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Abstract 
Applications in finance and telecommunications 
(intelligent network, network management, 
mobile computing) cause renewed interest in 
distributed and replicated data management. 
Since synchronous update of replicated data is 
experienced to degrade distributed systems 
performance substantially, relaxing the 
requirement of coherency (mutual consistency) 
has become a favorable approach to achieve high 
performance in replicated databases. In this 
paper we present formal concepts for specifying 
relaxed coherency which allows to calculate an 
independent measure of relaxation, called + 
coherency index. We incorporate this metric into 
a detailed analytical queueing model which 
emphasizes on the quality of replication to 
evaluate the impact of relaxed coherency on the 
performance of replicated databases. The model 
considers response time, throughput, scalability 
and network traffic as performance criteria. As it 
turns out, performance improvements through 
relaxed coherency depend significantly on 
various system parameters. We closely examine 
the trade off between consistency and 
performance, and show that in many situations a 
slight relaxation of coherency can increase 
performance remarkably. Finally, we verify these 
results by benchmarking an implementation of 
relaxed coherency. 

1 Introduction 
In a distributed environment data is replicated in order to 
achieve shorter response times, higher throughput and 
increased availability and reliability in case of failures. 

The approach is to place data where it is to be processed 
as well as storing redundant data at independent sites. In 
the literature benefits of replication are generally 
accepted and a lot of methods have been proposed for 
ensuring consistency in distributed systems mostly 
concerned with the problem of providing atomicity [ 121. 
Unfortunately, these algorithms either destroy the 
property of availability by synchronous access to other 
sites or lengthen response times by introducing remote 
access. One concept to avoid these problems is known as 
relaxed coherency which means buying performance or 
independence for giving up “up-to-date-ness” of the data 
as far as the application can tolerate it. Stock trading and 
telecommunication are some out of several examples 
where controlled inconsistency is expected to gain high 
performance [2,33]. Naturally, mobile databases and 
federated systems are asking for independence. 

Our research was initiated by INDIA’, a joint project 
with PHILIPS regarding database support for a flexible 
telecommunication control architecture called intelligent 
network (ZNj [ 151. The analysis of the application showed 
that coherency relaxation is needed for performance but 
that the specific needs concerning consistency and 
actuality of data and transactions are more subtle than is 
covered by current models. The first contribution of this 
paper is therefore a detailed classification scheme by 
which coherency conditions can be specified. 

Based on this analysis, the INDIA project designed and 
implemented a technique called Atomic Delayed 
Repliption (ADR) and tested it in an experimental IN 
environment; the approach is described in [ 151. A large 
set of measurements were conducted with the system, 
consisting of millions of transactions and thus 
demonstrating the scalability and stability of the 
implementation. However, due to the enormous overhead, 
measurement was limited to just a few database nodes (up 
to five). Additionally, it proved difficult to compare 
various strategies as each design decision has to be 

t This work was supported by Philips Research Laboratories Aachen, 
52021 Aachen, Gemmy. 

’ INDIA stands for Intelligent Networks as a Data Intensive Application 
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implemented explicitly. The second contribution of this 
paper is therefore a detailed analytical model that can be 
used to analyze the impact of various design parameters 
on replicated databases in terms of response time, 
throughput, scalability and network load. 

Since an implemented system and a lot of measurement 
data are available, we are thirdly also able to validate the 
model against these benchmark results. 

Section 2 starts with a discussion about coherency in 
database systems and classifies coherency conditions to 
show how application requirements can be described. In 
section 3 a replicated database system is modeled by an 
open queueing network. Our model is more detailed than 
most others found in literature, especially concerning 
quality of replication, distribution of data access and 
composition of workload. In section 4 we present the 
analytical results under certain parameter variations 
(meaning different designs of fragmentation, replication 
and system size). A validation of the model is given in 
section 5 by presenting benchmark results that were 
forecasted by our analytical model. Section 6 concludes. 

2 Coherency in replicated databases 
In this section we define coherency in replicated 
databases and discuss related work on specifying relaxed 
coherency. Then we classify concepts describing the 
different dimensions along which relaxation of coherency 
can be formalized. 

2.1 Definition of terms 

In replicated databases we distinguish between a logical 
data item (e.g. 0) and its physically stored representatives 
called replicas (e.g. DI, D2, . . . . D,,). Focusing on one of 
these instances, D,, we call all other physical instances 
the copies Dz, D3, . . . . D, of D, [7]. Usually, all the 
replicas of a logical data item are expected to have the 
same value. This property is known as coherency or 
mutual consistency. Assuring mutual consistency is 
beyond classical consistency control and therefore called 
replica control [26]. A system that ensures both mutual 
consistency and serializability is said to provide one copy 
serializability [5]. This is a commonly known correctness 
criteria for concurrent transactions accessing replicated 
data and is often enforced by the two-phase-commit 
(2PC). As the 2PC was experienced to degrade systems 
performance substantially, relaxing the requirement of 
mutual consistency has become a favorable approach to 
achieve high performance in replicated databases [9]. 

It must be possible to specify the allowed degree of 
deviation of replicas since relaxed coherency may be 
employed with respect to application semantics only. 
Coherency control then has to ensure that this 

specification of relaxed coherency is not violated. In the 
following we sketch some approaches in the literature for 
specifying relaxed coherency and then describe our 
classification of coherency conditions that will be 
analyzed later on. 

2.2 Specification of relaxed coherency 

Specifying the degree of relaxation must be formalized so 
that the influence of relaxed coherency on the 
performance can be measured. Our analysis will show 
that the relaxation of coherency can improve the 
performance of replicated databases. In the following 
section we tirst describe proposals for such a specification 
and then build a classification of coherency conditions. 

2.2.1 Related Work 

Current technology like Sybase Replication Server, 
Oracle Symmetric Replication Technology, Ingres 
Replicator and transaction monitors like DEC-ACMS 
provide basic capabilities for the physical replication of 
data fragments. Unfortunately they allow relaxation of 
coherency at fixed levels only: classical 2PC, primary- 
secondary approach, optimistic using timestamps or 
completely uncontrolled. These commercial systems do 
not provide mechanisms which support application 
specific coherency conditions. On the other hand such 
cclmmercial systems represent a mature base for 
implementing coherency control on top of them; indeed, 
our implementation is based on Sybase Servers. 

In the literature Alonso et al. described coherency 
conditions in client-server environments where the data 
is stored and controlled in the servers [2]. Since clients 
are usually workstations or personal computers with 
storage and processing capacity, parts of the information 
is cached at the clients to off-load both servers and 
network. Updates can be applied to data at the server side 
meaning a primary copy paradigm only. Aging of cached 
data is allowed to avoid complicated algorithms ensuring 
cache coherency at the clients. The cached data items are 
called quasi copies and are similar to materialized views 
[22] and database snapshots [1,27.]. Generally, caching 
promises reduced network and server load as well. In the 
quasi copy approach the degree of coherency relaxation 
has to be specified at the client side by means of 
coherency conditions like e.g. 

V timest>O: 3 k : (0 5 k I a) A (x’(t) = x(t-k)) 

which states that a client’s quasi copy x’ may not be older 
than a time units compared to servers original x. This 
means defining a time window a which can be expressed 
by the unary predicate W(x) = a. 

A more general approach called identity connections was 
described by Wiederhold and Qian [44,451. Identity 

446 



connections are directed or undirected relations between 
replicas of a logical data object or between source and 
derived data. In the second case a function has to be 
supplied describing how to compute the derived data 
object. Every identity connections must be provided with 
a temporal constraint that defines the allowed degree of 
divergence. Such constraints may be time points and 
events or time intervals. Appropriate propagation of 
updates between coupled data items has to ensure the 
enforcement of identity connections. 

Sheth and Rusinciewicz presented an extension of 
identity connections for multi database systems called 
database dependency descriptors (D’) [34,3.5]. A d is a 
tuple <S, U, P, C, A> where S is a set of source data and 
U a target data object. P is an expression in relational 
algebra which describes the intended value of U, C is a 
coherency predicate specifying when P must be enforced 
and A is a set of restoration procedures that provide 
actions to update the target object U. Though identity 
connections and database dependency descriptors are 
readily formalized for practical use, proving global 
correctness is difficult as explicitly coupling of copies in 
pairs leads to a large number of specifications. With 
ASPECT Lenz et al. proposed an application oriented 
sitication of consistency requirements for replicated 
data [26]. Here the application shall specify the 
relaxation of coherency with respect to the logical data 
object and not to other copies. Therefore the application 
must neither care about other copies nor about their 
existence. Unfortunately there is no formal notation for 
ASPECT. Furthermore it is not clear how to derive the 
current value of a logical data object. 

2.2.2 Classification of coherency conditions 

Lots of ideas to specify relaxed coherency have been 
proposed in the literature [2,4,8,9,26,34,35,44,45]. In this 
section we classify those concepts and denote them 
through coherency conditions which are an extension to 
the formalism in [2]. Generally, our coherency conditions 
are binary relations between replicas x and x’ of the same 
logical data item. For each class of coherency conditions 
we will try to calculate a numerical value named 
coherency index (k) to measure the degree of allowed 
divergence. This enables us to evaluate the influence of 
coherency relaxation in the performance analysis 
independently from the class of condition. 

1. Delay conditions: 

The first class of conditions are time oriented, expressing 
how long the system may wait until the propagation of an 
update has to be initiated. The time window m describes 
the maximum delay: 

For example, D(x,x’) = 60 seconds means, that any 
update on data item x must be propagated to x’ within a 
minute. Thus, delay conditions specify how much time a 
replica may lag behind another replica of the same 
logical data object. To be general, a coherency condition 
need not be symmetrical (D(x,x’) #D(x,x’)). If data item 
x is updated h($’ times per second not every update but 
only the latest state of x has to be propagated. Hence, the 
actual probability of propagation is 

k= l/((k(,x) .m)+ 1) 

which yields an important foundation of increased 
performance due to relaxed consistency. This k E [O;l] is 
named coherency index. Small values of k express high 
relaxation and expected low costs for update propagation. 
With k = 0 (m + -) values of replicated data objects age 
unlimited. For k = 1 (m = 0) all updates have to be 
propagated immediately; note that this does not imply 
synchronous change. 

2. Periodic conditions: 

The second class of coherency conditions is also time 
oriented. Periodic conditions specify that a copy x’ of x 
must be updated with the latest value of x every m time 
units, no matter whether the value of x has changed or 
not. Periodic conditions are denoted by 

P(x,x’) = m (m > 0) 

If the rate of updates A’,“’ on data item x is greater than 
l/m, not every update but only the latest state of x has to 
be propagated. This leads to a coherency index k = 

l/( A’,“’ . m). If A’,“’ becomes less than l/m, k exceeds its 
limit 1 which indicates that superfluous updating on x’ is 
taking place. Thus it is not obvious, why periodic 
conditions might be preferable to delay conditions. The 
advantage of updating replicas periodically is that 
undetected losses of update messages due to network or 
site failures can be avoided. This prevents replicas from 
aging arbitrarily. Although A’,“’ < l/m might be avoided 

by reasonably estimating ht’ and carefully choosing m, a 
realization of periodic conditions could update x’ only if 
x was modified during the period. Such an implemen- 
tation yields a coherency index k = l/(( A’,“’ . m) + 1) and 
makes periodic conditions similar to delay conditions. 

3. Time point conditions: 

This class of conditions introduced by Wiederhold and 
Qian [44, 451, is a special case of periodic conditions. A 
time point condition is expressed as 

D(x,x’) = m (m 2 0) 
T(x,x’) = z 
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where z denotes a repeating time point like every hour or 
daily at eight o’clock. A formal syntax for specifying 
time points is proposed in [34]. If the duration between 
two successive time points amounts to m time units, the 
coherency index results in k = l/( 3L(,x) . m). 

4. Version conditions: 

Version conditions specify relaxed coherency considering 
the number of updates occurring on data item x as the 
dimension of deviation. The denotation 

V(x,x’) = i (i 2 1) 

means, that after the ith update on replica x its copy x’ 
must be updated with the current value of x. The 
resulting coherency index is k = l/i. 

5. Numerical conditions: 

If the value of a logical data item is numeric, the 
deviation between its replicas can be bounded by the 
difference of their values. Considering absolute, relative 
or percent difference2, we write numerical conditions as 

(a) N,(x,x’) = 6 (SE RI 
(b) N,(x,x’> = 6 (6 E R) 
(c) N%(x,x’> = 6 (6 E R) 

meaning that x’ must be updated with the current value 
of x whenever 

(a) (x’-~l<6 

(b) 
d-x 
Ii 

<6 
x 

happens to be violated. Though checking this kind of 
coherency conditions requires to know the values of both 
replicas, the saving may be remarkable: consider a stock 
market information system where prices change 
continuously within a small range, but users are only 
interested in deviations of more than &5 %. A general 
coherency index cannot be calculated as long as it is 
impossible to estimate the amount of modifications to 
numerical data. 

6. Object conditions: 

This class of conditions is object based. The notation is: 3.1’ Parameters 

(a> 
(b) 

O#(x,x’) = i (i2 1) 
0%(X,X’) = q (q E u ;lW 

* Note that relative and percental difference are redundant but useful for 
ease of notation. 

(cl 0(x,x’) = a (a E subobjects( 

meaning that x’ must be updated with the current value 
of x whenever 

(a) at least i subobjects of x have been modified 
(b) at least q percent of the subobjects of x have been 

modified 
(c) subobject a of x has been modified 

since the latest update of x’ with the value of x. We 
expect such conditions to be useful for engineering 
applications (computer aided design) and other 
distributed environments based on object oriented 
databases. But object-s&object relationships exist in the 
relational model as well e.g. table-column, table-row, 
row-attribute. Imagine replica x’ as a read-only table 
which is used for statistical calculations. Then it might be 
reasonable to update x’ only if more than 9% of the rows 
in x have been modified because otherwise a significant 
change of the statistical results is not to be expected. As 
for numerica conditions a general coherency index is 
difficult to derive. 

7. Event conditions: 

Finally, updating replicated data can be event driven 
which we denote like 

E(x,x’) = E 

where E is any event observable by the database system. 
This is ,the most general class of coherency conditions 
and its realization is tightly related to mechanisms 
developed in active databases [ 131. A formal syntax for 
specifying events is beyond the scope of this paper but 
can be found in [19,33]. 

3 Modeling a replicated database 
In section 3.1 we present a queueing network model for 
replicated databases and sketch how to obtain important 
performance criteria to judge relaxed coherency in 
section 3.2. It ‘is based on the coherency index (k) 
introduced in section 2.2.2. So it is generally applicable 
to each condition although we have provided example 
calculations of k for the conditions l-4 only. As stated for 
the periodic conditions this k heavily depends on the real 
implementation. Details are provided in [3 11. 

In our model a replicated database consists of n identical 
local databases (or sites) and d logical data items where 
d = m.n for m 2 1. Initially, each logical data item is 
represented by exactly one physical replica, such that 
every site contains m distinct replicas. Actual replication 
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of data items will be considered later on. This distributed 
database is modeled as an open queueing network. Its 
nodes are identical M/I-IJl-systems characterizing the 
local databases. We assume only one service channel and 
no real parallel transaction processing at each local 
database system. This is founded by the trend of having 
lots of commodity systems building the distributed 
environment [14,36]. The length of the queues is 
assumed to be unlimited as we do not expect the buffering 
of incoming transactions to be a bottleneck in a 
distributed database. As generally accepted we assume 
jobs to be served in FCFS discipline [6]. 

We model the arrival of transactions to the distributed 
system by a Poisson process with parameter 3Lgloba’ be- 
cause Poisson streams have been found to be a good 
approximation for a large number of users submitting 
jobs independently [6,20,21,24]. Although read-only 
transactions are easier to process for a database system 
than updates [18], many models consider updates only 
[10,11,28,37]. We model the percentage of queries in the 
overall workload by the parameter a4 E [O; 11. This means 
that hgiobal is split up into two separate Poisson streams 
with rates ktoba’ = a4 . hg’*a’ and hgu[oba’ = (1 - a4 ) hglohal . 

Furthermore, we assume that arriving transactions are 
distributed uniformly across the II local databases, so each 
site is loaded with a Poisson process of updates 
(parameter h, = htnbal/n ) and queries ( h, = L$laba’ /rr ). 
Achieving such a load distribution in a real system is the 
task of designing the distributed database, so that each 
local database serves the same number of users. These 
users submit their transactions to the local system only, 
which may need to forward the execution to’another site 
due to a lack of appropriate local data. Additionally, our 
model is based on the assumption that updates are 
executed according to the primary copy approach. 
Furthermore we assume a good design in the sense that 
each transaction accesses data items of only one local 
database because transactions are expected to reference 
logically dependent data items which should be grouped 
together [lo]. The quality of data distribution is modeled 
by the probability (Zoc E .[O;l]) that a transaction can be 
executed at the local site. With probability 1 - lot a 
transactions has to be forwarded to one of the remaining 
sites each of which being chosen with equal likelihood. 
Expressing that local data objects are accessed slot times 
as often as remote sites we define 

Zoc(n) = qoc’ l/n (S& E [ 1;nl). 

Although most models of replicated databases assumeful2 
replication [17,28,37-421, we believe that partial 
replication is necessary to achieve high performance. 
Therefore we model the degree of replication by the 
parameter r E [O;l] describing the percentage of logical 
data items that are fully replicated across the sites. That 
means that if a data item is replicated a copy exists at 

each site. Updates executed at a local database therefore 
have to be propagated to all other sites with probability r. 
Considering relaxed coherency the probability of 
propagation decreases to k.r. 

The quality of replication depends on the preference of 
queries and updates to access replicated data. More 
precisely we call a replication schema of high quality if 
queries are accessing replicated data as well as updates 
are performed on nonreplicated data to a very high 
degree. These preferences are modeled by the parameters 
qr E [O;llr] and ur E [O;llr] respectively. Here a value of 
qr = l/r (ur = l/r) describes that queries (updates) are 
accessing replicated (nonreplicated) data only; meaning 
an optimal replication schema. The value 0 expresses the 
opposite extreme while the value 1 describes no 
preferences. Since the access patterns are expected to 
change with the degree of replication, we model them by 
the following functions: 
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qr(r) = L rs4’ 
and ur( r) = J- r S”T 

This allows us to describe the ability of creating a good 
(or bad) design by tuning the parameters s,, and syr 
Taking the functions Zoc(n), qr(r) and w(r) into 
consideration, we clearly refrain from assuming 
uniformly distributed access to data objects across the 
database. This is another major difference to most models 
proposed in literature [3,10,11,17,28,29,37-42,431. The 
probability of propagation now amounts to rk.ur. 

Usually, the time required to process a transaction is 
mainly determined by the disk service time [25]. This in 
turn is closely related to the number of data objects 
referenced. Since transactions that access a small number 
of data items are expected to occur more frequently than 
transactions that reference a large number of data objects 
[17,37] the service times can be assumed to be 
exponentially distributed. In order to distinguish between 
updates and queries we model the query (update) service 
time to be exponentially distributed with mean tq (and tu 
respectively). This leads directly to the two phase 
hyperexponential distribution of service time for the 
combined flow [23,24]. 

The communication network is assumed to affect the 
performance by introducing a constant delay in every 
intersite communication. Therefore the network is 
modeled by an infinite server, which means that all 
intersite communication is served in parallel with a 
constant service time of trse seconds for short 
messages (like sending a ,,prepare to commit“ message) 
and t,d”” seconds for transmitting data (e.g. query 
results). The distinction between short and long messages 
is missing in many proposed models for distributed 
databases [10,11,28,29,37-421. 



Table I: System parameters and base values. 

3.2 Performance values 
Since our queueing network is amenable to product form 
solution [23], we can analyze each node separately to 
obtain the performance measures. Additionally, all sites 
of the network behave identically and transitions of jobs 
between the nodes are symmetrical. Therefore we 
examine only one site to calculate the performance values 
of the whole system. 

The overall average response time i? can be derived 
using the average response time for queries (& ), the 

average response time for updates ( EU ) and the overall 
rates of operations (queries and updates respectively) at a 
local database as 
. 

The appendix contains the formal derivation of this 
result. In steady state the number of arriving transactions 
equals the number of departing transactions (flow in = 
flow out). Thus, the throughput of the distributed 
database equals the global arrival rate Aglobal. However, 

the overall throughput of the system is bounded by the 
capacity of the local sites. Therefore we derive the 
maximum throughput D by solving the equation 
h’~%, + hylt,, = 1 for kggloba’ which results in 

D = p’obal (l-u ) -l 
a4.t,+(l+(n-l).r.k.ur).---‘-.t 
n n ’ 

The average number of messages per second in the 
distributed system includes the shipment of user 
transaction as well as update propagation messages and 
amounts to 

m=2.n+L,).h, +2*n.(l-L&h, 

+ns(n-l).(r.k.ur).h, 

with I, (1, ) as the probability for local execution of 
queries (updates). 

4 Results 
Table 1 summarizes the parameters of our model 
including the base settings used to obtain the following 
graphs. The values are carefully estimated using 
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Figure I: Average response time. 

Maximum Throughput (TPS) 
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Figure 2: Maximum throughput vs. system size. 

measurements in a real system and considering 
assumptions of other models found in the literature. 
Naturally the base settings influence the numerical results 
in our graphs but we regard the absolute values as a 
secondary outcome. We rather consider the shapes of the 
curves as the primary results since they indicate the 
general gains of relaxed coherency and stay stable under 
variation of base values [31]. Figure 1 shows the average 
response time versus the degree of replication for several 
values of the coherency index k. The curve for k = 0 
shows the behavior with no propagation at all. The case 
k = 1 represents asynchronous but immediate propagation 
of updates. In this situation the response time can be 
reduced remarkably by replicating 20% of the data as this 
leads to increased local access. However, extending the 
degree of replication for sake of reliability rapidly 
saturates the local databases with propagated updates 
(r > 0.4). Now, relaxing the coherency requirements 

(k c 1) lessens the effort of update propagation and thus 
gains an improvement in response time. For k = 0.25, 
update propagation is reduced by a factor of 4 which 
allows the response time (at r = 0.5) to be decreased by 
50% compared to the non-replicated case (r = 0). When 
coherency is relaxed drastically (k I O.l), response time 
can be minimized by means of full replication. 

In figure 2 the maximum throughput is shown as a 
function of n where the coherency index is taking the 
values 0, 0.1, 0.25, 0.5, 0.75 and 1 (from top to bottom). 
Although most evaluations found in literature consider at 
most 10 sites [l 1,28,29,37-431 we run the number of sites 
up to 100 since we agree that future parallel database 
systems will consist of hundreds of sites [14,32]. If the 
percentage of updates is not negligible (like 10% in 
figure 2), throughput does not increase linearly with the 
number of sites due to propagation (when k > 0). On the 
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Figure 3: Maximum throughput using delay or periodic conditions. 

other hand the graphs for k < 1 reveal that relaxing 
coherency may improve scalability up to ideal linearity 
[14]. Figure 2 also shows that for a given number of sites 
throughput can be increased by relaxing coherency and 
the larger the system the greater the gain. Therefore, 
relaxed coherency applies to very large distributed 
databases of terabyte scale. 

The challenging question for any practical employment of 
relaxed coherency is: What magnitude of performance 
improvement can be expected when relaxing coherency to 
a certain extent? Lets assume that every pair of primary 
and secondary copies (x,x’) obeys to a global delay 
condition D(x,x’) = m. Approximating the update arrival 
rate on a primary copy x as h’,“’ = (b kJ/M leads to a 
coherency index 

k= 
1 

(1, .b.m/M)+l 

Using this result the throughput versus the time interval 
of delay (or periodic3) conditions is depicted in figure 3. 
As it turns out the transaction processing capacity of the 
system depends heavily on the percentage of read-only 
transactions (u4): Decreasing the number of updates leads 
to a higher maximum throughput but reduces the gain of 
relaxed coherency. E.g. Considering 5% updates in the 
workload, throughput grows from 455 TPS to about 790 
TPS if update propagation is disabled for an hour (or 
reduced to ,,once an hour“). This is an increase of 75%. If 
the fraction of read-only transactions is reduced to 66% 
the maximum throughput can reach 400 TPS only, but 
this is an increase of almost 300% and delaying update 
propagation for 5 minutes doubles the throughput 
already. Since a coherency index of less than 0.25 can be 

3 Remember from Section 2.2.2 that periodic and delay condition result in 
neatly the same coherency index and thus improve perfomlan~e equally 
well. 

achieved by delaying updates for 10 minutes, the cases 
k = 0.25 or k = 0.1 in the previous figures are likely to 
come true. Furthermore we believe that many 
applications in distributed environments can accept data 
which is 5 to 30 minutes old. 

In figure 4 we illustrate the impact of replication and 
relaxed coherency on the network traffic. In the case of 
immediate propagation (k = 1) a moderate degree of 
replication (e.g. r = 0.2) reduces the number of messages 
due to less remote access of data items, but extended 
replication floods the network as updating of replicas 
outweighs the advantage of local access. However, the 
curves for k c 1 indicate that even in a highly replicated 
system network traffic can be kept low if relaxed 
coherency is used: considering 80% replication the 
number of messages per second may be reduced to 200 
(which equals the traffic in the non-replicated case) if a 
coherency of k = 0.5 can be established e.g. by 
implementing periodic conditions with a well tuned time 
window. If k < 0.1 is achievable, network traffic (as well 
as response time) can be minimized by full replication. 
This is very encouraging since extensive replication is 
necessary to build a reliable and fault-tolerant distributed 
system. 

5 Comparing analytical and 
benchmark results 

Modeling a computer system implies making lots of 
assumptions and simplifications. Thus, the analytical 
results are in need for validation. We tried to verify our 
analytical model by benchmarking the implementation of 
Atomic Delayed Replication (ADR) which is a novel 
technique for replica management and concurrency 
control in distributed databases. ADR is based on the idea 
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of asynchronous propagation with controlled levels of benchmark runs. This leads to a coherency index k = 0 
consistency to achieve shorter response times and which is used for the comparison. To further describe the 
increased throughput with high autonomy while keeping benchmark using our analytical model, we set the service 
the possibility for a flexible fragmentation and replication times as & = 50 ms and t,, = 100 ms because the 
design with respect to scalability [15]. The first transactions in our synthetic workload are rather short. 
implementation of ADR was realized on top of SYBASE Varying the number of sites and the percentage of read- 
System 10 running under SunOS 4.1.3 [30]. This only transactions can be captured by IZ E [l;S] and 
happened in the context of the INDIA project which aims 
at efficiently supporting intelligent networks (IN) in 

a,, E [O;l]. Using these values, our analytical model 
reveals a maximum throughput as shown in figure 5, 

telecommunication with replicated databases. which also shows the benchmark results for comparison. 

Our computing environment consists of SUN Spare 
Station 10 as both database server machines and client 
environments. The local databases and their logs are 
placed on separate disks and controllers to avoid a 
bottleneck in the I/O-system. The database size was set to 
about 100 MB for each local database system. The 
database schema corresponds to a currently existing 
realization of a complete IN system developed by 
PHILIPS research laboratories. We benchmarked the 
ADR system with up to five local databases. As currently 
no standardized load models for the IN application exist, 
we decided to use two kinds of transactions: One is a 
short read-only transaction typical for the execution of 
phone calls. The other is a more complicated write 
transaction changing the profile of an intelligent network 
service (i.e. virtual private network). We measured the 
throughput of the whole system while decreasing the 
percentage of read-only transactions from 100% down to 
0%. The duration of the benchmark was one week; 
millions of transactions were executed and showed the 
stability of the implementation [ 161. 

Obviously, the analytical model is characterizing the real 
implementation very well. Therefore we believe in the 
quality of the analytical results presented in section 4. 
Further validation of the model through sensitivity 
analysis is provided in [3 11. Figure 5 illustrates the ability 
of linear scaleup when using relaxed coherency like in 
ADR. Examining the measured values very critically we 
discovered some difficulties with the communication 
protocols used for the implementation if the percentage of 
reads is high. Thats why some curves in the picture seem 
to be convex. We remedied this pitfall and gathered more 
accurate results for selected read/write mixes with an 
improved implementation. 

Summarizing our experiences we found that relaxation of 
coherency assures linear scaleup even along increased 
write access which is not possible using classical 
mechanisms for the management of replicated data. This 
result is an important step towards distributed databases 
with replicated data. 

The implementation of ADR reproduces changes of 
primary copies at the secondary copies asynchronously as 
eager as possible corresponding to a coherency index 
k = 1. However, it gives user transactions preference over 
propagation transactions at peak load situations like our 

6 Summary and outlook 
In this paper we defined a measure called coherency 
index for the allowed divergence of replicated data. It is 
based on our classification of coherency conditions 
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Figure 5: Comparing analytical and benchmark results. 

characterizing relaxed mutual consistency as well as 
strategies for update propagation. According to the 
classification we gave examples how to calculate the 
coherency index. Then we developed a detailed queueing 
network model based on this coherency index to evaluate 
the impact of relaxed coherency on the performance of 
replicated databases. The results show, that relaxing 
classical consistency requirements can improve response 
time, throughput, scalability and network traffic 
considerably. Furthermore, our analysis reveals that these 
gains of relaxed coherency grow when the number of 
sites or the degree of replication is increased. Examining 
the trade off between consistency and performance we 
discovered, that slight relaxations of coherency can 
increase performance remarkably: delaying update 
propagation for 5 minutes may double throughput. 
Finally, we benchmarked an existing implementation of 
relaxed coherency and found that our analytical model is 
forecasting reality quite accurately. Currently we are 
extending our implementation of the method ADR 
incorporating periodic conditions. We expect to validate 
the analytical results in more detail by running the 
benchmark on this refinement. 
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Appendix 
This appendix contains some hints on the calculation of 
the performance values mentioned in section 3.2. The 
probability that submitted queries (updates) can be 
executed at the local database is denoted as ey ( 1, 
respectively) and results in 

0, = loc+(l-loc).r.qr and 1, = lot 

because lot expresses the preference of accessing original 
local data and the second term reflects the local read 
availability introduced by replication. Note that 

replication does not increase the write availability 
because of the primary copy approach. 

The overall rate of queries to be executed at a local 
database ( AT’ ) not only consists of queries submitted by 
users but also of additional queries received from other 
sites: 

h ~‘=e,.I,+(n-l).(l-C,).~~.-1- 
n-1 

=c, 4, +(l-C&h, =h, 

Considering the identical behavior of sites hyr = h, is 
not much of a surprise: every site receives just as many 
queries as it forwards to other sites due to a lack of 
appropriate local data. For updates we similarly derive 

a yr = f!, .A, +(n-1)*(1-e,).h, ’ .-+(n-1).r.k.ur.3LU 
n-l 

=(l+(n-l).r.k.ur)+h, 

In addition to the rate of locally submitted updates (h,) 
the amount of propagated updates has to be included: An 
arbitrary update must be propagated with probability 
rk+ur at each of the n-l remaining sites. The combined 
flow of arriving queries and updates at each local 
database system is still Poisson with rate 

tot01 h = qtar + qtal =h,+(l+(n-l).r.k.ur).h, 

Since the service time of the combined stream is 
hyperexponentially distributed and each node acts like a 
M/I&/l/FCFS system the average waiting time m at a 
local database can be derived using the Pollaczek- 
Khinchin formula [24]: 

Using this result we can determine the average response 
timefor queries which amounts to 

Rq =Jq .(~+tq)+(l-&,).(t,me”“ase+W+tq +t?) 

The first term of Rq corresponds to queries that can be 
answered locally and the second term covers the case that 
queries have to be forwarded to another site (taking 

t,““““” seconds) requiring the results to be sent back 

(taking t,d”” seconds). Similarly, the average response 

time for updates happens to be 

R, =a,.(~+t,)+(l-e,).(t,“““““s’+~+t,+t,”””””s’>. 
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