a9 shown in Figure 1 which
consists of three layers. The number of nodes in the
input layer corresponds to the dimensionality of the
input tuples. The number of nodes in the output layer
equals to the number of classes to be classified, which
is three in this example. The network is trained with
target values equal to { 1, 0, 0) for all, patterns in set d,
(0, 1, 0) for all patterns in f?, and (0, 0, 1) for all tuples
in C. An input tuples will be classified as a member
of the class A, B or C if the largest activation value
is obtained by the first, second or third output node,
respectively.

There is still no clear cut rule to determine the num-
ber of hidden nodes to be included in the network. TOO

many hidden nodes may lead to overfitting of the data
and poor generalization, while too few hidden nodes
may not give rise to a network that learns the data.
Two different approaches have been proposed to over-
come the problem of determining the optimal number
of hidden nodes required by a neural network to solve a
given problem. The first approach.begins with a min-
imal network and adds more hidden nodes only when
they are needed to improve the learning capability of
the network [3, 11, 191. The second approach begins
with an oversized network and then prunes redundant
hidden nodes and connections between the layers of
the network. We adopt the second approach since we
are interested in finding a network with a small num-
ber of hidden nodes as well as the least, number of
input nodes. An input node with no connection to
any of the hidden nodes after pruning plays no role in
the butcome of classification process and hence can be
removed from the network.

ChItput Lays

Hidden Layer

lapot Layer

Figure 1: A three layer feedforward neural network.

The activation value of a node in the hidden layer
is computed by passing the weighted sum of input
values to a non-linear activation function. Let WY
be the weights for the connections from input node
e to hidden node m. Given an input pattern xi, i E
{l,%..., k}, wherq iE is the number of tuples in the
data set, the activation value of the m-th hidden node
is

C-P = f
(
k(x:w;1) -em ,
kl 1

where f(.) is an activation function. In our study, we
use the hyperbolic tangent function

f(x) := d(x) = (es - ee5)/(ez + e+)

as the activation function for the hidden nodes, which
makes the range of activation values of the hidden
nodes [-1 , 11.

Once the activation values of all the hidden nodes
have been computed, the p-th output of the network

480

for input tuple xi is comput#ed as

where vp” is the weight of the connection between hid-
den no& m and output node p a,nd h is the number of
hidden nodes in the network. The activation function
used here is the normal sigmoid function,

u(x) = l/(1 + e-“),

which yields activation values of the output nodes in
the range [0, 11.

A tuple will be correctly classified if the following
condition is satisfied

where $ = 0, except for iii = 1 if a? E A, ta = 1 if
xi E a, and ti = I if xi E C, and 91 is a small pos-
itive number less than 0.5. The ultimate objective of
t,he training phase is to obtain a set of weights that
make the network classify the input t,uples correctly.
To measure the classification error, an error function is
needed so that the training process becomes a process
to adjust the weights (w, V) to minimize this function.
Furthermore, to facilitate the pruning phase, it is de-
sired f,o .have many weights with very small values so
that. they ca.n be set to zero. This is achieved by adding
a penalty term to the error function.

In our training algorithm, the cross entropy func-
tion

qw, v) = - -& 2 (t; log% + (1 - tf, log(1 - $))
i=l o=l

(2)
is used as the error function. In this example, o equals
to 3 since we have 3 different classes. The cross entropy
function is chosen because faster convergence can be
achieved by minimizing this function instead of the
widely used sum of squared error function [26].

The penalty term P(w, V) we used is

/h n h o \

E-2 (c c MY2 + c c tc)‘))
m=l kl m=l p=l

where ~1 aad ~2 are two positive weight decay parame-
ters. Their values reflect. the relative importance of the
accuracy of the network versus its complexity. With
larger values of these two parameters more weights

may be removed later from the network at the cost
of a decrease in its accuracy.

The training phase starts with an initial set, of
weights (ZU, U) (“) and iteratively updates the weights to
minimize E(w, V) + P(UJ, v). Any unconstrained min-
imization algorithm ca,n be used for t,his purpose. In
pa.rticular, the gradieut descent method has been the
most. widely used in the training algorithm known as
the backpropagation algorithm. A number of alterna-
tive algorithms for neura.l network training have been
proposed [4]. To reduce the network training time,
which is very important in the data. mining as t,he data
set is usually large, we employed a variant of the quasi-
Newton algorithm [27], the BFGS method. This algo-
rithm has a superlinear convergence rate, as opposed
to the linear rate of the gradient descent method. De-
tails of the BFGS algorithm can be found in [6, 231.

The network training is t,erminated when a local
rninimum of the function E(ul, V) + P(w, V) has been
reached, that is when the gradient of the function is
sufficiently small.

2.2 Network pruning

A fully connected network is obta.ined at the end of the
training process. There are usually a large number of
links in the network., With n input nodes, h hidden
nodes, a.nd m output, nodes, there are h(m + n) links.
It is very difficult to articulate such a network. The
network pruning phase aims at removing some of t,he
links without affecting the classification accuracy of
the network.

It can be shown that [20] if a network is fully trained
to correctly classify an input tuple, xi, with the condi-
tion (1) satisfied we can set WY t,o zero without deteri-
orating the overall accuracy of the network if t,he prod-
uct IPwLPI issufficiently small. If maxp IzIyulrI 5 4712
and the sum (~1 + 772) is less than 0.5, then the
network can still classify xi correctly. Similarly, if
maxp Iup”\ 5 4q2, then up” can be removed from t,he
network.

Our prunung algorithm based on this result is
shown in Figure 2. The two conditions (4) and (5)
for pruning depend on the magnitude of the weights
for connections between input nodes and hidden nodes
and between hidden nodes and output nodes. It is
imperative that during training these weights be pre-
vented from getting too large. At the same time, small
weights should be encouraged to decay rapidly to zero.
Ry using penalty funct,ion (3), we can achieve both.

2.3 An example

We have chosen to use a function described in [2] as an
example to show how a neural network can be trained
and pruned for solving a classification problem. The

481

Table 1: Attributes of the test da.ta adapted from Agrawal et a1.[2]

Mribute Description Value
salary salary uniformly distributed from 20,000 to 150,000
commission commission if salary 1 75000 -+ commission = 0

else uniformly distributed from 10000 to 75000.
age age uniformly distributed from 20 to 80.
elevel education level uniformly distributed from 0 to 4.
car make of the car uniformly distributed from 1 to 20.
xipcode zip code of the town uniformaly chosen form 9 available zipcodes.
hva.lue value of the house uniformaly distributed from 0.5klOOOO to 1.5k1000000

where Ic E (0 . . .9} depends on zipcode.
hyears years house owned uniformly distributed from 1 to 30.
loan total amount of loan uniformly distributed from 1 to 500000.

input tuple consists of nine attributes defined in Ta-
ble 1. Ten classification problems are given in [2].
Limited by space, we will present and discuss a few
functions and the experimental results.

The original Function 2 classifies a tuple in
Group A if

Neural network pruning algorithm (NP)

1. Let ~1 and 02 be positive scalars such that ~11 +
772 < 0.5.

2. Pick a fully connected network. Train this
network until a. predetermined accuracy rate is
achieved and for each correctly classified pattern
the condition (1) is satisfied. Let (w,~) be the
weights of this network.

3. For each WY, if

then remove ~7 from the network

4. For each v”‘, if

then remove up” from the network

5. If no weight satisfies condition (4) or condition
G-9, th en remove WY with the smallest product
maxp Iv,“’ x wy1.

6. Retrain the network. If accumcy of the network
falls below an acceptable level, then stop. Other-
wise, go t.0 Step 3.

Figure 2: Neural network pruning algorithm

((age < 40) A (50000 5 salary < 1000OO))V

((40 5 age < 60) A (75000 _< salary 5 125000))V

((age > 60) A (25000 5 salary _< 75000)).

Otherwise, the tuple is classified in Group B.
The training data set consisted of 1000 tuples. The

values of the attributes of each tuple were generated
randomly according to the distributions given in Ta-
ble 1. Following Agrawal et al. [2], we dso included
a perturbation factor as one of the parameters of the
random data generator. This perturbation factor was
set at 5 percent. For each tnple, a class label was deter-
mined according to the rules that define the function
above.

To facilitate the rule extraction in the later phase,
the values of the numeric attributes were discrctized.
Each of the six attributes with numeric values was dis-
cretized by dividing its range into subintervals. The
attribute salary for example, which wits uniformly dis-
tributed from 25000 to I50000 was divided into 6
subintervals: subinterval 1 contained all salary values
that were strictly less than 25000, subinterval 2 con-
tained those greater than or equal to 25000 and strictly
less than 50000, etc. The thermometer coding scheme
was then employed to get the binary representations of
these intervals for inputs to the neural network. Hence,
a salary value less that 25000 was coded a~ {000001},
a salary value in the interval [25000,50000) was coded
as {000011}, etc. The second attribute commission
was similarly coded. The interval from 10000 to 75000
was divided into 7 subintervals, each having a width

482

of 10000 except for the last one, [~OOOO, 750001. Zero
commission was coded by all zero values for the seven
inputs. The coding scheme for the other attributes are
given in Table 2.

Table 2: Binarization of the attribute values

Attribute Input number Interval width
salary xl - 556 25000
commission z7 - 213 10000
w 214 - z19 10
elevel 220 - 223

car 124 - 143

zipcode 144 - 152

hvalue z-s3 - 166 100000
hyears 167 - x76 3

loan 277 - &36 50000

With this coding scheme, we had a total of 86 bi-
nary inputs. The 87th input was added to the network
to incorporate the bias or threshold in each of the hid-
den node. The input value to this input was set to
one. Therefore the input layer of the initial network
consisted of 87 input nodes. Two nodes were used at
the output layer. The target output of the network was
{ 1,O) if the tuple belonged to Group A, and (0, 1) oth-
erwise. The number of the hidden nodes was initially
set as four.

There were a total of 386 links in the network. The
weights for these links were given initial values that
were randomly generated in the interval [-l,l]. The
network was trained until a local minimum point of
the error function had been reached.

The fully connected trained network was then
pruned by the pruning algorithm described in Section
2.2. We continued removing connections from the neu-
ral network as long aa the accuracy of the network was
still higher than 90 %.

Figure 3 shows the pruned network. Of the 386 links
in the original network, only 17 remained in the pruned
network. One of the four hidden nodes was removed.
A small number of links from the input nodes to the
hidden nodes made it possible to extract compact rules
with the same accuracy level its the neural network.

3 Extracting rules from a neural net-
work

Network pruning results in a relatively simple network.
In the example shown in the last section, the pruned
network has only 7 input nodes, 3 hidden nodes, and
2 output nodes. The number of links is 17. However,
it is still very difficult to articulate the network, i.e.,
find the explicit relationship between the input tuples
and the output tuples. Research work in this area has

Figure 3: Pruned network for Function 2. Its accuracy
rate on the 1000 training samples is 96.30 % and it
contains only 17 connections.

been reported [25,8]. However, to our best knowledge,
there is no method available in the literature that can
extract explicit and concise rules as the algorithm we
will describe in this section.

3.1 Rule extracting algorithm

A number of reasons contribute to the difficulty of ex-
tracting rules from a pruned network. First, even with
a pruned network, the links may be still too many to
express the relationship between an input tuple and
its class label in the form of if.. . then . . . rules. If a
node has n input links with binary values, there could
be as many as 2n distinct input patterns. The rules
could be quite lengthy or complex even with a small R,
say 7. Second, the activation values of a hidden node
could be anywhere in the range [-l,l] depending on the
input tuple. With a large number of testing data, the
activation values are virtually continuous. It is rather
difficult to derive the explicit relationship between the
activation values of the hidden nodes and the output
values of a node in the output layer.

Our rule extracting algorithm is outlined in Fig-
ure 4.

The algorithm first discretizes the activation values
of hidden nodes into a manageable number of discrete
values without sacrificing the classification accuracy of
the network. A small set of the discrete activation val-
ues make it possible to determine both the dependency
among the output values and the hidden node values
and the dependency among the hidden node activation
values and the input values.

From the dependencies, rules can be generated [12].
Here we show the process of extracting rules from the
pruned network in Figure 3 obtained for the classifica-
tion problem Function 2.

The network obtained for the classification problem

483

Rde extraction algorithm (RX)

1. Activation value discretization via clustering:

(a) Let, E E (0,l). Let D be the number of dis-
crete activation values in the hidden node.
Let 51 be the activation value in the hidden
node for the first pa.ttern in the tra.ining set.
Let W(1) = &,counl(l) = l,sum(l) = Sl
and set, D = 1.

(b) For all patterns i = 2,3, . . .Ic in t,he training
set:

l Let S be its activation value.
l If there exi& an index j such that

and16 - H(?)(5 E,

then set count(3) := COW@) + 1,
sum(D) := sum(D) + s
else D = ll f I., H(D) = 6,
counl(D) = 1, sum(D) = 6.

(c) Replace H by the avera.ge of a.11 activation
values that have been clustered into this clus-
ter:

H(j) := sum(j)/ coun.t(j), j = 1,2.. .) D.

(d) Check the accuracy of the network with the
activa.tion values 6” at the hidden nodes re-
placed by Sd, the activation value of the clus-
ter to which the activation value belongs.

(e) If the accuracy falls below the required level,
decrease 6 and repeat, Step I.

2. Enumerate the discretized activation values and
compute the network output.

Generate perfect rules that have a perfect cover
of all the tuples from the hidden node activation
values to the output vnlues.

3. For the discretized hidden node activation values
a,ppea.red in the rules found in the above step,
enumera.te the input values tha.t lead to them, and
generate perfect rules.

4. Generate rules that relating the input values and
the output values by rule substitution based on
the results of the above two steps.

Figure 4: Rule extraction algorit,hm (RX)

Function 2 (Figure 3) had three hidden nodes. The
activation values of 1000 tuples were discretized. The
value of E was set to 0.6. The results of discretization
are shown in the following table.

Node No of clust,ers Cluster activation values

1 3 (-1, 0, 1)
2 2 (07 1)
3 3 (-1, 0.24, 1)

The clnssificat~ion accumcy of the network was
checked by replacing t,he individual activa.tion value
with its diocretized a.ctivation value. The value of
6 = 0.6 was sufficiently small to preserve the accu-
racy of the neural network and large enough to ha.ve a
small number of clusters. For the three hidden nodes,
the numbers of discrete activation values (clusters) are
3,2 and 3, or a total of 18 different outcomes art the two
output nodes. We tabulate the outputs Crj(l < j 5 2)
of the network according to the hidden node activation
values (Y,, (1 < m 5 3) a¶ follows.

01 Q2 a3 (71 c2

-1 1 -1 0.92 0.08
-1 1 1 0.00 1.00
-1 1 0.24 0.01 0.99
-1 0 -1. 1.00 0.00
-1 0 1 0.11 0.89
-1 0 0.24 0.93 0.07
I 1 -1 0.00 1.00
1 1 1 0.00 1.00
1 1 0.24 0.00 1.00
1 0 -I 0.89 0.11
1 0 1 0.00 1.00
1 0 0.24 0.00 1.00
0 1 -1 0.18 0.82
0 1 1 0.00 1.00
0 1 0.24 0.00 1.00
0 0 -1 1.00 0.00
0 0 1 0.00 1.00
0 0 0.24 0.18 0.82

Following Algorithm R.X step 2, the predicted out-
puts of the network are ta.ken to be Cl = 1 a.nd C’s = 0
if the activation values ana’s satisfy one of the follow-
ing conditions (since the table is small, the rules can
be checked manually if interested):

R~l:C1=1,CI,=O e (Y:!=o,a3=-1.

ltl2:c1=1,c2=0 e (Y1=-1,(z2=1,a3=-1.

R13:C1=1,C~=0 -S cr1=-1,(~2=O,ng=0.24.

Otherwise, Cl = 0 and C2 = I.

484

The activation values of a hidden node are deter-
mined by the inputs connected to it. In particular,
the three activation values of hidden node 1 are deter-
mined by 4 inputs, Zi, 213, Zls, and 217. The activation
values of hidden node 2 are determined by 2 inputs Z2
and 217, and the activation values of hidden node 3 are
determined by &,Zz,Zis,Ziz and 217. Note that only
5 different activation values appear in the above three
rules. Following Algorithm RX step 3, we obtain rules
that show how a hidden node is activated for the five
different activation values at the three hidden nodes:

Hidden node 1:
R21 : a1 = -1 e 213= 1
R22 : al= -1 e Zl =213=x15 = 0,

217= 1

Hidden node 2:
R23 : 02 = 1 e Zz=l
R24 : 02 = 1 -i= 217= 1
Rz5 : 02 = 0 G Zz=Zi7=O

Hidden node 3:
R2ti : a3 = -1 x= x13=0
R27 : a3 = -1 -t= x5=215= 1
R2a : a3 = 0.24 e= Z4 = I13 = 1, 217 = 0
Rm: (~3 = 0.24 G Z5 = 0, 113 = Xl5 = 1

With all the intermediate rules obtained above, we
can derive the classification rules as in Algorithm RX
step 4. For example, substituting rule R11 with rules
R25, R26, and R27, we have the following two rules in
terms of the original inputs:

Rl:Ci=l,Cz=O + Z2=Z17=0,&3=0

R; : Cl = l,Cz = 0 + x2 = Zi7 = 0,&j = Z15 = 1

Recall that the input values of 214 to 11s represent
coded age groups where 215 = 1 if age is in [60, 80)
and 217 = 1 if age is in [20, 40). Therefore rule Ri
is in fact can never be satisfied by any tuples, hence
redundant.

Similarly, replacing rule Rn with RZI, R22,
l&s, Rz4, R26 and R27, we have the following two rules:

R2 : Cl =l,Cz=O .& 25=213=215=1.

R3 : Cl = 1, Cz = 0 e Zi = Z13 = Z15 = 0,217 = 1.

Substituting R13 with R21, Rzz,R25, R28 and Rzg,
we have another rule:

R4:Ci=l,Cz=O e 22=217=O,Z4=Z13=1.

It is now trivial to obtain the rules in terms of the
original attributes. Conditions of the rules after sub-
stitution can be rewritten in terms of the original at-
tributes and classification problem as shown in Fig-
ure 5.

Given the fact that salary 1 75000 e
commission = 0, the above four rules obtained by
the pruned network are identical to the classification
Function 2.

3.2 Hidden node splitting and creation of a
subnetwork

After network pruning and activation value discretiza-
tion, rules can be extracted by examining the possible
combinations in the network outputs as shown in the
previous section. However, when there are still too
many connections between a hidden node and input
nodes, it is not trivial to extract rules, even if we can,
the rules may not be easy to understand. To address
the problem, a three layer feedforward subnetwork can
be employed to simplify rule extra&ion for the hidden
node. The number of output nodes of this subnet-
work is the number of discrete values of the hidden
node, while the input nodes are those connected to
the hidden node in the original network. Tuples in the
training set are grouped according to their discretized
activation values. Given d discrete activation values
&,Da,..-, Dd, all training tuples with activation val-
ues equal to Dj are given a d-dimensional target value
of all zeros expect for one 1 in position j. A new hidden
layer is introduced for this subnetwork. This subnet-
work is trained and pruned in the same ways as is the
original network. The rule extracting process is ap-
plied for the subnetwork to obtain the rules describing
the input and the discretized activation values.

This process is applied recursively to those hidden
nodes with too many input links until the number of
connection is small enough or the new subnetwork can-
not simplify the connections between the inputs and
the hidden node at the higher level. For most problems
that we have solved, this step is not necessary. One
problem where this step is required by the algorithm is
for a genetic classification problem with 60 attributes.
The details of the experiment can be found in [21].

4 Preliminary experimental results

Unlike the pattern classification research in the AI
community where a set of classic problems have been
studied by a large number of researchers, fewer well
documented benchmark problems are available for
data mining. In this section, we report the experi-
mental results of applying the approach described in
the previous sections to the data mining problem de-
fined in [2]. As mentioned earlier, the database tuples
consisted of nine attributes (See Table 1). Ten classifi-
cation functions of Agrawal et al. [2] were used to gen-
erate classification problems with different complexi-
ties. The training set consisted of 1000 tuples and the
testing data sets had 1000 tuples. Efforts were made

485

-
Rule 1.
Rule 2.

If (salary < 100000) A (commission = 0) A (age 5 40), then Group A.
If (salary 1 25000) A (

R.ule 3. If (salary < 125000) A
commission > 0) A (age >_ 60), lhen Group A.
(

Rule 4.
commission = 0) A (40 5 age < 60), then Group A.

If (50000 < salary < 100000) A (age < 40), then Group A.
Default Rule. Group B.

ITigure 5: Rnles generated by NeuroRule for Function 2.

to generate the data sets as described in t,he original
functions. Among 10 fmlctions described, we found
t#hat function 8 and LO produced highly skewed data
that made classifica.tion not mea,ningful. We will only
discuss functions other than these two functions. To
assess our approach, we compare the results with that,
of C4.5, a decision tree-based classifier [16].

4.1 Classification accuracy

The fnllowing ta.ble reports the classificatiou accuracy
using both our system and C4.5 for eight funct,ions.
Here, classification accuracy is defined a,9

accrrracy =
no tuples correctly classi jied

lotal number of tlnples (6)

-
F’runed Networks

Training 11 Testing
98.1 100.0
96.3 100.0
98.5 100.0
90.6 92.9
90.4 93.1
90.1 90.9
91.9 91.4
90.1 90.9

Tmining 11 Testing
98.3 100.0
98.7 96.0
99.5 99.1
94.0 89.7
96.8 94.4
94.0 91.7
98.1 93.6
94.4 91.8

From the table we can see that the classification ac-
curacy of the neural net,work based approach and C4.5
is comparable. In fa.ct, the network obtained after the
training phase has higher accuracy than what listed
here, which is mainly determined by the threshold set
for the network pruning phase. In our experiments, it
is set, bo 90%. That is, a network will be pruned u&i1
further pruning will cause the accuracy to fall below
this threshold. For applications where high classifi-
cation accuracy is desired, the threshold can be set
higher so that less nodes and links will be pruned. Of
course, this may lead to more complex claqsificatiou
rules. Tradeoff between the accuracy and the com-
plexit,y of the classification rule set is one of the design
issues.

4.2 R.des extracted

Here we present. some of the classification rules cx-
tracted from our experiments.

For simple classification functions, the rules cx-
tracted are exactly the same <as the classification func-
tions. These include functions 1, 2 and 3. One in-
t.eresting example is Function 2. The Mailed pro-
cess of finding the classification rules is described as
an example in Section 2 and 3. The resulting rules
are the same as the original functions. As reported
by Agrawal it cnl. [2], lD3 generated a. rela.tivcly la.rge
number of strings for Function 2 whrn the decision tree
is built. We observed similar results when (:Li.Srules
was used (a memhcr of ID3). C4.5rules generat.cd 18
rules. Among the 18 rules, 8 rules define the condi-
tions for Group A. Another 10 rules define Group 11.
Tuples that do not sa,tisfy the conditions specified a.re
classified as default, class, Group B. Figure 6 shows the
rules that define tuples to be a member of Group A.

By comparing the rules generated by C4.5rllles
(Figure 6) with the rules generated by NeuroR.ule in
Figure 4, it is obvious that our approach gcnrrates
better rules in the sense that they are more compact.,
which makes t,he verification and applica.tion of t.hc>
rules much ea.sier .

Functions 4 and 5 are anothrr two funct,ious
for which ID3 generates a la.rge number of strings.
CVDP [2] also g enera,es a relatively large number of t
strings than for ot,her functions. The original classi-
fication funct,ion 4, the rule sets that, define Group A
tuples extracted using NeuroRule and C4.5, respcc-
tively are shown in Figure 7.

The five rules extracted by NeuroRute are not ex-
actly the same as the original function descriptions
(Function 4). To test the rules extracted, the rules
were applied to t,hree dat,a sets of different sizes, shown
in Table 3. The column Total is the total number of
t#uples that, are classified as group A by each rule. ‘1’11~
column Correct is the percentage of correctly classified
tuples. E.g., rule RL classifies all tuples correctly. On
the other hand, among 165 tuples that, were classified
a.s Group A by rule Ra, 6.1% of the~n in fact, should
belong to Group R, i.e. they were misclassified.

486

Rule 16:
R.ule 10:
R.ule 13:
Rule 6:
Rule 20:
Rule 7:
Rule 26:
Rule 4:

(salary > 45910) A (commission > 0) A (age > 59)
(51638 < salary 5 98469) A (age age 5 39)
(salary 5 98469) A (commission 5 0) A (age < 60)
(26812 < salary 5 45910) A (age > 61)
(98469 < salary 5 121461) A (39 < age 5 57)
(45910 < salary 5 98469) A (commission 5 51486) A (age < 39) A (hval 5 705560)
(125706 < salary 5 127088) A (age < 51)
(23873 salary 5 26812) A (age > 61) A (loan > 237756)

Figure 6: Group A rules generat,ed by C4.5rules for Function 2.

(a) Original classification rules defining Group A tuples

Group A: ((age < 40)A
(((elevel E [0..1])?(2511 5 salary L: 75Ji)) : (501< 5 salary < 1OOK))))V
((40 5 age < 60)A
(((elevel E [1..3])?(501< < salary 5 lOOI<)) : (751< 5 salary 5 125K))))V
((age L 6O)A
(((elevel E [2..4])?(501- 5 salary 5 lOOIT)) : (251i; 5 salary 5 7510)))

(b) Rules generated by NeuroRule

Rule 1: if (40 5 age < 60) A (.l e eve1 5 1) A (75K 5 salary <lOOK) then Group A
Rule 2: if (age <60) A (.l e eve1 2 2) A (5Oy 5 salary <lOOK) then Group A
Rule 3: if (age <60) A (elevel < I.) A (50K 5 salary < 75K) then Group A
Rule 4: if (age 2 60) A (1 e eve1 5 1) A (salary <75K) then Group A
Rule 5: if (age 1 60) A (e eve1 2 2) A (50K < salary < 100K) then Group A 1

(C) Rules generated by C4.5rules

Rule 30:
Rule 25:
Rule 23:
Rule 32:
Rule 57:
Rule 37:
Rule 14:
Rule 16:
Rule 12:
Rule 48:

(elevel = 2) A (50762 < salary 5 98490)
(elevel = 3) A (48632 < salary 5 98490)
(elevel = 4) A (60357 < salary 5 98490)
(33 < age < 60) A (48632 < salary < 98490)A (elevel = 1)
(age > 38) A (102418 < salary < 124930 A (age 5 59) A elevel = 4)
(salary > 48632) A (commission > 18543)
(age 5 39) A (elevel = 0) A (salary < 48632)
(age > 59) A (elevel = 0) A (salary 5 48632)
(age > 65) A (elevel = 1) A (salary 5 48632)
(car = 4) A (98490 < salary 5 102418)

Figure 7: Classification function 4 and rules extracted.

487

Table 3: Accuracy rates of the rules extracted for function 4

Rule

Rl
R2
R3
R4
R5

Test data size
1000 5000 10000

Total Correct (%) Total Correct (%) Total Correct (%)
22 100.0 111 100.0 239 100.0
165 93.9 753 92.6 1463 92.3
46 82.6 247 78.4 503 78.3
51 82.4 305 87.9 597 89.4
71 100.0 385 100.0 802 100.0

From Table 3 , we can see that two of the rules
extracted classify the tuples correctly without errors.
They are exactly the same as some rules in the orig-
inal functions. Because the accuracy of the pruned
network is not lOO%, other rules extracted are not the
same as the original ones. However, the rule extract-
ing phase preserves the classification accuracy of the
pruned network. It is expected that, with higher ac-
curacy of the network, the accuracy of the extracted
rules will be also improved.

When the same training data set was used as
the input of C4.5rules, twenty rules were generated
among which 10 rules define the conditions of Group
A (Figure 7). Again, we can see that NeuroRule
generates better rules than C4.5rules. Furthermore,
rules generated by NeuroRule only reference those at-
tributes appeared in the original classification func-
tions. C4.5rules in fact picked some attributes, e.g.
car , that does not appear in the original function.

5 Conclusion

In this paper we reported NeuroRule, a connection-
ist approach to mining classification rules from given
da.tabases. The approach consists of three phases: (1)
training a neural network that correc0y classifies tu-
ples in the given training data set to required accuracy;
(2) pruning the network while maintaining the classifi-
cation accuracy; and (3) extracting explicit rules from
the pruned network. The proposed approach was ap-
plied to a set of classification problems. The results
of applying it to a data mining problem defined in [2]
was discussed in detail. The results indicate that, US-

ing the proposed approach, high quality rules can be
discovered from the given ten data sets. While con-
siderable work on using neural networks for classifi-
cation has been reported, none of them can generate
rules with the quality comparable to those generated
by NeuroRule.

The work reported here is our first attempt to apply
the connectionist approach to data mining. A number
of related issues are to be further studied. One of

the issues is to reduce the training time of neural net-
works. Although we have been improving the speed
of network training by developing fast algorithms, the
time required for NeuroRule is still longer than the
time needed by the symbolic approach, such as C4.5.
As the long initial training time of a network may be
tolerable, incremental training and rule extracting dur-
ing the life time of an application database seems im-
portant. With incremental training that requires less
time, the accuracy of rules extracted can be improved
along with the change of database contents.

References

PI

PI

[31

PI

I51

PI

[71

R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and
A. Swami. An interval classifier for database min-
ing approaches. In Proceedings of the 18th VLDB
Conference, 1992.

R. Agrawal, T. Imielinski, and A. Swami.
Database mining: A performance perspective.
IEEE Tmns. on Knowledge and Data Engineer-
ing, 5(6), December 1993.

T. Ash. Dynamic node creation in backpropga-
tion networks. Connection Science, 1(4):365-375,
1989.

R. Battiti. First- and second-order methods for
learning: between steepest descent and newton’s
method. Neuml Computation, 4:141-166, 1992.

N. Cercone and M Tsuchiya. Geust editors, spe-
cial issue on learning and discovery in databases.
IEEE Tmns. on Knowledge and Data Engineer-
ing, 5(6), December 1993.

J.E. Dennis Jr. and R.B. Schnabel. Numerical
methods for unconstmined optimization and non-
linear equations. Prentic Hall, Englewood Cliffs,
NJ, 1983.

W. Frawley, G. Piatetsky-
Shapiro, and C. Matheus. Knowledge discovery
in databases: An overview. AI Magazine, Fall
1992.

488

[8] 1,. I%. Neural Networks in Computer Intelligence.
McGraw-Hill, 1994.

[9] .J. Han, Y. Cai, and H. Cercone. Knowledge dis-
covery in databases: An attribute oriented ap-
proach. In Proceedings of the VLDB conference,
pages 547-559, 1992.

[lo] d. Hertz, A. Krogh, and R.G. Palmer. lntroduc-
tion to the theory of neural computation. Addison-
Wesley Pub. Company, 1991.

[l I] Y. Hirose, K. Yamashita, and S. Hijiya. Back-
propagation algorithm which varies the number
of hidden units. Neural Networks, 4:61-66, 1991.

[12] H. Liu. X2R: A fa.st rule generator In Pm-
ceedings of IEEE International Conference on
Systems, Man and Cybernetics (SMC’95), Va.n-
courver, 1995.

[13] C.J. M th a, eus, P.K. Chan, and G. Piatetsky-
Shapiro. Systems for knowledge discovery in
da.tabases. IEEE I’mns. on I(tlourledge and Data
Engineering, 5(6), December 1993.

[14] G. Piatetsky-Sha.piro. Editor, special isssue on
knowledge discovery in databases. International
Journal of Intelligent Systems, 7(7), September
1992.

[15] G. Piatetsky-Shapiro. Guest editor introduction:
Knowledge discovery in databases - from research
to applicat,ions. International Journal of Intelli-
gent Systems, 5(l), January 1995.

[16] J.R. Quinlan. C4.5: Programs for Machine
Learning. Morgan Kaufmann, 1993.

[I.7 J.R. Quinlan. Comparing connectionist and sym-
bolic learning methods. In S.J. Hanson, G.A.
Drastall, and R.L. Rivest, editors, Computational
Learning Therory and Natural Learning Systema,
volume 1, pages 445-456. A Bradford Book, The
MIT Press, 1994.

[18] S. Russell a.nd P. Norvig. Artificial Intelligence:
A Modern Approach. Prentic Hall, 1995.

[19] R. Set,iono. A neural network construction algo-
rithm which maximizes the likelihood function.
Submitted for publication, 1994.

[20] R. Setiono. A penalty function approach for prun-
ing feedforward neural networks. Subm.itted for
publication, 1994.

121 R. Setiono. Extractiug rules from neural network
by pruning and hidden unit splitting. Submitted
for publication, 1994.

[22] R. Setiono and H. Liu. Improving backpropga-
tion learning with feature selection. Applied In-
telligence to appear, 1995.

[23] D.F. Sha.nno and K.H. Phua. Algorithm 500:
Minimization of unconstrained multivariate func-
tious. ACM Tmnsaction on Mathematical Soft-
ware, 2(1):87-96, 1976.

[24] J.W. Shavlik, R.J. Mooney, and G.G. Towell.
Symbolic and neural learning algorithms: An
experimental comparison. Machine Learning,
6(2):111-143, 1991.

[25] G.G. Towell and J.W. Shavlik. Extracting refined
rules from knowledge-based neural networks. Ma-
chine Learning, 13(1):71-101, 1993.

[26] A. van Ooyen and Nienhuis B. Improving the con-
vergence of the backpropa.gation algorithm. Neu-
ml Networks, 5:465-471, 1992.

[27] R.L. Watrous. Learning algorithms for connec-
tionist networks: Applied gradient methods for
nonlinear optimization. In Proceedings of IEEE
First International Conference on Neural Net-
works, pages 619-627. IEEE Press, New York,
1987.

[28] Shalom M. Weiss and Casimir A. Kulikowski.
Computer Systems That Learn. Morgan Kauf-
mann Publishers, San Mateo, California, 1991.

489

