
Improving Performance in Replicated Databases
through Relaxed Coherency’

Rainer Gallersdorfer Matthias Nicola

RWTH Aachen, Informatik V, Ahornstr. 55, D-52056 Aachen, Germany
(gallersd,nicola}@informatik.rwth-aachen.de, Fax: +49-241-8888-321

Abstract
Applications in finance and telecommunications
(intelligent network, network management,
mobile computing) cause renewed interest in
distributed and replicated data management.
Since synchronous update of replicated data is
experienced to degrade distributed systems
performance substantially, relaxing the
requirement of coherency (mutual consistency)
has become a favorable approach to achieve high
performance in replicated databases. In this
paper we present formal concepts for specifying
relaxed coherency which allows to calculate an
independent measure of relaxation, called +
coherency index. We incorporate this metric into
a detailed analytical queueing model which
emphasizes on the quality of replication to
evaluate the impact of relaxed coherency on the
performance of replicated databases. The model
considers response time, throughput, scalability
and network traffic as performance criteria. As it
turns out, performance improvements through
relaxed coherency depend significantly on
various system parameters. We closely examine
the trade off between consistency and
performance, and show that in many situations a
slight relaxation of coherency can increase
performance remarkably. Finally, we verify these
results by benchmarking an implementation of
relaxed coherency.

1 Introduction
In a distributed environment data is replicated in order to
achieve shorter response times, higher throughput and
increased availability and reliability in case of failures.

The approach is to place data where it is to be processed
as well as storing redundant data at independent sites. In
the literature benefits of replication are generally
accepted and a lot of methods have been proposed for
ensuring consistency in distributed systems mostly
concerned with the problem of providing atomicity [121.
Unfortunately, these algorithms either destroy the
property of availability by synchronous access to other
sites or lengthen response times by introducing remote
access. One concept to avoid these problems is known as
relaxed coherency which means buying performance or
independence for giving up “up-to-date-ness” of the data
as far as the application can tolerate it. Stock trading and
telecommunication are some out of several examples
where controlled inconsistency is expected to gain high
performance [2,33]. Naturally, mobile databases and
federated systems are asking for independence.

Our research was initiated by INDIA’, a joint project
with PHILIPS regarding database support for a flexible
telecommunication control architecture called intelligent
network (ZNj [151. The analysis of the application showed
that coherency relaxation is needed for performance but
that the specific needs concerning consistency and
actuality of data and transactions are more subtle than is
covered by current models. The first contribution of this
paper is therefore a detailed classification scheme by
which coherency conditions can be specified.

Based on this analysis, the INDIA project designed and
implemented a technique called Atomic Delayed
Repliption (ADR) and tested it in an experimental IN
environment; the approach is described in [151. A large
set of measurements were conducted with the system,
consisting of millions of transactions and thus
demonstrating the scalability and stability of the
implementation. However, due to the enormous overhead,
measurement was limited to just a few database nodes (up
to five). Additionally, it proved difficult to compare
various strategies as each design decision has to be

t This work was supported by Philips Research Laboratories Aachen,
52021 Aachen, Gemmy.

’ INDIA stands for Intelligent Networks as a Data Intensive Application

445

implemented explicitly. The second contribution of this
paper is therefore a detailed analytical model that can be
used to analyze the impact of various design parameters
on replicated databases in terms of response time,
throughput, scalability and network load.

Since an implemented system and a lot of measurement
data are available, we are thirdly also able to validate the
model against these benchmark results.

Section 2 starts with a discussion about coherency in
database systems and classifies coherency conditions to
show how application requirements can be described. In
section 3 a replicated database system is modeled by an
open queueing network. Our model is more detailed than
most others found in literature, especially concerning
quality of replication, distribution of data access and
composition of workload. In section 4 we present the
analytical results under certain parameter variations
(meaning different designs of fragmentation, replication
and system size). A validation of the model is given in
section 5 by presenting benchmark results that were
forecasted by our analytical model. Section 6 concludes.

2 Coherency in replicated databases
In this section we define coherency in replicated
databases and discuss related work on specifying relaxed
coherency. Then we classify concepts describing the
different dimensions along which relaxation of coherency
can be formalized.

2.1 Definition of terms

In replicated databases we distinguish between a logical
data item (e.g. 0) and its physically stored representatives
called replicas (e.g. DI, D2, D,,). Focusing on one of
these instances, D,, we call all other physical instances
the copies Dz, D3, D, of D, [7]. Usually, all the
replicas of a logical data item are expected to have the
same value. This property is known as coherency or
mutual consistency. Assuring mutual consistency is
beyond classical consistency control and therefore called
replica control [26]. A system that ensures both mutual
consistency and serializability is said to provide one copy
serializability [5]. This is a commonly known correctness
criteria for concurrent transactions accessing replicated
data and is often enforced by the two-phase-commit
(2PC). As the 2PC was experienced to degrade systems
performance substantially, relaxing the requirement of
mutual consistency has become a favorable approach to
achieve high performance in replicated databases [9].

It must be possible to specify the allowed degree of
deviation of replicas since relaxed coherency may be
employed with respect to application semantics only.
Coherency control then has to ensure that this

specification of relaxed coherency is not violated. In the
following we sketch some approaches in the literature for
specifying relaxed coherency and then describe our
classification of coherency conditions that will be
analyzed later on.

2.2 Specification of relaxed coherency

Specifying the degree of relaxation must be formalized so
that the influence of relaxed coherency on the
performance can be measured. Our analysis will show
that the relaxation of coherency can improve the
performance of replicated databases. In the following
section we tirst describe proposals for such a specification
and then build a classification of coherency conditions.

2.2.1 Related Work

Current technology like Sybase Replication Server,
Oracle Symmetric Replication Technology, Ingres
Replicator and transaction monitors like DEC-ACMS
provide basic capabilities for the physical replication of
data fragments. Unfortunately they allow relaxation of
coherency at fixed levels only: classical 2PC, primary-
secondary approach, optimistic using timestamps or
completely uncontrolled. These commercial systems do
not provide mechanisms which support application
specific coherency conditions. On the other hand such
cclmmercial systems represent a mature base for
implementing coherency control on top of them; indeed,
our implementation is based on Sybase Servers.

In the literature Alonso et al. described coherency
conditions in client-server environments where the data
is stored and controlled in the servers [2]. Since clients
are usually workstations or personal computers with
storage and processing capacity, parts of the information
is cached at the clients to off-load both servers and
network. Updates can be applied to data at the server side
meaning a primary copy paradigm only. Aging of cached
data is allowed to avoid complicated algorithms ensuring
cache coherency at the clients. The cached data items are
called quasi copies and are similar to materialized views
[22] and database snapshots [1,27.]. Generally, caching
promises reduced network and server load as well. In the
quasi copy approach the degree of coherency relaxation
has to be specified at the client side by means of
coherency conditions like e.g.

V timest>O: 3 k : (0 5 k I a) A (x’(t) = x(t-k))

which states that a client’s quasi copy x’ may not be older
than a time units compared to servers original x. This
means defining a time window a which can be expressed
by the unary predicate W(x) = a.

A more general approach called identity connections was
described by Wiederhold and Qian [44,451. Identity

446

connections are directed or undirected relations between
replicas of a logical data object or between source and
derived data. In the second case a function has to be
supplied describing how to compute the derived data
object. Every identity connections must be provided with
a temporal constraint that defines the allowed degree of
divergence. Such constraints may be time points and
events or time intervals. Appropriate propagation of
updates between coupled data items has to ensure the
enforcement of identity connections.

Sheth and Rusinciewicz presented an extension of
identity connections for multi database systems called
database dependency descriptors (D’) [34,3.5]. A d is a
tuple <S, U, P, C, A> where S is a set of source data and
U a target data object. P is an expression in relational
algebra which describes the intended value of U, C is a
coherency predicate specifying when P must be enforced
and A is a set of restoration procedures that provide
actions to update the target object U. Though identity
connections and database dependency descriptors are
readily formalized for practical use, proving global
correctness is difficult as explicitly coupling of copies in
pairs leads to a large number of specifications. With
ASPECT Lenz et al. proposed an application oriented
sitication of consistency requirements for replicated
data [26]. Here the application shall specify the
relaxation of coherency with respect to the logical data
object and not to other copies. Therefore the application
must neither care about other copies nor about their
existence. Unfortunately there is no formal notation for
ASPECT. Furthermore it is not clear how to derive the
current value of a logical data object.

2.2.2 Classification of coherency conditions

Lots of ideas to specify relaxed coherency have been
proposed in the literature [2,4,8,9,26,34,35,44,45]. In this
section we classify those concepts and denote them
through coherency conditions which are an extension to
the formalism in [2]. Generally, our coherency conditions
are binary relations between replicas x and x’ of the same
logical data item. For each class of coherency conditions
we will try to calculate a numerical value named
coherency index (k) to measure the degree of allowed
divergence. This enables us to evaluate the influence of
coherency relaxation in the performance analysis
independently from the class of condition.

1. Delay conditions:

The first class of conditions are time oriented, expressing
how long the system may wait until the propagation of an
update has to be initiated. The time window m describes
the maximum delay:

For example, D(x,x’) = 60 seconds means, that any
update on data item x must be propagated to x’ within a
minute. Thus, delay conditions specify how much time a
replica may lag behind another replica of the same
logical data object. To be general, a coherency condition
need not be symmetrical (D(x,x’) #D(x,x’)). If data item
x is updated h($’ times per second not every update but
only the latest state of x has to be propagated. Hence, the
actual probability of propagation is

k= l/((k(,x) .m)+ 1)

which yields an important foundation of increased
performance due to relaxed consistency. This k E [O;l] is
named coherency index. Small values of k express high
relaxation and expected low costs for update propagation.
With k = 0 (m + -) values of replicated data objects age
unlimited. For k = 1 (m = 0) all updates have to be
propagated immediately; note that this does not imply
synchronous change.

2. Periodic conditions:

The second class of coherency conditions is also time
oriented. Periodic conditions specify that a copy x’ of x
must be updated with the latest value of x every m time
units, no matter whether the value of x has changed or
not. Periodic conditions are denoted by

P(x,x’) = m (m > 0)

If the rate of updates A’,“’ on data item x is greater than
l/m, not every update but only the latest state of x has to
be propagated. This leads to a coherency index k =

l/(A’,“’ . m). If A’,“’ becomes less than l/m, k exceeds its
limit 1 which indicates that superfluous updating on x’ is
taking place. Thus it is not obvious, why periodic
conditions might be preferable to delay conditions. The
advantage of updating replicas periodically is that
undetected losses of update messages due to network or
site failures can be avoided. This prevents replicas from
aging arbitrarily. Although A’,“’ < l/m might be avoided

by reasonably estimating ht’ and carefully choosing m, a
realization of periodic conditions could update x’ only if
x was modified during the period. Such an implemen-
tation yields a coherency index k = l/((A’,“’ . m) + 1) and
makes periodic conditions similar to delay conditions.

3. Time point conditions:

This class of conditions introduced by Wiederhold and
Qian [44, 451, is a special case of periodic conditions. A
time point condition is expressed as

D(x,x’) = m (m 2 0)
T(x,x’) = z

447

where z denotes a repeating time point like every hour or
daily at eight o’clock. A formal syntax for specifying
time points is proposed in [34]. If the duration between
two successive time points amounts to m time units, the
coherency index results in k = l/(3L(,x) . m).

4. Version conditions:

Version conditions specify relaxed coherency considering
the number of updates occurring on data item x as the
dimension of deviation. The denotation

V(x,x’) = i (i 2 1)

means, that after the ith update on replica x its copy x’
must be updated with the current value of x. The
resulting coherency index is k = l/i.

5. Numerical conditions:

If the value of a logical data item is numeric, the
deviation between its replicas can be bounded by the
difference of their values. Considering absolute, relative
or percent difference2, we write numerical conditions as

(a) N,(x,x’) = 6 (SE RI
(b) N,(x,x’> = 6 (6 E R)
(c) N%(x,x’> = 6 (6 E R)

meaning that x’ must be updated with the current value
of x whenever

(a) (x’-~l<6

(b)
d-x
Ii

<6
x

happens to be violated. Though checking this kind of
coherency conditions requires to know the values of both
replicas, the saving may be remarkable: consider a stock
market information system where prices change
continuously within a small range, but users are only
interested in deviations of more than &5 %. A general
coherency index cannot be calculated as long as it is
impossible to estimate the amount of modifications to
numerical data.

6. Object conditions:

This class of conditions is object based. The notation is: 3.1’ Parameters

(a>
(b)

O#(x,x’) = i (i2 1)
0%(X,X’) = q (q E u ;lW

* Note that relative and percental difference are redundant but useful for
ease of notation.

(cl 0(x,x’) = a (a E subobjects(

meaning that x’ must be updated with the current value
of x whenever

(a) at least i subobjects of x have been modified
(b) at least q percent of the subobjects of x have been

modified
(c) subobject a of x has been modified

since the latest update of x’ with the value of x. We
expect such conditions to be useful for engineering
applications (computer aided design) and other
distributed environments based on object oriented
databases. But object-s&object relationships exist in the
relational model as well e.g. table-column, table-row,
row-attribute. Imagine replica x’ as a read-only table
which is used for statistical calculations. Then it might be
reasonable to update x’ only if more than 9% of the rows
in x have been modified because otherwise a significant
change of the statistical results is not to be expected. As
for numerica conditions a general coherency index is
difficult to derive.

7. Event conditions:

Finally, updating replicated data can be event driven
which we denote like

E(x,x’) = E

where E is any event observable by the database system.
This is ,the most general class of coherency conditions
and its realization is tightly related to mechanisms
developed in active databases [131. A formal syntax for
specifying events is beyond the scope of this paper but
can be found in [19,33].

3 Modeling a replicated database
In section 3.1 we present a queueing network model for
replicated databases and sketch how to obtain important
performance criteria to judge relaxed coherency in
section 3.2. It ‘is based on the coherency index (k)
introduced in section 2.2.2. So it is generally applicable
to each condition although we have provided example
calculations of k for the conditions l-4 only. As stated for
the periodic conditions this k heavily depends on the real
implementation. Details are provided in [3 11.

In our model a replicated database consists of n identical
local databases (or sites) and d logical data items where
d = m.n for m 2 1. Initially, each logical data item is
represented by exactly one physical replica, such that
every site contains m distinct replicas. Actual replication

448

of data items will be considered later on. This distributed
database is modeled as an open queueing network. Its
nodes are identical M/I-IJl-systems characterizing the
local databases. We assume only one service channel and
no real parallel transaction processing at each local
database system. This is founded by the trend of having
lots of commodity systems building the distributed
environment [14,36]. The length of the queues is
assumed to be unlimited as we do not expect the buffering
of incoming transactions to be a bottleneck in a
distributed database. As generally accepted we assume
jobs to be served in FCFS discipline [6].

We model the arrival of transactions to the distributed
system by a Poisson process with parameter 3Lgloba’ be-
cause Poisson streams have been found to be a good
approximation for a large number of users submitting
jobs independently [6,20,21,24]. Although read-only
transactions are easier to process for a database system
than updates [18], many models consider updates only
[10,11,28,37]. We model the percentage of queries in the
overall workload by the parameter a4 E [O; 11. This means
that hgiobal is split up into two separate Poisson streams
with rates ktoba’ = a4 . hg’*a’ and hgu[oba’ = (1 - a4) hglohal .

Furthermore, we assume that arriving transactions are
distributed uniformly across the II local databases, so each
site is loaded with a Poisson process of updates
(parameter h, = htnbal/n) and queries (h, = L$laba’ /rr).
Achieving such a load distribution in a real system is the
task of designing the distributed database, so that each
local database serves the same number of users. These
users submit their transactions to the local system only,
which may need to forward the execution to’another site
due to a lack of appropriate local data. Additionally, our
model is based on the assumption that updates are
executed according to the primary copy approach.
Furthermore we assume a good design in the sense that
each transaction accesses data items of only one local
database because transactions are expected to reference
logically dependent data items which should be grouped
together [lo]. The quality of data distribution is modeled
by the probability (Zoc E .[O;l]) that a transaction can be
executed at the local site. With probability 1 - lot a
transactions has to be forwarded to one of the remaining
sites each of which being chosen with equal likelihood.
Expressing that local data objects are accessed slot times
as often as remote sites we define

Zoc(n) = qoc’ l/n (S& E [1;nl).

Although most models of replicated databases assumeful2
replication [17,28,37-421, we believe that partial
replication is necessary to achieve high performance.
Therefore we model the degree of replication by the
parameter r E [O;l] describing the percentage of logical
data items that are fully replicated across the sites. That
means that if a data item is replicated a copy exists at

each site. Updates executed at a local database therefore
have to be propagated to all other sites with probability r.
Considering relaxed coherency the probability of
propagation decreases to k.r.

The quality of replication depends on the preference of
queries and updates to access replicated data. More
precisely we call a replication schema of high quality if
queries are accessing replicated data as well as updates
are performed on nonreplicated data to a very high
degree. These preferences are modeled by the parameters
qr E [O;llr] and ur E [O;llr] respectively. Here a value of
qr = l/r (ur = l/r) describes that queries (updates) are
accessing replicated (nonreplicated) data only; meaning
an optimal replication schema. The value 0 expresses the
opposite extreme while the value 1 describes no
preferences. Since the access patterns are expected to
change with the degree of replication, we model them by
the following functions:

449

qr(r) = L rs4’
and ur(r) = J- r S”T

This allows us to describe the ability of creating a good
(or bad) design by tuning the parameters s,, and syr
Taking the functions Zoc(n), qr(r) and w(r) into
consideration, we clearly refrain from assuming
uniformly distributed access to data objects across the
database. This is another major difference to most models
proposed in literature [3,10,11,17,28,29,37-42,431. The
probability of propagation now amounts to rk.ur.

Usually, the time required to process a transaction is
mainly determined by the disk service time [25]. This in
turn is closely related to the number of data objects
referenced. Since transactions that access a small number
of data items are expected to occur more frequently than
transactions that reference a large number of data objects
[17,37] the service times can be assumed to be
exponentially distributed. In order to distinguish between
updates and queries we model the query (update) service
time to be exponentially distributed with mean tq (and tu
respectively). This leads directly to the two phase
hyperexponential distribution of service time for the
combined flow [23,24].

The communication network is assumed to affect the
performance by introducing a constant delay in every
intersite communication. Therefore the network is
modeled by an infinite server, which means that all
intersite communication is served in parallel with a
constant service time of trse seconds for short
messages (like sending a ,,prepare to commit“ message)
and t,d”” seconds for transmitting data (e.g. query
results). The distinction between short and long messages
is missing in many proposed models for distributed
databases [10,11,28,29,37-421.

Table I: System parameters and base values.

3.2 Performance values
Since our queueing network is amenable to product form
solution [23], we can analyze each node separately to
obtain the performance measures. Additionally, all sites
of the network behave identically and transitions of jobs
between the nodes are symmetrical. Therefore we
examine only one site to calculate the performance values
of the whole system.

The overall average response time i? can be derived
using the average response time for queries (&), the

average response time for updates (EU) and the overall
rates of operations (queries and updates respectively) at a
local database as
.

The appendix contains the formal derivation of this
result. In steady state the number of arriving transactions
equals the number of departing transactions (flow in =
flow out). Thus, the throughput of the distributed
database equals the global arrival rate Aglobal. However,

the overall throughput of the system is bounded by the
capacity of the local sites. Therefore we derive the
maximum throughput D by solving the equation
h’~%, + hylt,, = 1 for kggloba’ which results in

D = p’obal (l-u) -l
a4.t,+(l+(n-l).r.k.ur).---‘-.t
n n ’

The average number of messages per second in the
distributed system includes the shipment of user
transaction as well as update propagation messages and
amounts to

m=2.n+L,).h, +2*n.(l-L&h,

+ns(n-l).(r.k.ur).h,

with I, (1,) as the probability for local execution of
queries (updates).

4 Results
Table 1 summarizes the parameters of our model
including the base settings used to obtain the following
graphs. The values are carefully estimated using

450

I Average Response time
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0 I k=O

0 0.2 0.4 0.6 0.8 1
Degree of replication r

Figure I: Average response time.

Maximum Throughput (TPS)

0 10 20 Xl 4.0 50 60
Number of Sites n

70 80 90 100

Figure 2: Maximum throughput vs. system size.

measurements in a real system and considering
assumptions of other models found in the literature.
Naturally the base settings influence the numerical results
in our graphs but we regard the absolute values as a
secondary outcome. We rather consider the shapes of the
curves as the primary results since they indicate the
general gains of relaxed coherency and stay stable under
variation of base values [31]. Figure 1 shows the average
response time versus the degree of replication for several
values of the coherency index k. The curve for k = 0
shows the behavior with no propagation at all. The case
k = 1 represents asynchronous but immediate propagation
of updates. In this situation the response time can be
reduced remarkably by replicating 20% of the data as this
leads to increased local access. However, extending the
degree of replication for sake of reliability rapidly
saturates the local databases with propagated updates
(r > 0.4). Now, relaxing the coherency requirements

(k c 1) lessens the effort of update propagation and thus
gains an improvement in response time. For k = 0.25,
update propagation is reduced by a factor of 4 which
allows the response time (at r = 0.5) to be decreased by
50% compared to the non-replicated case (r = 0). When
coherency is relaxed drastically (k I O.l), response time
can be minimized by means of full replication.

In figure 2 the maximum throughput is shown as a
function of n where the coherency index is taking the
values 0, 0.1, 0.25, 0.5, 0.75 and 1 (from top to bottom).
Although most evaluations found in literature consider at
most 10 sites [l 1,28,29,37-431 we run the number of sites
up to 100 since we agree that future parallel database
systems will consist of hundreds of sites [14,32]. If the
percentage of updates is not negligible (like 10% in
figure 2), throughput does not increase linearly with the
number of sites due to propagation (when k > 0). On the

451

Maximum Throughput

~~

~~--~--~~-~-..-~..~~--.--..-...~~..~~.--

0 I

0 10 20 30 40 50 60

Time intervall: m minutes

Figure 3: Maximum throughput using delay or periodic conditions.

other hand the graphs for k < 1 reveal that relaxing
coherency may improve scalability up to ideal linearity
[14]. Figure 2 also shows that for a given number of sites
throughput can be increased by relaxing coherency and
the larger the system the greater the gain. Therefore,
relaxed coherency applies to very large distributed
databases of terabyte scale.

The challenging question for any practical employment of
relaxed coherency is: What magnitude of performance
improvement can be expected when relaxing coherency to
a certain extent? Lets assume that every pair of primary
and secondary copies (x,x’) obeys to a global delay
condition D(x,x’) = m. Approximating the update arrival
rate on a primary copy x as h’,“’ = (b kJ/M leads to a
coherency index

k=
1

(1, .b.m/M)+l

Using this result the throughput versus the time interval
of delay (or periodic3) conditions is depicted in figure 3.
As it turns out the transaction processing capacity of the
system depends heavily on the percentage of read-only
transactions (u4): Decreasing the number of updates leads
to a higher maximum throughput but reduces the gain of
relaxed coherency. E.g. Considering 5% updates in the
workload, throughput grows from 455 TPS to about 790
TPS if update propagation is disabled for an hour (or
reduced to ,,once an hour“). This is an increase of 75%. If
the fraction of read-only transactions is reduced to 66%
the maximum throughput can reach 400 TPS only, but
this is an increase of almost 300% and delaying update
propagation for 5 minutes doubles the throughput
already. Since a coherency index of less than 0.25 can be

3 Remember from Section 2.2.2 that periodic and delay condition result in
neatly the same coherency index and thus improve perfomlan~e equally
well.

achieved by delaying updates for 10 minutes, the cases
k = 0.25 or k = 0.1 in the previous figures are likely to
come true. Furthermore we believe that many
applications in distributed environments can accept data
which is 5 to 30 minutes old.

In figure 4 we illustrate the impact of replication and
relaxed coherency on the network traffic. In the case of
immediate propagation (k = 1) a moderate degree of
replication (e.g. r = 0.2) reduces the number of messages
due to less remote access of data items, but extended
replication floods the network as updating of replicas
outweighs the advantage of local access. However, the
curves for k c 1 indicate that even in a highly replicated
system network traffic can be kept low if relaxed
coherency is used: considering 80% replication the
number of messages per second may be reduced to 200
(which equals the traffic in the non-replicated case) if a
coherency of k = 0.5 can be established e.g. by
implementing periodic conditions with a well tuned time
window. If k < 0.1 is achievable, network traffic (as well
as response time) can be minimized by full replication.
This is very encouraging since extensive replication is
necessary to build a reliable and fault-tolerant distributed
system.

5 Comparing analytical and
benchmark results

Modeling a computer system implies making lots of
assumptions and simplifications. Thus, the analytical
results are in need for validation. We tried to verify our
analytical model by benchmarking the implementation of
Atomic Delayed Replication (ADR) which is a novel
technique for replica management and concurrency
control in distributed databases. ADR is based on the idea

452

Number of messages

0.2 0.4 0.6 0.8 1
Degree of replication r

Figure 4: Average number of messages per second fl.

of asynchronous propagation with controlled levels of benchmark runs. This leads to a coherency index k = 0
consistency to achieve shorter response times and which is used for the comparison. To further describe the
increased throughput with high autonomy while keeping benchmark using our analytical model, we set the service
the possibility for a flexible fragmentation and replication times as & = 50 ms and t,, = 100 ms because the
design with respect to scalability [15]. The first transactions in our synthetic workload are rather short.
implementation of ADR was realized on top of SYBASE Varying the number of sites and the percentage of read-
System 10 running under SunOS 4.1.3 [30]. This only transactions can be captured by IZ E [l;S] and
happened in the context of the INDIA project which aims
at efficiently supporting intelligent networks (IN) in

a,, E [O;l]. Using these values, our analytical model
reveals a maximum throughput as shown in figure 5,

telecommunication with replicated databases. which also shows the benchmark results for comparison.

Our computing environment consists of SUN Spare
Station 10 as both database server machines and client
environments. The local databases and their logs are
placed on separate disks and controllers to avoid a
bottleneck in the I/O-system. The database size was set to
about 100 MB for each local database system. The
database schema corresponds to a currently existing
realization of a complete IN system developed by
PHILIPS research laboratories. We benchmarked the
ADR system with up to five local databases. As currently
no standardized load models for the IN application exist,
we decided to use two kinds of transactions: One is a
short read-only transaction typical for the execution of
phone calls. The other is a more complicated write
transaction changing the profile of an intelligent network
service (i.e. virtual private network). We measured the
throughput of the whole system while decreasing the
percentage of read-only transactions from 100% down to
0%. The duration of the benchmark was one week;
millions of transactions were executed and showed the
stability of the implementation [161.

Obviously, the analytical model is characterizing the real
implementation very well. Therefore we believe in the
quality of the analytical results presented in section 4.
Further validation of the model through sensitivity
analysis is provided in [3 11. Figure 5 illustrates the ability
of linear scaleup when using relaxed coherency like in
ADR. Examining the measured values very critically we
discovered some difficulties with the communication
protocols used for the implementation if the percentage of
reads is high. Thats why some curves in the picture seem
to be convex. We remedied this pitfall and gathered more
accurate results for selected read/write mixes with an
improved implementation.

Summarizing our experiences we found that relaxation of
coherency assures linear scaleup even along increased
write access which is not possible using classical
mechanisms for the management of replicated data. This
result is an important step towards distributed databases
with replicated data.

The implementation of ADR reproduces changes of
primary copies at the secondary copies asynchronously as
eager as possible corresponding to a coherency index
k = 1. However, it gives user transactions preference over
propagation transactions at peak load situations like our

6 Summary and outlook
In this paper we defined a measure called coherency
index for the allowed divergence of replicated data. It is
based on our classification of coherency conditions

453

Maximum Throughput

0 I I
loo% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Percentage of queries a 4

Figure 5: Comparing analytical and benchmark results.

characterizing relaxed mutual consistency as well as
strategies for update propagation. According to the
classification we gave examples how to calculate the
coherency index. Then we developed a detailed queueing
network model based on this coherency index to evaluate
the impact of relaxed coherency on the performance of
replicated databases. The results show, that relaxing
classical consistency requirements can improve response
time, throughput, scalability and network traffic
considerably. Furthermore, our analysis reveals that these
gains of relaxed coherency grow when the number of
sites or the degree of replication is increased. Examining
the trade off between consistency and performance we
discovered, that slight relaxations of coherency can
increase performance remarkably: delaying update
propagation for 5 minutes may double throughput.
Finally, we benchmarked an existing implementation of
relaxed coherency and found that our analytical model is
forecasting reality quite accurately. Currently we are
extending our implementation of the method ADR
incorporating periodic conditions. We expect to validate
the analytical results in more detail by running the
benchmark on this refinement.

References
HI M.E. Adiba, B.G. Lindsay: ,,Database Snapshots“,

VLDB 80, pages 86-91.

PI R. Alonso, D. Barbara, H. Garcia-Molina: ,,Data
Caching Issues in an Information Retrieval
System“, ACM Transactions on Database Systems,
Vol. 15, No. 3, September 1990, pages 359-384.

[31

[41

PI

161

[71

181

[91

VOI

Sujata Banerjee, Victor 0 K Li, Chihping Wang:
,,Pe$ormance analysis of the send-on-demand: A
distributed database concurrency control protocol
for high-speed networks“, Computer Communica-
tions, Vol. 17, No. 3, March 1994, pages 189-204.

D. Barbara, H. Garcia-Molina: Jhe case for
controlled inconsistency in replicated data“,
Proceedings of the 1”’ Workshop on the
Management of Replicated Data, Houston,
November 1990, pages 35-38.

Philip A. Bernstein, Vassos Hadzilacos, Nathan
Goodman: ,,Concurrency Control and Recovery in
Database Systems“, Addison Wesley 1987.

Gunter Belch: Jeistungsbewertung von Rechen-
systemen mittels analytischer Warteschlangenmo-
delle”, (in german), B.G. Teubner Stuttgart, 1989.

Wojciech Cellar-y, Erol Gelenbe, Tadeusz Morzy:
,,Concurrency Control in Distributed Database
Systems“, Elsevier Science Publishers, Holland
1988.

S. Ceri, M.A.H. Houtsma, A.M.Keller, P.
Samarati: ,,A Classification of Update Methods for
Replicated Databases”, Technical Report STAN-
CS-91-1392, Stanford University, Oktober 1991.

S.F. Chen, C. Pu: ,,An Analysis of Replica
Control“, Proceedings of the 2”d Workshop on the
Management of Replicated Data, Los Alamitos,
November 1992, pages 22-25.

B. Ciciani, D.M. Dias, P.S. Yu: ,,Analysis of
Replication in Distributed Database Systems“,
IEEE Transactions on Knowledge and Data
Engineering, Vol. 2, Nr. 2, Juni 1990, pages 247-
261.

454

1111

WI

1131

[I41

[W

H61

[I71

[lfu

[I91

PO1

Pll

WI

1231

B. Ciciani, D.M. Dias, P.S. Yu: ,,4nalysis of
Concurrency-Coherency Control Protocols for
Distributed Transaction Processing Systems with
Regional Locality“, TSE, Vol. 18, Nr. 10, 1992,
pages 899-914.

Susan B. Davidson, H. Garcia-Molina, Dale
Skeen: ,,Consistency in Partitioned Networks”,
ACM Computing Surveys, Vol. 17, Nr. 3,
September 1985, pages 165-178.

U. Dayal, B. Blaustein, A. Buchmann, U.
Chakravarthy, M. Hsu, R. Ledin, D. McCarthy, A.
Rosenthal, S. Satin, M.J. Carey, M. Livny, R.
Jauhari: ,,The HiPAC project: Combining active
databases and timing constraints”, SIGMOD 88,
pages 5 l-70.

D. Dewitt, J. Gray: Jarallel Database Systems:
The Future of High Pe$ormance Database
systems“, Communications of the ACM, Vol. 35,
Nr. 6, Juni 1992, pages 85-98.

Rainer Gallersdiirfer, Matthias Jarke, Karin
Klabunde: ,,Intelligent Networks as a Data
Intensive Appliction (INDIA)“, International
Conference on Applications of Databases, Sweden,
Juni 1994.

Rainer Gallersdiirfer, Karin Klabunde:
,,Pe$ormance and Scalability of Atomic Delayed
Replication for Distributed Databases in the
Intelligent Network”, Technical Report, RWTH
Aachen, Informatik V and Philips Research
Laboratories Aachen, 1994.

H. Garcia-Molina: J’erjormance of the Update
Algorithms for Replicated Data in a Distributed
Database“, Ph.D. Dissertation, revised, Stanford
University (June ‘79), North Holland, 1982.

H. Garcia-Molina, G. Wiederhold: Read-Only
Transactions in a Distributed Database”, ACM
TODS, Vol. 7, No. 2, June 1982, pages 209-234.

N.H. Gehani, H.V. Jagadish, 0. Shmueli:
,,Composite Event Specification in Active
Databases: Model1 & Implementation“, VLDB 92,
pages 347-362.

Jim Gray: ,,The Benchmark Handbook for
Database and Transaction Processing Systems“,
Morgan Kaufmann, 1993.

Donald Gross, Carl M. Harris: ,,Fundamentuls of
Queueing Theory“, John Wiley & Sons, 1985.

E. Hanson: ,,A Pelformance Analysis of View
Materialization Strategies”, SIGMOD 87, pages
440-453.

Peter J.B. King: Jomputer and Communication
Systems Performance Modelling”, Prentice Hall,
1990.

v41

[251

1261

v71

[281

WI

[301

[311

[321

[331

[341

[351

[361

..__ -I______

Leonard Kleinrock: ,,Queueing Systems, Volume I:
Theory“, John Wiley & Sons, 1975.

Henry F. Korth, Abraham Silberschatz: ,,Dutubase
System Concepts“, MC Graw Hill, 199 1.

R. Lenz, T. Kirsche, B. Reinwald: ,,ASPECT -
Specifying Consistency Requirements for
Replicated Data from an Applications Point of
View“, Proceedings of the International
Conference on Parallel and Distributed Computing
Systems, Las Vegas, Oct. 1994, pages 472-477.

B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, P.
Wilms: ,,A Snapshot Differential Refresh
Algorithm“, SIGMOD 86, pages 53-60.

W. Mariasoosai, M Singhal: ,,A Concurrency
Control Algorithm for Replicated Database
Systems“, Proceedings of the ISMM International
Conference, New York, Oct. 1990, pages 143-147.

J. MC Dermett, R. Mukkamala: ,,Pelformance
Analysis of Transaction Management Algorithms
for the SINTRA Replicated Architecture Database
Systems“, IFIP Transactions (Computer Science &
Technology), Vol. A-47, 1994, pages 215-234.

Ralf Nellessen: ,,Transaktionen in verteilten
Datenbanken - Anwendung im Intelligenten Net?,
Diploma thesis (in german), RWTH Aachen,
Informatik V, Juli 1993.

Matthias Nicola: ,,Analytische Leistungsbewertung
relaxierter KohZirenz in replizierten Daten-
banken”, Diploma thesis (in german), RWTH
Aachen, Informatik V, April 1995.

Alison Payne: ,,Designing the Databases of the
Intelligent Network“, 8’h International Conference
on Software Engineering for Telecommunication
Systems and Services, 1992, pages 37-41.

G. Ramanathan, V.S. Alagar: ,,Specificution of
Real-Time Distributed Database Systems”,
Proceedings of CompEuro ‘92: Computer Systems
and Software Engineering, 1992, pages 101-106.

M. Rusinciewicz, A. Sheth, G. Karabatis:
Jpecifying Interdatabase Dependencies in a
Multidatabase Environment“, IEEE Computer,
Vol. 24, Nr. 12, Dezember 1991, pages 46-53.

A. Sheth, M. Rusinciewicz : Management of
interdependent data: Specifying depedency and
consistency requirements“, Proceedings of the 1”’
Workshop on the Management of Replicated Data,
Houston, November 1990, pages 133-136.

A. Silberschatz, P.B. Galvin: ,,Operating System
Concepts“ , Addison Wesley, 1994.

455

1371

[381

[391

[401

[411

[421

[431

[441

[451

Mukesh Singhal: ,,Concurrency Control
Algorithms and their Pegormance for Replicated
Database Systems“, Ph.D. Dissertation, University
of Maryland, 1986.

Mukesh Singhal, A.K. Agrawala: ,,Pe$ormance
Analysis of an Algorithm for Concurrency Control
in Replicated Database Systems”, ACM
SIGMETRICS ‘86, Mai 1986, pages 159-165.

Mukesh Singhal: ,A Fully-Distributed Approach
to Concurrency Control in Replicated Database
Systems“, Proceedings of the 12’h International
Computer Software and Applications Conf., 1988.

Mukesh Singhal: JJpdate Transport: A New
Technique for Update Synchronization in
Replicated Database Systems“, TSE, Vol. 16,
1990, pages 13251336.

S.H. Son, C.H. Chang: J’e~ormance Evaluation
of Replication Control Algorithms for Distributed
Database Systems“, Technical Report, CS-TR-9-
11, University of Virginia, 1991.

U. Sumita, O.R. Sheng: Jnalysis of Query
Processing in Distributed Database Management
Systems with fully replicated Files: A Hierarchical
Approach“, Performance Evaluation, Vol. 8,1988.

0. Ulusoy: J’rocessing Real-Time Transactions in
a Replicated Database System”, Journal on
Distributed and Parallel Databases, Vol. 2, No. 4,
October 1994, pages 405-436.

Gio Wiederhold, XiaoLei ,Qian: ,,Modeling
Asynchrony in Distributed Databases”,
Proceedings of the 3’d International Conference on
Data Engineering, 1987, pages 246-250.

Gio Wiederhold, X. Qian: ,,Consistency Control of
replicated data in federated databases“,
Proceedings of the 1”’ Workshop on the
Management of Replicated Data, Houston,
November 1990, pages 130- 132.

Appendix
This appendix contains some hints on the calculation of
the performance values mentioned in section 3.2. The
probability that submitted queries (updates) can be
executed at the local database is denoted as ey (1,
respectively) and results in

0, = loc+(l-loc).r.qr and 1, = lot

because lot expresses the preference of accessing original
local data and the second term reflects the local read
availability introduced by replication. Note that

replication does not increase the write availability
because of the primary copy approach.

The overall rate of queries to be executed at a local
database (AT’) not only consists of queries submitted by
users but also of additional queries received from other
sites:

h ~‘=e,.I,+(n-l).(l-C,).~~.-1-
n-1

=c, 4, +(l-C&h, =h,

Considering the identical behavior of sites hyr = h, is
not much of a surprise: every site receives just as many
queries as it forwards to other sites due to a lack of
appropriate local data. For updates we similarly derive

a yr = f!, .A, +(n-1)*(1-e,).h, ’ .-+(n-1).r.k.ur.3LU
n-l

=(l+(n-l).r.k.ur)+h,

In addition to the rate of locally submitted updates (h,)
the amount of propagated updates has to be included: An
arbitrary update must be propagated with probability
rk+ur at each of the n-l remaining sites. The combined
flow of arriving queries and updates at each local
database system is still Poisson with rate

tot01 h = qtar + qtal =h,+(l+(n-l).r.k.ur).h,

Since the service time of the combined stream is
hyperexponentially distributed and each node acts like a
M/I&/l/FCFS system the average waiting time m at a
local database can be derived using the Pollaczek-
Khinchin formula [24]:

Using this result we can determine the average response
timefor queries which amounts to

Rq =Jq .(~+tq)+(l-&,).(t,me”“ase+W+tq +t?)

The first term of Rq corresponds to queries that can be
answered locally and the second term covers the case that
queries have to be forwarded to another site (taking

t,““““” seconds) requiring the results to be sent back

(taking t,d”” seconds). Similarly, the average response

time for updates happens to be

R, =a,.(~+t,)+(l-e,).(t,“““““s’+~+t,+t,”””””s’>.

456

