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Abstract 

Previous studies on mining association rules 
find rules at single concept level, however, 
mining association rules at multiple concept 
levels may lead to the discovery of more spe- 
cific and concrete knowledge from data. In 
this study, a top-down progressive deepen- 
ing method is developed for mining multiple- 
level association rules from large transaction 
databases by extension of some existing as- 
sociation rule mining techniques. A group of 
variant algorithms are proposed based on the 
ways of sharing intermediate results, with the 
relative performance tested on different kinds 
of data. Relaxation of the rule conditions 
for finding “level-crossing” association rules is 
also discussed in the paper. 

1 Introduction 

With wide applications of computers and automated 
data collection tools, massive amounts of transaction 
data have been collected and stored in databases. Dis- 
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covery of interesting association relationships among 
huge amounts of data will help marketing, decision 
making, and business management. Therefore, min- 
ing association rules from large data sets has been a 
focused topic in recent research into knowledge discov- 
ery in databases [l, 2, 3, 9, 12, 141. 

Studies on mining association rules have evolved 
from techniques for discovery of functional dependen- 
cies [lo], strong rules [14], classification rules [7, 15], 
causal rules [ll], clustering [6], etc. to disk-based, ef- 
ficient methods for mining association rules in large 
sets of transaction data [l, 2, 3, 121. However, previ- 
ous work has been focused on mining association rules 
at a single concept level. There are applications which 
need to find associations at multiple concept levels. 
For example, besides finding 80% of customers that 
purchase milk may also purchase bread, it could be in- 
formative to also show that 75% of people buy wheat 
bread if they buy 2% milk. The association relationship 
in the latter statement is expressed at a lower concept 
level but often carries more specific and concrete in- 
formation than that in the former. This requires pro- 
gressively deepening the knowledge mining process for 
finding refined knowledge from data. The necessity for 
mining multiple level association rules or using taxon- 
omy information at mining association rules has also 
been observed by other researchers, e.g., [2]. 

To confine the association rules discovered to be 
strong ones, that is, the patterns which occur relatively 
frequently and the rules which demonstrate relatively 
strong implication relationships, the concepts of min- 
imum suppori and minimum confidence have been in- 
troduced [l, 21. Informally, the support of a pattern 
A in a set of transactions S is the probability that 
a transaction in S contains pattern A; and the confi- 
dence of A --) B in S is the probability that pattern B 
occurs in S if pattern A occurs in S. 
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For mining multiple-level association rules, concept 
taxonomy should be provided for generalizing primi- 
tive level concepts to high level ones. In many appli- 
cations, the taxonomy information is either stored im- 
plicitly in the database, such aa “Wonder wheat bread 
is a wheat bread which is in turn a breab’, or computed 
elsewhere [7]. Thus, data items can be easily general- 
ized to multiple concept levels. However, direct appli- 
cation of the existing association rule mining methods 
to mining multiple-level associations may lead to some 
undesirable results as presented below. 

First, large support is more likely to exist at high 
concept levels, such aa milk and bread, rather than 
at low concept levels, such as a particular brand of 
milk and bread. Therefore, if one wants to find strong 
associations at relatively low concept levels, the mini- 
mum support threshold must be reduced substantially. 
However, this may lead to the generation of many un- 
interesting associations, such as “toy + 2% milk” be- 
fore the discovery of some interesting ones, such as 
“Dairyland 2% milk 4 Wonder wheat bread”, because 
the former may occur more frequently and thus have 
larger support than the latter. 

Second, it is unlikely to find many strong associ- 
ation rules at a primitive concept level, such as the 
associations among particular bar codes, because of 
the tiny average support for each primitive data item 
in a very large item set. However, mining association 
rules at high concept levels may often lead to the rules 
corresponding to prior knowledge and expectations [9], 
such as “milk + bread”, or lead to some uninteresting 
attribute combinations, such as “toy + milk”. 

In order to remove uninteresting rules generated 
in knowledge. mining processes, researchers have pro- 
posed some measurements to quantify the “usefulness” 
or “interestingness,, of a rule [13] or suggested to “put 
a human in the loop” and provide tools to allow hu- 
man guidance [4]. Nevertheless, automatic generation 
of relatively focused, informative association rules will 
be obviously more efficient than first generating a large 
mixture of interesting and uninteresting rules. 

These observations lead us to examining the meth- 
ods for mining association rules at multiple concept 
levels, which may not only discover rules at different 
levels but also have high potential to find nontrivial, 
informative association rules because of its flexibility 
at focusing the attention to different sets of data and 
applying different thresholds at different levels. 

In this study, issues for mining multiple-level asso- 
ciation rules from large databases are examined, with 
a top-down, progressive deepening method developed 
by extension of some existing algorithms for mining 
single-level association rules. The method first finds 
large data items at the top-most level and then pro- 

gressively deepens the mining process into their large 
descendants at lower concept levels. Some data struc- 
tures and intermediate results generated at mining 
high level associations can be shared for mining lower 
level ones, and different sharing schemes lead to dif- 
ferent variant algorithms. The performance identifies 
the conditions that certain algorithms could be best 
suited for certain kinds of data distributions. 

The paper is organized as follows. In Section 2, 
the concepts related to multiple-level association rules 
are introduced. In Section 3, a method for mining 
multiple-level association rules in large data sets is 
studied. In Section 4, a set of variant algorithms for 
mining multiple-level association rules are introduced, 
with their relative efficiency analyzed. In Section 5, a 
performance study is conducted on different kinds of 
data distributions, which identifies the conditions for 
the selection of algorithms. Section 6 is a discussion 
on mining “level-crossing” association rules and sev- 
eral other issues. The study is concluded in Section 
7. 

2 Multiple level association rules 

To study the mining of association rules from a large 
set of transaction data, we assume that the database 
contains (1) a transaction data set, 7, which consists 
of a set of transactions (Ti, {AP, . . . , A4}), where x is 
a transaction identifier, Ai E Z (for i = p, . . . , q), and 
Z is the set of all the data items in the item data set; 
and (2) the description of the item data set, D, which 
contains the description of each item in Z in the form 
of (Ai, descriptioni), where Ai E Z. 

Furthermore, to facilitate the management of large 
sets of transaction data, our discussion adopts an 
extended relational model which allows an attribute 
value to be either a single or a set of values (i.e., in 
non-first-normal form). Nevertheless, the method de 
veloped here is applicable (with minor modifications) 
to other representations of data, such as a data file, a 
relational table, or the result of a relational expression. 

Definition 2.1 A pattern, A, is one item Ai or a 
set of conjunctive items Ai A . . . A Ai, where Ai, . . . , 
Aj E 1. The support of a pattern A in a set S, 
a(A/S), is the number of transactions (in S) which 
contain A versus the total number of transactions in 
S. The confidence of A+ B in S, cp(A-, B/S), is 
the ratio of u(A A B/S) versus o(A/S), i.e., the prob- 
ability that pattern B occurs in S when pattern A 
occurs in S. 

To find relatively frequently occurring patterns and 
reasonably strong rule implications, a user or an ex- 
pert may specify two thresholds: minimum support, 
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u’, and minimum confidence, cp’. Notice that for find- b?,:i? i Caz!OLry I pbrrn d cc.llteltt he 1 l tor.geqt* p,,ce 
OTezllO*t a* I 1 (la.) I 14 (days) 1 83.99 

ing multiple-level association rules, different minimum . ’ . ’ . . . . . . . . . . . . 

support and/or minimum confide&e can be specified 
at different levels. 

Table 1: A salesitem (description) relation 

Definition 2.2 A pattern A is large in set S at level 
1 if the support of A is no less than its correspond- 
ing minimum support threshold CT;. The confidence of 
a rule “A- B/S’ is high at level I if its confidence 
is no less than its corresponding minimum confidence 
threshold (o’, . 

Definition 2.3 A rule “A+ B/S” is strong if, for a 
set S, each ancestor (i.e., the corresponding high level 
item) of every item in A and B, if any, is large at its 
corresponding level, “A A B/S” is large (at the current 
level), and the confidence of “A+ B/S” is high (at 
the current level). 

The definition indicates that if “A+ B/S’ is 
strong, then (1) u(AAB/S) >_ u’, (and thus, c(A/S) 2 
u’, and u(B/S) 2 a’), and (2) cp(A+ B/S) 1 ‘p’, at 
its corresponding level. It also represents a filtering 
process which confines the patterns to be examined at 
lower levels to be only those with large supports at 
their corresponding high levels (and thus avoids the 
generation of many meaningless combinations formed 
by the descendants of the small patterns). For exam- 
ple, in a sales-transaction data set, if milk is a large 
pattern, its lower level patterns such as 2% milk will 
be examined; whereas if fish is a small pattern, its de- 
scendants such as salmon will not be examined further. 

Based on this definition, the idea of mining 
multiple-level association rules is illustrated below. 

Example 2.1 Suppose that a shopping transaction 
database consists of two relations: (1) a sales-item 
(description) relation (Table l), which consists of a set 
of attributes: bar-code, category, brand, content, site, 
storage-period, price, and (2) a sales-transaction ta- 
ble (Table 2), which registers for each transaction the 
transaction number and the set of items purchased. 

Let the query be to find multiple-level strong as- 
sociations in the database for the purchase patterns 
related to the foods which can only be stored for less 
than three weeks. The query can be expressed as fol- 
lows in an SQL-like data mining language [7]. 

discover association rules 
from sales-transactions T, salesitem I 
where T.bar-code = I.bar-code and I.category = 

“food” and I.storage-period < 21 
with interested attributes category, content, brand 

The query is first transformed into a standard SQL 
query which retrieves all the data items within the 

transaction-id barrodeset 
351428 (17325, 92108, 55349, 88157, . . .} 
982510 (92458, 77451, 60395, . . . } 

. . . I . . . . . . . 1 

Table 2: A sales-transaction table 

“food” category (covers high level concepts: beverage, 
fruit, vegetable, bread, milk, meat, fish, cereal, etc.) 
and with the storage period less than 21 days. 

. . . . . , . . . . 
711 ( (33314, ?9131) 1 froit-juice ( oranp 1 Minntemaid 

Table 3: A generalized salesitem description table 

Since there are only three interested attributes, cat- 
egory, content, and brand in the query, the salesitem 
description relation is generalized into a generalized 
salesitem description table, as shown in Table 3, in 
which each tuple rkpiesents a generalized item which 
is the merge of a group of tuples which share the same 
values in the interested attributes. For example, the 
tuples with the same category, content and brand in 
Table 1 are merged into one, with their bar codes re- 
placed by a bar-code set. Each group is then treated 
as an atomic item in the generation of the lowest level 
association rules. For example, the association rule 
generated regarding to milk will be only in relevance 
to (at the low concept leyels) grand (such as Dairyland) 
and content (such as,2%) but not to size, producer, etc. 

The taxonomy information is provided implicitly in 
Table 3. Let category (such as “milk”) represent the 
first-level concept, content (such as “2%,,) for the sec- 
ond level one, and brand (such as “Foremost”) for the 
third level one. The table implies a concept tree like 
Figure 1. 

The process of mining association rules is expected 
to first discover large: patterns and strong association 
rules at the top-most concept level. Let the mini- 
mum support at this level be 5% and the minimum 
confidence be 50%. One may find the following: a 
set of single large items (each called a large 1-itemset, 
with the support ratio in parentheses): “bread (25%), 
meat (lo%), milk (20%), . . . , vegetable (30%)“, a set of 
pair-wised large items (each called a large 2-itemset): 
“(vegetable, bread (19%)), (vegetable, milk (15%)), . . . , 
(milk, bread (17%))“) etc. and a set of strong associa- 
tion rules, such as “bread ---) vegetable (76%), . . . , milk 
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Dairyland Foranost Old Mill8 Wonder 

Figure 1: A taxonomy for the relevant data items 

+ bread (85%)“. 

At the second level, only the transactions which 
contain the large items at the first level are exam- 
ined. Let the minimum support at this level be 2% 
and the minimum confidence be 40%. One may find 
the following large 1-itemsets: “lettuce (10%) wheat 
bread (15%), white bread (10%) 2% milk (10%) chicken 
(5%), . . . , beef (5%)“, and the following large 2- 
itemsets: “(2% milk, wheat bread (6%)), (lettuce, 2% 
milk (4%)), (chicken, beef (2.1%))“, and the strong as- 
sociation rules: “2% milk --) wheat bread (60%), . . . , 
beef -+ chicken (42%)“, etc. 

The process repeats at even lower concept levels 
until no large patterns can be found. 0 

3 A method for mining multiple-level 
association rules 

A method for mining multiple-level association rules 
is introduced in this section, which uses a hierarchy- 
information encoded transaction table, instead of the 
original transaction table, in iterative data mining. 
This is based on the following considerations. First, 
a data mining query is usually in relevance to only a 
portion of the transaction database, such as food in- 
stead of all the items. It is beneficial to first collect the 
relevant set of data and then work repeatedly on the 
task-relevant set. Second, encoding can be performed 
during the collection of task-relevant data, and thus 
there is no extra “encoding pass” required. Third, an 
encoded string, which represents a position in a hier- 
archy, requires less bits than the corresponding object- 
identifier or bar-code. Moreover, encoding makes more 
items to be merged (or removed) due to their identical 
encoding, which further reduces the size of the encoded 
transaction table. Thus it is often beneficial to use an 
encoded table although our method does not ,rely on 
the derivation of such an encoded table because the 
encoding can always be performed on the fly. 

To simplify our discussion, an abstract example 
which simulates the real life example of Example 2.1 
is analyzed as follows. 

Example 3.1 As stated above, the taxonomy infor- 
mation for each (grouped) item in Example 2.1 is en- 

coded as a sequence of digits in the transaction table 
7[1] (Table 4). F or example, the item ‘2% Foremost 
milk’ is encoded as ‘112’ in which the first digit, ‘l’, 
represents ‘milk’ at level-l, the second, ‘I’, for ‘2% 
(milk)’ at level-2, and the third, ‘2’, for the brand 
‘Foremost’ at level-3. Similar to [2], repeated items 
(i.e., items with the same encoding) at any level will 
be treated as one item in one transaction. 

TID 1 Items 
Tl I {ill, 121, 211, 221) 

1 i /!Ezf&4131 
Table 4: Encoded transaction table: 7[1] 

The derivation of the large item sets at level 1 pro- 
ceeds as follows. Let the minimum support be 4 trans- 
actions (i.e., minsup[l] = 4). (Notice since the to- 
tal number of transactions is fixed, the support is ex- 
pressed in an absolute value rather than a relative per- 
centage for simplicity). The level-l large 1-itemset ta- 
ble ,C[l, l] can be derived by scanning 7[1], registering 
support of each generalized item, such as l**, . . . ,4**, 
if a transaction contains such an item (i.e., the item 
in the transaction belongs to the generalized item l**, 
. ..) 4**, respectively), and filtering out those whose 
accumulated support count is lower than the minimum 
support. C[l, l] is then used to filter out (1) any item 
which is not large in a transaction, and (2) the trans- 
actions in 7[1] which contain only small items. This 
results in a filtered transaction table 7[2] of Figure 2. 
Moreover, since there are only two entries in f[l,l], the 
level-l large-2 itemset table L[1,2] may contain only 1 
candidate item {l**, 2**}, which is supported by 4 
transactions in 7[2]. 

Level-l minsup = 4 
Level-l large 1-itemsets: Filtered transaction table: 

Figure 2: Large item sets at level 1 and filtered trans- 
action table: 7[2] 

According to the definition of ML-association rules, 
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Level-2 minsup = 3 
Level-2 large 1-itemsets: Level-2 large 3-itemsets: 

( {;::i 1 t ( Level-3 minsup = 3 
Level-3 large 1-itemsets: 

fY3.11 

Level-2 large P-itemsets: 
L12.21 

Itemset Itemset support support 
{ll*, 12*} {ll*, 12*} 4 4 
{ll*, 21*) {ll*, 21*) 3 El 3 I {ll*, 22*} 1 {ll*, 22*} 4 4 
{12*, 22*} {12*, 22*} 3 3 
{21*, 22*} {21*, 22*} 3 3 

-L-l-, 
Itemset Support 
(111) 4 

1 (211) 4 
(221) 3 

Level-3 large 2-itemsets: 
-L[3,2l 

-1 

Figure 3: Large item sets at levels 2 and 3 

only the descendants of the large items at level-l (i.e., 
in C[l ,l]) are considered as candidates in the level-2 
large 1-itemsets. Let minsup[2] = 3. The level-2 large 
1-itemsets L[2,1] can be derived from the filtered trans- 
action table 7[2] by accumulating the support count 
and removing those whose support is smaller than the 
minimum support, which results in C[2,1] of Figure 3. 
Similarly, the large a-item& table t[2,2] is formed by 
the combinations of the entries in t[2,1], together with 
the support derived from 7[2], filtered using the cor- 
responding threshold. The large 3-itemset table L[2,3] 
is formed by the combinations of the entries in C[2,2] 
(which has only one possibility {ll*, 12*, 22*)), and 
a similar process. 

Finally, C[3,1] and C[3,2] at level 3 are computed in 
a similar process, with the results shown in Figure 3. 
The computation terminates since there is no deeper 
level requested in the query. Note that the derivation 
also terminates when an empty large 1-itemset table 
is generated at any level. cl 

The above discussion leads to the following algo- 
rithm for mining strong ML-association rules. 

Algorithm 3.1 (ML-T2Ll) 
Find multiple-level large item sets for mining strong 
ML association rules in a transaction database. 

Input: (1) 7[1], h a ierarchy-information-encoded and 
task-relevant set of transaction database, in the 
format of (TID, Itemset), in which each item 
in the Itemset contains encoded concept hierar- 
chy information, and (2) the minimum support 
threshold (minsup[Q for each concept level 1. 

Output: Multiple-level large item sets. 

Method: A top-down, progressively deepening pro- 
cess which collects large item sets at different con- 
cept levels as follows. 

Starting at level 1, derive for each level 1, the large 
h-items sets, L[I, E], for each k, and the large item set, 
U[l] (for all k’s), as follows (in the syntax similar to 
C and Pascal, which should be self-explanatory). 

(1) for (I := 1; L[l, 1] # fl and 1 < max-level; I++) do { 

[ii 
if I= 1 then { 

q, 11 := get-large-litemsels(T[l], I); 

(4 T[2] := ge2-fiZteredffabZe(l[l], L[l, 11); 
(5) 1 

g 
else &[I, 1] := getJargeAAemsets(7[2], Q; 
for (k := 2; L[l, k - 1] # 0; k++) do { 

ck := get-candidateset(&[~, k - 11); 
foreach transaction t E 7[2] do ( 

(10) ct := getmd&?ts(ck, t); 
(11) foreach candidate c E Ct do c.support++; 
(12) I 

(13) L[l, k] := {c E Cklc.support 2 minsup[q} 
(14) 1 
(15) LL[l] := (J, L[l, k]; 

(16) 1 q 

Explanation of Algorithm 3.1. 

According to Algorithm 3.1, the discovery of large 
support items at each level 1 proceeds as follows. 

1. At level 1, the large 1-itemsets C[l, l] is derived 
from 7[1] by “get-large-15!emsets(l[l], 1)“. At 
any other level 1, Z[l, l] is derived from 7[2] by 
“gethrge_l,itemsets(7[2], I)“, and notice that 
when 1 > 2, only the item in L[l - 1, l] will be 
considered when examining 7[2] in the derivation 
of the large 1-itemsets t[l, 11. This is implemented 
by scanning the items of each transaction t in 7[1] 
(or 7[2]), incrementing the support count of an 
item i in the itemset if i’s count has not been 
incremented by t. After scanning the transac- 
tion table, filter out those items whose support 
is smaller than minsup[lj. 

The filtered transaction table 7[2] is derived by 
“get-filtered-t-ta,ble(l[l], C[l, 11)“) which uses 
L[l,l] as a filter to filter out (1) any item which 
is not large at level 1, and (2) the transactions 
which contain no large items. 

The large k (for k > 1) item set table at level 1 is 
derived in two steps: 

(a) Compute the candidate set from L[l, k-l], as 
done in the apriori candidate generation al- 
gorithm [2], apriori-gen, i.e., it first generates 
a set Ck in which each item set consists of k 
items, derived by joining two (k - 1) items 
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in L[I, h] which share (k - 2) items, and then 
removes a k-itemset c from Ck if there exists 
a c’s (, - 1) subset which is not in C[/, B - 11. 

(b) For each transaction t in 7[2], for each of t’s 
k-item subset c, increment c’s support count 
if c is in the candidate set Ck. Then collect 
into L[I, E] each c (together with its support) 
if its support is no less than minsup[lj. 

4. The large itemsets at level I, fX[Zj, is the union 
of L[I, Ic] for all the k’s 0 

After finding the large itemsets, the set of associ- 
ation rules for each level I can be derived from the 
large itemsets CL[/j baaed on the minimum confidence 
at this level, minconf[lj. This is performed as follows 
[2]. For every large itemset r, if a is a nonempty subset 
of r, the rule “a-+ r - u” is inserted into rule-set[lj 
if support(r)/support(a) > minconf[ll, where min- 
conf[q is the minimum confidence at level 1. 

Algorithm ML-T2Ll inherits several important op- 
timization techniques developed in previous studies 
at finding association rules [l, 21. For example, 
get-candidate-set of the large k-itemsets from the 
known large (k - 1)-itemsets follows apriori-gen of Al- 
gorithm Apriori [2]. Function get-SUbSetS(Ck , t) is im- 
plemented by a hashing technique from [2]. Moreover, 
to accomplish the new task of mining multiple-level 
association rules, some interesting optimization tech- 
niques have been developed, as illustrated below. 

1. Generalization is first performed on a given item 
description relation to derive a generalized item 
table in which each tuple contains a set of item 
identifiers (such as bar-codes) and is encoded with 
concept hierarchy information. 

2. The transaction table 7 is transformed into 7[1] 
with each item in the itemset replaced by its cor- 
responding encoded hierarchy information. 

3. A filtered transaction 7[2] which filters out small 
items at the top level of 7[1] using the large l- 
itemsets L[l,l] d is erived and used in the deriva- 
tion of large L-items for any L (k: > 1) at level-l 
and for any k (h 2 1) for level I (I > 1). 

4. From level 1 to level (I + l), only large items at 
C[1, l] are checked against 7[2] for L[I + 1, 11. 

Notice that in the processing, 7[1] needs to be scanned 
twice, whereas 7[2] needs to be scanned p times where 
p = C, Lr - 1, and )I is the maximum k such that the 
k-itemset table is nonempty at level I. 

4 Variations of the Algorithm for po- 
tential performance improvement 

Potential performance improvements of Algorithm 
ML-T2Ll are considered by exploration of the shar- 
ing of data structures and intermediate results and 
maximally generation of results at each database scan, 
etc. which leads to the following variations of the algo- 
rithm: (1) ML-TlLA: using only one encoded trans- 
action table (thus Tl) and generating C[I, l] for all the 
levels at one database scan (thus LA), (2) ML-TMLl: 
using multiple encoded transaction tables and gener- 
ating L[I, l] for one corresponding concept level, and 
(3) ML-TSLA: using two encoded transaction tables 
(7[1] and 7[2]) and g enerating C[I, l] for all the levels 
at one database scan. 

4.1 Algorithm ML-TlLA 

The first variation is to use only one encoded transac- 
tion table 7[1], that is, no filtered encoded transaction 
table 7[2] will be generated in the processing. 

At the first scan of 7[1], large 1-itemsets ,C[i, l] for 
every level 1 can be generated in parallel, because the 
scan of an item i in each transaction t may increase 
the count of the item in every ,!Z[l, l] if its has not been 
incremented by t . After the scanning of I[ 11, each item 
in .C[1, l] whose parent (if I > 1) is not a large item in 
the higher level large 1-itemsets or whose support is 
lower than minsup[l] will be removed from c[l, 11. 

After the generation of large 1-itemsets for each 
level 1, the candidate set for large 2-itemsets for each 
level 1 can be generated by the apriori-gen algorithm 
[2]. The get-subsets function will be processed against 
the candidate sets at all the levels at the same time by 
scanning 7[1] once, which calculates the support for 
each candidate itemset and generates large 2-itemsets 
L[I, 21. Similar processes can be processed for step-by- 
step generation of large h-item-sets L[I, k] for k > 2. 

This algorithm avoids the generation of a new en- 
coded transaction table. Moreover, it needs to scan 
7[1] once for generation of each large h-itemset table. 
Since the total number of scanning of 7[1] will be JZ 
times for the largest lc-itemsets, it is a potentially ef- 
ficient algorithm. However, 7[1] may consist of many 
small items which could be wasteful to be scanned or 
examined. Also, it needs a large space to keep all C[Zj 
which may cause some page swapping. 

Example 4.1 The execution of the same task as Ex- 
ample 3.1 using Algorithm ML-TlLA will generate the 
same large item sets L[I, k] for all the l’s and k’s but 
in difference sequences (without generating and using 
7[2]). It first generates large 1-itemsets t[l, l] for all 
the l’s from 7[1]. Then it generates the candidate sets 
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from L[Z, 11, and then derives large P-itemsets ,C[I, 21 by 
passing the candidate sets through 7[1] to obtain the 
support count and filter those smaller than minsup[l]. 
This process repeats to find k-itemsets for larger k un- 
til all the large k-item&s have been derived. 0 

4.2 Algorithm ML-TMLl 

The second variation is to generate multiple encoded 
transaction tables 7[1], 7[2], . . . ,7[[maz_l+l], where 
max_l is the maximal level number to be examined in 
the processing. 

Similar to Algorithm ML-TPLl, the first scan of 
7[1] generates the large 1-itemsets L[l, l] which then 
serves as a filter to filter out from 7[1] any small items 
or transactions containing only small items. 7[2] is 
resulted from this filtering process and is used in the 
generation of large k-itemsets at level 1. 

Different from Algorithm ML-TPLl, 7[2] is not re- 
peatedly used in the processing of the lower levels. In- 
stead, a new table 7[1+ l] is generated at the process- 
ing of each level I, for 1 > 1. This is done by scan- 
ning 7[Zj to generate the large 1-itemsets t[l, l] which 
serves as a filter to filter out from 7[fl any small items 
or transactions containing only small items and results 
in 7[1+1] which will be used for the generation of large 
k-itemsets (for k > 1) at level 1 and table T[I + 21 at 
the next lower level. Notice that as an optimization, 
for each level 1 > 1, 7[/j and L[I, l] can be generated 
in parallel (i.e., at the same scan). 

The algorithm derives a new filtered transaction ta- 
ble, 7[1+ 11, at the processing of each level 1. This, 
though seems costly at generating several transaction 
tables, may save a substantial amount of processing if 
only a small portion of data are large items at each 
level. Thus it may be a promising algorithm in this 
circumstance. However, it may not be so effective if 
only a small number of the items will be filtered out 
at the processing of each level. 

Example 4.2 The execution of the same task as Ex- 
ample 3.1 using Algorithm ML-TMLl will generate the 
same large itemsets f[I, k] for all the I’s and k’s but in 
difference sequences, with the generation and help of 
the filtered transaction tables 7[2], . . . , I[maxJ + 11, 
where maxi is the maximum level explored in the al- 
gorithm. It first generates the large 1-itemsets L[l, l] 
for level 1. Then for each level 1 (initially 1 = l), it 
generates the filtered transaction table 7[I + l] and 
the level-(Z + 1) large 1-itemsets L[Z + 1, l] by scanning 
7[/l using C[I, 11, and then generates the candidate 
2-itemsets from t[l, 11, calculates the supports using 
7[l+ 11, filters those with support less than minsup[q, 
and derives c[Z, 21. The process repeats for the deriva- 
tion of L[Z, 31, . . . , L[Z, k]. 0 

4.3 Algorithm ML-T2LA 

The third variation uses the same two encoded trans- 
action tables 7[1] and 7[2] as in Algorithm ML-T2Ll 
but it integrates some optimization techniques consid- 
ered in the algorithm ML-TlLA. 

The scan of 7[1] first generates large 1-itemsets 
L[l, 11. Then one more scan of 7[1] using L[l, l] will 
generate a filtered transaction table 7[2] and all the 
large 1-itemset tables for all the remaining levels, i.e., 
C[Z, l] for l- < I 5 maxi by incrementing the count 
of every ,C[l, l] at the scan of each transaction and 
removing small items and the items whose parent is 
small from L[Z, l] at the end of the scan of 7[1]. 

Then the candidate set for the large 2-itemsets at 
each level 1 can be generated by the aption’-gen algo- 
rithm [2], and the get-subsets routine will extract the 
candidate sets for all the level 1 (I 1 1) at the same 
time by scanning 7[2] once. This will calculate the 
support for each candidate itemset and generate large 
a-item-sets Lc[I, 21 for 1 3 1. 

Similar processes proceed step-by-step which gener- 
ates large k-item-sets t[l, k] for k > 2 using the same 

WI- 
This algorithm avoids the, generation of a group of 

new filtered transaction tables. It scans 7111 twice 
to generate 7[2] and the large 1-itemset tables for all 
the levels. Then it scans 7[2] once for the generation 
of each large k-itemset, and thus scans 7[2] in total 
k - 1 times for the generation of all the k-itemsets, 
where k is the largest such k-itemsets available. Since 
k-itemsets generation for k > 1 is performed on 7[2] 
which may consist of much less items than 7[1], the 
algorithm could be a potentially efficient one. 

Example 4.3 The execution of the same task as Ex- 
ample 3.1 using Algorithm ML-TSLA will generate the 
same large itemsets ,C[1, k] for all the Z’s and k’s. It first 
generates large 1-itemsets L[I, l] from 7[1], then T[2] 
and all the large 1-itemsets C[2,1], . . . , ~[max-l, 11, 
where maz-l is the maximum level to be explored. 
Then it generates the candidate sets from L[1,1], and 
derives large P-itemsets Lc[I, 21 by testing the candidate 
sets against 7[2] to obtain the support count and filter 
those with count smaller than minsup[q. This process 
repeats to find k-itemsets for larger k until all the large 
k-itemsets have been derived. 0 

5 Performance study 

To study the performance of the proposed algorithms, 
all the four algorithms: ML-7’2~51, MLTlLA, 
ML-TMLl, and ML-TBLA, are implemented and 
tested on a SUN/SPARC-2 workstation with 16 
megabytes of main memory. 
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The testbed consists of a set of synthetic transac- 
tion databases generated using a randomized item set 
generation algorithm similar to that described in [2]. 

The following are the basic parameters of the gen- 
erated synthetic transaction databases: (1) the total 
number of items, I, is 1000; (2) the total number 
of transactions is 100,000; and (3) 2000 potentially 
large itemsets are generated and put into the transac- 
tions based on some distribution. Table 5 shows the 
database used, in which S is the average size (# of 
items in a potential large itemset) of these itemsets, 
and T is the average size (# of items in a transaction) 
of a transaction. 

Database S T # of transactions Size(MBytes) 
DBl 2 5 100,000 2.7MB 
DB2 4 10 100.000 4.7MB 

Table 5: Transaction databases 

Each transaction, database is converted into an en- 
coded transaction table, denoted as 7[1], according 
to the information about the generalized items in the 
item description (hierarchy) table. The maximal level 
of the concept hierarchy in the item table is set to 
4. The number of the top level nodes keeps increas- 
ing until the total number of items reaches 1000. The 
fan-outs at the lower levels are selected based on the 
normal distribution with mean value being M2, M3, 
and M4 for the levels 2, 3, and 4 respectively, and a 
variance of 2.0. These parameters are summarized in 
Table 6. 

Item Table #nodes at level-l M2 M3 M4 
Zl 8 5 5 5 

12 15 6 3 4 

Table 6: Parameters settings of the item description 
(hierarchy) tables 

The testing results presented in this section are on 
two synthetic transaction databases: one, TlO (DB2), 
has an average transaction size (# of item in a transac- 
tion) of 10; while the other, T5 (DBl), has an average 
transaction size of 5. 

Two item tables are used in the testing: the first 
one, 11, has 8, 5, 5 and 5 branches at the levels 1, 2, 
3, and 4 respectively; whereas the second, 12, has 15, 
6, 3 and 4 branches at the corresponding levels. 

Figure 4 shows the running time of the four algo- 
rithms in relevance to the number of transactions in 
the database. The test uses the database TlO and 
the item set 11, with the minimum support thresholds 
being (50,10,4,2), which indicates that the minimum 
support of level 1 is 50%, and that of levels 2,3 and 4 
are respectively lo%, 4%, and 2%. 

The four curves in Figure 4 show that MLTPLA 
has the best performance, while the ML-TlLA has 
the worst among the four algorithms under the cur- 
rent threshold setting. This can be explained as fol- 
lows. Since the first threshold filters out many small 
1-itemsets at level 1 which results in a much smaller 
filtered transaction table 7[2], but the later filter is 
not so strong and parallel derivation of C[I, 61 without 
derivation of 7[3] and 7[4] is more beneficial, thus 
leads ML-T2LA to be the best algorithm. On the 
other hand, ML-TlLA is the worst since it consults a 
large 7111 at every level. 

UT10 

24 4 

20 'TlLA' -+- 
'T2Ll' -E-- 

25k 5Ok 75k IOOk 
#ofVansactbns 

Figure 4: Threshold (50, 10, 4, 2) 

Figure 5 shows that ML-TlLA is the best whereas 
ML-TMLl the worst among the four algorithms un- 
der the setting: a different test database T5, the same 
item set II, and with the minimum support thresh- 
olds: (20,8,2,1). This is because the first threshold 
filters out few small 1-itemsets at level 1 which re- 
sults in almost the same sized transaction table 7[2]. 
The generation of multiple filtered transaction tables 
is largely wasted, which leads the worst performance of 
ML_TMLl. Thus parallel derivation of C[I, k] without 
derivation of any filtered transaction tables applied in 
ML,TlLA leads to the best performance. 

Figure 6 shows that MLYSLl and ML-TMLl are 
closely the best whereas M L-TSLA and ML-TlLA 
the worst under the setting: a test database TlO, an 
item set 12, and with the minimumsupport thresholds: 
(50,10,5,2). Th is is because the first threshold filters 
out relatively more 1-itemsets at level 1 which results 
in small transaction table 7[2]. Thus the generation of 
multiple filtered transaction tables is relatively benefi- 
cial. Meanwhile, the generation of multiple level large 
1-itemsets may not save much because one may still 
obtain reasonably good sized itemsets in the current 
setting, which leads ML-T2Ll to be the best perfor- 
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Figure 5: Threshold (20, 8, 2, 1) Figure 7: Threshold (30, 15, 5, 2) 

mance algorithm. 
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Figure 6: Threshold (50, 10, 5, 2) 

Figure 7 shows that ML-TMLl is the best whereas 
MLYlLA the worst under the setting: a test 
database T5, an item set 12, and with the minimum 
support thresholds: (30,15,5,2). This is because ev- 
ery threshold filters out relatively many 1-itemsets at 
each level which results in much smaller transaction 
tables at each level. Thus the generation of mul- 
tiple filtered transaction tables is beneficial, which 
leads to ML_TMLl is the best, and then ML_TBLl, 
ML-TSLA and ML_TlLA in sequence. 

The above four figures show two interesting fea- 
tures. First, the relative performance of the four algo 
rithms under any setting is relatively independent of 
the number of transactions used in the testing, which 
indicates that the performance is highly relevant to 
the threshold setting (i.e., the power of a filter at each 

0 

‘TllA’ + 
‘T2Ll’ -a-- 

6 

“1Ok 25k 
# ot tn%htbns 

75k 1OOk 

level). Thus based on the effectiveness of a threshold, a 
good algorithm can be selected to achieve good perfor- 
mance. Second, all the algorithms have relatively good 
“scale-up” behavior since the increase of the number of 
transactions in the database will lead to approximately 
the linear growth of the processing time, which is desir- 
able in the processing of large transaction databases. 

Figure 8 shows the running time of the four algo- 
rithms in relevance to the minimum support thresh- 
olds. The test uses the database TlO and the item set 
12, with a sequence of threshold settings: threl, . . . , 
thre6. The setting of thwl is (60,15,5,2) (with the 
same notational convention). The remaining thresh- 
old settings are as follows: threB: (55,15,5,2), thre9: 
(55,10,5,2), thre4: (50,10,5,2), thred: (50,10,5, l), 
threk (50,5,2,1). The value-decreasing sequence of 
minimum support thresholds indicates that weaker fil- 
tering mechanism is applied to the later portion of the 
sequence. 

The relative performance of the four algorithms 
shows the interesting trends of growth as indicated by 
the four curves in Figure 8. The stronger the filter- 
ing mechanism, the more 1-itemsets are filtered out at 
each level, and the smaller large 1-itemsets are resulted 
in. Thus MLYMLl, which generates a sequence of 
filtered transaction tables, has the lowest cost at threl, 
thre% and also (but marginally) threJ, but the highest 
cost at thre5 and thre6 (since few items are filtered 
out). On the contrary, ML-TlLA, which uses only 
one encoded transaction table but generates the large 
1-itemsets for each level at the beginning has the high- 
est cost at threl, thrd? and thre.9, but the lowest cost 
at threb. The other two algorithms stand in, the middle 
with MLY2LA performs the best at threb when the 
threshold is reasonable small, especially at the lower 
levels, and ML-T2Ll performs the best at thre4 when 
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the threshold is reasonable small but the lowest level 
is not as small as the5 Since ML-T2LA scans 7[1] 
twice and needs to maintain all large itemsets L[I,)] 
at the same time, it is outperformed by ML_TSLl 
when the thresholds are big enough so that a substan- 
tial amount of 7[1] is cut and the maximal length of 
large itemsets at each level is small. Moreover, one 
may observe the significant performance degradation 
from thre.# to &e5. This, based on our speculation, 
is because of the limited size of main memory which 
may cause substantial page swapping when the sup- 
port threshold is dropped significantly. 
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most milk c 2% Foremost c Foremost” may not be. 
An expert or a user may provide mapping rules at 
the schema level (i.e., meta-rules) to indicate mean- 
ingful or desired mappings, such as “{content, brand, 
category} C {content, category} C category”, etc. 

Concept hierarchies may not exist for numerical val- 
ued attributes but can be automatically generated ac- 
cording to data distribution statistics [8, 51. For ex- 
ample, a hierarchy for the price range of sales items 
can be generated based on the distribution of price 
values. Moreover, a given concept hierarchy for nu- 
merical or nonnumerical data can be dynamically ad- 
justed based on data distribution [S]. For example, 
if there are many distinct country names in the at- 
tribute “placemade”, countries can be grouped into 
continents, such as Asia, Europe, South-America, etc. 
Moreover, if most fresh food products are from B.C. 
and Northwest Americg, the geographic hierarchy can 
be automatically adjusted to reflect this distribution 
when studying fresh food products [S]. 

6.2 Generation of flexible association rules 

Our study has been confined to mining association re- 
lationships level-by-level in a fixed hierarchy. How- 
ever, it is often necessary or desirable to find flexible 

FE 
fhrel Thre2 ThfB3 Thre4 Thre5 Ttrd association rules not confined to a strict, pm-arranged 

supp0rtmtw0kl concept hierarchies. 

Figure 8: Different thresholds 

6 Discussion 

6.1 More about concept hierarchies 

In our discussions, we have assumed desired concept 
hierarchies exist and are presented in the form of re- 
lational tables (e.g., sales-item in Table 1). However, 
there are often cases that portions of concept hierar- 
chies do not exist. For example, the hierarchy rela- 
tionships, such as “peanuts, pistachios, . . . , walnuts C 
nuts”, may not be stored in the sales-item relation. 
Therefore, it is often necessary for experts or users 
to specify portions of hierarchies to facilitate mining 
multiple-level association rules. Specified hierarchies 
can be mapped into relations with the paths from 
high-level general concepts to low-level specific ones 
registered in tuples. Null values should be allowed in 
the mapped relational entries if there exist unbalanced 
nodes in a hierarchy. 

Notice that there may often exist more than one 
possible way of mapping a relation into a concept hi- 
erarchy. For example, “2% Foremost milk C 2% milk 
c milk” and “2% Foremost milk C Foremost milk C 
milk” are both meaningful hierarchies, but “2% Fore- 

First, one may wish to find associations among the 
concepts associated with alternative, multiple hier- 
archies. For example, following the hierarchy given 
in Example 2.1, one may find relationships like “2% 
milk -+ wheat bread”. Alternatively, one may like to 
find “Foremost milk --* Wonder bread” or “2% milk 
+ Wonder bread”, which may require alternative con- 
cept hierarchy structures. It seems to be challenging 
to explore so many alternatives since there may exist 
only a small number of fixed hierarchies in a database. 
However, the algorithms presented in this study can be 
modified minorly to meet the challenge since the new 
requirement essentially associates the patterns in some 
alternative generalized forms, such as ({1*2}, {2*1}), 
({12*), {2*1}), etc. 

Second, one may relax the restriction of mining 
strong associations among the concepts at the same 
level of a hierarchy to allow the exploration of “level- 
crossing” association relationships. This relaxation 
may lead to the discovery of associations like “2% 
Foremost milk + Wonder bread” in which the two con- 
cepts are at different levels of a hierarchy. This can 
be achieved by minorly modifying our algorithms since 
the new requirement associates the patterns like ({ 112, 
2*1}), as demonstrated in the example below. 

Example 6.1 For the same transaction tables and 

429 



concept hierarchies given in Example 3.1, we examine 
the mining of strong multiple-level association rules 
which includes nodes at different levels in a hierarchy. 

Let minimum support at each level be: minsup = 4 
at level-l, and minsup = 3 at levels 2 and 3. 

The derivation of the large itemsets at level 1 pro- 
ceeds in the same way as in Example 3.1, which gener- 
ates the same large itemsets tables Ic[l, l] and ,C[1,2] 
at level 1 and the same filtered transaction table 7[2], 
as shown in Figure 2. 

The derivation of level-2 large itemsets generates 
the same large 1-itemsets fJ2, l] as shown in Figure 9. 
However, the candidate items are not confined to pair- 
ing only those in t[2, l] because the items in t[2, l] 
can be paired with those in C[l, l] as well, such as 
{ ll*, 1~) (for potential associations like “milk - 2% 
milk”), or {ll*, 2~) (for potential associations like 
“2% milk -+ bread”). These candidate large 2-itemsets 
will be checked against 7[2] to find large items (for the 
level-mixed nodes, the minimum support at a lower 
level, i.e., minsup[2], can be used as a default). Such 
a process generates the large 2-itemsets table t[2,2] as 
shown in Figure 9. 

Notice that the table does not include the a-item 
pairs formed by an item with its own ancestor such as 
({ ll*, l**}, 5) since its support must be the same as 
its corresponding large 1-itemset in C[2,i], i.e., ({ll*}, 
5), based on the set containment relationship: any 
transaction that contains {ll*) must contain (1~) 
as well. 

Similarly, the level 2 large 3-itemsets C[2,3] can be 
computed, with the results shown in Figure 9. Also, 
the entries which pair with their own ancestors are 
not listed here since it is contained implicitly in their 
corresponding P-item&s. For example, ({ll*, 12*}, 
4) in C[2,2] implies ({ll*, 12*, l**}, 4) in L[2,3]. 

Level-Z minsup = 3 
Level-Z large l-item&: 

~[~11 
Itemset Support 
{ll*} 5 

m 

{12*} 4 

Ii:*1 4 * 4 

Level-2 large 2-itemset: 
- 21 

T 
w, 

Itemset I= {ll*, 12*} 
{ll*, 21*} 

Level-2 large 3-itemset: 

*, / i;z;;;i 

support 
4 
3 
4 
3 

1 
3 
4 
3 
3 
4 

Figure 9: Large Item Sets at Level 2 

Finally, the large 1-itemset table at level 3, C[3,1], 
should be the same as Figure 3. The large 2-itemset 

table includes more itemsets since these items can be 
paired with higher level large items, which leads to the 
large 2-itemsets C[3, 21 and large 3-itemsets t[3, 31 as 
shown in Figure 10. Similarly, the itemsets { 111, 1 l*} 
and (111, 1~) have the samesupport as (111) in ~5[3, 
l] and are thus not included in t[3,2]. 

Since the large L-itemset (for Jz > 1) tables do not 
explicitly include the pairs of items with their own an- 
cestors, attention should be paid to include them at 
the generation of association rules. However, since the 
existence of a special item always indicates the exis 
tence of an item in that class, such as “2% milk -+ milk 
(loo%)“, such trivial rules should be eliminated. Thus, 
only nontrivial implications, such as “milk + 2% milk 
(70%)“) will be considered in the rule generation. 0 

Level-3 minsup = 3 
Level-3 lame 1-itemset: Level-3 large 2-itemset: 

q3:11 c[3,21 
Itemset Support Itemset Support 

I (111) 4 (111, 211) 3 

Ii::; 4 

(111, 21*} 3 

3 (111, 22*} 3 
(111, 2**} 4 

Level-3 large I-itemset: 
L[3,31 _-i- 

{ll*, 211) 3 

-1 {l**, 2111 3 

Figure 10: Large Item Sets at Level 3 

1 

6.3 User interface for mining association rules 

In many applications, users may be only interested in 
the associations among a subset of items in a large 
database (e.g., associations among foods but not be- 
tween foods and tires). It is important to provide a 
flexible interface for users to specify their interested 
set of data, adjust the thresholds, and interactively 
discover interesting association relationships. 

The query in Example 2.1 is an example of speci- 
fying association rule mining tasks. Besides a general 
claim of mining association rules, a user may also like 
to specify the discovery of associations among or be- 
tween specific groups of data. For example, the follow- 
ing query indicates that the user is interested only in 
discovering the association relationships betureen milk 
and bread. 

discover association rules 
between I.category = “milk” and Icategory = 

“bread” 
from sales-transactions T, salesitem I 
where T.bar-code = I.bar-code 
with interested attributes category, content, brand 

Since the query requires to find multiple-level large 
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2-itemsets only, the rule mining algorithm needs to 
be modified accordingly, however, it will preserve the 
same spirit of sharing structures and computations 
among multiple levels. 

Graphical user interface is recommended for dy- 
namic specification and adjustment of a mining task 
and for level-by-level, interactive, and progressive min- 
ing of interesting relationships. Moreover, graphical 
outputs, such as graphical representation of discovered 
rules with the corresponding levels of the concept hi- 
erarchies may substantially enhance the clarity of the 
presentation of multiple-level association rules. 

7 Conclusions 

We have extended the scope of the study of mining 
association rules from single level to multiple concept 
levels and studied methods for mining multiple-level 
association rules from large transaction databases. A 
top-down progressive deepening technique is devel- 
oped for mining multiple-level association rules, which 
extends the existing single-level association rule min- 
ing algorithms and explores techniques for sharing 
data structures and intermediate results across levels. 
Based on different sharing techniques, a group of algo- 
rithms, notably, ML-TSLl, ML-TlLA, ML-TMLl and 
ML-TPLA, have been developed. Our performance 
study shows that different algorithms may have the 
best performance for different distributions of data. 

Related issues, including concept hierarchy han- 
dling, methods for mining flexible multiple-level as- 
sociation rules, and adaptation to difference mining 
requests are also discussed in the paper. Our study 
shows that mining multiple-level association rules from 
databases has wide applications, and efficient algo- 
rithms can be developed for discovery of interesting 
and strong such rules in large databases. 

Extension of methods for mining single-level knowl- 
edge rules to multiple-level ones poses many new is- 
sues for further investigation. For example, with the 
recent developments on mining single-level sequential 
patterns [3] and metaquery guided data mining [16], 
mining multiple-level sequential patterns and meta- 
query guided mining of multiple-level association rules 
are two interesting topics for future study. 
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