
Dynamic Multi-Resource Load Balancing
in Parallel Database Systems

Erhard Rahm
University of Leipzig, Germany

E-mail: rahm@informatikuni-leipxig.de

Abstract
Parallel database systems have to support the effective paral-
lelization of complex queries in multi-user mode, i.e. in com-
bination with inter-query~mter-transaction parallelism. For
this purpose, dynamic scheduling and load balancing strate-
gies’ are necessary that umsider the current system state for
dekrminhg the degree of intra-query parallelism and for se-
lecting the processors for executing subqueries. We study
these issues for parallel hash joinprocessing and show that
the two subproblems should be addressed in au integrated
way. Even more importantly, however, is the use of a multi-
mannce load balancing approach that considers all potential
bottleneck resources. in particular memory, disk and CPU.
We discuss basic performance tradeoffs to consider and eval-
Gate the performauce of several load balancing strategies by
means of a detailed simulation model. Simulation results will
be analyzed for multiuser configurations with both homoge-
neous andheterogeneous (query/OLTP) workloads.

1 Introduction
A signifiiant trend in the comme rcial database field is the in-
creasing support for parallel database processing [6,3 11. This
trend is both technology-driven and application-driven.
Technology supports large amounts of inexpensive process-
ing capacity by providing “super servers” [111 consisting of
tens to hundreds of fast standard microprocessors intercon-
nected by a scalable high-speed in@conuec tion network
Theaggregatememolyisintheorderof~sto~~sof
gigabytbs, while databases of multiple terabytes am kept on-
line within a paraRe disk subsystem. New application areas
requiring parallel database systems for processing massive
amounts of data and ,complex queries include data mining,
digital libraries, new multimedia services like video on de-
mand, geographic information systems, etc.. Even traditional

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
the copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
at&or special permission from the Endowment.

Proceedings of the 21th VLDB Conference,
Zurich, Switzerland, 1995

Robert Marek
University of Kaiserslautem, Germany
Email: marel@informatjkuni-ldde

DBMS applications increasingly face the need of parallel
query processing due to growing database sixes and query
complexity. In addition, high trausaction rates must be sup-
ported for standard OLTP applications.
The effective use of super-serve& for database processing
poses many implementation challenges that am largely un-
solved in current products 128.113. One key problem is the
effective use of inuaquery parallelism in multi-user mode,
i.e., when complex queries am executed concurrently with
OLTP transactions and other complex que&s. Multi-user
mode (inter-trausactio&mter-query parallelism) is mandato-
ry to achieve acceptable throughput and cost-effectiveness,
in particular for super-servers wherea high numberof pro-
cessors must efgectively be utilii. While proposed algo-
rithms for parallel query processing also work in multi-user
mode. their perfcrmance may be substantially lower than in
single-user mode. This is because multi-user mode inevita-
bly leads to data and resource contention that can significant-
ly limit the attainable response time improvements due to
&a-query parallelism. Resource contention is particularly
uitical because of the high resource demands (CPU cycles,
memory space, disk bandwidth, communication bandwidth)
of complex queriesl. Furthermore, &a-query parallelism
causesincreasedcommunicationoverheadcompatedtoase
quential query execution on one node. Berxz, the effective
CPU utilization and thus (OLTP) thrcnrghput are reduced.
ILI order to limit and catrol resource contention in multi-user
mode, dynamic strategies for resource allocation (schedul-
ing) aud parallel query processing become necessary. Within
a prccessing node: local scheduling components have to be
extended to control local resource comention, e.g., by adding
support for transaction priorities [2, 81. To limit resource
contention in a distributed system, the workload must be al-
located among the processing nodes such that the capacity of
different processing nodes be evenly utilized (load balauc-
ing). At the same time, workload allocation should support a
compromise with respect to communication and I/O over-
head such that both i&a-query parallelism and a sufficiently
high throughput can be achieved. This requires a dynamic
query processing approach where the degree of intra-query
parallelism as well as the determination of which processing

1. Data contention problems between read-only queries and update
tfansactions may be solved by a multiversion concurrency con-
trol scheme 141.

395

nodes should process a given query are made dependent on
the current system state at query run time.
Despite the high practical relevance of such dynamic sched-
uling and load balancmg strategies to effectively support in-
ter- and intra-query parallelism, very little research has been
performed in this area (see Section 6). In a previous paper,
we have begun to address these problems with respect to
cPuresource ccntention 1261. The study focused on parallel
join processing in parallel Shared Nothing 161 database sys-
tems. Join processing was based on a dynamic redistribution
of both input relations among multiple join processors. With
such an approach there is high potential for dynamic load
balancing since both, the degree of join parallelism as well
as the selection of join processors, constitute dynamically
adjustable parameters. In this paper, we investigate themuch
mom complex problem of dynamic load balancing for mul-
tiple bottleneck resources. while considering cmJy a single
bottle& rt3somw is appropriate as a first step, such an ap-
proach is clearly ineffective if performance problems are
caused by other rescurces. Dealing with multiple bottleneck
rewurces is complicated by the fact that there are typically
many .sded&g and load balancing alternatives per re-
source type. Hence, the total solution space increases with
thenumberofresomcetypestoconsider.Furthermore,ina
parallel database systems resource utilization often varies
largely at different nodes. As a result, the current bottleneck
may constantly change and multiple bottlenecks may exist at
the same time complicating dynamic scheduling and load
balancii.
The present study primarily deals with memory and CFTJ as
bottleneck resources and focuses on parahel hash join pro
cessing in Shad Nothing (SN) systems. Disks constitute
another critical bottleneck resource, in particular because
BUS am becoming faster at a high pace while disk access
times improve only slowly WI. Unfcatunately, the potential
to dynamically infl- disk contention is limited. This is
because disk access fmquencies to pemMnentdataarepri-
marily de&mined by the chosen database allocation2. How-
ever, the database allocation on disk is largely static and can-
not be chauged for individual queries (x based on temporary
overload situations. On the positive side, our load balancii
schemes are able to limit disk contention for temporary files
by optimixing usage of the available memory.
Theremainderafthispaperisorganizedasfollaws.The~xt
sectiondiscussessomebasicperformance tradeoiffs to moti-
vate the choice of our dynamic multi-resomce load balanc-
ing schemes. The various load balancing approaches that
have been implemented within a detailed simuhition model
of a SN database system are described in Section 3. Section
4umtainsanoverviewofoursimulationmodelandhash
join implementation. In Section 5 we present aud analyze

2. In SN systems the database allocation further reduces the poten-
tisl for workload allocation since it prescribes at which proces-
aors scan operations have to be processed. Forhmately. dynamic
load balancing is feasible for operations (e.g.. joins) on interme-
diate results that can dynamically be reditibuted.

simulation experiments for various database and workload
conQurations. In particular, we are studying multi-user ex-
periments with homogeneous workloads (concurrent join que-
ries) and heterogeneous (query/OLTp) workloads. Finally, we
discuss related studies (Section 6) and summarize the major
fmdmgs of this investigation.

2 Basic Performance Tradeoffs
We study the load balancii problem for parallel shash join
processing and the most general case where both input rela-
tions are distributed among several join processors .[lO]. In a
f~tphase(buildingphase),aparallelscanisperformed~~
smaller (inner) relation at the data processors owning fiag-
ments of this relation The scan output is dynamically distrib-
uted among severaljoinprocessors according to a partitionmg
fun&m (range or hash) on the join at@bute. The joinnroces-
sors maintain a memory-resident hash table for the inner mla-
tion and support au overflow mechanism (leading to
temporalymolllocal~sks)ifnotall~oftheimlerre-
laticur fit into memory (see Section 4). Jn the second phase
@robii phase), the outer relation is read in parallel at its data
processors an distributed among the join processors. By using
the same partiticmmg fuuction for both join inputs, it is guar-
anteed that all matching tuples arrive at the same join proces-
SOT. At the join processors, arriving tuples fmm the outer
relationareprobed~$ainstthehashtabletofindmatchingtu-
ples from the inner relation.
*performance of such a joinmethod is infhrenccd by many
factors like the chosen database allocation (number of data
processors, fragmentation, etc.), relation sizes, selectivity of
scan operations, number of join processors, memory sixes,
CPU speed, communication bandwidth, disk characteristics
etc. Given a fixed database allocation and hardware configu-
ration however, the optimal join strategy that minimizes the
response time far a given join query is mainly de&mined by
+ number of join processors p and selection of these p join
processors from the set of eligible processors3. hr single~user
mode, i.e., when them is only one join query in the system, the
optimal number of join processors can be determined fairly
easily by meatis of an analytical model. As &&red in [34,
171, this cau be achieved by developing &,.analytic formula
forcalculatingtheaver~join~~‘~efoi~givenn~-
lx3 of join processors. The typic@ ms+nse time curve is
shown in Fig. la indicating that response time can only be im-
proved until a certain degree of parallelism. This is because
the actual work per processor decreases, white the communi-
cation overhead for starting the subqueries. redistributing the
scau output, merging the results and fcr termination (commit)
increaseswithahighernumberofjoin~.Theopti-
mal degree of join parallelism in single-user mode, p,.,, is
obtainedbysettingthe~vativeaftherespcnsetimeformula
to zero. For selecting the join processors, simple strategies like
random or round-robin are sufficient since all processors are
lightly loaded in singleuser mode.

3. We assume that any processor may act as join processor.

396

lu
a) single-user mode .i

L!j
1

single-user optimum

I.

u-

b) CPU-bottleneck
in multi-user mode

number
of join
processors

B
c) memory/disk-bottleneck

in multi-user mode
‘J3
0 ppJimal number of
8 Jam processors

f

&&-cKe
processors

Fig.1: Parallel join processing in single-and multi-user mode: basic response time development and optimal number of join processors

The study 1261 showed however, that this changes signifi-
cantly in multi-user mode. It was found that under high CPU
utilixation the optimal number of join processors is lower
than in single-user mode (Fig. lb) and that it is generally the
lower the higher the system is utilized. This is because the
communication overhead associated with a high degree of
i&a-query parallelism is less affordable when processors
are highly utilized. Furthermore, the least lltilized CPUS
should be selected for join processing.
In [261 we used sort-merge as the local join method and did
not consider memcry utilization for load balancing. Howev-
er, for hash joins optimizing memory usage is likely to be
more significant thau CPU load balancing in marry cases and
must therefore be considered for dynamic load balaucii in
multi-user mode. As our simulation results will show it is of
high importance fcr hash joins to avoid overflow I/O as
much as possible, i.e. to keep as much as possible of the inner
relation memory-resident. Hence, the optimal degree of join
parallelism in single-user mode is at least as high as required
to avoid temporary file I/O. If the aggregate memory of all n
processors is too small for keeping the inuer relation memo-
ry-resident, thennccnstitutes the single-user optimum. Mul-
ti-user mode leads to memory contention so that only a
subset of a node’s memory may be available for join pro-
cessing. Hen&, the optimal number of join processors is ex-
pected to be the higher the less memory is available. ‘As a
result, under high memory (disk) utilization the optimal de-
greeafjoinparallelisnistypic~yhigherthaninsingle-user
mode (Fig. lc).
The discussion ilhtstrates some basic tradeoffs to consider
for memo and CPU load balancing (Fig. 2). On one hand,
the degree of join parallelism must be high enough to limit

cPubottleneck memory (disk) bottleneck

reduce dost for
cQmmlmication, -x- =duce’w=y G.0

startup&terminatron / \ l!ixEg&

Fig. 2: Dynamic load balancing with multiple bottlenecks

memory and disk contention. On the other hand, it should be
low enough to limit CPUcontention. Hence, the degree of join
parallelism must be chosen dynamically based on the current
memory, disk and CPU utilization. As with all dynamic multi-
resource scheduling strategies then2 is a certain danger of in-
stability because removal of bottleneck 1 may create bottle-
neck 2 and vice versa (Fig. 2).
3 Load Balancing Strategies
The previous discussion showed that effective support for
multi-user mode requires dynamic strategies for determining,
the degree of join parallelism as well as for se1ectiug the join
processors that consider both CPU and memory/disk bottle-
necks. For CPU bottlenecks, the approaches proposed in [26]
can be used that reduce the degree of join parallelism accord-
ing to the average CPU utilization and select the least utilized
processors for join processing. Determining the optimal num-
ber of join processors under memory bottlenecks is more in-
volved since it requires consideration of the available memcry
at the individual processors. For instauce, is it better to allo-
cate a join to 5 processors with at least 30 MB unused memory
perIwocessorortol0processarswithaminimumdlOMB
available memory? In the former case, the aggregate memory
size is higher thus reducing the number of I/OS to temporary
files. The latter case, on the other hand, allows a higher degree
of I/O and processing parallelism that may outweigh the in-
creased number of I/OS. Dynamic load balancii is most com-
plex for situations with both CPU and memory bottlenecks
and if ahnost all processors are affected (global overload). For
partial overload situations when only some processors suffer
from bottlenecks, load balancing strategies that select the less
utilized processors for join processing are likely to be very ef-
fective.
In the following we describe the load balancing strategies that
have been implemented in our simulation system (Section 4)
and that will be used in the performance evaluation (Section
5). We consider static and dynamic strategies as well as iso-
lated and integrated policies. Isolated strategies operate in
two cunsecutive steps. In a first step the number of join pro-
cesses (degree of join parallelism) is de&m&d. In a second
step these join processes are allocated to processing nodes
based on some criterion. Megrated strutegie~, on the other
had determine both the number of join processes aud their
allocation in a single step. The dynamic policies base their de-

397

cisions on the current CPU utilization and memory availabil-
ity. For this purpose we assume that a designated control node
is periodically informed by the processors about their current
utilization. During the execution of a query, information on
the current CF’U and memory utilization is requested from the
control node to support dynamic load balancing.
We first describe the substrategies used iu the isolated control
approaches for determiuing the degree of join parallelism and
for selecting the join processors. Afterwards, the integrated
policies are presented.

3.1 Determining the number of join processors
We consider two static schemes that determine the number of
join processors at query compile time and one dynamic ap-
Po=h.
Static degree of join parallelism
In the first policy, we simply choose the optimal number of
join processors in single-user mode pscr-opt as the degree of
join parallelism. However, since -ding to [26] such a high
number of join processors may cause performance problems
if the system is CPU-bottlenecked we additionally study an al-
ternative with a smaller number of join processors. In this ap-
proach, we use the number of join processors psu-nozo
avoiding temporary I/O in single-user mode (if at all feasible
with the given memory sizes). This number of join processors
can be deteti as follows:

(3.1) Pawn010 = ImJ 6, r(bi*F> / m>l >

In this formula, n represents the total number of processors, bi
then~~afpagesofthe~~~tion,Ftbe~~for
the hash table (“fudge factor”) and m the memory size (inpag-
es) per processor. Temporary file I/O is avoided if the aggre-
gate memory size of the psu-noIo processors exceeds the size
of the smaller join input relation and if this relation is equally
distributed among the join processors (no or only little redis-
tribution skew).
Dynamic degree of join parallelism
We use the dynamic strategy aheady presented in 1261. It de
termines the degme of parallelism for multi-user mode pmum

,, by reducing the single-user optimum psu+t,t according to
lie current CPU utilization:

(3.2) Pmu-cpu = Psu-opt (1 - uq3z

Here, uqu denotes the current average CPU utilization of all
processors obtained from the control node. With this formula,
a reduction takes place primarily for higher utilization levels
(t~,.+,~ > 0.5) when a high ccmmunication overhead for paral-
lehzation is not acceptable.

3.2 Selection of join processors
We support three strategies (R%DOM, LUC, LUM) that
may be combined with any of the three approaches above for
determining the degree of join parallelism.
RANDOM
This strategy selects the join processors at random. RAN-
DOM is expected to spread the workload equally across all
available nodes. Since RANDOM does not consider informa-

tion about the current system state, it represents a static ap-
proach.
Least Wked C-PUS (LUC)
In this approach, we select the processors with the lowest CPU
utilization as join processors. For this purpose, the adaptive
variation suggested in [261 is used that artificially increases the
CPU utilization of a processor selected for join processing at
the control node. This avoids that subsequent join queries are
assigned to the same processors due to the delayed updating of
information on CPU utilization.
Least Wized Memory (LUM)
Join processes are assigned to the nodes with the most avail-
able main memory. Again, the control node’s information is
directly adapted for newly selected join processors.

3.3 Integrated strategies
Simulationresults willbeprovidedforthreeintegratedanddy-
namic load balancing strategies. We have investigated several
additional approaches; however, since they tmued out to be
less effective and due to space constraints we omit them from
further consideration. The integrated schemes primarily use
the control node’s information on the current memory avail-
ability to determine the number of join processors and to select
them according to the LUM strategy. For this purpose, we as-
sume that the control node maim&s the following data struc-
tUE AVAIL-MEMORY [1 ..n] of (no+-ID, free).
This array indicates for each of the n processing nodes the
available memory pee) and is sorted on the amount of free
memory, i.e. AVAIL-MEMORY Cl1 refers to the processor
with the most free memory, etc.
All strategies try to avoid temporary file I/O by selecting pmu
join processors with a minimum of bfages so that pm,,*b ex-
ceeds thesizeofthe smallerjoiniuput . Notethatfr~mthe~,,
selected processors the one with the minimum amount of
available memory is critical since it is likely to cause the high-
est I/O delays from all subt&ries. Hence, it is the one that de-
terminesresponsetimesundermemoryordiskbottlenecks.As
a result, it is desirable to find a processor selection so that tem-
porary file I/o can be avoided even at the processor with the
least available memory. The three strategies differ when there
are several selections avoiding temporary I/O and in how CPU
utilization is additionally considered.
MIN-IO
This strategy tries to find the minimal number k of join proces-
sors that avoids temporary file r/o. Mom formally, h,, is de-
termhedsuchthat
(3.3) Pm” = MIN (k I AVAIL-MEMORY [kImfree “k > bl*F)

k = 1.2. n
If the available memory does not allow avoidance of all tem-
porary file I/OS, the number of join processors is selected so
thattheamountofoverflow~Oisminimized5.Joinprocessing

4. Assigning large amounts of memory to complex hash joins as-
sumes a memory allocation strategy that gives priority to OLTP
transactions. For this purpose, we have implementkd a memory-
adaptive hash join approach (Section 4).

398

takes place on the processors specified in the first pmu posi-
tions of AVAIL-MEMORY (LXJM policy). MIN-IO does not
consider the current CPU utilization.
MIN-IO-SUOPT
This strategy is different from MIN-IO only if there are mul-
tiple selections that avoid temporary file I/O. MD&IO selects
the minimal number of PE in this case, which limits the CPU
overhead for parallel processing but may also uuuecessarily
restrict the degree of parallelism. To avoid this potential prob-
lem MIN-IO-SUOPT selects the number of processors closest
to psumopt for which temporary file I/O is avoided.
OPT-IO-CPU
This strategy is an extension of the previous ones that explic-
itly considers the current CPU utilization. MU+10 and MJN-
IO-SUOm can sele& high degrees of join parallelism under
high memory utilization which can lead to significant CPU
contention. To avoid this problem, OPT-IO-CPU restricts the
number of join processors to at moat pmu-,.+, based on the cur-
rent CPU utilization (formula 3.2). Within&s range. the max-
imal number of processors avoiding (or nmGni&g)
temporary I/O is selected. Such au approach is likely to be ef-
fective under higher CPU utilization. It also supports a low
number of temporary file J/OS under light CPU load where the
number of processors is only restricted by psu+.

4 Simulation model
For the present study, we have extended our SN simulation
system aheady used in [261 by adding implementations for
parallel hash join processing and for the various load balanc-
is& schemes. The gross structure of this simulation system is
depicted in Fii. 3. In the following, we briefly describe the
used database and workload models, the processing model as
well as our hash join implementation. The simulation system
is highly parameterixed. In Section 5.1, we will provide an
overview of the major parameters and their settings used in
this study.
Database and workload model
Thedatabaseismodeled as asetofpartitions. Apartitionmay
be used to represent a relation, a relation fragment or an index
structure. It consists of a number of database pages which in
turn consist of a specifii number of objects (tuples, index en-
tries). The number of objects per page is determined by a
blocking factor which can be specifii on a per-partition ba-
sis. Each relation can have associated clustered or unclustered
B+-tree indices. Relations and iudices can be horizontally de-
clustered across an arbitrary number of disks and processors.
We support heterogeneous (multiclass) workloads consisting
of several query and transaction types. Queries correspond to
trausactions with a single database operation (e.g., SQL state-
ment). Currently we support the following query types: rela-

5. Note that this does not necessarily imply a join processing on all n
processors. For example, assume a storage requirement of 10 MB
for the hash table, n=4, and a current memory availability of 8.1,
0. and 0 MB. MIN-IO s&&a pm=1 and chooses the processor
with 8 MB available memory for loin processing. This is because
inthiscasewecanhmitoverflowI/Oto2MBcemparedtoatleast
2.5 ME4 per processor with other choices (pm&).

tion scan, clustered index scan, non-clustered index scan, two-
way join queries, multi-way join queries, and update state-
ments (both with and without index support). We also support
the debitcredit benchmark workload (IX-B) and the use of
real-life database traces 1181. The simulation system is an
open queuing model and allows definition of an individual ar-
rival rate for each transaction and query type.
Workload allocation takes place at two levels. First, each in-
comiug transaction or query is assigued to one processor act-
ing as the coordinator for the transaction/query. For this
placement we support different strategies, in particular ran-
dom allocation. The second form of workload allocation deals
with the assignment of suboperations to processors during
query processiug and depends on the operators to be executed.
For scan operators, the processor allocation is always based
on a relation’s data allocation. For join processing, we support
several static and dynamic strategies for determining the de-
gree of join parallelism and for allocating the join processes
to processors as described in the previous section.
Workioad processing
Each processor or processor element (PE) of the SN system is
represented by a transaction manager, a query processing sys-
tem, CPU servers, a communication manager, a concurrency
control component and a buffer manager (Fig. 3). The trans-
action manager controls the (distributed) execution of trans-
actions. The maximal number of concurren t transactions
(inter-transaction parallelism) per PE is controlled by a mul-
tiprogramming level. Newly arriving transactions must,wait
in an input queue when this maximal degree ofinter-transac-
tion parallelism is already reached. The query processing sys-
tem models basic relational operators (sort, scau, join) as well
as a parallelization meta-operator (PAROP) that is used for
dynamically mdistributiug data among processors and for
merging multiple inputs. Different parallel execution strate-
gies have been implemented for the various operators, in par-
ticular parallel hash joins (see below).
The number of CPUs per PE and their capacity (in MIPS) are
provided as simulation parameters. The average number ofin-
structions per request can be defined separately for every re
quest type. To accurately model the cost of query processing,
CPU service is requested for all major steps, in particular for
transaction initialixation (BOT). object accesses in main
memory (value comparisons, operations on hash tables, etc.),
T/O overhead, communication overhead, and commit process-
ing. The comuumication network models transmission of
message packets of fixed sixe. Messages exceeding the pa&et
size (e.g., large sets of result tuples) are disassembled into the
requimd number of packets.
For concurrency control, we employ distributed strict two-
phase locking (long read and write locks). Global deadlocks
are resolved by a central deadlock detection scheme. Distrib-
uted two-phase commit is supported and involves all proces-
sors that have participated during execution of the respective
transaction/query. We support the read-only optimization
where only one distributed commit phase is mquired for read-
only sub-transactions (to release the read locks).

399

workload
generation and

allocation

Fii. 3: Gross structure of the simulation system

Database partitions can be kept memory-resident (to simulate
main memory databases) or they can be allocated to a number
of disks. Disks and disk controllers have explicitly been mod-
elled as servers to capture potential I/O bottlenecks. Purther-
more, disk controllers cau have a LRU disk cache. The disk
controllers also provide a prefetching me&a&m to support
sequential access patterns. If prefetching is selected, a disk
cache miss causes multiple succeeding pages to be read from
disk and allocated into the disk cache. Sequentially reading
multiple pages is only slightly slower than reading a single
page, but avoids the disk accesses for the pmfetched pages
when they am referenced later on. The munberofpages to be
read per prefetch I/O is specified by a simulation parameter.
The database buffer iu main memory consists of a global buff-
er for all transactions/queries as well as private working spac-
es used for query processing (e.g., hash tables far hash joins).
The global buffer is managed according to a LRU replacement
strategy and a no-force update strategy with asynchronous
disk writ&. Private working spaces are dynamically assigned
by reserving a certain number of pages for processing a given
(sub)qw.
Hash join processing
For parallel hash join processing, the input relations can be
distributed among an arbitrary number ofjoin processor@. Se-
lection of the join processors depends on the respective ap-
proach for load balancing. For local join processing, we have
implemented a niemory-adaptive hash join algorithm, called
Partially Preemptible Hash Join (PPHJI, that was shown to
outperform traditional join methods like GRACE and hybrid
hash join for mixed query/OLTP workloads [231. This is be-
cause it adapts the memory assigmnent for a join query ac-
cording tp the memory requimments of higher-priority OLTP
trausactions.,The PPHJ algorithm partitions both join inputs
into p partitions with p =m where F ist the fudge factor
and bi the number of pages for the inner relation A. TO make

sure that each A partition cau be held in memory, a minimum
af p pages must be available for join processing.
ThealgorithmtriestokeepasmanyApartitionsaspossiblein
memory to allow a direct join processing with the outer rela-
tion. In the case that memory has to be taken away Corn the
join due to higher-priority transactions, one or more memory-
6. If the input relations are already declustenxl on the join atirib$es,

join proceking may also take place at the data processors. lIus re-
ducea the communication overhead but offers little potential for
dynamic load balancing.

resident A partition are written to disk. If more memory be-
comes available for join processing, one cr more disk-resi-
dent A partition are brought into memory to support a direct
join processing. Arriving tuples from the outer relation B can
only be processed directly if the cormsponding A partition is
in memory. Otherwise, the B tuple is inserted into a tempo-
rary B partition that is written to disk. For disk-resident par-
titions the act&d join processing is deferred until all tuples
from the outer relation have been received, The delayed join
processing starts with reading in the respective A partition
and storing it in a hash table. Afterwards the associated B
partition is read and probed against the hash table.
A join query is only started at a node if the minimal space re-.
quiremeuts of p pages are available. Otherwise. the join que
ryisforcedtowaitiriamemoryqueuethatismanaged
acmrding to a FCFS (first come, first served) scheduling pal-
icy. Similarly,,~xecuting hash joins are s$spended ifmemq
frames are stolen by higher-priority transactions and fewer
than the minimal number of pages remain for join process-
ing. Since all hash join queries are assumed to have equal prii
ority, the memory allocation of ‘a running query is not
chauged due to newly arriving joins.

5 Performance Analysis
Our experiments concentrate on the performance of parallel
join processing in multi-user mode. The focus of the study is
tocompamtheeffectivenessofthevarious staticauddynam-’
ic load balancing alternatives imrodn& in Section 3 ford&
termin@thedegmeofjoinparaWismandforselectionof
the join pmcessors. Two types of multi-user load profiles are
considered: ahomogm workload consistingofjoinque-
ries only as well as a heterogeneous (mixed) workload with
both short OLTP transactions and join queries.
Iu the next subsection, we provide an overview of the param-
eter settings used in these experiments. Multiuser experi-
ments for the homogeneous and heterogeneous workloads
are analyzed in 5.2 and 5.3, respectively. Many additional
experiments have been conducted but cannot be d&&bed
due to space restrictions. However, these experiments con-
firm the main findings of the selected experiments.

5.1 Simul@on Parameter Settings
Pii. 4 shows the major database, query and configuration pa-
rameters with their settings. Moat parameters are self--
planatory, some will be discussed when pmsentiug the

400

Configuration settings Database/Queries settings

lumber of PE (#PE, n) 10,20,40,60,80 relations A:
ZPU speed per PE

(100 MB)
20 MIPS #tuples 250.000

ng. no. of instructions: tuple size 400 B
initiate a query/transaction 25ooo 20
terminate a query/transaction

blocking factor
25000 index type clustered B+-tree

I/O storage allocation disk
send message ZE alloaction to PE
receive message 10000

partial declustering (20% of #PE)

copy 8 KB message 5000
read a tuple from memory page

relations B: (400 MB)

hash a tuple
~55 #tuples 1.000.000

insert a tuple into hash table
write a tuple into output buffer :g

tuple size
blocking factor 4Ip”

probe hash table 200
index type clustered B+-tree

mffer manager:
storage allocation

page size 8KB
allocation to PE p”& declustering (80% of #PE)

buffer size fi$sS (0.4 h4f.d joti que&:

Ii& devices: access method via clustered index

number of disk servers per PE 10 (varied) scan selectivity Vtllkd

controller service time 1 ms (per page) no. of result tuples 100 % of the inner relation

transmission time per page 0.4 ms fudge factor hash table 1.05

avg. disk access time 15 ms arrival rate single-user, multi-user (varied)

gFwyt deb per page 1 ms query placement random (uniformly over ah PE)
200 pages join parallelism static /dynamic

prefetchmg size 4Pages selection of join processors random /dynamic
-. . I I . -. -_

simulation results. The join queries used in our experiments
perform two scans (selections) on the input relations A and B
aud johi the corresponding results. The A relation contains
250.000 tuples, the B relation 1 million tuples’. The selections
onAandBreducethesizedtheinputrelati~accordingt0
the selection predicate’s selectivity (percentage of input tuples
matching the predicate). Both selections employ clustered in-
dices.Thejoin~sulthasthesamesizeasthescan~~tonA.
Both relatiars am uniformly dechrstemd across disjoint sets of
PE. To support a static load balancing for scanoperations, each
PE is assigned the same number oftnples. As aresult the larger
relation B is declustered across 80% of the PE, while the re-
maining 20% of the FE hold tuples of relation A. The number
of processing nodes is varied between 10 and 80.
The relation and query sixes had to be chosen small for most
experiments to limit simulation cost. As a consequence, we
had to use unrealistically small memory sixes (0.4 MB per PE)
to generate a masonably high memory utilization. However,
the impact of huger query sixes on the effectiveness of the vat-
ious strategies will be studied in a separate experiment.
The dur&on of an I/O operation is composed of the controller
service time, disk access time and transmission time. For all
sequential I/OS, in particular relation scans, clustered index
scans and scans on temporary files (partitions), prefetching is
utilized by the disk controllers to improve I/O performance.
Thediskaccesstimeforpiefetchingconsistsofabaseaccess
time per I/O (15 ms) plus an additional delay per page (1 ms).
For a prefetching of4 pages, the average disk access time is 19
ms. The parameter settings for the communication network
have been chosen according to the EDS prototype [291.
7. As pointed out in[91, most decision support queries are joins be-

tween a larger and a smaller relation.

kig. 4: System configurahon, database and query profile

Our OLTP workload is similar to the one of the debitcredit
(TPC-B) benchmark. In particular, each OLTP transaction per-
forms four non-clustered index selects on arbitrary input rela-
tions and updates the corresponding tuples.

5.2 Homogeneous wdrkloads
The homogeneo& workload consists of a single (join) query
type:,Inter-query parallelism is used to execute multiple queries
at a time. Since we, want to support not only sheet response
times but also good throughput, we increase the query arrival
rate proportionally with the number of PF!I. We first present
multiuser results for isolated load balancing strategies using a
static degree of intraquery pa+lelism. Afterwards we analyze
the effectiveness of isolated and integrated strategies that dy-
namically dekrmine the number of join processors. Next, an
experiment with a pronounced disk and memory bottleneck is
described. Finally, we study the infl- of the join complex-
ity on the effectiveness of dynamic load balancing.
Isolated strategies with static dqree of join parallelism
Fig. 5 shows the multi-user response times for static degrees of
parallelism and three different allocation strategies. For com-
parison pmposes, the single-user wsults obtained with p.&,,
join prmsors are also shown. For the assumed join query, 3
join processors are sufticient ,m single-user mode to avoid tern-
pomry file ID, i.e., psu-nO~o = 3. The single-user optimum is
substantially higher (pa-,; = 30). The systeni size is varied be
tween 10 and 80 PE; the arrival rate is 0.25 queries per second
(QW $r lx.
For this workload, for up to 40 PE the system is only lightly
loaded. Hence. using psu-opt join pnxessors provides the best
multi-user performance wdh nqonse times not much higher
than in single-user mode. In this range, restricting join process-

401

q ‘ yy++-fiy~<;~Jyfo sy$&yz
10 20 40 60

Pig. 5: Static degree of parallelism
(multi-user join 0.25 QPS/pE; 1% scan selectivity)

ing to psu-nOIo processors achieves suboptimal performance
since CPU parallelism is not fully exploited. Furthermore,
choosing only psu-nOIo join processors is not sufficient to
avoid temporary file I/O in multi-user mode because the
available memory per processor is smaller than in single-
user mode.
With a growing number of processors, performance is in-
creasingly dominated by CPU bottlenecks due to higher ar-
rival rates and increased overhead for the dynamic
redistribution of both join inputs*. The redistribution over-
head is particularly high for the strategies employing psu-Opt
(30) join processors causing substantial msponse time dete-
riorations due to CPU contention (more than 80% CPU uti-
lization on an 80 PE system). On the other hand, using psu-
noIo join processors results in a siguifiiantly lower CPU uti-
lization (approx. 50% for 80 PE). However, this is achieved
at the expense of iucmased I/O delays and higher disk utili-
zation since 3 join processors am not sufficient any mom to
avoid temporary file I/O. Still, the best static strategy using
psu-n,,Io processors (in combination with LUM) outperforms
the strategies using psumqt processors for more than 60 PE.
The load balancing strategy for selecting the join processors
alsohasaprafaundimpactontherespcwsetimeresults,in
particular for higher utilization levels (number of PE). RAN-
DOM exhibits the worst performance in all cases despite the
fact that a homogeneous workload is relatively favorable for
such a strategy. Still, the CPU and memory utilization of the
individual processors varied substantially. in particular with
only 3 (p,.,oIo) join processors per query. Since this strate-
gysuffemdfrommemoryandI/Obo&necksforahigher
number of PE, the LUM policy was much more efficient
than the LUC alternative for selecting the join processors. In
case of psumopt join processors memory contention was not a
problem. Instead, CPU was the bottleneck for a higher num-
ber of PE. Therefore, the LUC policy was (slightly) mom ef-
‘ficient than LUM for the case of 30 (psu-Opt) join processors.
However, there is no significant difference between the
LUM and the LUC policy, since CPU utilization aud mem-
ory utilization were closely correlated for the homogeneous
workload and 30 join processors per query.
8. The redistribution overhead per query increases with the number

of nodes since the two relations are declustered across 80% and
20% of all processors, respectively.

4
- ~rnu-c,,+~DOM

APT-IO-CPU

’ ~nu,-c~u + LUM

?I- 0 20 40 60 80 #PE
Fig. 6: Dynamic degree of join parallelism

(multi-user join 0.25 QPS/pE; 1% scan selectivity)
Dynamic degree of parallelism
As the discussed results have showc statically determiniug
the degme of join paralleliim is not appropriate for multi-user
mode due to changing levels of msource utilization. Therefore,
wefocusnowontheresultsobtainedforadynamicctition
of the number of join processors (Fig. 6). We consider two iso-
lated approaches based on a dynamic determination of the de-
gaze of join parallelism according to the current CPU
utilization (p,,,qqp,) and using a RANDOM- or LUM-based
selection of join processors. In addition, results for the three
integrated approaches from Section 3.3 are shown.
Inte~stiugly, the worst performance is achieved for the two
integrated load balancimg strategies MINI0 and MIN-IO-
SUOPT, in particular for a higher number of processors (Fig.
6). This was because both strategies do not dder the cur-
rentBuutilizaticwbutmerelytryto~nroid~~aryfileuO.
However, for this purpose an increasing mnuber of join pro-
cessors became necessary for larger system sizes leading to an
even higher CPU contention (>85% CPU utilization) than with
a static degree of pmwOPt join processors. For instance, more
than 40 join prmsors were necessary for a system of 80PE
to avoid temporary I/O. MIN-IO is superior to MN-IO-
SUOPT for larger configurations since the latter strategy gen-
erally chooses a hit&r number of join processors. For smaller
configurations (lower CPU utilization), 011 the other hand, se-
lecting the minimal number of join processors avoiding tem-
porary file I/O (MYIN-IO) is sliitly less efficient since CPU
parallelism is not fully utilized
Most efficient were the strategies pmu-, and OPT-IO-CPU
that reduce the degree of join parallehsm under high CPU
load. They apply at most p,.,, join processors and reduce the
degree of join parallelism wrth increasiug CPU utilization.
Therefore, even for 80 PE CPU utilization could be kept below
65% still permitting mptable msponse time. While the use
of a RANDOM selection of join processors is again worse
than a LUM-based selection of pmu-* join processors, such
an approach was stih better than the two integrated schemes
MD&IO and MIN-IO-SUOPI’. This shows that under high
CPU load red~iug the degree of join parallelism is more im-
portautthanminimiljne the amount of temporary I/O.
The two best strategies pmu-qu + LUM and OPr-IO-CPU
showed very similar performance characteristics for this ex-
periment. For the heterogeneous workloads, the differences
between these approaches will become more apparent.

402

Memory/disk bottleneck
In the previous experiment that was largely influenced by
CPU contention for larger system sixes, the strategies reduc-
ing the degree of parallelism according to the current CPU
utilization were most effective. We now focus on a memory-

. bamd environment by reducing the memory size per proces-
sor by a factor of 10 and reducing the query arrival rate. Fur-
thermore, we assume only 1 disk per PE for temporary file
I/O (dead of 10 disks). For this experiment., we only com-
pare one of the worst strategies of the previous experiment
(MIN-IO-SUOPT) with o&of the best strategies (pmuscpu +
LUM) for both single-user and multi-user mode (Frg. 7).

mul&userjoin(O.OSQPSIPE):
-~mu-c~u+LUM - MIN-IO-SUOPT

multi-userjoin (0.025QPSIPE):
~Pm&4,u+LUM c* MIN-IO-SUOPT

single-userjoiic
o---o~mu,,,+LUM - MIN-IO-SUOPT

20 30 40 60 #PE 8o

Fig. 7: Memory-bound environment (1% scan selectivity)

The assumed workload resulted in a low CFV utilization of
under 20%. but caused a high buffer utilization (> !JO%).
Since there was no CPU bottleneck, prn~-~~ was always the
same as psu+. However, this degree of jom parallelism was
not sufficient in multi-user mode to minimize the number of
overflow I/OS causing an incmhg degtee of memory and
disk utilization (Ao%) for growing system sixes. The same
effect would have occurred for the OFT-IO-CPU strategy.
The MIN-IO-SUOPI approach, on the other hand, was able
to minim& the gmnmt pf overflow I/O by increasing the
number of join processors with the system size. As indicated
in Fii. 7, the average degree of join parallelism in multi-user
modewasincre~toupto42for8OpEasopposedto33
in single-user mode and 30 for P~~-~,,. The correspond@
savings iu the number of I/OS and the reduced disk conten-
tion allowed drastically improved response times compared . .
to usmg pmuwqu jam processors.
These experiments illustrate that there is no single policy
that performs best under all conditions, but that the load bal-
ancingstrategy itselfshouldbeselected~~tothecur-
rentloadandmsomce situatiun.
Influence of join complexity
To study the influence of the join complexity on the effec-
tiveness of dynamic load balancing we vary the size of the
join input by using different scan selectivities. This experi-
ment was performed for a constant system size of 60 PE.

Scan selectivity was varied between 0.1 and 5% for both input
relations. For each join complexity, the arrival rate was deter-
mined individually, so that at least one of the physical msourc-
es (CPU, memory or disk) was highly loaded (>75%). Fig. 8
shows the relative response time improvement using dynamic
strategies compared to a static degree of join parallelism
(MJWk Psu-opt)) and random selection of join processors.

2
t 60 -~n,u-f~u+LUM

-MIN-IO-SUOPT

-MIN-IO

scan selectivity PO] ’

Fig. 8: Influence of join complexity

We observe that the dynamic load balancing schemes autper-
form the static approach in all cases, but that the relative per-
formance improvementi shrink with increasing join complex-
ity. This is largely because we use a constant system size while
increasingthejoinsizeleadingtoan~aseintheoptimal
number of join processors. In single-user mode, the optimum
psumopt hxxeases from 10 for a scan selectivity of 0.1% to 70 (>
n) for a selectivity of 5%; the minimal number of nodes needed
to avoid overhead I/O, psumnoIO grows from 1 to 14. In multi-
user mode, larger joins also require higher degrees ofparallel-
ism not only to reduce the amount of temporary I/O but also to
reduce the amount of procesSing per join processor.
For small joins (scan selectivity 0.1%) avoiding temporary I/O
is no problem so that performance is primarily limited by the
CPU contention associated with higher degrees of join paral-
lelism (unfavorable ratio between startup/termination cost and
actual work). Hence, the best performauce is achieved for the
strategies using few join processors (Psumnoro + LUM and
MIN-IO), while the schemes using psu+ join processors
(MIN-IO-SUOPI) achieve the lowest msponse time improve-
ments. For larger joins (5%). on the other hand, startup and ter-
miuation costs became less relevant and higher degrees of join
parallelism am needed to liit temporary I/O and to fully ex-
ploit CPU parallelism. The strategy psu-nOIo + LUM achieves
the worst pelformauce since it utilizes only 14 processors
which is not sufficient to avoid temporary I/O in multi-user
mode. MINI0 avoids memory/disk bottlenecks, but also se-
lects too few join processors so that no sufficient level of CPU
parallelism is achieved. For large joins, the best performance
is provided by the strategies pmu-cpu + LUM, OPT-IO-CPU
and MIN-IO-SUOPT as they employ almost all processors for
join processing. Still they are able to improve response times
(by about 18%) compared to the static scheme p,,,-, + RAN-
DOM .(which uses all processors) because the dynamic strate-
gies avoid join processing at temporarily overloaded nodes.

403

The experiment confii the expectation that the potential for
dynamic load balancing become small as soon as the optimal
number of join processors approaches the total number of pro-
cessors. In addition, the use of a homogeneous workload can
be considenzd as a worst-case assumption for complex queries
as it results in a relatively uniform resomce allocation even for
random selection of the join processors. (Furthermore, the
chosen database allocation allowed an equal distribution of
the scan work.) In eal $ystems, the workload is expected to
consist of trausactiou and query types with largely different
resource requirements thus improving the load balancing po-
tential. Such h&erogenous workloads will be considered in
the next experiment. Furthermore, the potential for dynamic
load balancing increases with the total number of processors,
i.e., such schemes are essential for super-servers.

5.3 Heterogeneous workloads
We now study the effectiveness of dynamic load balancing for
the case of heterw workloads cc&sting of OLTP
transactions and join queries. For OLTP processing. we as-
sume a simple transaction type with4 tuple accesses per trans-
act@ and that au affinity-based routing ES] can achieve a
largely local processing (similar to debit-credit). To avoid
lock co&cts with join querys. OLTP transactions access dif-
ferent relations than A and B. For the concurrent execution of
join queries, we study multi-user join processing.
Fig. 9 shows the average join response times for two mixed
workloads differing in whether the OLTP transaction type is
only running on the A nodes holding fragments of relation A
(Fig. 9a) or on the B nodes (Fig. 9b). In both cases we use an
OLTP transaction rate of 100 TPS (transactions per second)
per A(B) node. The OLTP workload causes per A (B) node a
CPU, disk, and memory ut&zation of about SO%, 60%. and
45%. respectively. Join queries arrive at a rate of 0.075 QPS
per PE. We consider two static load balancing schemes for
join processing with a f&d degre42 of join parall&m of pm-
opt or psu-nOIo processors that are randomly selected. For psu-
no~~ processors we additionally investigate the LUM a&ca-
tion strategy. Moreover, the two dynamic load balancing
strate@es pmu-cpu + LUM and OPT-IO-CPU are examined.

20 20 60 80 10 20 40 60 80
#PE #PE

Fig. 9: Static vs. dynamic load balancing for mixed workloads
(multi-user loin 0.075 QPS/Ph 5 disks per PE)

The results indicate that for mixed workloads dvnamic load
balancing is indeed even more effective (and needed) .than
for homogeneous workloads. The differences between static
and dynamic approaches are particularly pronounced in the
case when the OLTP load is processed on B nodes @ii. 9b).
This is because we have the four-fold OLTP throughput
compared totheotherconfigurationresultingin ahi*sys-
tern utilization and longer response times. Static schemes
based on RANDOM selection of join processors are particu-
larly unsuited in such a situation as they frequently assign
join work cm nodes that are highly utilized due to OLTP pro-
cessiug. Using a small static degree of join parallel& (p,..
noI~) iu combination with a LUM-based selection of join pro-
cessors is aheady much better since it largely avoids join pro-
cessiug on nodes with high memory utilization. Still, such
semi-static approaches are iusu6iient since they cause ei-
ther an unnecessarily high l/O overhead @~-n0lo) or CPU
contention (p,,~,~~.
The dynamic approaches could largely avoid t&se deflcien-
ties and provided much better performance than the static
schemes. Inparticular,respansetimescouldbekeptv~iow
for larger system sizes despite the’gowing query and trans-
action throughput. This is pa&zulariy the case for the inte-
grated policy OR-IO-CPU. The isolated strategy pmlr-cpu +
LUM. however, suffered from pe&mance problems with a
lower number of processors, in particular with OLTP pro-
cessing on the A nodes (Fig. 9a). The problem comes from
the fact that this strategy only considers CPU utilization for
de&mining the number of join processors pmu, while mem-
ory utilization~is solely used for selecting the join processors.
For smaller system sizes of up to 30 PE when the average
CPU utilization is comparatively low, pmu

-T
is not lower

than Psu-opt so that join processing takes p ace on all PE.
Htmce, jams ate also processed cm the processors that are
highly utilized due to OLTP processh$ causing substantial
performmce degradations. OPT-IO-CPU, on the other hadd,
uses the current CPU utilization 6nly to determine the maxi-
mal number ofjoin processors but selects a smaller >ee of
parallel&m if this allows for wduced I/o requirements ac-
t3xdiug to the current memory utilization. In this way, this
strategy was able to avoid join processing on the OLTP
nodes permitting sub&&ally better response times. This
demonstrates the importance of de&mining the number of
join processors and selecting @ processing nodes in an in-
tegrate4j way.

6 Related Work
Dynamic scheduling and workload a&cation strategies f&
database processing have found considerable interest recent-
ly, but most studies concentrated on centralized DBMS. Fur-
thermore, most studies only dealt with a single bottleneck
resource. For instance, several researchers looked at the
problem of controlling lock con&on by dynamically ad-
justing the multiprogramming level [3,30,331. Other studies
coped with dynamic memory allocation strategies for multi-
class workloads consisting of complex queries and OLTP

404

transactions [15, 36,23, 1,51. [19] addressed the scheduling
problem when multiple hash join queries are to be processed at
the same time. Different alternatives to allocate memory to join
queries were considered, but the memory allocation was left
unchanged during query execution.
The problem of dynamic load balancing in parallel database
systems has mainly been considered for parallel Shared Every-
thing (multiprocessor) DBMS so far [12,22,13,16]. In these
systems. dynamic load balancing is easier to achieve since the
operating system cau automatically assign the next ready pro-
cess/subquery to the next free CPU. Furthermore, the shared
memory supports very efficient interprocess commuuication so
that the overhead for starting/terminating subqueries is much
lower than for SN. Also, the memory load balancing problem
does not exist for Shared Everything because there is no private
main memory per processor. On the other hand, the number of
processors is typically small for Shared Everything (< 30) thus
restricting the degree of inter-/&a-query parallelism and the
potential for dynamic load balancing.
For SN dynamic forms of load balancing have been proposed
for join processing in order to deal with data skew 132.35.7,
141. However, all these studies assumed single-user mode cor-
responding to a best-case situation with little or no msource
contention. Hence, only it&a-query load balancing is supported
and the effectiveness of the proposals in multi-user mode must
be questioned.
Most closely related to our work is a recent study by Mehta and
Dewitt [201. As we have done in [261 and here, they concen-
trate on dynamically determir& the degree of join processors
as well as selecting the join processors for SN. The main con-
tribution is a new algorithm called RateMatch for determining
the number of join processors. This scheme is based on the ob-
servation that the size of the join input is less significant for
fiuding the optimal number of join processors than the rate at
which the scan processors generate the join input. Thus the
scheme tries to determine the munbe-r of join processors such
that their aggregate join processing rate matches the rate at
which the join input is provided by the scan processors. How-
ever. the173 are several limitations both in the algorithm as well
as in the accompanying simulation study. Fit. RateMatch is
an isolated scheme that uses an independent algorithm for se-
lecting the join processors. Moreover, the algorithm is based on
a simplistic model for taking into account the effect of resource
contenticm on the scan and join processing rates. In particular,
the current memory availability is not considered at all and only
the average CPU utilization and average disk access times are
used to estimate the pmcessing rates in multi-user mode. This
ignores the fact that there may be large differences in the utili-
zation of individual nodes (which am considered by integrated
schemes). Fmthermore, the communication overhead associat-
ed with a selected degree of join parallelism is not taken into
account. One consequence of this simplification is that the al-
gorithm iuaases the degtee cd join parallelism as CPU utili-
zation increases in order to compensate the reduced proceSsiug
rate per join processor! This may be acceptable for low utiliza-
tion levels, but can lead to severe performance problems for a
higher CPU utilization (> 50%) as our results have shown. A

main limitaticm of the simulation study is that only completely
homogeneous hash-join workloads am considered favoring
au even system utilization. As a result. the differem be-
tween diffmnt approaches to select the join processors have
been very small. The best performance was observed for our
LUC scheme (originally proposed in 1261) although it only
considers the cumnt CPU utilization.
Iu [27]. we investigate the potential of Shared Disk database
systems for dynamic load balancing. This architecture offers
a higher flexibility than SN because even for scan operations
the degree of in&a-query parallel&n cau dynamically be cho-
sen. Furthermore, the scan processors are freely eligible since
each processor can access any disk.

7 Conclusions
We have investigated the problem of dynamic load balancing
for parallel Shared Nothing database systems. Such a load
balancing is a critical prerequisite for effective utilization of
“super servers”,, iu particular to support effective intra-query
parallelism in multi-user mode, i.e.. in combination with in-
ter-~ and inter-transaction parallelism. &major control
decisions to draw dynamically inch& determining the de-
gree of intraquery parahelism and selecting the processors
for executing s&queries. We found that these two subprob-
lems should be solved in an integrated way and that the cur-
rent system state with respect to multiple resources, in
particular CPU, memory and disk, needs to be considered.
We have studied these issues for parallel hash join processing
based on a dynamic redistribution of both join inputs among
several join processors. While in single-user mode minimiz-
~theamountofUOtotemporaryfiles(duetobsshtable
overflow) is of prime imw. the perfonuince in multi-
usermodemaybedominatedby~factoCsl~thedegree
of8Uanddiskcontention.Tnp~,weobJervedabasic
pelformance tradeoff with lespect to the optimal degree of
join parallelism in multi-user mode. Under high CPU utiliza-
tion we found it necessary to reduce the degree of join paral-
lelism in order to limit C.BU contention (communication
overhead for startup/termination and data redistribution). Un-
der disk and memory bottlenecks, on the other hand, the de-
gree of join parallelism should be &creased in order to reduce
the memory and I/O requirements per subquery.
We have investigated the performance of several single- and
multi-resource load balancing strategies for homv
and heterogeneous (query/OLTP) workloads by means of a
detailed simulation model. We considered static and dynamic
as well as isolated and integrated policies. Isolated policies
de- the degree of join parallehsm independently from
the policy used for selecting the join processors, while inte-
grated strategy try to address both scheduling problems to-
gether. We found that dynamic load balancing schemes
clearly outperform static approaches, in particular for lk%ero-
geneous workloads when the load situation at di&rent pro-
cessors may vary significantly. However, simple integrated
policies considering only the current utilization of a single re-
some (e.g., memory) are not always better than isolated
schemes considering multiple resources. This underlines the
ueed to have a dynamic, integated and multi-resource load

405

balancing approach. As our results suggest, such an approach
should be realized by a family of load balancing strategies so
that the most appropriate policy can be selected according to
the current system state. For instance, if the system suffers pri-
marily from memory and disk bottlenecks an integrated policy
like MIN-IO-SUOPT should be chosen that minimizes the
amount of I/O based on the current memory availability. For
situations with high CPU contention or with both CPU and
memory bottlenecks. an huegrated policy like OPT-IO-CPU
has proven to be very effective.
While our study focussed on parallel hash join processing, we
believe the principles behind our strategies are equally valid
for other relational operators that use a dynamic redistribution
of their input for parallel execution (e.g., sort). Furthermore,
we believe that the proposed strategies are not limited to Sha-
red Nothing but can equally be applied in Shared Disk data-
base systems. Currently, we are studying the performance of
different approaches to deal with data skew (in particular, re-
distribution skew) in multi-user mode. Prelimimuy results in-
dicate that the overhead of proposed skew handling techniques
is a significant problem in multi-user mode. On the other hand,
the skew problem may be reduced by dynamic load balancing
strategies that do not try to generate equally-sized subjoins but
select the join processors dependent on the size of the subjoins
(by assigning larger subjoins to less loaded nodes, etc.).

[141 Hua, K.A., Su, J.X.W.: Dynamic Load Balancin in
Very Large Shared-Nothin
Computers. IEEE Trans. on E

Hybercube Data ase %

1439,1993
omputers 42 (12), 1425

1151 Jauhari, R., Carey, M.J., Livny, M.: Priority-Hints: An
Algorithm for Priority-Based Buffer Management.
Proc. 16th VLDB Co@., 708-721.1990

[16] Lu,H., Tan,K.: D
ented Database 6

namic and Load-Balanced Taslc-Ori-
uery Processing in Parallel Systems.

Proc. EDBT, LNCS 580,357-372,1992
[171 Ma&. R.: A Cost Model for Parallel Query Processing

in Shared Nothing DBS (in German). Proc. German Du-
tabase Conf. BTW. Maich 1995

[18] Marek, R.1~Rahm,.: Performance Evaluation of Paral-
lel Transaction Processing in Shared Nothing Data-
base Systems, Proc. 4th Int. PARLE Co&, LNCS 605,
295310.1992

[191 Mehta, M. Dewitt. D.J.: Dynamic Memory Allocation for
M&t&&my Workloads. Proc 19th VLDB Conf., 354-

1201 Mehta, M., Dewitt, D J.: Managing Jntra-operator Parallel-
fgyF Parallel Database Systems. Proc 21 st VLDB Co&,

[211 Murphy, M.; Shari,, M.: Execution Plan Balancing. Proc.
1st Int. Conf. on Parallel and Distributed Ir#ormation Sys-
tems, 1991

1241 Patterson, D.A., Gibson, G.; Katz, R.$.i.:- A Case for Re-
dundant- Arrays of Inexpensive Disks (RAID). Proc.

[221 Omiecinski, E.: Performance Analysis of a Load-Bal-
ancing Hash-Join Al orithm for a Shared-Memory.
Multiprocessor. Proc 7th VLDB Conf., 375-385. 1991 I f:

[23] Pang, H.. Carey, MJ.. Livny, M.: Partially Preemptible
Hash Joins. Proc. ACM SIGMOD Conf.. 59-68.1993

8
Ill

I21

I31

141

151

%I

VI

PI

I91

HOI

[Ill

WI

II31

References
Brown, KP.; Mehta, M.; Carey, MJ.; Livny, M.: Towards Au-
tomated Performance Tuning for Complex Workloads.
Proc. 20th VLDB Conf.. 72-84.1994

ACMSIGMOD Co@, 109-l 16,1988
f.251 Rahm: E.: A Framework for Workload Allocation in

Distributed Transaction Processing Systems. Journal
of Systems andSomare 18,171-190.1992

[261 Rahm, E., Marek, R.: Analysis of Dynamic Load Bal-
. ancing Strategies for Parallel Shared Nothing Data-

base Systems. Proc 19th VLDB Co&, 182-193.1993
[27] Rahm, E., St&r, T.: Analysis of Parallel Scan Process-

ing in Shared Disk Database Systems. Proc. EURO-
PAR, LNCS, Springer-Verlag. Stockholm, Aug. 1995

[283 &linger. P.: Predictions and Challen es for Database
Systems in the Year 2000. Proc 19th b LJlB Co&, 667-
675.1993

Carey, MJ., Jauhari.*R:, Livny, M.: Priority in DBMS Re-
source Scheduling. Proc. 15th VLDB Conf., 397410,1989
Carey, M.J., Krishnamurthi. S., Livny. hi.: Load Control for
Locking: The ‘Half-and-Half’ Approach. Proc. 9th ACM
Symp. on Principles of Database Systems, 72-84,199O
Carey, MJ.. Muhanna, W.A.: The Performance of Multiver-
sion Concurrency Control Algorithms. ACM Trans. on
Computer Systems 4 (4), 338-378,1986
Davison, D.L.; Graefe. G.: Memory-Contention Responsive
Hash Joins. Proc. 20th VLDB Conf., 379-390.1994
Dewitt. D.J., Gray, 3.: Parallel Database Systems: The Fu-

35 (6). 85-88.1992
ture of Hi h Performance Database Systems. Comm. ACM
-- .-I- ~- ~~

Dewitt. D.J., Nau ton. J.F.. Schneider, D.A., Seshadri, S.:
Practical Skew P andlinn in Parallel Joins. Proc. 18th
VLDBCoqf. 1992 -
Englert. S.: Load Balancing Batch and Interactive Queries
in a Highly Parallel Environment. Proc. IEEE Spring Comp
Con Con& llO-112,199l
E?nglert, S.: Nonstop SQL: Scalability and Availability for
Decision Suooort. Proc. ACM SIGMOD Conf.. 491.1994
Graefe, G.: Query Evaluation Techniques f& Large Data-
bases. ACM Comput. Surveys 25 (2). 73-170.1993
Gray, J.: Super-Servers: Commodit Computer Clusters
Pose a Software Challenge. Proc. E erman Database Conf.
BTW. March 1995
Hirano. Y.. Satoh. T..Inoue. U.. Teranaka, K.: Load Balancing
Algorithms for Parallel Database Processinrz on Shared
M&rory Multiprocessors. Proc. 1st Int. Coni: on Parallel
and Distributed It&ormation Systems, 210-217,199l
Hong, W.: Ex loiting Inter-O eration Parallelism in
XPRS. Proc. A t MSIGMOD Con ., 19-28,1992 P

[29] Sk&on. CJ. et al.: EDS: A Parallel Computer System
for Advanced Information Processine. Proc. 4th Int.
PiRLi conf... springer-verlag, ticS60~: 3-18,1992

[30] Thomasian, A.: Thrashing in Two-Phase Locking Revisited.
Proc. 8th IEEE Data Engineering Conf.;518-526.1992

[31] Valduriez, P.: Parallel Database Systems: Open Prob-
lems and New Issues. Distr. and Parallel Databases l(2),
137-165.1993

1321 Walton, C.B; DaleA.G.; Jenevein, R.M.: A Taxonomy and
Performance Model of Data Skew Effects in ParaBel
Joins. Proc. 17th VLDB Conf.. 537-548, 1991

[33] Weikum. G.; Hasse, C.; Monkeberg, A.; Zabback, P.: The
COMFORT Automatic Tuning Project. Z#ormution
Systems 19(5), 381432.1994

1341 W&hut, A.; Flokstra. J.; Apers, P.: Parallelism ‘in a Main-
Memory DBMS: The performance of PRISMA/DB. Proc.
18th Int. Conf. on Very Large Data Bases, 521-532,1992

[353 Wolf, J.L., Dias. D.M., Yu. P.S., Turek, J.: An Effective
Algorithm for Parallelizing Hash Joins in the Pres-
ence of Data Skew. Proc. 7th IEEE Data Engineering
Co&.. 200-209.1991
-~ l 7--- -~ ,~

[36] Zeller, H., Gray, J.: An Adaptive Hash Join Algorithm
for Multiuser Environments. Proc. 16th VLDB Conf..
186-197,199O

v _

406

