
David Lomet
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052
lomet@microsoft.com

Abstract: This paper defines a framework for explaining
redo recovery after a system crash. In this framework, an in-
stallation graph explains the order in which operations must
be installed into the stable database if it is to remain recov-
erable. This installation graph is a significantly weaker or-
dering on operations than the conflict graph from concur-
rency control. We use the installation graph to devise (i)
a cache management algorithm for writing data from the
volatile cache to the stable database, (ii) the specification of a
REDO test used to choose the operations on the-log to replay
during recovery, and (iii) an idempotent recovery algorithm
based on this test; and we prove that these cache manage-
ment and recovery algorithms are correct. Most pragmatic
recovery methods depend on constraining the kinds of op-
erations that can appear in the log, but our framework al-
lows arbitrary logged operations. We use our framework to
explain pragmatic methods that constrain the logged opera-
tions to reading and writing single pages, and then using this
new understanding to relax these constraints. The result is
a new class of logged operations having a recovery method
with practical advantages over current methods.

1 Introduction
Explaining how to recover from a system crash requires an-
swering some fundamental questions.

Redo Recovery after System Crashes

Mark R. Tuttle
Digital Equipment Corporation

One Kendall Square
Cambridge, MA 02 139

tuttle@crl.dec.com

The answers to these questions can be found in the
delicately-balanced and highly-interdependent decisions
an implementor must make. One of these decisions is
the choice of operations to be recorded in the log. Many
systems rely on page-oriented operations where operations
write a single page and read at most that page, but how
would the answers to the three questions above change if
the operations could read or write other pages? The goal of
this work is to understand the impact the choice of logged
operations has on crash recovery.

The foundationfor this work is an instuflution graph that
constrains the order in which changes by operations can be
installed into the stable state, and provides a way of explain-
ing what changes have been installed. This graph uses edges
to order conflicting operations like the conflict graph from
concurrency control, but the installation ordering is much
weaker. We prove that if, at the time of a crash, the state
can be explained in terms of this graph, then we can use the
log to recover the state. We then design a cache manage-
ment algorithm that guarantees that the stable state remains
explainable and a recovery algorithm that recovers any ex-
plainable state, and we prove that these algorithms are cor-
rect. Both cache management and recovery algorithms are
based on conditions derived from the installation graph. In
this sense, it is the installation graph that captures the impact
of the choice of logged operations on the recovery process.

How can the stable state be explained in terms of what
operations have been installed and what operations
have not?
How should recovery choose the operations to redo in
or&r to recover an explainable state?
How should the cache manager install operations into
the stable state in order to keep the state explainable,
and hence recoverable?

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data ‘Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 2lat VLDB Conference
Zurich, Switzerland, 1995

One pragmatic impact of our work is a concise expla-
nation of redo recovery. Our work makes it easy to com-
pare recovery methods and to understand how changing the
logged operations will change the algorithms needed for
crash recovery. For example, given a database using one
class of logged operations, we can see exactly how using an-
other class of logged operations forces the cache manager to
change. Our work also has the potential for identifying gen-
eralizations of known logging strategies. Indeed, we gener-
alize the logged operations used in physiological logging to
a class we call tree operufions that improves the efficiency
of logging changes like B-tree splits while introducing only
minor changes to cache management.

To the best of our knowledge, this is the first treatment of
crash recovery that is both formal and general. Formal treat-

457

ments of recovery from aborts via transaction rollback are
quite general 1131, but the only formal treatment of recovery
from crashes we know about [8] is specific to ARIES [14].
In the remainder of this introduction, we explain in more de-
tail how the choice of logged operations can affect recovery,
and how our framework exposes this impact.

1.1 The basics of redo recovery

When a computer crashes, the contents of the memory are
presumed to be lost or corrupted. Only the contents of the
disk are trusted to remain. In order to guarantee that the
database state can survive a crash, it is stored on disk in the
stable database. Reading and writing the disk is slow, how-
ever, so parts of the state are kept in memory in the database
cache. Each change an operation makes to the state is made
in the cache, and the cache manager is responsible for writ-
ing these changes into the stable database at some later point
in time.

The cache manager may not be able to write all of the
changes into the stable database before a crash, so infor-
mation about each operation is written to a record in a log,
and the log is used to reconstruct the database state after a
crash. The log is typically a sequence of log records (but see
[9,151). The head of the log is kept on disk in the stable log,
the tail of the log is kept in memory;and the log manager
is responsible for moving log records from memory to disk.
We assume the log manager is following the write-ahead log
protocol WAL. This is a well-understood way of managing
the log. It has the property that before any state change made
by an operation 0 is written into the stable state, the log
record for 0 and all records preceding this record are written
into the stable log.

The recovery process uses the stable state and the stable
log to recover the database after a crash. There are many
methods for recovery that appear in the literature. These
methods provide many specific techniques for ensuring
transaction atomicity and durability, including write-ahead
logging, the do/undo/redo paradigm, forcing log records at
commit, forcing pages at commit, and so on [Z, 3,4,5,7,141,
and much of this work has found its way into textbooks
[1,6]. In addition, general methods exist for undoing nested
transactions [16] and multi-level transactions [lo, 17,181.

We focus on redo recovery. This technique starts at some
point in the log and reads to the end of the log. As it exam-
ines each log record, it either reinvokes the logged operation
on the current state or passes it by. While redo recovery is
just one form of recovery, it is an important technique be-
cause every efficient recovery method uses it. Redo recov-
ery is efficient in the sense that it does not require the cache
manager to write all changes to the stable state when a trans-
action commits. Redo recovery also has applications in ar-
eas like word processing and file editing that are indepen-
dent of the transactional setting. Furthermore, ARIES [141
suggests understanding recovery after a crash as performing

stable. db

unknown state recovered state
before. reco”ery after recO”ery

Figure 1: Recovery based on after-image logging.

redo recovery followed by undo recovery. With this, redo
recovery must solve the hardest parts of recovery: making
sense of the state at the time of the crash, and determining
what operations in the log to reexecute to rebuild the state.
These are the kinds of problems we want to study.

1.2 The problem

The operations a user invokes on the database can be quite
different from the operations appearing in the log. For exam-
ple, inserting a record into a B-tree may be a singleoperation
to the user, but may be recorded as a sequence of write oper-
ations in the log if the insert involves splitting a node. The
only requirement is that the combined effect of the logged
operations be equal to the effect of the user operation. There
are many ways that a user operation can be split into logged
operations. How this split is made can affect many aspects
of recovery. To see that this is true, let us examine two com-
mon logging strategies.

In the simplest ‘form of after-image logging (also called
state or physical logging), each log record consists of a vari-
able name and a value written to that variable. Each logged
operation is effectively of the form 2 t w describing a blind
write to a single variable (typically a disk page). This tech-
nique has the advantage that cache management and recov-
ery are quite easy. The cache manager can install changes
into the stable database in any order, and recovery is still
possible. In the example in Figure 1, variables in the sta-
ble database can have any value at the start of recovery. The
recovery process merely needs to start scanning the log at a
point where all uninstalled operations will be included in the
scan, and then write values into variables one after another
in log (or conflict graph) order. At the end of recovery, each
variable will be set to its final logged value and the state will
be recovered.

In logical logging, each log record consists of the name
of the operation and the parameters with which it was in-
voked. This technique has the advantage that the log records
are much smaller (an operation’s name and parameters are
typically much smaller than a copy of a disk page), but now
cache management is tricky. In the scenario of Figure 2,
the stable database and the database cache begin in the same
state, then two swap operations are performed, their changes
are made in the cache, and the two log records for the swaps

458

stable db

cache I
install swap(y,z)

.X=1

0

swap CGY) swap(yz) x=2
y=2 * y=3

0

- crash
2=3 z=l

Figure 2: Recovery based on logical logging.

are written to the stable log. Suppose that the effect of the
first swap is written to the stable database just before a crash.
The recovery process can redo the second swap and recover
the state of the database. On the other hand, suppose the ef-
fect of the second swap is installed just before a crash, and
the effect of the first is never installed. Now the recovery
process is stuck. There is no way that it can recover by re-
doing one or both of the swap operations appearing in the
log: it can’t swap the value 2 into z since the value 2 does
not even appear in the stable state. The cache manager must
install the first swap before the second.

Given a class of logged operations, how much flexibility
does the cache manager have in the order it installs database
changes? At one extreme, the cache manager could install
changes in the order they occur, but this ordering is too strict
to be efficient. At the other extreme, the cache manager
could install changes in any order. This does not work with
logical logging. On the other hand, it does work with after-
image logging. This causes us to ask the following question:
given a set of logged operations, what is the weakest possi-
ble ordering that the cache manager can use when installing
changes and still guarantee that the stable database remains
recoverable?

Identifying this weakest ordering is interesting for many
reasons. It gives the cache manager more flexibility to in-
stall changes in a more efficient order, perhaps making cache
management simpler. It also may lead to new logging strate-
gies making use of new kinds of logged operations that re-
duce logging cost but preserve cache efficiency and database
recoverability. Finally, it can lead to improved understand-
ing and comparison of known recovery strategies.

1.3 The solution

Given a class of logged operations, we represent the amount
of flexibility the cache manager has to install the changes
made by these operations with an installation graph giving
a partial order on the operations. We prove that if a database
state can be “explained” as the result of installing operations
in a prefix of this graph, and if the database log contains

x=0
0

perfoml 0 x=1

El

- clash 0:X--l
y=o perform P y=1 p:y-x

Figure 3: Write-read edges can be ignored.

the remaining uninstalled operations, then the database is re-
coverable. One well-known partial order on operations is
the con.icr graph. Two operations 0 and P conflict if one
writes a’variable z that the other reads or writes, and every
pair of conflicting operations is ordered by an edge in the
graph from one to the other. The edges are classified into sets
of read-write, write-read, and write-write edges depending
on how the operations 0 and P access t. It is easy to see
that if operations are installed in a sequential order consis-
tent with the conflict graph, then the state remuins recover-
able: redoing the uninstalled operations in a sequential order
consistent with the graph will recover the state. Are all of the
edges in the conflict graph needed? The answer is no.

We do not need write-read edges. The example in Figure 3
involves one operation 0, setting c t 1 followed by a sec-
ond operation P setting y t CC, and there is clearly a write-
read edge from 0 to P in the conflict graph since 0 writes
t before P reads it. 0 and P are invoked on the database
and their changes are made in the cache, but P is installed
Iirst in the stable database just before a crash. The recovery
process can redo 0, and since redoing 0 does not reset the
effect of P (0 does not write to the variable y written by P),
recovery is accomplished.

In many cases, we do not need write-write edges either.
This observation is related to the Thomas write-rule in the
special case of blind writes to single pages, but it is also
true in more general situations. In the example of Figure 4,
an operation 0 setting 2 t 1 and z t 2 is followed by
an operation P setting y t x and z t 3, so there is a
write-write edge from 0 to P since both write to the vari-
able z. Again, 0 and P are invoked on the database and their
changes are made in the cache, but only P is installed in the
stable database before a crash, and not 0. The recovery pro-
cess can redo 0 and this resets a change made by P, but re-
doing 0 has the effect of reconstructing the read set of P, so
the recovery process can redo P as well.

We can generalize this last example to the case where
redoing a sequence of operations beginning with 0 recon-
structs the read set of P during recovery, and hence enables
theredo of P. Given an operation 0, we define the must redo
set of 0, denoted by must (0), that contains 0 and all opera-
tions following 0 in the conflict graph whose changes would

459

stable db

x=0

6

y=o
z=o

cache

p: y--x
z-3

Figure 4: Write-write edges can often be ignored.

be reset by redoing 0 during recovery, and hence would
have to be redone themselves, This is effectively the tran-
sitive closure of the write-write edges in the conflict graph
starting from 0. We also define the can redo set of 0, de-
noted by can (0) , containing operations reset by redoing 0
that can ultimately be redone as a result of redoing 0. These
operations can be ordered in a way consistent with the con-
flict graph and beginning with 0 so that redoing the first op-
eration rebuilds the read set of the second, redoing the first
two operations rebuilds the read set of the third, and so on.

The installationgraph is obtained from the conflict graph
by keeping all read-write edges, throwing away all write-
read edges, and keeping write-writeedges from 0 to P when
P E m~st(O)\can(O).~ This reflects our earlier ob-
servation that all of the write-read edges and many of the
write-write edges are unnecessary. In the case of write-write
edges, there is an edge from 0 to P if redoing 0 during re-
covery forces us to redo P, but redoing 0 does not guarantee
that P can actually be redone. This definition of an installa-
tion graph is quite simple, but it is already enough to demon-
strate differences between logging strategies.

First consider after-image logging, where the logged op-
erations are blind writes of the form 2: t V. In this case,
the installation graph has no edges at all, which corresponds
to our earlier observation that changes resulting from these
operations can be installed in any order. This is because the
read set of every operation is empty. There are obviously
no read-write edges for this reason. To see that there are no
write-write edges, notice that if P is in O’s must redo set
then P is in O’s can redo set, since P’s read set is null and
does not need reconstruction.

Now consider the case of physiological logging [6], where
each logged operation x t f(z) reads the value of a’single
page and writes some function of this value back to the same
page. In this case, the installation graph consists of chains of
read-write edges, one chain for each variable x that orders
the operations accessing t. Once again there are no write-
write edges because every operation P in O’s must redo set
is also in O’s can redo set. To see this, notice that if 0 reads
and writes 2, then O’s must redo set consists of all opera-

1 We denote the set difference of two sets A and i9 by A\ B. This is the
set of elements in A and not in B.

tions P reading and writing z that follow 0 in the conflict
graph. We can redo all of these operations after redoing 0
by redoing them in conflict graph order,

The installation graph we have defined so far is quite
simple because we have made some simplifying assump-
tions. We have assumed that when an operation O’s changes
are installed into the stable database, that all of its changes
are installed atomically, but this is frequently not necessary.
Atomic installation may even be problematic if an operation
0 can write multiplepages. We allow O’s write set to bepar-
titionedinto updates that represent the units of atomic instal-
lation. We have also assumed that when an operation 0 is re-
done during recovery, that the entire write set of 0 is recom-
puted and installed, but this may not be true either. There
are recovery methods that can test during recovery which of
O’s changes are uninstalled and recompute only a portion
of O’s write set. One example is recovery based on log se-
quence numbers (LSN’s), where every page is tagged with
the LSN of the log record of the last operation to write to
the page.. During recovery, any page having an LSN greater
than the LSN associated with an operation’s log record must
already contain the changes made by this operation, so no
change needs to be made to the page. We allow O’s write set
to be partitioned into redos that represent the units of recov-
ery. Incorporating these notions into the installation graph is
delicate, but we do so in a clean way, and this enables us to
capture more general logging strategies.

1.4 The consequences

Given our installation graph, we prove that if the state of the
stable database can be “explained” by a prefix of the installa-
tion graph, then we can use the stable log to recover the state.
A state S can be explained by a prefix of the graph if there is
an ordering of the operations in the prefix that (among other
things) assigns certain “exposed” variables the same values
they have in S. If we consider the operations in the prefix to
be installed and the rest of the operations to be uninstalled,
then the exposed variables are (roughly speaking) all vari-
ables that are read by one uninstalled operation before be-
ing written by any other. Assuming these exposed variables
have the right values, then we can recover the state simply
by redoing the uninstalled operations in conflict graph order.

Since an explainable state is a recoverable state, all the
cache manager has to do is install operations one after an-
other in a way that gnarantees that the stable state remains
explainable. Of course, in reality, a cache manager does not
install operations, it installs variables. If twooperations hap-
pen to write two values to a variable z between two suc-
cessive installations of 5, then the cache manager writes the
second value back to the stable state and effectively installs
changes made by both operations at once. Nonetheless, the
installation graph ordering of operations can be used to con-
struct an ordering on variables so that if the cache manager
installs variables in this order, then the state remains explain-

460

able in terms of a set of installed operations.
Recovering an explainable state can be as simple as going

through the log and redoing an operation if it is uninstalled,
but this requires a test for whether an operation is installed.
On the other hand, some recovery methods redo many more
operations than this. Some recovery methods go through the
log and redo every operation that can be redone, but this re-
quires knowing whether an operation is applicable in the cur-
rent state. This also requires knowing whether redoing an in-
stalled operation 0,will reset the effects of another installed
operation P, and if so, whether it will be possible to redo P
when it is reached in the log. We abstract away these details
by assuming the existence of a test REDO(O) for whether
the recovery procedure should redo the operation 0. The
specification of REDO(O) is stated in terms of the installa-
tion graph, and it is an abstraction of many implementation
techniques like log sequence numbers used to determine dur-
ing recovery whether the operation 0 should be redone. We
give an algorithm that goes through the log and redoes 0
whenever REDO(0) returns true, and we prove that this is an
idempotent recovery algorithm when started in an explain-
able (and hence recoverable) state.

The installation graph is also a criterion for the correct-
ness of checkpointing algorithms. The process of check-
pointing need only identify (perhaps after flushing portions
of the cache to disk) a prefix of the installation graph that ex-
plains the stable state, and then remove a prefix of the stable
log that contains only operations in this prefix, always leav-
ing all uninstalled operations on the log.

Finally, we can exploit the installation graph to general-
ize existing logging strategies. We show how the logged
operations used in physiological logging can be generalized
to what we call tree operations. A tree operation reads one
page and writes that page together with a set of “new pages”
that have never been written before. Cache management for
tree operations is only slightly more difficult that for phys-
iological operations. Tree operations, however, enable us
to log the splitting of a B-tree node with a single operation
rather than with a sequence of physiological operations. In
addition, we can use checkpointing as a kind of garbage col-
lection that allows us to reclaim used-and-discarded pages
as “new pages” that can be written by future tree operations.
In ways like these, the installation graph gives us a graph-
theoretic technique for understanding many aspects of redo
recovery methods that appear in the literature.

2 Database Model

We sketch our model of a database here, and give the com-
plete statement in the technical report [121. A state is a func-
tion mapping variables in a set V to values in a set Y, and one
state is chosen as the initial state. An operation is a function
mapping states to states. We consider only the logged op-
erations in this model, and do not explicitly model the user

operations. An operation invocation describes a particular
invocation of an operation. It is a tuple including the opera-
tion invoked, the read and write sets for the invocation, and
their before and after images. When it will cause no confu-
sion, we denote an operation invocation by the name of the
operation invoked, and we shorten “operation invocation” to
“operation.”

We mentioned in the introduction that the changes an op-
eration makes to its write set need not be installed into the
database atomically, since they may be installed as a se-
quence of atomic installations instead, perhaps one page at a
time. We model this by assuming that the write set of an op-
eration 0 is partitioned into a collection Ui , . . . , lJ, of dis-
joint subsets. Our interpretation of Vi is that the changes 0
makes to variables in Vi must be installed atomically. We
refer to the pair (0, Vi) as an update. We assume that the
intersection of O’s read and write sets is contained in just
one of the sets Vi, which means that O’s changes to its read
set must be installed atomically. We note that O’s changes
to its read set must be installed after all of O’s other changes,
or it may be impossible to redo 0 after a crash. Informally,
we think of an operation 0 as being a set of updates whose
write sets partition O’s write set.

We also mentioned in the introduction that it may not be
necessary or desirable to reconstruct the entire write set of an
operation during recovery, since it may be possible to apply
some test during recovery to determine which of the opera-
tion’s updates need to be reinstalled. The more specific this
test can be about which updates need to be reinstalled, the
smaller the reconstructed portion of the write set needs to be.
We model this by assuming that an operation O’s set of up-
dates is partitioned into a collection of redo’s. The recovery
process may choose to redo only a few of an operation’s re-
dos, but redoing one redo means reinstalling all of that redo’s
updates. During recovery, a redo is an all or nothing thing:
either all of the updates in the redo are reinstalled, or none
are. Given an update (0, U), we let [0, U] denote the redo
that contains it.

Two operation invocations con&t if the write set of one
intersects the read or write set of tie other. A conflict graph
orders conflicting invocations 0 and P with a path from 0
to P if 0 occurs before P, in which case we write 0 5 P.
We consider only serializable conflict graphs, which means
they can bei totally ordered. A history H is a conflict graph
describing a database execution; that is, a conflict graph that
contains all operation ever invoked on the database. A log
L for H is a subgraph of H induced by some nodes in H
giving a partial description of the history, and possibly in-
cluding some additional edges to impose a stricter ordering
(like a sequence) on invocations.

A database system D is a triple (S, L, H) consisting of a
state S, a history H, and a log L for H. Of course, no real
database implementation would explicitly represent the his-
tory since the state and the log contain all of the informa-
tion about the history needed by the implementation. For us,

461

stable
database sty

Figure 5: Normal operation and recovery in a database.

the history is just the correctness condition for the recovery
process. We say that D is recovered if its state S is the re-
sult of starting with the initial state and applying the opera-
tions in its history H in a sequence consistent with H. We
say that D is recoverable if it can be transformed into a re-
covered database by installing some redos for some opera-
tions appearing in the log in some order consistent with the
log. The recovery process should be idempotent, meaning
that the database remains recoverable throughout the recov-
ery process.

We can assume that the log is always a suffix of the his-
tory, for two reasons. First, we assume that the log man-
ager is following the write-ahead log protocol WAL. In our
model, this means that when an operation is added to the
stable history, the operation is also added to the stable log.
Second, we assume that the checkpointing process-which
speeds recovery by shortening the log-removes installed
operations from the front of the log. The result is that the
log forms a suffix of the history that contains all uninstalled
operations of the history. For example, this means the log of
a recovered database can be empty.

A database implementation splits a database into sta-
ble and volatile components as illustrated in Figure 5.
The stable database is a database (&, L,, H,) as de-
fined above, and represents the disk resident part of the
database. The volatile database or cache is a partial
database (S, , L, , H, , U, , &)-meaning that the volatile
state is a partial mapping from variables to values-with two
additional data structures:

a the update buffer U, is a set of updates not yet installed
in the stable state S, , and

l the log buffer B,, is a working log consisting of opera-
tions not yet posted to the stable log L, .

The logical database is a database (St, Le , He) where the
state Se is a merge of the volatile and stable states, the log

Le is the volatile log, and the history He is the volatile his-
tory. The value of a variable 2 in the logical state is the value
of t in the volatile state if defined, and the value of 2 in the
stable state otherwise.

During normal operation, invoking an operation 0 on the
database changes the volatile state by changing the values
of variables in O’s write set to the values given by O’s after
image, adds O’s updates to the update buffer, adds 0 to the
log buffer, and adds 0 to the volatile history. The volatile
log is empty during normal operation-it is used only during
recovery-implying that the logical log is also empty.

At the start of recovery, the volatile database is reset as
follows (see Figure 5). The volatile l.og and history are set
equal to the stable log and history; and the volatile state, up-
date buffer, and log buffer are set to empty. One after an-
other, operations 0 are chosen from the front of the log, and
some collection of O’s redos [0, U], perhaps none, are cho-
sen. For each chosen redo [0, U], one after another, the up-
dates (0, V) in [0, V] are used to modify the volatile state
and then are added to the update buffer. Finally, 0 is re-
moved from the log. Notice that 0 already appears in the
stable history and log, so there is no need to add it to the
volatile history and log buffer.

It is the cache manager that moves information from the
volatile database to the stable database (see Figure 5). It
does so as follows:

1.

2.

3.

It chooses a variable t to write to the stable state, and
then chooses a set X of variables including 2. How this
choice is made is the subject of a later section.
It updates the stable log by following the write-ahead
log protocol This means that it identifies all operations
0 with updates (0, U) in the volatile update buffer
writing to a variable in X, it identifies prefixes of the
volatile log buffer and volatile history so that no such
operation 0 appears in the remaining suffixes, it adds
these prefixes to the stable log and stable history, and it
removes the log buffer prefix from the log buffer.
It writes X atomically to the stable state and removes
the updates (0, U) from the volatile update buffer.

This description is consistent with our use of the WAL proto-
col and our checkpointing requirement, and guarantees that
the stable log is always a suffix of the stable history.

3 Conditions for Recoverability

The main results of this section are the definition of the in-
stallation graph and what it means for a state to be explain-
able in terms of this graph. Then in later sections we will
use this graph to construct recovery and cache management
algorithms.

462

3.1 Must redo and Can redo
As in the introduction, the definition of the installation graph
begins with the definition of the must and can redo sets.

In the introduction, we defined m&(O) to be the set
of all operations following 0 in the conflict graph whose
changes would be reset by redoing 0 during recovery, and
hence would have to be redone themselves. This was effec-
tively the transitive closure of the write-write edges in the
conflict graph starting with 0. Now that redos are the unit
of recovery, and not operations, we want to define this set in
terms of updates and redos.

Assuming that we must reinstall an update (0, U) during
recovery, what is the set of updates that will be deinstalled
when we reinstall (0, U)? First, reinstalling (0, U) during
recovery requires that we reinstall every update in its redo
set [0 , U]. Next, reinstalling the updates in [0 , U] may over-
write variables written by operations following 0 in the con-
flict graph, effectively deinstalling updates for later opera-
tions. Each of these deinstalled updates (P, V) and their as-
sociated redos [P, V] will have to be reinstalled, and rein-
stalling them will in turn deinstall updates for later opera-
tions, and so on.

With this intuition, we define IO, P 1 to be the length of the
longest path from 0 to P in the conflict graph, and we define
MUST (0, U) by induction as follows.

1. MUSTo(0, U) = [0, U].
2. MUSTd(0, U) = MUSTd-1(0, U) U [P, V] for all up-

dates (P, V) such that d = 10, PI and V intersects the
set of variables written by updates in MUST~-~ (0, U).

The set MUST(O, U) is the union or limit of the sets
MUST~(O, U), and MUST(O, U)\[O, U]” is the set of up-
dates that must be reinstalled as a result of reinstalling
(0, U). Notice how the size of the redos [P, V] affects the
size of the must redo sets MUST (0, U): thd more updates in
a redo [P, V], the more updates that have to be reinstalled
after (0, U).

In the introduction, we defined can(O) to be the opera-
tions in must(O) that we know can ultimately be redone
once 0 has been redone. These operations can be ordered in
a way consistent with the conflict graph and beginning with
0 so that redoing the first operation rebuilds the read set of
the second, redoing the first two operations rebuilds the read
set of the third, and so on. This is because the second opera-
tion reads the variables just written by the first one, the third
operation reads the variables just written by the first two, and
so on. Since each operation will read the same values from
its read set during recovery as it saw during normal opera-
tion, it will write the same values to its write set. We can
make a similar definition in terms of updates and redos. We
proceed by induction and define

1. CANo(0, u) = [0, u].

2Remember that we write A\B to denote the set of elements in A that
ax not in B.

2. CANd(0, U) = CANd-1(0, U) U [P, V] for all up-
dates (P, V) in the set MUST~(O, U) with d = 10, PJ
such that the read set of P is contained in the set of vari-
ables written by updates in CAN~-~ (0, U).

The set CAN(O, U) is theunionor limitof the CAN~(O, U).
Having thought so hard about how installing one update

duringrecovery can deinstall a second, let us formally define
an installed update. Suppose we have a state that is the re-
sult of installing some sequence CT of updates, where u may
describe alternating periods of normal operation and recov-
ery. Which of the updates in CT do we consider installed? We
havealreadynotedthat~us~(O, U)\[O, Ulisthesetofup-
dates that must be redone as a result of reinstalling (0, U),
so it seems natural to define installed subsequence of u to be
the subsequence of CT obtained as follows:

1. Select an update (0, U) in u and delete from u all but
the last instance of (0, U) in CT.

2. Delete from u all instances of updates in
MUST(O,U)\[O,U] that precede this last appear-
ance of (0, U) in u,

3. repeat this for all updates in u.

The result of this construction is well-defined, that is, if g1
and uz are installed subsequences of u, then u1 = UZ. We
define the set of installed updates in u to be those appearing
in the installed subsequence. A sequence (T is an installed
sequence if it is equal to its own installed subsequence.

3.2 Installation Graph
In the introduction, we defined the installation graph by
observing that, in the conflict graph, all of the write-read
edges and many of the write-write edges are unneeded. We
defined the installation graph to be the result of keeping
all read-write edges, throwing away all write-read edges,
and keeping write-write edges from 0 to P when P E
mus-t(O)\can(O). Keepingthewrite-writeedge from 0 to
P meant that redoing 0 meant we must redo P, but that re-
doing 0 is no guarantee that we can ever redo P. Since must
and can redo sets have exactly the same interpretation when
defined in terms of updates and redos, we can define the in-
stallation graph in exactly the same way now.

The instirllution graph for a history (or conflict graph) is
a directed graph where each node is labeled with an update
(0, U), and for distinct updates (0, U) and (P, V), there is
an edge from (0, U) to (P, V) if 0 5 P in the history and
either

1. read-write edges: the intersection of the read set of 0
and V is nonempty, or

2. write-write edges: (P, V) is contained in MUST (0, U)
but not in CAN(O, U).

We write (0, U) 4 (P, V) if there is a path from (0, U)
to (P, V). A prefix of the installation graph is an update se-
quence u such that (i) u is an installed sequence, and (ii) if

463

(0, U) appears in u, then every update (P, V) 4 (0, V) ap-
pears in CT. We will also refer to a set I of updates as a prefix
if there is a prefix u consisting of the updates in I.

The updates for an operation 0 are unordered by 4 for the
most part, the only exception being when 0 writes to its own
read set. In this case, there is a read-write edge from every
update (0, V) to the (single) update (0, U) writing to O’s
read set. These read-write edges represent the fact that O’s
changes to its read set must be installed last, or it may be im-
possible to redo 0 after a crash. We say that (0,U) is thefr-
nal update for 0 if U contains O’s read set, and we say that
[0, U] is thefinal redo for 0 if [0, U] contains O’s final up-
date. A consistent ordering of O’s updates is any sequence
that ends with O’s final update or does not include O’s fi-
nal update, and we define a consistent sequence of ci’s redos
in the same way. Ordering updates in this way has been re-
ferred to as “careful replacement” in the recovery literature
U, 61.

Another useful ordering on updates respects both the in-
stallation graph and conflict graph orderings: we define
(0,U) C (P, V) iff (0,U) + (P, V) or 0 < P. It is
convenient to extend c to redos: we define [0, IT] c [P, V]
iff [0, U] and [P, v] contain (0, U’) and (P, V’) satisfying
(0, U’) c (P, V’). When we say that an update (0, U) or
redo [0, U] is minimal with respect to some set of updates
or redos, we mean minimal with respect to C. The idea here
is that we will be redoing operations in conflict order dur-
ing recovery because we read the log in this sequence. We
install the updates of these operations in an order consistent
with the installation graph.

3.3 Explainable States
During recovery, certain important variables must have the
right values in them. These are the variables whose values
must be correct in order to reconstruct the read sets of the
uninstalled updates. We define a variable 2 to be exposed
by u iff one of the following conditions is true:

1. no update uninstalled after CT reads or writes z, or
2. some update uninstalled after u reads or writes 2, and

the minimal such update reads t.

The exposed variables have some very nice properties. For
example, if u and T have the same set of installed updates,
then they have the same set of exposed variables, and every
exposed variable 2 has the same value after u and T.

A prefix u explains a state S if for every variable CC ex-
posed by u, the value of 2 in S is the value of 2 after u. A set
of installed updates I explains a state S if some d explains
S and I is the set of installed updates in u, in which case
we can prove that any r with this set of installed updates ex-
plains S. Thus, if S is the state of the stable database at the
start of recovery, then the exact sequence of updates used to
construct S is unimportant. Only the set of updates consid-
ered installed in S is important. This is crucial as it is impos-

sible in general to determine the exact installation sequence
that leads to a database state, a task that is made even more
difficult by the fact that crashes can occur that require mul-
tiple invocations of recovery and hence produce arbitrarily
complex installation sequences.

3.4 Minimal Uninstalled Updates
An operation 0 is applicable to a state S if for every vari-
able t in O’s read set, the value of z in S is given by O’s be-
fore image. This means that 0 reads the same values during
recovery as it did during normal operation, so it will write
the same values as well. An update (0, U) is installable in
a state S if the database state S’ = S(O, U) obtained by in-
stalling the effects of (0, U) into S is explainable by a prefix
of the installation graph. We can extend this definition to se-
quences of updates in the obvious way.

A prefix u can be extended by an update (0, U) if(i) there
is no write-write edge from (0, U) to any update in u, and
(ii) u contains every update (P, V) -i (0, U). We define
extend (u, (0, U)) to be the result of deleting every update in
MUST(O, U)\[O, U] from u, and then appending (0, U) if
it does not appear in the result. This is the result of removing
all updates that (0, U) deinstalls, and then making sure that
(0, U)‘s effects are present.

The following theorem is the basis of our informal intu-
ition that an explainable state can be recovered by installing
uninstalled updates in conflict graph order.

Theorem 1 Let S be an explainable state. If [0, U] is a
minimal redo with an uninstalled updutk and t is any con-
sistent ordering of [O, U], then 0 is applicable to S and
extend(6, r) explains ST, so r is installable in S.

4 General Recovery Method
Theorem 1 suggests a procedure for recovering a database
with an explainable state: choose a minimal redo [0 , U] with
an uninstalled update, install it, and repeat. In order for this
to work, of course, 0 must appear in the log. Informally, we
say that a database is explainable if its state is explainable
and its log contains the uninstalled operations. Formally, we
say that a database D = (S, L, H) is explainable if there is
a prefix u of the installation graph of the history H such that
u explains the state S and Q contains every update of every
operation that is in the history H but not in the log L.

The procedure Recover(D, u) in Figure 6 captures the
procedure described above for recovering a database D ex-
phined by a prefix u. The algorithm considers all operations
0 in log order, and considers all redos for 0 in a consistent
order, and then invokes a test REDO(D, u, [0, U]) to deter-
mine whether [0, U] should be installed into the state of a
database D explained by a prefix u.

But under what conditions should this test
REDO(D, u, [0, U]) return true? At the very least, it

4.64

procedure Recover(D , a)
while the log L is nonempty do

choose a minimal operation 0 in the log L
choose a consistent ordering of O’s redos
for each redo [0, U] satisfying REDO(D, u, [0, U])

do
compute the after image of [0, U]
choose a consistent ordering of [0, U]‘s updates
for each update (0, V) do atomically

install (0, V)
replace d with exrend(b, (0, V))

delete 0 from the log L

Figure 6: Recovering a database D explained by 6.

must return true if [0, U] contains an uninstalled update.
Since the log is read in conflict graph order, such a [0, U]
would be a minimal redo with an uninstalled update, and
in this case Theorem 1 says that [0, U] is guaranteed to be
applicable and installable. Sometimes it is hard to tell that
a redo contains an uninstalled update, so a recovery method
may end up redoing many installed redos all over again,
In fact, whenever [0, U] is applicable and installable, it
is okay for the test to return true. Since the log is read
in conflict graph order, we know that installing [0, U] is
not going to deinstall things the recovery process has just
installed, and deinstalled things will be reinstalled when we
reach them later in the log.

With this in mind, we require that the test
REDO(D, U, [0, U]) satisfies the following conditions:

1. Safety: If the test returns true, then (a) 0 is applicable
to S, and (b) there are no write-write edges from up-
dates in [0, U] to updates in u

2. Liveness: If [0, U] is a minimal redo containing an
uninstalled update in u, then the test returns true.

Theorem 1 says that the liveness condition implies the safety
condition, and the safety condition essentially says that
[0, U] must be applicable and installable: since operations
are consider in conflict graph order, condition (lb) will im-
ply that [0, U] extends (T and hence is installable. This test
need only be defined for a database D that is explainable by
a prefix D and for a redo [0, U] where 0 is a minimal oper-
ation on D’s log, since these are the only condrttons under
which the test is used. The safety condition guarantees that
an operation is redone only when it sees the read set seen
originally and when installing its redo’s will reset the state
such that operations that are deinstalled by it can be redone.
The liveness condition guarantees that the uninstalled oper-
ations will always be redone and reinstalled during recovery.

One property of the algorithm Recover that will bother
some people is the fact that it maintains a sequence g
of updates. No recovery algorithm actually does this.
Fortunately, CT is only used when evaluating the test

REDO(D, U, [0, U]). Since testing for applicability is
usually much easier that testing for installability, most
practical methods restrict their operations so that appli-
cable operations are always installable. For example,
page-oriented and tree-structured operations that we study
later in this paper restrict their operations so that there are
effectively no write-write edges in the installation graph.
Thus, REDO(D, o, [o, u]) can ignore u and return true
whenever 0 is applicable. (This becomes a particularly
easy test for blind writes as they are always applicable. For
page-oriented read/write operations, we can exploit state
identifiers to determine when a page is in the state in which
the operation was originally done.) Since u is unneeded
by the test, maintenance of c can be removed from the
algorithm. We can prove that the invariant “D is explained
by u” holds after each step of Recover(D, a), and conclude
that an explainable database is recoverable.

Theorem 2 If database D is explained by CT, then
Recover(D, a) is an idempotent recovery process that
recovers D.

5 General Cache Management

The main result of the previous section was that an explain-
able database is a recoverable database. To prove that crash
recovery is possible, we need to show how to keep the sta-
ble database explainable; that is, so that the stable state is
explainable and the stable log contains all of the uninstalled
operations. Fortunately, the WAL protocol and our check-
pointing requirement guarantee that the all uninstalled oper-
ations appear in the stable log. Specifically, the WAL proto-
col guarantees that an operation is added to L, the moment
it is added to H,, and our checkpointing requirement guar-
antees that only installed operations are removed from L,,
so together they guarantee that operations in H,\L, are in-
stalled. Consequently, in this section, we just need to show
how to keep the stable state S, explainable. We givean algo-
rithm for managing the cache during normal operation and
recovery that keeps the stable state in an explainable state.

We have assumed that the volatile update buffer is a set of
updates whose effects appear in the volatile state. Here, we
must assume that the update buffer is actually the subgraph
of the installation graph induced by the updates in the update
buffer. We discuss how to avoid explicitly maintaining this
subgraph in the technical report [121.

A cache manager effectively partitions the volatile state
into a “dirty” part and a “clean” part (which we do not dis-
cuss here). A variable enters the dirty volatile state when
an operation updates it, can be the subject of multiple up-
dates while there, and leaves the dirty volatile state only
and immediately upon being written to the stable database.
Variables of the dirty volatile state are written to the sta-
ble database for two reasons. Fist, the volatile state can be

465

procedure WriteGraph
T tthetransitiveclosureof“(O,U) ~1 (P,V)iffUnV

is nonempty” for nodes of Z
Z t the graph Z after replacing each (0, U) with

l(Of VI
V t- collapse Z with respect to the equivalence classes of

T
s t the strongly connected components of V
W t collapse V with respect to the equivalence classes of

nodes in S
retum(W) /* collapsing V made W acyclic */

Figure 7: Computing the write graph.

(nearly) full, requiring that variables currently present be re-
moved to make room for new variables. Second, it may be
desired to shorten recovery by checkpointing the stable log.
Since only installed operations can be removed from the log,
it may be necessary to install some of their updates before re-
moving them from the log. Systematic installation permits
a prefix of the log to be truncated while preserving stable
database recoverability.

The central problem for cache management is that instal-
lation graph nodes are updates but the cache manager writes
variables. The cache manager must write sets of variables
in such a way that update atomicity and update installation
order are observed. The cache manager computes a write
graph for this purpose. Each write graph node v has an asso-
ciated set updates (v) of updates in the volatileupdate buffer
and a set variables(v) of the variables these updates write.
The variables of a write graph node must be written atom-
ically in order to guarantee update atomicity. These sets
must be written in write graph order to guarantee update in-
stallation order. There is an edge from w to w in the write
graph if there is an edge from any (P, V) in updates(w) to
any (Q, W) in updates(w) in the installation graph. (Page-
oriented operations result in a degenerate write graph, each
node of which is associated with the updates of a single vari-
able and with no edges between nodes and hence with no re-
strictions on installation order of cache pages.)

The write graph is computed from the volatile update
buffer by the algorithm WriteGraph in Figure 7. In this
algorithm, we use tlte idea of collapsing a graph A with re-
spect to a partition II of its nodes. Each set of the partition
represents variables that must be written atomically. The re-
sult is the graph 8 where each node w corresponds to a class
‘7~~ in the partition II and an edge exists between nodes v and
w of B if there is an edge between nodes a and b of A con-
tained respectively in R, and 1~~. This idea is used twice in
computing the write graph, once to collapse intersecting up-
dates, and again to make the write graph acyclic. In the tech-
nical report [121, we discuss incremental methods of main-
taining the write graph W so that it evolves as new updates
are added to the cache.

procedure PurgeCache
compute the write graph W
choose a minimal v node in W
write operations from the log buffer with updates in

updates(w) to the stable log in conflict order
(this adds these operations to the stable history)
atomically write values of variables in variables(w) to the

stabIe state
delete operations with updates in updates(v) from the log

buffer
delete updates in updates(u) from the volatile update

buffer
delete variables in varo’ables(u) from the dirty volatile state
return

Figure 8: The cache management algorithm PurgeCache.

The cache manager uses the algorithm PurgeCache in Fig-
ure 8 to write to the stable state. We can prove that using this
algorithm during normal operation and recovery preserves
some simple properties of the stable state. For example, if
the stable state S is explainable by a prefix u, then for every
update (0, U) in the volatile update buffer

1. there are no write-write edges in the volatile history’s
installation graph from (0, U) to updates in u and

2. every update (P, V) + (0, U) is in (T or in the volatile
update buffer.

In the special case that (0, U) is a minimal update in the up-
date buffer, these conditions imply that d can be extended
by (0, U), so installing (0, U) in the stable state will yield
an explainable state. These conditions are invariant because
operations are added to the update buffer in conflict order
during normal operation, and the REDO test skips over up-
dates that violate condition 1 during recovery. We can also
prove that these conditions are preserved by the algorithm
PurgeCache. Thus, the stable state remains explainable, and
the database remains recoverable:

Theorem 3 Purgecuchepreserves the recoverability of the
stable database.

6 Practical,Recovery Methods
There are three hard problems that a practical recovery
method must solve:

1. Atomicity, since multiple pages may have to be in-
stalled atomically.

2. Write Order, since the cache manager must compute
the write-graph dependencies between cached vari-
ables in real time.

3. REDO test, since this test determines which logged op-
erations are redone during recovery.

466

Practical methods usually cope with these problems by con-
straining logged operations to syntactically simple forms. In
this section, we discuss common constraints used by exist-
ing methods, and propose a less restrictive constraint that
preserves most of the simplicity of these methods.

6.1 Existing Methods

Most practical recovery methods permit only page-oriented
operations that access exactly one page. Such operations
yield installation graphs without any write-write edges. This
is because if 0 writes z and P writes 2, then P reads either 2
or nothing at all, so P is in the can redo of 0. Consequently,
such operations are always installable during recovery, and
the REDO test need only test for applicability. Each node of
the write graph is associated with a single page, and there
are no edges at all between nodes of the graph. This means
that the atomicity problem is solved since each page can be
installed atomically,3 and the write order problem is solved
since the pages can be installed in any order. Only the REDO
test poses a problem.

One example of page-oriented operations is after-huge
writes which have empty read sets and single-page write
sets. This single-page write might write to the entire page
[3] or to selected records or bytes on the page [2,41. These
methods differ in the tradeoff they make between log record
size and the need to access a page before replaying the op-
eration during recovery. These operations are always appli-
cable, and hence the REDO test can always return true.

Another example is physiological operations as described
in [6] and used in ARIES [141. These are state-transition op-
erations that require reading the before-image of a page and
then computing its after-image. These operations are not al-
ways applicable, so the REDO test must test for applicability.
This is usually implemented by storing a state identifier in
the written page and associating the state identifier in some
way with the operation’s log record. The address of the log
record (called a log sequence number or LSN) is often used
as the state identifier [6]. The REDO test simply compares
the log record’s state identifier with the state identifier stored
in the page to determine applicability.

6.2 A New Method: Tree Operations

Understanding installation graphs and their resulting write
graphs allows us to generalize page-oriented methods with
what we call tree operations. A tree operation 0 reads one
page L, and then writes z and possibly other pages in NEW.
NEW is the set of pages that have never been written before,
and writing a page in NEW removes it from NEW. While 0
may write multiple pages, the write set of each update U is a

3Actually, this is only true if we are guaranteed that a disk write does not
fail in the middle. When such a failure occurs, media failure recovery must
be invoked. For single page writes, a subsequent read can readily detect
such a failure.

single page. We call these tree operations because their con-
flict graph is a tree.

Like page-oriented operations, tree operations solve the
atomicity problem by defining the write set of each update
to be a single page. Like page-oriented operations, tree op-
erations yield installation graphs with no write-write edges,
so these operations are also always installable and the REDO
test need only test for applicability. Testing for applicability
is easy to implement using log sequence numbers.

Cache management, however, is more difficult since the
write graph is now nontrivial: if 0 reads x and writes z and
y, then there is an edge from y to xz in the write graph be-
cause there is a read-write edge from (0, y) to (0, z) in the
installationgraph since both updates read z. The cache man-
ager needs to do “careful replacement” of these pages; that
is, write the pages in a constrained order. These read-write
edges in the write-graph are simple to compute, since no cy-
cles ever occur for the second “collapse” to process, so a
simple incremental computation of the write graph is pos-
sible [121.

Tree operations can improve logging performance for
practical problems like splitting the node of a B-tree. Split-
ting a node requires reading the page containing the old node
and splitting its contents by writing back to the old node and
a new node, as well as reading and updating the parent node.
“B-link-tree” concurrency and recovery techniques [111 link
the old and new nodes together. This link preserves the ac-
cessibility of the moved data in the new node until the par-
ent is updated. As a consequence, we can log the split of the
node and the update of the parent as two separate atomic op-
erations. Let us compare logging the split of the node using
page-oriented operations and tree operations:

Page-oriented operations: Two logged operations are
required, one for each node. One is a blind write to the
new page requiring that we log the entire contents of
this new page. The other is a re-write of the original
page, which only requires that we log the split key and
instructions to remove all entries greater than the split
key from the node.
Tree operations: One logged operation can deal with
the updating of both new and original nodes. This op-
eration reads the old value of the original node and, us-
ing the result of this read, writes both original and new
nodes. In particular, the new node’s contents need not
be logged in its entirety because it is derived from the
old value in the original node; that is, the entries greater
than the split key.

Logging tree operations yields in a smaller log at the cost of
requiring “careful replacement:” the value of the new node
must be installed in the stable database before the the up-
dated value of the old node can be installed.

467

6.3 Re-cycling Pages

It is important to be able to replenish NEW with pages
that have been freed, effectively recycling them and reclaim-
ing space. Recycling an old page, however, can introduce
a write-write edge in the installation graph between the last
update writing the page prior to its being freed and the first
update writing the same page after reallocation. The opera-
tion performing the new update does not read the page, and
hence this operation is not guaranteed to be in the can-redo
of the earlier operation.

Because of these write-write edges, redoing operations in
the log during recovery threatens to violate the cache man-
agement invariant concerning the absence of write-write
edges. This threat can be removed without complicating the
REDO test. The trick is simply to take a checkpoint.

We recycle freed pages by scrubbing them before reusing
them. Scrubbing is done by checkpointing. A checkpoint
“cuts” write-write edges from prior incarnations of a freed
page by removing from the log all operations that have writ-
ten to the page 2 prior to it’s being freed. Since IL will never
be reset to a value prior to the checkpoint during recovery,
the page can be added back to NEW. Scrubbing is appropri-
ate for recycling pages in any recovery technique and avoids
any change to the technique’s REDO test.

6.4 Future Directions

Our framework provides a clean decomposition of the re-
covery problem that allows us to identify and focuson the
three hard problems a practical recovery method must solve:
atomicity, the write order, and the REDO test. We hope that
the clearer understanding of recovery that we provide here
will transform what has been an arcane art into the realm
of skilled engineering. We anticipate that this clearer un-
derstanding will shortly lead to a number of interesting and
practical new recovery.

Acknowledgments

We would like to thank Rakesh Agrawal for urging the first
author to de-mystify recovery and Butler Lampson for his
enthusiastic interest.

References
[l] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley
Publishing Company, Reading, MA, 1987.

[2] R. Crus. Data recovery in IBM Database 2. IBM Systems
Journal, 23(2):178-188,1984.

[3] K. Elhardt and R. Bayer. A database cache for high perfor-
mance and fast restart in database systems. ACM Transac-
tions on Database Systems, 9(4):503-525, December 1984.

[41

151

161

[71

PI

191

[lOI

Dll

WI

1131

1141

1151

1161

1171

WI

J. Gray. Notes on database operating systems. In R. Bayer,
R. Graham, and G. Seegmuller, editors, Operating System
An Advanced Course, volume 60 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1978. Also appears as IBM
Research Report RJ2188.1978.

J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. L&e,
T. Price, and F. Putzolu. The recovery manager of the System
R database manager. ACM Computing Surveys, 13(2):223-
242. June 198 1.

J. Gray and A. Reuter. TransactionProcessing: Conceptsand
Techniques. Morgan Kaufmann. 1993.

T. Haerder and A. Reuter. Principles of transaction oriented
database recovery-a taxonomy. ACM Computing Surveys,
15(4):287-318, December 1983.

D. Kuo. Model and verification of a data manager based on
ARIES. In Proceedings of the 4th International Conference
on Database Theory, pages 23 l-245, October 1992.

D. Lomet. Recovery for shared disk systems using multiple
redo logs. Technical Report 90/4, DEC Cambridge Research
Lab, October 1990.

D. Lomet. MLR: A recovery method for multi-level sys-
tems. ln Proceedings of the 1992 ACM SIGMOD Internu-
tional Conference on Management of Data, pages 185-194.
ACM, June 1992.

D. Lomet and B. Salzberg. Access method concurrency with
recovery. In Proceedingsof the 1992ACM SIGMOD Interna-
tional Conference on Management of Data, pages 351-360.
ACM, June 1992.

D. Lomet and M. Tuttle. Redo recovery after system crashes.
Technical Report 95/S, DEC Cambridge Research Lab, 1995.
To appear.

N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic
Transactions. Morgan Kaufman, 1993.

C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Transactions on Database
Systems, 17(1):94-162, March 1992.

C. Mohan I. Narang and J. Palmer. A case study of problems
in migrating to distributed computing: Page recovery using
multiple logs in the shared disks environment. Research Re-
port RJ7343, IBM Ahnaden Research Center, August 1991.

K. Rothermel andC. Mohan. ARIES/NT: Arecovery method
based on write-ahead logging for nested transactions. In Pro-
ceedings of the 15th Internationul Conference on Very Large
Data Bases, pages 337-346, August 1989.
G. Weikum. A theoretical foundation of multi-level concur-
rency control. In Proceedingsof the 5th AnnualACM Sympo-
sium on Principles of Database Systems, pages 3 l-42, March
1986.
G. Weikum, C. Hasse, P. Broessler, and P. Muth. Multi-level
recovery. In Proceedings of the 9th Annual ACM Symposium
on Principles of Database Systems, April 1990.

468

