
Discovery of Multiple-Level Association Rules from
Large Databases *

Jiawei Han and Yongjian Fu
School of Computing Science

Simon Fraser University
British Columbia, Canada V5A lS6

{han,yongjian}Qcs.sfu.ca

Abstract

Previous studies on mining association rules
find rules at single concept level, however,
mining association rules at multiple concept
levels may lead to the discovery of more spe-
cific and concrete knowledge from data. In
this study, a top-down progressive deepen-
ing method is developed for mining multiple-
level association rules from large transaction
databases by extension of some existing as-
sociation rule mining techniques. A group of
variant algorithms are proposed based on the
ways of sharing intermediate results, with the
relative performance tested on different kinds
of data. Relaxation of the rule conditions
for finding “level-crossing” association rules is
also discussed in the paper.

1 Introduction

With wide applications of computers and automated
data collection tools, massive amounts of transaction
data have been collected and stored in databases. Dis-

*This research was supported in part by the research grant
NSERC-A3723 from the Natural Sciences and Engineering Re-
search Council of Canada, the research grant NCE/IRIS-HM15
from the Networks of Centres of Excellence of Canada, and a
research grant from the Hughes Research Laboratories.

Pewniaaion to copy without fee all ot part of thi8 material is
granted provided that the copies aTe not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwiae, OT to republish, requires a fee
and/or special permisrion from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Swizerland, 1995

covery of interesting association relationships among
huge amounts of data will help marketing, decision
making, and business management. Therefore, min-
ing association rules from large data sets has been a
focused topic in recent research into knowledge discov-
ery in databases [l, 2, 3, 9, 12, 141.

Studies on mining association rules have evolved
from techniques for discovery of functional dependen-
cies [lo], strong rules [14], classification rules [7, 15],
causal rules [ll], clustering [6], etc. to disk-based, ef-
ficient methods for mining association rules in large
sets of transaction data [l, 2, 3, 121. However, previ-
ous work has been focused on mining association rules
at a single concept level. There are applications which
need to find associations at multiple concept levels.
For example, besides finding 80% of customers that
purchase milk may also purchase bread, it could be in-
formative to also show that 75% of people buy wheat
bread if they buy 2% milk. The association relationship
in the latter statement is expressed at a lower concept
level but often carries more specific and concrete in-
formation than that in the former. This requires pro-
gressively deepening the knowledge mining process for
finding refined knowledge from data. The necessity for
mining multiple level association rules or using taxon-
omy information at mining association rules has also
been observed by other researchers, e.g., [2].

To confine the association rules discovered to be
strong ones, that is, the patterns which occur relatively
frequently and the rules which demonstrate relatively
strong implication relationships, the concepts of min-
imum suppori and minimum confidence have been in-
troduced [l, 21. Informally, the support of a pattern
A in a set of transactions S is the probability that
a transaction in S contains pattern A; and the confi-
dence of A --) B in S is the probability that pattern B
occurs in S if pattern A occurs in S.

420

-.-. -

For mining multiple-level association rules, concept
taxonomy should be provided for generalizing primi-
tive level concepts to high level ones. In many appli-
cations, the taxonomy information is either stored im-
plicitly in the database, such aa “Wonder wheat bread
is a wheat bread which is in turn a breab’, or computed
elsewhere [7]. Thus, data items can be easily general-
ized to multiple concept levels. However, direct appli-
cation of the existing association rule mining methods
to mining multiple-level associations may lead to some
undesirable results as presented below.

First, large support is more likely to exist at high
concept levels, such aa milk and bread, rather than
at low concept levels, such as a particular brand of
milk and bread. Therefore, if one wants to find strong
associations at relatively low concept levels, the mini-
mum support threshold must be reduced substantially.
However, this may lead to the generation of many un-
interesting associations, such as “toy + 2% milk” be-
fore the discovery of some interesting ones, such as
“Dairyland 2% milk 4 Wonder wheat bread”, because
the former may occur more frequently and thus have
larger support than the latter.

Second, it is unlikely to find many strong associ-
ation rules at a primitive concept level, such as the
associations among particular bar codes, because of
the tiny average support for each primitive data item
in a very large item set. However, mining association
rules at high concept levels may often lead to the rules
corresponding to prior knowledge and expectations [9],
such as “milk + bread”, or lead to some uninteresting
attribute combinations, such as “toy + milk”.

In order to remove uninteresting rules generated
in knowledge. mining processes, researchers have pro-
posed some measurements to quantify the “usefulness”
or “interestingness,, of a rule [13] or suggested to “put
a human in the loop” and provide tools to allow hu-
man guidance [4]. Nevertheless, automatic generation
of relatively focused, informative association rules will
be obviously more efficient than first generating a large
mixture of interesting and uninteresting rules.

These observations lead us to examining the meth-
ods for mining association rules at multiple concept
levels, which may not only discover rules at different
levels but also have high potential to find nontrivial,
informative association rules because of its flexibility
at focusing the attention to different sets of data and
applying different thresholds at different levels.

In this study, issues for mining multiple-level asso-
ciation rules from large databases are examined, with
a top-down, progressive deepening method developed
by extension of some existing algorithms for mining
single-level association rules. The method first finds
large data items at the top-most level and then pro-

gressively deepens the mining process into their large
descendants at lower concept levels. Some data struc-
tures and intermediate results generated at mining
high level associations can be shared for mining lower
level ones, and different sharing schemes lead to dif-
ferent variant algorithms. The performance identifies
the conditions that certain algorithms could be best
suited for certain kinds of data distributions.

The paper is organized as follows. In Section 2,
the concepts related to multiple-level association rules
are introduced. In Section 3, a method for mining
multiple-level association rules in large data sets is
studied. In Section 4, a set of variant algorithms for
mining multiple-level association rules are introduced,
with their relative efficiency analyzed. In Section 5, a
performance study is conducted on different kinds of
data distributions, which identifies the conditions for
the selection of algorithms. Section 6 is a discussion
on mining “level-crossing” association rules and sev-
eral other issues. The study is concluded in Section
7.

2 Multiple level association rules

To study the mining of association rules from a large
set of transaction data, we assume that the database
contains (1) a transaction data set, 7, which consists
of a set of transactions (Ti, {AP, . . . , A4}), where x is
a transaction identifier, Ai E Z (for i = p, . . . , q), and
Z is the set of all the data items in the item data set;
and (2) the description of the item data set, D, which
contains the description of each item in Z in the form
of (Ai, descriptioni), where Ai E Z.

Furthermore, to facilitate the management of large
sets of transaction data, our discussion adopts an
extended relational model which allows an attribute
value to be either a single or a set of values (i.e., in
non-first-normal form). Nevertheless, the method de
veloped here is applicable (with minor modifications)
to other representations of data, such as a data file, a
relational table, or the result of a relational expression.

Definition 2.1 A pattern, A, is one item Ai or a
set of conjunctive items Ai A . . . A Ai, where Ai, . . . ,
Aj E 1. The support of a pattern A in a set S,
a(A/S), is the number of transactions (in S) which
contain A versus the total number of transactions in
S. The confidence of A+ B in S, cp(A-, B/S), is
the ratio of u(A A B/S) versus o(A/S), i.e., the prob-
ability that pattern B occurs in S when pattern A
occurs in S.

To find relatively frequently occurring patterns and
reasonably strong rule implications, a user or an ex-
pert may specify two thresholds: minimum support,

421

u’, and minimum confidence, cp’. Notice that for find- b?,:i? i Caz!OLry I pbrrn d cc.llteltt he 1 l tor.geqt* p,,ce
OTezllO*t a* I 1 (la.) I 14 (days) 1 83.99

ing multiple-level association rules, different minimum . ’ . ’

support and/or minimum confide&e can be specified
at different levels.

Table 1: A salesitem (description) relation

Definition 2.2 A pattern A is large in set S at level
1 if the support of A is no less than its correspond-
ing minimum support threshold CT;. The confidence of
a rule “A- B/S’ is high at level I if its confidence
is no less than its corresponding minimum confidence
threshold (o’, .

Definition 2.3 A rule “A+ B/S” is strong if, for a
set S, each ancestor (i.e., the corresponding high level
item) of every item in A and B, if any, is large at its
corresponding level, “A A B/S” is large (at the current
level), and the confidence of “A+ B/S” is high (at
the current level).

The definition indicates that if “A+ B/S’ is
strong, then (1) u(AAB/S) >_ u’, (and thus, c(A/S) 2
u’, and u(B/S) 2 a’), and (2) cp(A+ B/S) 1 ‘p’, at
its corresponding level. It also represents a filtering
process which confines the patterns to be examined at
lower levels to be only those with large supports at
their corresponding high levels (and thus avoids the
generation of many meaningless combinations formed
by the descendants of the small patterns). For exam-
ple, in a sales-transaction data set, if milk is a large
pattern, its lower level patterns such as 2% milk will
be examined; whereas if fish is a small pattern, its de-
scendants such as salmon will not be examined further.

Based on this definition, the idea of mining
multiple-level association rules is illustrated below.

Example 2.1 Suppose that a shopping transaction
database consists of two relations: (1) a sales-item
(description) relation (Table l), which consists of a set
of attributes: bar-code, category, brand, content, site,
storage-period, price, and (2) a sales-transaction ta-
ble (Table 2), which registers for each transaction the
transaction number and the set of items purchased.

Let the query be to find multiple-level strong as-
sociations in the database for the purchase patterns
related to the foods which can only be stored for less
than three weeks. The query can be expressed as fol-
lows in an SQL-like data mining language [7].

discover association rules
from sales-transactions T, salesitem I
where T.bar-code = I.bar-code and I.category =

“food” and I.storage-period < 21
with interested attributes category, content, brand

The query is first transformed into a standard SQL
query which retrieves all the data items within the

transaction-id barrodeset
351428 (17325, 92108, 55349, 88157, . . .}
982510 (92458, 77451, 60395, . . . }

. . . I 1

Table 2: A sales-transaction table

“food” category (covers high level concepts: beverage,
fruit, vegetable, bread, milk, meat, fish, cereal, etc.)
and with the storage period less than 21 days.

. ,
711 ((33314, ?9131) 1 froit-juice (oranp 1 Minntemaid

Table 3: A generalized salesitem description table

Since there are only three interested attributes, cat-
egory, content, and brand in the query, the salesitem
description relation is generalized into a generalized
salesitem description table, as shown in Table 3, in
which each tuple rkpiesents a generalized item which
is the merge of a group of tuples which share the same
values in the interested attributes. For example, the
tuples with the same category, content and brand in
Table 1 are merged into one, with their bar codes re-
placed by a bar-code set. Each group is then treated
as an atomic item in the generation of the lowest level
association rules. For example, the association rule
generated regarding to milk will be only in relevance
to (at the low concept leyels) grand (such as Dairyland)
and content (such as,2%) but not to size, producer, etc.

The taxonomy information is provided implicitly in
Table 3. Let category (such as “milk”) represent the
first-level concept, content (such as “2%,,) for the sec-
ond level one, and brand (such as “Foremost”) for the
third level one. The table implies a concept tree like
Figure 1.

The process of mining association rules is expected
to first discover large: patterns and strong association
rules at the top-most concept level. Let the mini-
mum support at this level be 5% and the minimum
confidence be 50%. One may find the following: a
set of single large items (each called a large 1-itemset,
with the support ratio in parentheses): “bread (25%),
meat (lo%), milk (20%), . . . , vegetable (30%)“, a set of
pair-wised large items (each called a large 2-itemset):
“(vegetable, bread (19%)), (vegetable, milk (15%)), . . . ,
(milk, bread (17%))“) etc. and a set of strong associa-
tion rules, such as “bread ---) vegetable (76%), . . . , milk

422

Dairyland Foranost Old Mill8 Wonder

Figure 1: A taxonomy for the relevant data items

+ bread (85%)“.

At the second level, only the transactions which
contain the large items at the first level are exam-
ined. Let the minimum support at this level be 2%
and the minimum confidence be 40%. One may find
the following large 1-itemsets: “lettuce (10%) wheat
bread (15%), white bread (10%) 2% milk (10%) chicken
(5%), . . . , beef (5%)“, and the following large 2-
itemsets: “(2% milk, wheat bread (6%)), (lettuce, 2%
milk (4%)), (chicken, beef (2.1%))“, and the strong as-
sociation rules: “2% milk --) wheat bread (60%), . . . ,
beef -+ chicken (42%)“, etc.

The process repeats at even lower concept levels
until no large patterns can be found. 0

3 A method for mining multiple-level
association rules

A method for mining multiple-level association rules
is introduced in this section, which uses a hierarchy-
information encoded transaction table, instead of the
original transaction table, in iterative data mining.
This is based on the following considerations. First,
a data mining query is usually in relevance to only a
portion of the transaction database, such as food in-
stead of all the items. It is beneficial to first collect the
relevant set of data and then work repeatedly on the
task-relevant set. Second, encoding can be performed
during the collection of task-relevant data, and thus
there is no extra “encoding pass” required. Third, an
encoded string, which represents a position in a hier-
archy, requires less bits than the corresponding object-
identifier or bar-code. Moreover, encoding makes more
items to be merged (or removed) due to their identical
encoding, which further reduces the size of the encoded
transaction table. Thus it is often beneficial to use an
encoded table although our method does not ,rely on
the derivation of such an encoded table because the
encoding can always be performed on the fly.

To simplify our discussion, an abstract example
which simulates the real life example of Example 2.1
is analyzed as follows.

Example 3.1 As stated above, the taxonomy infor-
mation for each (grouped) item in Example 2.1 is en-

coded as a sequence of digits in the transaction table
7[1] (Table 4). F or example, the item ‘2% Foremost
milk’ is encoded as ‘112’ in which the first digit, ‘l’,
represents ‘milk’ at level-l, the second, ‘I’, for ‘2%
(milk)’ at level-2, and the third, ‘2’, for the brand
‘Foremost’ at level-3. Similar to [2], repeated items
(i.e., items with the same encoding) at any level will
be treated as one item in one transaction.

TID 1 Items
Tl I {ill, 121, 211, 221)

1 i /!Ezf&4131
Table 4: Encoded transaction table: 7[1]

The derivation of the large item sets at level 1 pro-
ceeds as follows. Let the minimum support be 4 trans-
actions (i.e., minsup[l] = 4). (Notice since the to-
tal number of transactions is fixed, the support is ex-
pressed in an absolute value rather than a relative per-
centage for simplicity). The level-l large 1-itemset ta-
ble ,C[l, l] can be derived by scanning 7[1], registering
support of each generalized item, such as l**, . . . ,4**,
if a transaction contains such an item (i.e., the item
in the transaction belongs to the generalized item l**,
. ..) 4**, respectively), and filtering out those whose
accumulated support count is lower than the minimum
support. C[l, l] is then used to filter out (1) any item
which is not large in a transaction, and (2) the trans-
actions in 7[1] which contain only small items. This
results in a filtered transaction table 7[2] of Figure 2.
Moreover, since there are only two entries in f[l,l], the
level-l large-2 itemset table L[1,2] may contain only 1
candidate item {l**, 2**}, which is supported by 4
transactions in 7[2].

Level-l minsup = 4
Level-l large 1-itemsets: Filtered transaction table:

Figure 2: Large item sets at level 1 and filtered trans-
action table: 7[2]

According to the definition of ML-association rules,

423

Level-2 minsup = 3
Level-2 large 1-itemsets: Level-2 large 3-itemsets:

({;::i 1 t (Level-3 minsup = 3
Level-3 large 1-itemsets:

fY3.11

Level-2 large P-itemsets:
L12.21

Itemset Itemset support support
{ll*, 12*} {ll*, 12*} 4 4
{ll*, 21*) {ll*, 21*) 3 El 3 I {ll*, 22*} 1 {ll*, 22*} 4 4
{12*, 22*} {12*, 22*} 3 3
{21*, 22*} {21*, 22*} 3 3

-L-l-,
Itemset Support
(111) 4

1 (211) 4
(221) 3

Level-3 large 2-itemsets:
-L[3,2l

-1

Figure 3: Large item sets at levels 2 and 3

only the descendants of the large items at level-l (i.e.,
in C[l ,l]) are considered as candidates in the level-2
large 1-itemsets. Let minsup[2] = 3. The level-2 large
1-itemsets L[2,1] can be derived from the filtered trans-
action table 7[2] by accumulating the support count
and removing those whose support is smaller than the
minimum support, which results in C[2,1] of Figure 3.
Similarly, the large a-item& table t[2,2] is formed by
the combinations of the entries in t[2,1], together with
the support derived from 7[2], filtered using the cor-
responding threshold. The large 3-itemset table L[2,3]
is formed by the combinations of the entries in C[2,2]
(which has only one possibility {ll*, 12*, 22*)), and
a similar process.

Finally, C[3,1] and C[3,2] at level 3 are computed in
a similar process, with the results shown in Figure 3.
The computation terminates since there is no deeper
level requested in the query. Note that the derivation
also terminates when an empty large 1-itemset table
is generated at any level. cl

The above discussion leads to the following algo-
rithm for mining strong ML-association rules.

Algorithm 3.1 (ML-T2Ll)
Find multiple-level large item sets for mining strong
ML association rules in a transaction database.

Input: (1) 7[1], h a ierarchy-information-encoded and
task-relevant set of transaction database, in the
format of (TID, Itemset), in which each item
in the Itemset contains encoded concept hierar-
chy information, and (2) the minimum support
threshold (minsup[Q for each concept level 1.

Output: Multiple-level large item sets.

Method: A top-down, progressively deepening pro-
cess which collects large item sets at different con-
cept levels as follows.

Starting at level 1, derive for each level 1, the large
h-items sets, L[I, E], for each k, and the large item set,
U[l] (for all k’s), as follows (in the syntax similar to
C and Pascal, which should be self-explanatory).

(1) for (I := 1; L[l, 1] # fl and 1 < max-level; I++) do {

[ii
if I= 1 then {

q, 11 := get-large-litemsels(T[l], I);

(4 T[2] := ge2-fiZteredffabZe(l[l], L[l, 11);
(5) 1

g
else &[I, 1] := getJargeAAemsets(7[2], Q;
for (k := 2; L[l, k - 1] # 0; k++) do {

ck := get-candidateset(&[~, k - 11);
foreach transaction t E 7[2] do (

(10) ct := getmd&?ts(ck, t);
(11) foreach candidate c E Ct do c.support++;
(12) I

(13) L[l, k] := {c E Cklc.support 2 minsup[q}
(14) 1
(15) LL[l] := (J, L[l, k];

(16) 1 q

Explanation of Algorithm 3.1.

According to Algorithm 3.1, the discovery of large
support items at each level 1 proceeds as follows.

1. At level 1, the large 1-itemsets C[l, l] is derived
from 7[1] by “get-large-15!emsets(l[l], 1)“. At
any other level 1, Z[l, l] is derived from 7[2] by
“gethrge_l,itemsets(7[2], I)“, and notice that
when 1 > 2, only the item in L[l - 1, l] will be
considered when examining 7[2] in the derivation
of the large 1-itemsets t[l, 11. This is implemented
by scanning the items of each transaction t in 7[1]
(or 7[2]), incrementing the support count of an
item i in the itemset if i’s count has not been
incremented by t. After scanning the transac-
tion table, filter out those items whose support
is smaller than minsup[lj.

The filtered transaction table 7[2] is derived by
“get-filtered-t-ta,ble(l[l], C[l, 11)“) which uses
L[l,l] as a filter to filter out (1) any item which
is not large at level 1, and (2) the transactions
which contain no large items.

The large k (for k > 1) item set table at level 1 is
derived in two steps:

(a) Compute the candidate set from L[l, k-l], as
done in the apriori candidate generation al-
gorithm [2], apriori-gen, i.e., it first generates
a set Ck in which each item set consists of k
items, derived by joining two (k - 1) items

424

in L[I, h] which share (k - 2) items, and then
removes a k-itemset c from Ck if there exists
a c’s (, - 1) subset which is not in C[/, B - 11.

(b) For each transaction t in 7[2], for each of t’s
k-item subset c, increment c’s support count
if c is in the candidate set Ck. Then collect
into L[I, E] each c (together with its support)
if its support is no less than minsup[lj.

4. The large itemsets at level I, fX[Zj, is the union
of L[I, Ic] for all the k’s 0

After finding the large itemsets, the set of associ-
ation rules for each level I can be derived from the
large itemsets CL[/j baaed on the minimum confidence
at this level, minconf[lj. This is performed as follows
[2]. For every large itemset r, if a is a nonempty subset
of r, the rule “a-+ r - u” is inserted into rule-set[lj
if support(r)/support(a) > minconf[ll, where min-
conf[q is the minimum confidence at level 1.

Algorithm ML-T2Ll inherits several important op-
timization techniques developed in previous studies
at finding association rules [l, 21. For example,
get-candidate-set of the large k-itemsets from the
known large (k - 1)-itemsets follows apriori-gen of Al-
gorithm Apriori [2]. Function get-SUbSetS(Ck , t) is im-
plemented by a hashing technique from [2]. Moreover,
to accomplish the new task of mining multiple-level
association rules, some interesting optimization tech-
niques have been developed, as illustrated below.

1. Generalization is first performed on a given item
description relation to derive a generalized item
table in which each tuple contains a set of item
identifiers (such as bar-codes) and is encoded with
concept hierarchy information.

2. The transaction table 7 is transformed into 7[1]
with each item in the itemset replaced by its cor-
responding encoded hierarchy information.

3. A filtered transaction 7[2] which filters out small
items at the top level of 7[1] using the large l-
itemsets L[l,l] d is erived and used in the deriva-
tion of large L-items for any L (k: > 1) at level-l
and for any k (h 2 1) for level I (I > 1).

4. From level 1 to level (I + l), only large items at
C[1, l] are checked against 7[2] for L[I + 1, 11.

Notice that in the processing, 7[1] needs to be scanned
twice, whereas 7[2] needs to be scanned p times where
p = C, Lr - 1, and)I is the maximum k such that the
k-itemset table is nonempty at level I.

4 Variations of the Algorithm for po-
tential performance improvement

Potential performance improvements of Algorithm
ML-T2Ll are considered by exploration of the shar-
ing of data structures and intermediate results and
maximally generation of results at each database scan,
etc. which leads to the following variations of the algo-
rithm: (1) ML-TlLA: using only one encoded trans-
action table (thus Tl) and generating C[I, l] for all the
levels at one database scan (thus LA), (2) ML-TMLl:
using multiple encoded transaction tables and gener-
ating L[I, l] for one corresponding concept level, and
(3) ML-TSLA: using two encoded transaction tables
(7[1] and 7[2]) and g enerating C[I, l] for all the levels
at one database scan.

4.1 Algorithm ML-TlLA

The first variation is to use only one encoded transac-
tion table 7[1], that is, no filtered encoded transaction
table 7[2] will be generated in the processing.

At the first scan of 7[1], large 1-itemsets ,C[i, l] for
every level 1 can be generated in parallel, because the
scan of an item i in each transaction t may increase
the count of the item in every ,!Z[l, l] if its has not been
incremented by t . After the scanning of I[11, each item
in .C[1, l] whose parent (if I > 1) is not a large item in
the higher level large 1-itemsets or whose support is
lower than minsup[l] will be removed from c[l, 11.

After the generation of large 1-itemsets for each
level 1, the candidate set for large 2-itemsets for each
level 1 can be generated by the apriori-gen algorithm
[2]. The get-subsets function will be processed against
the candidate sets at all the levels at the same time by
scanning 7[1] once, which calculates the support for
each candidate itemset and generates large 2-itemsets
L[I, 21. Similar processes can be processed for step-by-
step generation of large h-item-sets L[I, k] for k > 2.

This algorithm avoids the generation of a new en-
coded transaction table. Moreover, it needs to scan
7[1] once for generation of each large h-itemset table.
Since the total number of scanning of 7[1] will be JZ
times for the largest lc-itemsets, it is a potentially ef-
ficient algorithm. However, 7[1] may consist of many
small items which could be wasteful to be scanned or
examined. Also, it needs a large space to keep all C[Zj
which may cause some page swapping.

Example 4.1 The execution of the same task as Ex-
ample 3.1 using Algorithm ML-TlLA will generate the
same large item sets L[I, k] for all the l’s and k’s but
in difference sequences (without generating and using
7[2]). It first generates large 1-itemsets t[l, l] for all
the l’s from 7[1]. Then it generates the candidate sets

425

from L[Z, 11, and then derives large P-itemsets ,C[I, 21 by
passing the candidate sets through 7[1] to obtain the
support count and filter those smaller than minsup[l].
This process repeats to find k-itemsets for larger k un-
til all the large k-item&s have been derived. 0

4.2 Algorithm ML-TMLl

The second variation is to generate multiple encoded
transaction tables 7[1], 7[2], . . . ,7[[maz_l+l], where
max_l is the maximal level number to be examined in
the processing.

Similar to Algorithm ML-TPLl, the first scan of
7[1] generates the large 1-itemsets L[l, l] which then
serves as a filter to filter out from 7[1] any small items
or transactions containing only small items. 7[2] is
resulted from this filtering process and is used in the
generation of large k-itemsets at level 1.

Different from Algorithm ML-TPLl, 7[2] is not re-
peatedly used in the processing of the lower levels. In-
stead, a new table 7[1+ l] is generated at the process-
ing of each level I, for 1 > 1. This is done by scan-
ning 7[Zj to generate the large 1-itemsets t[l, l] which
serves as a filter to filter out from 7[fl any small items
or transactions containing only small items and results
in 7[1+1] which will be used for the generation of large
k-itemsets (for k > 1) at level 1 and table T[I + 21 at
the next lower level. Notice that as an optimization,
for each level 1 > 1, 7[/j and L[I, l] can be generated
in parallel (i.e., at the same scan).

The algorithm derives a new filtered transaction ta-
ble, 7[1+ 11, at the processing of each level 1. This,
though seems costly at generating several transaction
tables, may save a substantial amount of processing if
only a small portion of data are large items at each
level. Thus it may be a promising algorithm in this
circumstance. However, it may not be so effective if
only a small number of the items will be filtered out
at the processing of each level.

Example 4.2 The execution of the same task as Ex-
ample 3.1 using Algorithm ML-TMLl will generate the
same large itemsets f[I, k] for all the I’s and k’s but in
difference sequences, with the generation and help of
the filtered transaction tables 7[2], . . . , I[maxJ + 11,
where maxi is the maximum level explored in the al-
gorithm. It first generates the large 1-itemsets L[l, l]
for level 1. Then for each level 1 (initially 1 = l), it
generates the filtered transaction table 7[I + l] and
the level-(Z + 1) large 1-itemsets L[Z + 1, l] by scanning
7[/l using C[I, 11, and then generates the candidate
2-itemsets from t[l, 11, calculates the supports using
7[l+ 11, filters those with support less than minsup[q,
and derives c[Z, 21. The process repeats for the deriva-
tion of L[Z, 31, . . . , L[Z, k]. 0

4.3 Algorithm ML-T2LA

The third variation uses the same two encoded trans-
action tables 7[1] and 7[2] as in Algorithm ML-T2Ll
but it integrates some optimization techniques consid-
ered in the algorithm ML-TlLA.

The scan of 7[1] first generates large 1-itemsets
L[l, 11. Then one more scan of 7[1] using L[l, l] will
generate a filtered transaction table 7[2] and all the
large 1-itemset tables for all the remaining levels, i.e.,
C[Z, l] for l- < I 5 maxi by incrementing the count
of every ,C[l, l] at the scan of each transaction and
removing small items and the items whose parent is
small from L[Z, l] at the end of the scan of 7[1].

Then the candidate set for the large 2-itemsets at
each level 1 can be generated by the aption’-gen algo-
rithm [2], and the get-subsets routine will extract the
candidate sets for all the level 1 (I 1 1) at the same
time by scanning 7[2] once. This will calculate the
support for each candidate itemset and generate large
a-item-sets Lc[I, 21 for 1 3 1.

Similar processes proceed step-by-step which gener-
ates large k-item-sets t[l, k] for k > 2 using the same

WI-
This algorithm avoids the, generation of a group of

new filtered transaction tables. It scans 7111 twice
to generate 7[2] and the large 1-itemset tables for all
the levels. Then it scans 7[2] once for the generation
of each large k-itemset, and thus scans 7[2] in total
k - 1 times for the generation of all the k-itemsets,
where k is the largest such k-itemsets available. Since
k-itemsets generation for k > 1 is performed on 7[2]
which may consist of much less items than 7[1], the
algorithm could be a potentially efficient one.

Example 4.3 The execution of the same task as Ex-
ample 3.1 using Algorithm ML-TSLA will generate the
same large itemsets ,C[1, k] for all the Z’s and k’s. It first
generates large 1-itemsets L[I, l] from 7[1], then T[2]
and all the large 1-itemsets C[2,1], . . . , ~[max-l, 11,
where maz-l is the maximum level to be explored.
Then it generates the candidate sets from L[1,1], and
derives large P-itemsets Lc[I, 21 by testing the candidate
sets against 7[2] to obtain the support count and filter
those with count smaller than minsup[q. This process
repeats to find k-itemsets for larger k until all the large
k-itemsets have been derived. 0

5 Performance study

To study the performance of the proposed algorithms,
all the four algorithms: ML-7’2~51, MLTlLA,
ML-TMLl, and ML-TBLA, are implemented and
tested on a SUN/SPARC-2 workstation with 16
megabytes of main memory.

426

The testbed consists of a set of synthetic transac-
tion databases generated using a randomized item set
generation algorithm similar to that described in [2].

The following are the basic parameters of the gen-
erated synthetic transaction databases: (1) the total
number of items, I, is 1000; (2) the total number
of transactions is 100,000; and (3) 2000 potentially
large itemsets are generated and put into the transac-
tions based on some distribution. Table 5 shows the
database used, in which S is the average size (# of
items in a potential large itemset) of these itemsets,
and T is the average size (# of items in a transaction)
of a transaction.

Database S T # of transactions Size(MBytes)
DBl 2 5 100,000 2.7MB
DB2 4 10 100.000 4.7MB

Table 5: Transaction databases

Each transaction, database is converted into an en-
coded transaction table, denoted as 7[1], according
to the information about the generalized items in the
item description (hierarchy) table. The maximal level
of the concept hierarchy in the item table is set to
4. The number of the top level nodes keeps increas-
ing until the total number of items reaches 1000. The
fan-outs at the lower levels are selected based on the
normal distribution with mean value being M2, M3,
and M4 for the levels 2, 3, and 4 respectively, and a
variance of 2.0. These parameters are summarized in
Table 6.

Item Table #nodes at level-l M2 M3 M4
Zl 8 5 5 5

12 15 6 3 4

Table 6: Parameters settings of the item description
(hierarchy) tables

The testing results presented in this section are on
two synthetic transaction databases: one, TlO (DB2),
has an average transaction size (# of item in a transac-
tion) of 10; while the other, T5 (DBl), has an average
transaction size of 5.

Two item tables are used in the testing: the first
one, 11, has 8, 5, 5 and 5 branches at the levels 1, 2,
3, and 4 respectively; whereas the second, 12, has 15,
6, 3 and 4 branches at the corresponding levels.

Figure 4 shows the running time of the four algo-
rithms in relevance to the number of transactions in
the database. The test uses the database TlO and
the item set 11, with the minimum support thresholds
being (50,10,4,2), which indicates that the minimum
support of level 1 is 50%, and that of levels 2,3 and 4
are respectively lo%, 4%, and 2%.

The four curves in Figure 4 show that MLTPLA
has the best performance, while the ML-TlLA has
the worst among the four algorithms under the cur-
rent threshold setting. This can be explained as fol-
lows. Since the first threshold filters out many small
1-itemsets at level 1 which results in a much smaller
filtered transaction table 7[2], but the later filter is
not so strong and parallel derivation of C[I, 61 without
derivation of 7[3] and 7[4] is more beneficial, thus
leads ML-T2LA to be the best algorithm. On the
other hand, ML-TlLA is the worst since it consults a
large 7111 at every level.

UT10

24 4

20 'TlLA' -+-
'T2Ll' -E--

25k 5Ok 75k IOOk
#ofVansactbns

Figure 4: Threshold (50, 10, 4, 2)

Figure 5 shows that ML-TlLA is the best whereas
ML-TMLl the worst among the four algorithms un-
der the setting: a different test database T5, the same
item set II, and with the minimum support thresh-
olds: (20,8,2,1). This is because the first threshold
filters out few small 1-itemsets at level 1 which re-
sults in almost the same sized transaction table 7[2].
The generation of multiple filtered transaction tables
is largely wasted, which leads the worst performance of
ML_TMLl. Thus parallel derivation of C[I, k] without
derivation of any filtered transaction tables applied in
ML,TlLA leads to the best performance.

Figure 6 shows that MLYSLl and ML-TMLl are
closely the best whereas M L-TSLA and ML-TlLA
the worst under the setting: a test database TlO, an
item set 12, and with the minimumsupport thresholds:
(50,10,5,2). Th is is because the first threshold filters
out relatively more 1-itemsets at level 1 which results
in small transaction table 7[2]. Thus the generation of
multiple filtered transaction tables is relatively benefi-
cial. Meanwhile, the generation of multiple level large
1-itemsets may not save much because one may still
obtain reasonably good sized itemsets in the current
setting, which leads ML-T2Ll to be the best perfor-

427

HT5

25

20 ‘TlLA’ +
‘T2Ll’ -e-

15

I 1 I I
25k 5ok 75k 1OOk

ot transactbns

Figure 5: Threshold (20, 8, 2, 1) Figure 7: Threshold (30, 15, 5, 2)

mance algorithm.

25

‘T2LA’ -x--
20 ‘TMLl’ +

15

25k 50k 75k 1OOk
ot transactbns

Figure 6: Threshold (50, 10, 5, 2)

Figure 7 shows that ML-TMLl is the best whereas
MLYlLA the worst under the setting: a test
database T5, an item set 12, and with the minimum
support thresholds: (30,15,5,2). This is because ev-
ery threshold filters out relatively many 1-itemsets at
each level which results in much smaller transaction
tables at each level. Thus the generation of mul-
tiple filtered transaction tables is beneficial, which
leads to ML_TMLl is the best, and then ML_TBLl,
ML-TSLA and ML_TlLA in sequence.

The above four figures show two interesting fea-
tures. First, the relative performance of the four algo
rithms under any setting is relatively independent of
the number of transactions used in the testing, which
indicates that the performance is highly relevant to
the threshold setting (i.e., the power of a filter at each

0

‘TllA’ +
‘T2Ll’ -a--

6

“1Ok 25k
ot tn%htbns

75k 1OOk

level). Thus based on the effectiveness of a threshold, a
good algorithm can be selected to achieve good perfor-
mance. Second, all the algorithms have relatively good
“scale-up” behavior since the increase of the number of
transactions in the database will lead to approximately
the linear growth of the processing time, which is desir-
able in the processing of large transaction databases.

Figure 8 shows the running time of the four algo-
rithms in relevance to the minimum support thresh-
olds. The test uses the database TlO and the item set
12, with a sequence of threshold settings: threl, . . . ,
thre6. The setting of thwl is (60,15,5,2) (with the
same notational convention). The remaining thresh-
old settings are as follows: threB: (55,15,5,2), thre9:
(55,10,5,2), thre4: (50,10,5,2), thred: (50,10,5, l),
threk (50,5,2,1). The value-decreasing sequence of
minimum support thresholds indicates that weaker fil-
tering mechanism is applied to the later portion of the
sequence.

The relative performance of the four algorithms
shows the interesting trends of growth as indicated by
the four curves in Figure 8. The stronger the filter-
ing mechanism, the more 1-itemsets are filtered out at
each level, and the smaller large 1-itemsets are resulted
in. Thus MLYMLl, which generates a sequence of
filtered transaction tables, has the lowest cost at threl,
thre% and also (but marginally) threJ, but the highest
cost at thre5 and thre6 (since few items are filtered
out). On the contrary, ML-TlLA, which uses only
one encoded transaction table but generates the large
1-itemsets for each level at the beginning has the high-
est cost at threl, thrd? and thre.9, but the lowest cost
at threb. The other two algorithms stand in, the middle
with MLY2LA performs the best at threb when the
threshold is reasonable small, especially at the lower
levels, and ML-T2Ll performs the best at thre4 when

428

the threshold is reasonable small but the lowest level
is not as small as the5 Since ML-T2LA scans 7[1]
twice and needs to maintain all large itemsets L[I,)]
at the same time, it is outperformed by ML_TSLl
when the thresholds are big enough so that a substan-
tial amount of 7[1] is cut and the maximal length of
large itemsets at each level is small. Moreover, one
may observe the significant performance degradation
from thre.# to &e5. This, based on our speculation,
is because of the limited size of main memory which
may cause substantial page swapping when the sup-
port threshold is dropped significantly.

1500

1200

FL

P

i 600

z

300

most milk c 2% Foremost c Foremost” may not be.
An expert or a user may provide mapping rules at
the schema level (i.e., meta-rules) to indicate mean-
ingful or desired mappings, such as “{content, brand,
category} C {content, category} C category”, etc.

Concept hierarchies may not exist for numerical val-
ued attributes but can be automatically generated ac-
cording to data distribution statistics [8, 51. For ex-
ample, a hierarchy for the price range of sales items
can be generated based on the distribution of price
values. Moreover, a given concept hierarchy for nu-
merical or nonnumerical data can be dynamically ad-
justed based on data distribution [S]. For example,
if there are many distinct country names in the at-
tribute “placemade”, countries can be grouped into
continents, such as Asia, Europe, South-America, etc.
Moreover, if most fresh food products are from B.C.
and Northwest Americg, the geographic hierarchy can
be automatically adjusted to reflect this distribution
when studying fresh food products [S].

6.2 Generation of flexible association rules

Our study has been confined to mining association re-
lationships level-by-level in a fixed hierarchy. How-
ever, it is often necessary or desirable to find flexible

FE
fhrel Thre2 ThfB3 Thre4 Thre5 Ttrd association rules not confined to a strict, pm-arranged

supp0rtmtw0kl concept hierarchies.

Figure 8: Different thresholds

6 Discussion

6.1 More about concept hierarchies

In our discussions, we have assumed desired concept
hierarchies exist and are presented in the form of re-
lational tables (e.g., sales-item in Table 1). However,
there are often cases that portions of concept hierar-
chies do not exist. For example, the hierarchy rela-
tionships, such as “peanuts, pistachios, . . . , walnuts C
nuts”, may not be stored in the sales-item relation.
Therefore, it is often necessary for experts or users
to specify portions of hierarchies to facilitate mining
multiple-level association rules. Specified hierarchies
can be mapped into relations with the paths from
high-level general concepts to low-level specific ones
registered in tuples. Null values should be allowed in
the mapped relational entries if there exist unbalanced
nodes in a hierarchy.

Notice that there may often exist more than one
possible way of mapping a relation into a concept hi-
erarchy. For example, “2% Foremost milk C 2% milk
c milk” and “2% Foremost milk C Foremost milk C
milk” are both meaningful hierarchies, but “2% Fore-

First, one may wish to find associations among the
concepts associated with alternative, multiple hier-
archies. For example, following the hierarchy given
in Example 2.1, one may find relationships like “2%
milk -+ wheat bread”. Alternatively, one may like to
find “Foremost milk --* Wonder bread” or “2% milk
+ Wonder bread”, which may require alternative con-
cept hierarchy structures. It seems to be challenging
to explore so many alternatives since there may exist
only a small number of fixed hierarchies in a database.
However, the algorithms presented in this study can be
modified minorly to meet the challenge since the new
requirement essentially associates the patterns in some
alternative generalized forms, such as ({1*2}, {2*1}),
({12*), {2*1}), etc.

Second, one may relax the restriction of mining
strong associations among the concepts at the same
level of a hierarchy to allow the exploration of “level-
crossing” association relationships. This relaxation
may lead to the discovery of associations like “2%
Foremost milk + Wonder bread” in which the two con-
cepts are at different levels of a hierarchy. This can
be achieved by minorly modifying our algorithms since
the new requirement associates the patterns like ({ 112,
2*1}), as demonstrated in the example below.

Example 6.1 For the same transaction tables and

429

concept hierarchies given in Example 3.1, we examine
the mining of strong multiple-level association rules
which includes nodes at different levels in a hierarchy.

Let minimum support at each level be: minsup = 4
at level-l, and minsup = 3 at levels 2 and 3.

The derivation of the large itemsets at level 1 pro-
ceeds in the same way as in Example 3.1, which gener-
ates the same large itemsets tables Ic[l, l] and ,C[1,2]
at level 1 and the same filtered transaction table 7[2],
as shown in Figure 2.

The derivation of level-2 large itemsets generates
the same large 1-itemsets fJ2, l] as shown in Figure 9.
However, the candidate items are not confined to pair-
ing only those in t[2, l] because the items in t[2, l]
can be paired with those in C[l, l] as well, such as
{ ll*, 1~) (for potential associations like “milk - 2%
milk”), or {ll*, 2~) (for potential associations like
“2% milk -+ bread”). These candidate large 2-itemsets
will be checked against 7[2] to find large items (for the
level-mixed nodes, the minimum support at a lower
level, i.e., minsup[2], can be used as a default). Such
a process generates the large 2-itemsets table t[2,2] as
shown in Figure 9.

Notice that the table does not include the a-item
pairs formed by an item with its own ancestor such as
({ ll*, l**}, 5) since its support must be the same as
its corresponding large 1-itemset in C[2,i], i.e., ({ll*},
5), based on the set containment relationship: any
transaction that contains {ll*) must contain (1~)
as well.

Similarly, the level 2 large 3-itemsets C[2,3] can be
computed, with the results shown in Figure 9. Also,
the entries which pair with their own ancestors are
not listed here since it is contained implicitly in their
corresponding P-item&s. For example, ({ll*, 12*},
4) in C[2,2] implies ({ll*, 12*, l**}, 4) in L[2,3].

Level-Z minsup = 3
Level-Z large l-item&:

~[~11
Itemset Support
{ll*} 5

m

{12*} 4

Ii:*1 4 * 4

Level-2 large 2-itemset:
- 21

T
w,

Itemset I= {ll*, 12*}
{ll*, 21*}

Level-2 large 3-itemset:

*, / i;z;;;i

support
4
3
4
3

1
3
4
3
3
4

Figure 9: Large Item Sets at Level 2

Finally, the large 1-itemset table at level 3, C[3,1],
should be the same as Figure 3. The large 2-itemset

table includes more itemsets since these items can be
paired with higher level large items, which leads to the
large 2-itemsets C[3, 21 and large 3-itemsets t[3, 31 as
shown in Figure 10. Similarly, the itemsets { 111, 1 l*}
and (111, 1~) have the samesupport as (111) in ~5[3,
l] and are thus not included in t[3,2].

Since the large L-itemset (for Jz > 1) tables do not
explicitly include the pairs of items with their own an-
cestors, attention should be paid to include them at
the generation of association rules. However, since the
existence of a special item always indicates the exis
tence of an item in that class, such as “2% milk -+ milk
(loo%)“, such trivial rules should be eliminated. Thus,
only nontrivial implications, such as “milk + 2% milk
(70%)“) will be considered in the rule generation. 0

Level-3 minsup = 3
Level-3 lame 1-itemset: Level-3 large 2-itemset:

q3:11 c[3,21
Itemset Support Itemset Support

I (111) 4 (111, 211) 3

Ii::; 4

(111, 21*} 3

3 (111, 22*} 3
(111, 2**} 4

Level-3 large I-itemset:
L[3,31 _-i-

{ll*, 211) 3

-1 {l**, 2111 3

Figure 10: Large Item Sets at Level 3

1

6.3 User interface for mining association rules

In many applications, users may be only interested in
the associations among a subset of items in a large
database (e.g., associations among foods but not be-
tween foods and tires). It is important to provide a
flexible interface for users to specify their interested
set of data, adjust the thresholds, and interactively
discover interesting association relationships.

The query in Example 2.1 is an example of speci-
fying association rule mining tasks. Besides a general
claim of mining association rules, a user may also like
to specify the discovery of associations among or be-
tween specific groups of data. For example, the follow-
ing query indicates that the user is interested only in
discovering the association relationships betureen milk
and bread.

discover association rules
between I.category = “milk” and Icategory =

“bread”
from sales-transactions T, salesitem I
where T.bar-code = I.bar-code
with interested attributes category, content, brand

Since the query requires to find multiple-level large

430

2-itemsets only, the rule mining algorithm needs to
be modified accordingly, however, it will preserve the
same spirit of sharing structures and computations
among multiple levels.

Graphical user interface is recommended for dy-
namic specification and adjustment of a mining task
and for level-by-level, interactive, and progressive min-
ing of interesting relationships. Moreover, graphical
outputs, such as graphical representation of discovered
rules with the corresponding levels of the concept hi-
erarchies may substantially enhance the clarity of the
presentation of multiple-level association rules.

7 Conclusions

We have extended the scope of the study of mining
association rules from single level to multiple concept
levels and studied methods for mining multiple-level
association rules from large transaction databases. A
top-down progressive deepening technique is devel-
oped for mining multiple-level association rules, which
extends the existing single-level association rule min-
ing algorithms and explores techniques for sharing
data structures and intermediate results across levels.
Based on different sharing techniques, a group of algo-
rithms, notably, ML-TSLl, ML-TlLA, ML-TMLl and
ML-TPLA, have been developed. Our performance
study shows that different algorithms may have the
best performance for different distributions of data.

Related issues, including concept hierarchy han-
dling, methods for mining flexible multiple-level as-
sociation rules, and adaptation to difference mining
requests are also discussed in the paper. Our study
shows that mining multiple-level association rules from
databases has wide applications, and efficient algo-
rithms can be developed for discovery of interesting
and strong such rules in large databases.

Extension of methods for mining single-level knowl-
edge rules to multiple-level ones poses many new is-
sues for further investigation. For example, with the
recent developments on mining single-level sequential
patterns [3] and metaquery guided data mining [16],
mining multiple-level sequential patterns and meta-
query guided mining of multiple-level association rules
are two interesting topics for future study.

References

[l] R. AgrawaI, T. Imielinski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases.
In Proc. 1993 ACM-SIGMOD Int. Conf. Management
of Data, pp. 207-216, Washington, D.C., May 1993.

[2] R. AgrawaI and R. Srikant. Fast algorithms for mining
association rules. In Proc. 1994 Int. Conf. Very Large
Data Bases, pp. 487-499, Santiago, Chile, Sept. 1994.

PI

PI

[51

PI

P31

PI

PO1

Pll

WI

P31

P41

P51

[161

R. AgrawaI and R. Srikant. Mining sequential pat-
terns. In Proc. 1995 Int. Conf. Data Engineering,
Taipei, Taiwan, March 1995.

A. Borgida and R. J. Brachman. Loading data into
description reasoners. In Proc. 1993 ACM-SIGMOD
Int. Conf. Management of Data, pp. 217-226, Wash-
ington, D.C., May 1993.

W. W. Chu and K. Chiang. Abstraction of high
level concepts from numerical values in databases.
In AAAI’94 Workshop on Knowledge Discovery in
Databases, pp. 133-144, Seattle, WA, July 1994.

D. Fisher. Improving inference through conceptual
clustering. In Proc. 1987 AAAI Conf., pp. 461-465,
Seattle, Washington, July 1987.

J. Han, Y. Cai, and N. Cercone. Data-driven dis-
covery of quantitative rules in relational databases.
IEEE Tmns. Knowledge and Data Engineering, 5:29-
40, 1993.

J. Han and Y. Fu. Dynamic generation and refine-
ment of concept hierarchies for knowledge discovery in
databases. In AAAI’94 Workshop on Knowledge Dis-
covery in Databases, pp. 157-168, Seattle, WA, July
1994.

M. Klemettinen, H. ManniIa, P. Ronkainen, H. Toivo-
nen, and A. I. Verkamo. Finding interesting rules from
large sets of discovered association rules. In Proc.
Srd Int’l Conf. on Information and Knowledge Man-
agement, pp. 401-408, Gaithersburg, Maryland, Nov.
1994.

H. ManniIa and K-J. Raiha. Dependency inference.
In Proc. 1987 Int. Conf. Very Large Data Bases, pp.
155-158, Brighton, England, Sept. 1987.

R. S. MichaIski and G. Tecuci. Machine Learning, A
Multistrategy Approach, Vol. 4. Morgan Kaufmann,
1994.

J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-
based algorithm for mining association rules. In Proc.
1995 ACM-SIGMOD Int. Conf. Management of Data,
San Jose, CA, May 1995.

G. Piatesky-Shapiro and C. J. Matheus. The inter-
estingness of deviations. In AAAI’94 Workshop on
Knowledge Discovery in Databases, pp. 25-36, Seat-
tle, WA, July 1994.

G. Piatetsky-Shapiro. Discovery, analysis, and pre-
sentation of strong rules. In G. Piatetsky-Shapiro
and W. J. Frawley, editors, Knowledge Discovery in
Databases, pp. 229-238. AAAI/MIT Press, 1991.

J. R. Quinlan. C4.5: Progmms for Machine Learning.
Morgan Kaufmann, 1992.

W. Shen, K. Ong, B. Mitbander, and C. Zaniolo.
Metaqueries for data mining. In U.M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
editors, Advances in Knowledge Discovery and Data
Mining. AAAI/MIT Press, 1995.

431

