
Managing Intra-operator Parallelism in Parallel
Database Systems*

Manish Mehta
IBM Alamaden Research Center

San Jose, CA, USA.
mmehta@almaclen.ibm.com

Abstract

Int#ra-operator (or partitioned) parallelism is a
well-established mechanism for achieving high per-
formance in parallel database systems. How-
ever, the problem of how to exploit intra-operator
parallelism in a multi-query environment is not
well underst,ood. This paper presents a detailed
performance evaluation of several algorithms for
managing intra-operator parallelism in a parallel
database system. A dynamic scheme based on the
concept of matching the ra.te of flow of tuples be-
tween operat,ors is shown to perform well on a va-
riety of workloads and configurations.

1 Introduction

Highly-parallel databa.se systems are increasingly be-
ing used for large-scale database applications. Exam-
ples of these systems include products like Teradata
DBC/1012 [26], Tandem Hima,laya [13], IBM SP1/2
[16], and research prot,otypes like Bubba [8], Ga.mma
[7], and Volcano [12]. Inlru-operafor parallelism (or
partitioned parallelism [4]) is a well-established tech-
nique for increasing performance in these systems. Ba-
sically, by allowing the input data to be partitioned
among multiple processors and memories, this tech-
nique enables a database operator to be split into many
independent operators each working on a part of the

*This research was performed while the first author was at
the University of Wisconsin-Madison and was supported by an
IBM Research Initiation Grant.

Pwmission to copy without jet all OT part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the ,veery Large Data Base
Endowment. To copy otherwise, or to republish, requires a jee
and/or special permission jvom the Endowment.

Proceedings of the Zlst VLDB Conference
Zurich, Swizerland, 1995

David J. Dewitt
Computer Sciences Department

University of Wisconsin-Madison
dewitt@cs.wisc.edu

dat,a. However, it is not evident how intra-operat,or
parallelism should be used in a multi-query environ-
rnent, where multiple concurrent queries are cont,end-
ing for system resources. Selecting low degrees of op-
era.tor parallelism can lead to underutilizat,ion of the
system and reduced performance. On the other hand.
high degrees of parallelism can give “too many” re-
sources to a single query and lead t.o high resource
contention. This paper explores this problem of deter-
mining the %ppropriat,e” degree of intra-operator par-
allelism for queries in a multi-query pa.rallel dat.aba.se
system.

T.here are two important issues that need to be ad-
dressed. First, for each query, t,he algorithm must de-
termine the degree of parallelism of each operator in
the query plan. Second, the algorithm must a.ssign
specific processors to execute each operat.or inst,ance.

The degree of parallelism of an operator should be
selected such that the cost of starting and terminat-
ing all of the instances of t,he operat,or is more than
offset, by the performance improvement due t,o paral-
lelism. Since startup and termination costs are a func-
t,ion of the configuration and workload, the degree of
parallelism should change for different workloads and
configurations. In this paper, we present, several al-
gorithms for determining the degree of parallelism of
operat,ors. A detailed performance evaluation shows
that a new dynamic algorit,hm based on t,he concept,
of matching the rat,e of flow of tuples bet.ween oper-
at,ors provides good performance across a variet,y of
workloads and configurations.

The primary objective of an algorithm for assigning
processors to operators is load balancing. Processors
should be assigned t#o operators such that, the workload
is uniformly distributed and all the nodes are equally
utilized. This paper presents several alternative meth-
ods of assigning processors to operators. The results
show that algorithms that utilize information about
the system workload in assignment decisions perform
better than algorithms t,hat assign processors stati-

382

tally.
The rest, of the paper is organized as follows. Sec-

tion 2 presents the system archit,ecture of a typical
highly-para.llel database syst,em. The algorithms for
selectming the degree of parallelism are presented in Sec-
tion 3 while algorithms for mapping operators t,o pro-
cessors are presented in Section 4. Section 5 discusses
how these algorithms can be combined to produce a
comprehensive processor allocation scheme. The simu-
lation model used for the performance evaluation is de-
scribed in Section G followed by a, description of the ex-
periment#al parameters in Section 7. Section 8 presents
a performance evaluation of algorithms for determin-
ing the degree of parallelism and Section 9 cont,ains the
evaluation of algorithms for mapping the operators to
processors. Related work is discussed in Section 10
and Section 11 contains our conclusions and sugges-
tions for future work.

2 System Architecture

Highly parallel systems are typically constructed using
a sha,red-nothing [25] archit#ecture. The system con-
sists of a set of external terminals from which trans-
actions a.re submitted. The transactions a.re sent to
a. randomly-selected scheduling node. The execution
of each transaction on the processing nodes is coor-
dinated by a specialized process called the schedvler.
The scheduler allocates resources (memory and proces-
sors) to the transaction and is responsible for sta.rting
and terminating all the operators in a t,ransaction. The
processing nodes are composed of a CPU, memory, and
one or more disk drives’. There is no shared mem-
ory/disk between the nodes, hence the term Sha.red-
Nothing. All inter-node communicat,ion is via message
pa.ssing on the int,erconnection network.

3 Determining the Degree of Operator
Paralleliqm

In most shared-nothing database syst8ems, the only
way t,o access data on a node is to schedule a select
operator on that node. This implies that the degree of
parallelism of select operators is fixed a-priori by the
data placement mechanism. However, the degree of
parallelism for other operators, like joins and stores,
can be chosen independently of the initial data place-
ment. We consider four algorithms for determining the
degree of parallelism,of such operators.

3.1 Maximum

The degree of parallelism chosen by this algorithm is
equal to t,he number of nodes in t#he system. Maxi-
mum therefore achieves t,he highest parallelism, but it

‘For the rest of this paper, the term node is used to collec-
tively refer to a processor, its l&xl memory and the attached
set of disks.

also has the highest startup and termination costs a,nd
leads to the highest resource contention. Moreover,
it is a static algorithm that selects the same degree
of parallelism for all operators regardless of the query
type and the workload.

3.2 MinDp

The degree of parallelism selected by this algorit,hm is
equal to the minimum of the degree of parallelism of
all the input streams. For example, consider a binary
hash-join query where the degrees of parallelism of the
selects on the inner and outer relations are Inner-dp
and Outer-dp, respectively. The MinDp algorithm will
select the join’s degree of parallelism as min(Inner-dp,
Outer-dp).

3.3 MaxDp

The MaxDp algorithm is sets t,he degree of join paral-
lelism to be the maximum of the degree of parallelism
of the input &earns. Note that in the case of unary op-
erators like store, the MaxDp and MinDp a.lgorithms
are identical.

3.4 RateMatch

The RateMatch algorithm is based on the idea of
matching processing rates of operators. If the rate
at which tuples are sent to an operator is much higher
than the rate at which the tuples can be processed by
the operator, incoming messa,ges will accumulate and
the message buffer can overflow, forcing the sender to
block. On t,he other hand, if the rate at which t,u-
ples are received by an operat,or is much lower than
the maximum possible processing rat,e, the operator
will frequently be idle and will wast,e syst,em resources
(specifically memory). By matching operator process-
ing rates, the RateMatch algorithm prevents senders
from blocking and, at the same time, conserves system
resources by avoiding idle operators.

We next present. t,he formulas used by the RateM-
atch algorit.hm to calculate the rate at which t.uples are
processed by the select and hash-join operators. Sim-
ilar formulas can also be developed for other database
operators. These formulas adjust the degree of paral-
lelism based on the current, CPU utilization and disk
response times, and therefore allow the RateMatch al-
gorit,hm t.o adapt to different workloads and config-
urations. We first develop formulas for a single-user
system assuming no buffering of messages, and then
incorporate the effect of multiple users and message
buffering.

3.4.1 Processing Rate of Select Operators

The total time (in seconds) taken by each select oper-
ator to process a data page is

383

where TIIO~,,,,, is the time taken to perform one I/O
and Tcpuselect is the CPU time taken for processing
one data page. Note that the above equation assumes
a.n overlap in CPU and I/O processing. TI/o~,,,,~ is
calculated as the sum of the time taken to initiate an
I/O request and the actual time taken to perform the
I/O. Therefore,

TIl Osdect =
II/O

CPUSpeed
$ AvgDiskReadTime

where Ill0 is the number of instructions needed to ini-
tiate an I/O and CPUSpeed is the speed of the CPU
in instructions per second (MIPS * 106). TcpuSelcct
includes the time taken by the selects to examine each
tuple on the data page, apply the selection predicate,
and send the selected tuples to the next operator.
Therefore,

T CPU,,,,,,
= (IRONS + Ipred) * TwPerPw

CPCTSpeed

+
ISend * Selection,~electivity

CPUSpeed

where IRead is the number of instructions for reading
a tuple in memory, Ipred is the number of instructions
for applying a predicate, ISend is the time taken to
send a page (including the cost of copying tuples to
the network buffer), TupsPerPage is the number of
tuples in each page, and SelectionSelectivity is the
fraction of tuples that satisfy the selection predicate.

Therefore the total rate at which pages are pro-
cessed by the select operators is

NSelect
ProcRateseleet = ~~eleel

where Nseleet is the degree of parallelism of the select
operator. Similarly, the total rate (in pages/second)
at which tuples are produced by the select operators
is

RateSelect = ProcRateSelect * SelectionSelectivity

N select * SelectionSelectivity
=

T select
Finally, since the rate at which tuples are produced

may be different in the build and probe phases due
to a different degrees of select parallelism in the build
and probe phase, the above calculaGon is carried out
for each phase separately. These rates are denoted as
RateserectB,,,ld and Rateseleetp,,b,, respectively.

3.4.2 Processing Rate of Hash-Join Operators

The rate at which tuples are processed by a hash-join
operator depends on the amount of memory allocated
to it. Here, we present formulas only for maximum
and minimum join memory allocation. The formulas
for intermediate memory allocations can be developed
similarly.

Maximum Memory Allocation: In the case of
maximum memory allocation, join operators do not
perform any I/OS. During the build phase, the join
operators read each incoming tuple and insert them
into a hash table. Therefore, the time taken to pro-
cess a data packet in the build phase is

TBuild =
1R’~ev + (IRead + IH~~~) * TupsPerPkt

CPUSpeed

where IReV is the number of in&ructions needed to re-
ceive a data packet, IHash is t,he number of instructions
needed to hash a tuple (this assumes that the tuple is
already in memory and no copying is required), a.nd
TupsPerPkt is the number of tuples in each network
packet. In the probe phase, the join reads incoming tu-
ples and probes the hash table for matches. If a match
is found, the result tuples are composed and sent to
the parent operator. Therefore,

IPerTupde = IRead + I$+.& + Iconapode * Join.Sek

T
I&o + IPerTuple * TupsPerPFt

Probe =
CPUSpeed

+ knd * JoinSel

CPlJSpeed

where Ip&e is the number of instructions needed
to probe the hash table, Iconapose is the number of
instructions needed to produce a result tuple, and
JoinSel is the join selectivity.

Minimum Memory Allocation: If the joins are
allocated their minimum memory allocation, the in-
coming tuples are divided into disk-resident partitions.
Since select, operators send tuples to join. operators
only during the partitioning phase, the rate calcula-
tion ma,tches processing rates only for the partitioning
phase. In both the build and probe phases, the incom-
ing tuples are read, hashed and then written to the
corresponding disk partition’. Therefore,

TBuildll+-,,be = AvgDiskWriteTime +
IRev + II/O

CPUSpeed

+(IRead + IHash -t Icopy),* TupsPerPkt
CPUSpeed

where IcO’opY is the number of instructions needed to
copy the tuples to the outgoing disk page.

Once the time t.aken for processing in each phase has
been calculated, the number of join processes needed

‘Recall that if joins are given their minimum memory alloca-
tion, the build and probe phases refer to the initial phases that
distribute the inner and outer relations, respectively. The result
tuples are produced in a third phase where each participating
join processor processes its disk-resident partitions.

384

to absorb the incoming tuples in the build phase,
NJOilZ&,ld 9 is calculated by equating the rat,e at which
tuples are processed by t,he joins t,o t.he rate at which
t,uples are produced by the select,s.

RateJoin,,,,,d =
NJOi~EWd

Tkhdd
= RateselectB,,,,d

Therefore:

l~Join&,,d = RateselectBulld * TBuild

Similarly:

NJoinprobe = RatwelectProbe * TProbe

Finally, the number of join sites should be such that
select, operators do not block in either the build or the
probe phase, so:

where N,,, is the total number of nodes in the system.

3.4.3 Extension to Multiple Users

The only extension needed in the formulas for a
multiple-user syst.em is to modify the value of the
CPU CPUSpeed parameter to incorporate the fact
that other users in the system will a.lso be using the
CPU simultaneously. Note t.hat the effect of multiple
users at the disk is already incorporated in the value of
the Average Disk Read/Write parameters. Therefore,
the value of CPUSpeed is modified to EffectiveCPUS-
peed using the formula for service time, S(x), for a
task wit,h service demand x on an M/G/l server with
round-robin scheduling [17], i.e.:

S(x) =
2

1 - Utilization

where x is the service demand of the arriving job.
Therefore, the time taken for each CPU processing
task should be modified using the following equat.ion.

TCPU =
CPlTInstructi0n.s

Ef fectiveCPUSpeed

CPUInstructions

= CPUSpeed * (1 - Utilization)

3.4.4 Effect of Message Buffer Size

The previous formulas assumed that there is no mes-
sage buffering and therefore t,hat the processing rates
need to match exactly. However, in practice, the oper-
ators buffer only a limited number of message packets.
In this case. the join processing rate may be slower
than the select, processing rate as long as there is no

messa.ge buffer overflow. Let, M be t,he size of the mes-
sage buffer, T the t,ime taken by the select to process
all of the t,uples, and NJ~~ and Nselect are the the de-
grees of join and select, parallelism, respectively. The
total number of message packets accumulated per sec-
ond at the join operators is the difference in the rate
at which tuples are sent, by the select operat,ors and
the rate at which they are consumed by the join op-
erators. Therefore, the total number of data packets
accumulated over the period of the query is given by:

#AccumulatedMsgs =

(Nse~eet * Rateseleet - NJG~ * RateJoin) *T

If t,his number is equal to the total message buffer size
of the join operators (i.e. M * NJ~~~~), there will be
no message overflow. Therefore,

#AccumulatedMsgs = M * NJoins l(l)

The total time taken to process the input is, in turn,
estimated as.

T=
Tseleet * InputSize

Nseleet

where InputSize is the number of pages accessed from
t,he input relation. Substituting the value of T and
#AccumulateMsgs in Equation 1 and simplifying. the
degree of join parallelism is calculated as:

N~oan =
Nseleet * Rateselect * Tselect * InputSize

M * Nseleet + RateJ,i, * Tseleet * InputSize

where Tselzet is the time taken by a select operator to
process one data’page.

4 Processor Assignment Algorithms

Once the degree of parallelism for an operator has been
determined, each instance of an operator must, be as-
signed to a specific processor. Six algorithms for pro-
cessor assignment are considered in this paper:

4.1 Random

The desired number of processors are chosen rahdomly
in this algorithm. Although the Random algorithm
is simple to implement, it, can lead to load imbal-
ance (since it does not use any information about the
present state of the system).

4.2 Round-Robin

The Round-Robin algorithm chooses processors in a
round-robin fashion (i.e. if the first operator is exe-
cuted on nodes l-10, the next operator is executed
on nodes 11 onwards). This algorithm distributes the
processing load bet.ter than Random, but it can also
lead to load imbalances because it ignores the actua1
distribution of the load in the system.

385

4.3 Avail-Memory

The third algorithm was proposed in [24] and assumes
t,hat the processing load of an operator is proportional
to its memory requirement and chooses the processors
with the most free memory. This assumption is ap-
plicable t,o memory-intensive operat,ors like joins and
sorts. Since memory allocation is performed at the
scheduling nodes, memory utilization figures are al-
ready available to the query schedulers. Therefore,
this algorithm does not entail any extra communica-
tion bet#ween the scheduling and processing nodes3.

4.4 CPU-Util

The CPU-Util algorithm was first proposed in [23] and
assigns the lea&utilized processors to an operator.
The performance of this algorithm depends on the fre-
quency with which CPU utilization statist,ics can be
updated at the scheduling nodes. Also. in order to
prevent, two successive operat#ors from being scheduled
on the same set of nodes, once a set, of processors have
been chosen, their CPU utilizations are increased “ar-
tificially”. This artificial increase in CPU utilization
prevent,s successive operators from being scheduled on
the sa.me set of processors, and it is cancelled the next
time the st,a.tistics are updated. The amount by which
the utilization should be increased is difficult to esti-
mate, however. If the amount is too low, it may not
prevent two successive operators from being executed
on the same set of nodes. Conversely, if the amount
is too high, it can lead to a large difference between
the a.ctual utilization of the node and the utilization as
seen by the query schedulers, leading the CPU-Util al-
gorithm t,o schedule queries on nodes that are already
more heavily utilized.

In order to select these parameters, we performed
a detailed sensitivity analysis of CPU-Util [Meht94].
As a result of the ana.lysis, our simulation model up-

dates utilization statistics at the scheduling nodes ev-
ery 5 seconds. Also, once an operator is scheduled on
a node, its utilization is increased “artificially” by 5%.
Not,e that this algorithm is not useful for operators like
store, that do not perform much CPU processing.

4.5 Disk-Util

The Disk-Util algorithm chooses the processors on
the nodes with the least disk-utilization. Similar to
the CPU-Util algorithm, disk utilization statistics are
reported to the scheduling nodes every 5 seconds,

3 If there are multiple scheduling nodes, some communication
is needed among the scheduling nodes to maintain an accurate
estimate of memory consumption at the processing nodes. How-
ever, these costs are ignored in this paper since inter-scheduler
communication for memory management is needed in all pro-
cessor allocation algorithms.

and disk-utilization is artificially increased by 5% in-
between periods of sta.tistics collection. This algorithm
is not useful for operators tha.t do not perform a signif-
ica.nt amount of disk I/O. An example is a hash-join
operator wit,h maximum memory allocation. Such a
join operator performs only CPU processing since the
input relations are read by separate select operators.

4.6 Input

The Input, strat.egy can only be used with the MinDp
and the MaxDp algorithms. Recall that, the degree of
parallelism selected by the MinDp and MaxDp algo-
rithms is equal to the degree of parallelism of one of
the input opera,tors; the input operator w&h t(he maxi-
mum parallelism for MaxDp and minimum parallelism
for MinDp. The Input strategy executes an opera.tor
on the same set of processors as the selected input op-
erator. For example, if the MinDp policy selects the
inner relation data stream for a. hash-join operat,or, t(he
Input, strategy will assign the join operator to the set
of nodes where the inner relation is being accessed.

5 Processor Allocation Strategies

The algorithms for determining the degree of operator
parallelism can be combined with t,he algorithms for
processor assignment to obtain a wide variety of pro-
cessor allocation algorithms. Most, of the combined al-
gorithms perform processor allocation in t,wo phases.
The degree of parallelism is determined in the first
phase. The degree of operator parallelism and the to-
t,al memory allocation to the operator are then used
to determine the memory needed per processor. In
the second phase, a list is made of candidate proces-
sors that have enough memory available in their buffer
pools. Finally, the processor assignment algorithm is
used to select a subset of the processors from the can-
didate list. If the number of processors in t#he candi-
date list is less than the degree of parallelism of the
operator, the query blocks and waits for memory to
become available. The only exceptions to this process
occur with the Maximum policy, which executes each
operator on all processors, and the Input processor as-
signment policy, which executes the operator on the
nodes where the input data stream is produced.

6 Simulation Model

The performance studies presented in this paper are
based on a detailed simulation model of a shared-
nothing parallel database system. The simulator is
written in the CSIM/C++ process-orient,ed simulation
language [SchwSO] and models the database system as
a closed queueing system. The following sections de-
scribe the configuration, database and workload mod-
els of the simulator in more detail.

386

6.1 Configuration Model

The terminals model the external workload source for
t,he syst,em. Ea.ch terminal sequentially submits a
stream of transactions. Each t.erminal has an expo-
nentia.lly distributed “thinktime” t,o creat,e variations
in a.rrival rates. All experiments in this paper use a.
configuration consisting of 128 nodes. The nodes are
modeled a.s a CPU, a buffer pool of 16 Mbyt.es4 with
8 Kbyt.e data pages. and one or more disk drives. The
CPU uses a round-robin scheduling policy with a 5
millisecond timeslice. The buffer pool models a set of
main memory page frames whose replacement is con-
trolled via t#he LRU policy extended with “love/hat,e”
hints. These hints are provided by the various rela-
tional operators when fixed pages ark unpinned. For
example, “love” hints are given by the index scan op-
erator t,o keep index pages in ‘memory; “hate” hints
a.re used by the sequential scan operator to prevent
buffer pool flooding. In addition, a memory reserva-
tion system under the control of the scheduler task
allows buffer pool memory to be reserved for a par-
ticular operator. This memory reservation mechanism
is used by hash join operators to ensure t#hat enough
memory is available to prevent their hash table frames
from being stolen by other operators.

The simulated disks model a Fujitsu Model M2266
(1 Gbyte, 5.25”) disk drive. This disk provides a cache
t&hat, is divided into 32 Kbyt,e cache contexts for use
in prefetching pages for sequential scans. In the disk
model, which slightly simplifies the actual operation of
the disk. the cache is managed as follows: each I/O re-
quest, a,long with the required page number, specifies
whether or not prefetching is desired. If prefet#ching
is requested. four pages are read from the disk into a
cache context as part, of transferring the page originally
requested from the disk into memory. Subsequent re-
quests to one of the prefetched blocks can then be
satisfied without incurring an I/O operation. A sim-
ple round-robin replacement, policy is used t,o allocate
cache contexts if the number of concurrent prefetch
requests exceeds the number of ava.ilable cache con-
texts. The disk queue is ma.naged using an elevator
algorithm.

The interconnection is modeled as an infinite band-
width net,work so t.here is no network contention for
messages. This is based on previous experience with
the GAMMA prototype [7] which showed that network
contsention is minimal in typical sha,red-nothing PDBs.
Messages do, however, incur an end-to-end transmis-
sion delay of 500 microseconds. All messages are

4The simulated buffer pool size is smaller than buffer pools in
typical configurations. Unfortunately, simulating a larger buffer
pool size would require enormous amounts of resources. Some
of our simulations took up to 36 MBytes and ran for 24 hours
on an IBM RS/SOOO even with 16 Mbytes of memory per node.

“point’-t’o-point” and no broadcast mechanism is used
for communica.tion. Table 1 summarizes the configu-
ration parameters and Ta.ble 2 shows the CPU instruc-
tion costs used in the simulator for various dat,a,base
operations.

Parameter 1 Value

1 Number of Nodes I 128
Memory Per Node 16 Mbytes
CPU Speed 10 MIPS
Number of Disks per Node 1
Page Size 8 Kbytes
Disk Seek Factor 0.617
Disk Rotation Time 16.667 msec
Disk Settle Time 2.0 msec
Disk Transfer Rate 3.09 Mbytes/set
Disk Cache Context Size 4 pages
Disk Cache Size 8 contexts
Message Wire Delay 500 psec

Table 1: Simulator Parameters: Configuration

7 Experimental Parameters
7.1 Configuration

Although we have experimented with both a disk-
intensive and CPU-intensive configuration, for the
sake of brevity, results are presented in this paper only
for a CPU-intensive configuration. The results of t,he
disk-intensive configuration are briefly summarized in
each performance section and t,he interestsed reader is
referred bo [20] for detailed experimental results. The
CPU-intensive configuration consists of a 10 MIPS
CPU and four disks per processor. The CPU speed
was chosen to be artificially low so that the processors
could be saturated with only 4 disks per node, thus
reducing the running time of the simulations time5.

A message buffer of 256 Kbytes is provided for each
operator. This implies that at most, 32 8Kbyte pages
can be buffered by each operator. Operat,ors st,op send-
ing messages when they detect that, the receiver’s mes-
sage buffer is full.

5For a faster processor, we would need to simulate many more
disks per processor. For instance, it takes upto 16 disks with
high I/O prefetching to saturate one Alpha AXP processor [5]

Operation

Initiate Select, Operator
Terminate Select Operator
Initiate Join Operator
Terminate Join Operator
Apply a Predicate
Read Tuple from Buffer
Probe Hash Table
Insert Tuple in Hash Table
Start an I/O
Copy a Byte in Memory
Send(Receive) an SK Message

Instr.

20000
5000
40000
10000
100
300
200
100
10000
1
10000

Table 2: Simulation Parameters: CPU Costs

387

7.2 Database

A simplified database is used in all of the experiments.
Each database relat,ion contains five million tuples and

is fully declustered. Although the relations are fully
declustered, we model range queries to explore the ef-
fect of reading data on only a subset of nodes. The
tuple size is fixed at 200 bytes and a clustered index is
modeled on each relation.

7.3 Workload

The workload contains only binary hybrid hash-join [6]
queries. The hybrid hash-join method was chosen since
it ha.s been shown to be superior to other join meth-
ods. Binary join queries were chosen so that issues,
like pipelining and query scheduling, that arise while
processing complex queries could be ignored. This is a
rea.sona.ble simplification as most, commercial database
systems execute queries comprised of multiple joins as
a series of binary joins, and do not pipeline tuples be-
t(ween adjacent joins in the query tree. Each binary
join query is composed of two select, operators (one for
the inner and one for the outer relation) plus a join
operat,or and a store operator. The select operators
execut,e wherever the input relations are declustered.
Therefore, processor allocation needs t,o be determined
only for the join and store operators. In order to
simplify this performance study, a simplistic proces-
sor allocation policy is used for store operators - the
store operator of each query executes on the same set
of nodes as the join operator of the query. There-
fore, the degree of parallelism and specific processor
assignments need to be determined only for the join
operator in a query. Moreover, the join selectivity has
been fixed at 1% to make the size of the join out-
put small to reduce the impact of store operators on
the performance results. Based on the results of ear-
lier memory allocation studies [21] [28] [l] [3], joins are
given either t,heir maximum or their minimum memory
allocation. Three kinds of workloads are considered:
Small, Medium and Large. Table 3 summarizes the
important parameters of these three workloads.

Workload Access Method indexselectivity
Small Clustered Index Scan 1%

Medium Clustered Index Scan 25%
Large File Scan N/A

Table 3: Workload Parameters
We also assume the presence of some mechanism

that, can be used to direct the select operators to only
a subset of the nodes.6. Therefore, the degree of select
operator parallelism is chosen randomly from 1 to 128.

GEven though all the relations are fully declustered, select.
operators can be directed to a subset of nodes in several cases
(e.g. when range de&&wing [ll] is used to map tuples to
relation partitions).

The performance of all of the algorithms is examined
under various system loads by increasing the number
of query terminals from 10 to 40.

8 Determining Degree of Parallelism

This section presents a performance comparison of al-
gorithms that, determine the degree of parallelism. The
CPU-Util algorithm is used in all the experiments t,o
perform processor assignment; the reason for using this
algorithm here will become evident in Section 9.

8.1 Maximum Memory Allocation

The first experiment compares the performance of the
algorithms on the Small workload (clustered index
scans with 1% indexselectivity) when each query is
given its maximum memory allocation. We assume
that range declustering is used and the degree of paral-
lelism of the select operators varies uniformly between
1 and 128. Figure 1 shows the average query response
time and the degree of join parallelism as the load in-
creases from 10 to 40 terminals.

Since the queries in t,his work1oa.d are small, st,artup
and t,ermination costs form a large fraction of t,he
query response time. Therefore, the rela.tive order
of the algorithms is determined by the startup and
termination costs, which, in turn, a.re determined by
the degree of join parallelism. The Maximum algo-
rithm, which selects the highest degree of join par-
allelism (128), has the highest startup and termina-
tion costs and, consequently, the highest, average query
response time. The MaxDp and MinDp algorithms
choose smaller degrees of parallelism (85 and 38, re-
spectively) and therefore achieve layer average query
response times (as compared to the Maximum algo-
rithm). The lowest query response time is achieved
by the RateMatch algorithm. This algorithm realizes
that the sizes of the inner and outer relations of t,he
join queries are small, and that the join and select
processing rates can be ma,tched with a low degree
of join parallelism. Moreover, unlike the other algo-
rithms, the RateMatch algorithm dynamically adapts
to the query workload: it selects a higher degree of
join parallelism as the system load increases because
the CPU-utilization increases. The degree of join par-
allelism increases from 25 to 32 as the 1oa.d increases
from 10 to 40 terminals.

The next experiment explores the relative perfor-
mance of the algorithms on the Medium workload
(clustered index scans with 25% indexSelectivity).
Figure 2 shows the average query response time and
the degree of join parallelism chosen by the algorithms.
Note that, except for the RateMatch algorithm, the
degrees of join parallelism chosen by all the other al-
gorithms are the same as in the previous experiment.
This is, because, t-heir choice of the degree of paral-

388

4:

5; u :

3 : .
aB E 3- .- :
c :
8 .
z e :

2 2: :
.9
4 :
s
e 1:
f
4 : .

+ Maximum
---&-- MaxDp
---+--- MinDp
- --A- - - RateMatch

140-

0 l
120-

5
g IOO-

e L 80- I) .-.-. -.a-.-.-.-m.- ._._. 1

.2
2 60-
0
t
b 40-

B
+ .-.-.-. l -.-. -.-*.- .____ +

20-
A _____ *-----+-----A

0- 01
0 10 20 30 40 0 IO 20 30 40

Number of Terminals Number of Terminals

Figure 1: Performance of Algorithms for Determining the Degree of Parallelism - Small Workload
Maximum Memory Allocation

40- + Maximum
3 -.-B--- MaxDp
k:
b

---+-- MinDp
- - - - g + RateMatch

G
8
2
% 20-
2
.5
4
Sk
e
Y

140

* a m - 0
120 1

&
2 IOO-
e c 80- ..-.-.-..-.-.-.-I.-.-.-..
e
5 60-
0
8

*-----*t-----*-----A

$ 40-
d

* .-.-. -.*-.- ._._ * _______ +

20-

Figure 2: Performance of Algorithms for Determining the Degree of Parallelism - Medium Workload
Maximum Memory Allocation

lelism depends only on the data pla.cement and config-
uration size, both of which remain static for all work-
loads.

The performance results for the Medium workload
are quit,e different from those of the Small workload.
The MinDp algorithm has the highest average query
response time for the Medium workload for less than 30
terminals, followed by the Maximum, then the MaxDp,
and finally the RateMatch algorithm. The important
thing to note is that MinDp has the worst perfor-
mance, even though Figure 2 shows that it chooses
the smallest degree of join parallelism (38).

The inferior performance of MinDp is due to the
fa.ct it selects a degree of join parallelism that is so low
that the join operators cannot process tuples at the
rate at which they are produced by the selects, so the
message buffers of the join operators overflow. This
causes the select operators to block leading t#o lower
CPU and disk utilizations and higher query response
times. Note that message buffer overflow was not ob-

served in the previous workload since the queries were
much smaller (1% indexselectivity) and the message
buffer size (256 KB) was large enough to prevent over-
flow. The RateMatch algorithm dynamically selects a
higher degree of join parallelism for this workload to
prevent the message buffers of the join operators from
overflowing. The MaxDp and Maximum algorithms
avoid message buffer overflow but, they incur higher
startup and termination costs than the RateMatch al-
gorit,hm since they select degrees of join parallelism
that are “too” high. However, startup and termina-
tion costs are a smaller fraction of the total response
time of the queries in this workload, so the average
query response times achieved by the Maximum and
MaxDp algorithms are only 17% and 9% higher, re-
spectively, than those of the RateMatch algorithm.

However, as the number of terminals is increased,
the relative performance of the MinDp algorithm im-
proves as the load increases (more than 20 termi-
nals). This is, because, even though some of the op-

389

160- b Maximum 1407

.. ..-.- Max&, _._. +.-.- MinDp

---A--- RateMatch

w
120-

0 a - 0

%
i IOO-

e $ 80- ..-.-.--~-.-.-.-..-.-.-.~

.B
2 60- 4
0
0

~ __.___. i ___.-. -A--.-‘-.

p 40- ..-.-.-.*-.-.-.-..-.-.-..
a

20

1
04 ,.,......,....,....,.........,.,..,.... (

0 10 20 30 40
0 I . , . , . , . . ,

0 IO 20 30 40
Number of Terminals Number of Terminals

Figure 3: Performance of Algorit,hms for Det,ermining the Degree of Parallelism - Large Workload
Maximum Memory Allocation

era,tors block in the MinDp a.lgorithm due to mes-
sage buffer overflow, there is enough concurrent, ac-
tivity in t,he syst,em t,o achieve high processor ut,iliza-
tion, and there is no increase in t,he average response
t,ime. The Maximum and Ma.xDp algorit8hms, on t.he
ot,her hand, perform relatively worse because of their
higher sta.rt,up and termination c0st.s. The Ra,teM-
a.tch algorithm chooses a. much smaller degree of join
parallelism (compared to Maximum and MaxDp). and
therefore performs well. At the highest load of 40 ter-
minals. RateMatch resu1t.s in an average response time
t,hat, is only 2% higher than the average response time
achieved by MinDp.

The next experiment examines the performance of
the algorithms on the Large query workload (file scans
wit#h 100% selectionSelect,ivity). Figure 3 shows the
average query response time and the degree of join
parallelism for each algorithm. The resu1t.s show that
RateMat,ch still has t,he best performance, but t,he
performance of the other algorit#hms is much closer;
Maximum a.nd MaxDp provide response times that are
only ll’% and 9% higher, respectively. The reason is
the same as before - file scans increase the execution
time of t#he queries, so the effect of extra startup and
termination costs in the MaxDp and Maximum algo-
rithms become less and less significant. The MinDp
algorithm behaves similar to the last experiment. It
selects a low degree of parallelism, causing the select
operat,ors to block; thus, leading t(o high average query
response times at low query loads. As the load in-
creases, t,he effect of blocking diminishes and MinDp
is able to achieve lower average query response times.

It is interesting to note that the degree of join par-
allelism chosen by the RateMatch algorithm for the
Medium and for the Large workloads is nearly identi-
cal (even though the Large queries process nearly four
times the data processed by the Medium queries). The
reason is t,hat the rate at which tuples are sent by the

select operators is the same for both workloads. The
rate depends on t,he degree of parallelism of t,he se-
lect operators. Since the degree of parallelism of select
operators is identical for bot,h workloads, t,he rat,e at,
which t,uples a.re sent. t,o t,he join opera,tors in t#he two
workloads is also identical. Therefore, the same degree
of join pa,rallelism can be used for hot#h t,he workloads.
This implies that any algorithm which chooses the de-
gree of join parallelism based on the size of t,he input
relations will be non-optimal. The degree of join paral-
lelism chosen by such an algorithm for the Large work-
load would be four t.imes that of t.he Medium workload,
while these experiments have shown t#hat the degree of
join parallelism should remain the same for both work-
loads.

The last t,hree experiments have shown that the
MinDp algorithm performs well for small-query work-
loads but can lead to a underutilized system and higher
query response times for larger queries (since it can
underestimate the proper degree of join parallelism
causing select operators to block). The Maximum
and MaxDp algorithms perform poorly for small query
workloads due to high startup and termina.tion cost,s
but can provide reasonable performance as query sizes
increase. Finally, the RateMatch algorithm consis-
tently shows good performance. The RateMatch al-
gorithm performs well for the small query workload
because it, reduces startup and termination costs. At
the same time, it can dynamically increase the degree
of parallelism for larger queries to prevent operators
from blocking.

8.1.1 Minimum Memory Allocation

In each of the previous experiments, queries were given
their maximum memory allocation. The next exper-
iment compares the performance of the algorithms
when queries are given their minimum memory allo-
cation. Figure 4 shows the average query response

390

*‘I + Maximum 140-

3 -.-m--- MaxDp
8
c ---+--- MinDp
p 60- ---A--- RateMatch
F

120-

E
2 IOO-

e 2 80- ..-.-.-.~‘-.-.-.-..-.-.-.~

.z
2 60-
0
P
b 40-
d

..-.-.-.*-.-.-.-~.-.-.-.~

20-
4

01 0 10 20 30 40 OV IO 20 30 40
Number of Terminals Number of Terminals

Figure 4: Performance of Algorithms for Determining the Degree of Parallelism - Medium Workloa,d
Minimum Memory Allocation

time and t)he degree of join parallelism for the medium
workload. Result#s are not presented for the Small
work1oa.d since there is not much of a difference be-
tween maximum and minimum memory allocation for
queries in the Small workload. Additionally, Large
workload results were qualitatively very similar to
the Medium workload results and have therefore been
omitted.

Figure 4 shows that, if queries are allocated their
minimum memory allocation, the higher the degree of
join parallelism, the lower the average query response
time. This occurs for two reasons. First, minimum
memory allocation implies t#hat input relations must
be pa.rtitioned by the join operators into disk-resident,
buckets. Since writing out tuples t,o disk is slow, the
processing rate of join operators decreases. Therefore,
too little join parallelism can cause the select opera-
tors to block. Second, once partitioning of the input
relat.ions is complete, a higher degree of join paral-
lelism implies faster processing for each disk-resident
bucket,. Consequently, the Maximum and RateMatch
algorithms, which both select high degrees of join par-
allelism (128 and 122, respectively), provide better
performance than the MinDp and MaxDp algorithms,
which select lower degrees of join parallelism (85 and
38, respectively).

8.2 Result Summary

The results of the previous experiments have shown
that when queries are allocated their maximum mem-
ory allocation, the MinDp algorithm performs well for
small queries since the cost of startup and termina-
tion constitutes a large fraction of t,heir response time.
However, the MinDp algorithm’s performance can de-
teriorate as the size of the input relations increases
because it can underestimate the degree of operator
parallelism, thus causing other operators t.o block. The
Maximum and MaxDp algorithms perform poorly for

small query workloads due to high startup and t,ermi-
nation cost,s, but t#hey provide rea.sona,ble performance
for larger query sizes. On the other hand, the RateM-
atch algorithm can dynamically adapt the degree of
parallelism to provide good performance for bot.h small
and large query workloads.

If minimum memory allocation is used for queries.
a higher degree of jqin parallelism improves response
times. Therefore, the Maximum and RateMat#ch al-
gorithms perform well. but, the MinDp and MaxDp
algorithms lead to higher response times.

The relat,ive performance of the algorithms is also
the same in a disk-int,ensive configuration [20] except
that all the algorithms have nearly identical perfor-
mance when queries are given their maximum mem-
ory allocation. Response times are dominated by I/O
processing time in a disk-intensive configuration; since
all t,he algorithms perform the same I/O processing if
queries are allocated their maximum memory alloca-
tion, their performance is also identical.

9 Determining Processor Assignment

So far we have compared the performance of t,he al-
gorithms for selecting the degree of join parallelism.
This section presents a performance evaluation of the
six processor assignment algorithms discussed in Sec-
tion 4.

9.1 Maximum Memory Allocation

The first experiment in t,his section compares the per-
forma.nce of the algorithms on the Small workload.
Maximum memory allocation is used for the queries
and the degree of select parallelism varies varies uni-
formly between 1 and 128. Figure 5 shows the perfor-
mance of the various processor assignment algorit.hms
when t,he RateMatch algorithm is used to determine

391

the degree of join parallelism7. As explained previ-
ously, the Input algorithm cannot be used with the
Rate algorithm, so it is not shown in Figure 5. The
Disk-ITtil algorithm is also absent since it is used only
with minimum memory allocation.

---@--- Random

- - -) - - Round-Robin

- - -+ - - Avail-Mem

---A--- CPU-W

Ofi
Number of Terminals

Figure 5: Processor Assignment Algorithms
Small Workload, Maximum Memory Allocation

Figure 5 shows that t,he Random algorithm leads
t,o the highest response times since it. sometimes as-
signs even heavily loaded processors to a join. The
Round-Robin and Avail-Memory algorithms distribute
the join workload more uniformly than the R.andom
algorithm and therefore achieve lower response times.
However, both t,hese algorithms ignore the CPU load
from the select operators, and thus do not perform
as well as the CPU-Util algorithm. The CPU-Util
achieves the lowest query response times, but it is
only about 10% better than the Round-Robin algo-
rithm. This is because the CPU-Util algorithm uses
utilization statistics that are updat,ed every 5 seconds.
Since queries in this workload are very small (1% se-
lectivity on the input relations), multiple queries often
a.rrive in the system within the 5 second int,ervals when
the CPU-utilization statistics are out-of-date. These
queries therefore get executed on nodes that do not
necessarily have the lowest CPU-utilization. As a re-
sult, the performance of the CPU-Util algorithm is
only slightly better than the simpler Round-Robin al-
gorithm.

The relative performance of the processor assign-
ment algorit,hms is also similar with the Medium work-
load. Figure 6 shows the performance of the different
algorithms when the RateMatch algorithm is used to
select the degree of join parallelism. CPU-Util pro-
vides the best performance in all the cases, followed
by the Avail-Mem, Round-Robin, and the Random al-

7[20] also contains experimental results when other algo-
rit.hms like MaxDp are used determine the degree of join paral-
lelism and the results are qualitatively very similar.

gorithms. Results for the Large workload were quali-
tatively similar and ha,ve been omitted.

3oT ---*-- Random

3 ---m-- RoundRobin L
u
3 - ---e-- Avail-Mem ,Q

P : ---A--- CPU-Util
$3 ,I IN

i= 20- $:,y’
Y

t

,I
P 5 ,

I
B

,c. ; ’ ,.I,

d
5, C,‘, *

e I ,rS, .’

z lo-
: ‘gc-’ 2

8 m
e .
%

0 .“~““‘,““,“,‘,““““‘,,““““,
0 10 20 30 40

Number of Terminals

Figure 6: Processor Assignment Algorithms
Medium Workload, Maximum Memory Allocation

The resuhs of these experiments show that the
CPU-Util algorithm for processor assignment, achieves
the lowest response times when queries are given t.heir
maximum memory allocation. However, as query sizes
increase, simpler algorithms like R.ound-Robin and
Avail-Mem ca.n also perform quite well.

9.2 Minimum Memory Allocation

The next experiment with the CPTT-intensi.ve configu-
ration explores the performance of the processor allo-
cation algorithms when joins are given their minimum
memory allocation. As in Section 8.1.1, results are re-
ported only for the Medium workload (since there is
not much difference between the maximum and mini-
mum memory allocations for the Small workload and
the results for the Large workload are similar to the
results of Medium). Figure 7 shows the average query
response times for the different processor assignment
algorithms under various system loads. Since join op-
erators perform I/OS with minimum memory alloca-
tion, the performance of the Disk-Util algorithm is also
included.

Figure 7 shows that all the processor assignment al-
gorithms have virtually identical performance in this
case. This is mainly because t,he number of proces-
sors chosen by RateMatch is high for this workload.
The average degree of join parallelism is 122. There-
fore, the set of processors chosen by the CPU-Util al-
gorithm, for example, is not very different from the
set of processors chosen by the Random algorithm. As
a result, all of the algorithms have basically the same
performance for this workload. This experiment shows
that as the degree of operator parallelism increases, the
differences in the performance of the various processor
allocation algorithms virtually disappear.

392

50-$ ---*-- Random

3 : - - -) - - Round-Robin

8 40: ---+-- Avail-Mem ,m

2 i ---A--- CPU-Util 4’
i; 8’

t 30
---X--- Disk-UN

z
%

p”
#’

g .9 20

:

p”

“M
l /4 e IO 9 d

Figure 7: Processor Assignment AlgoritShms
Medium Workload, Minimum Memory Allocation

9.3 Result Summary

This section has presented the performance of several
processor assignment algorithms. The results show
that the choice of the processor assignment algorithm
has a significant performance impact only if the work-
load is CPU-intensive and queries a.re given their max-
imum memory allocation. In this case, the CPU-Util
algorithm, which selects the least utilized processors,
achieves the lowest response time.’ In all other cases9 ,
the choice of a processor assignment algorithm has a
small performance impact and therefore a simple algo-
rithm like Round-Robin is sufficient t#o obtain reason-
able performance. Finally, the experiments show that
the choice of the processor assignment algorithm is not
as important as the choice of the algorithm used to de-
cide the degree of join parallelism; the differences be-
tween the performance of the processor assignment al-
gorithms are smaller than the differences in the perfor-
mance of the algorithms for select,ing join parallelism.

10 Related Work

Intra-operator parallelism and processor assignment
has been an active area of database research. The
topic has been studied extensively in t,he context of
load balancing in shared-everyt,hing systems [14] [19].
Several researchers have focused on processor assign-
ment for queries with multiple join operators [lo] [22]
[9]. Processor assignment has also been studied exam-
ined in t,he context of distributed database systems [2]

WI.
A formula for determining the optimal degree of

parallelism of database operators was presented in [27].

8These results explain the use of the CPU-Util algorithm in
all of the experiments comparing algorithms for selecting join
performance (Section 8).

gThe experiments with the disk-intensive configuration [20]
also show that all the algorithms perform similarly.

The formula assumes that if S is the startup cost, of
a’n operation, and P is the per-tuple processing cost,,

then the optimal degree of parallelism, noFt =
d-

PN

Note that, t,his formula is based only on t,he size of t”hd
operand and disregards the rate of flow of tuples be-
tween operators. The results presented earlier in the
paper (Section 8) show that this can lead to exces-
sively high degrees of parallelism. Rahm and Marek
[23] study algorithms to determine the degree of par-
allelism for t,he join operator and also st,udy proces-
sor assignment algorithms. The authors consider only
small queris and decrease the degree ofjoin parallelism
based on the CPU-utilization in a multi-user environ-
ment. Our results, however, show t,hat, reducing the
degree of parallelism even in CPU-int,ensive configu-
rations does not affect performa.nce significantly, es-
pecially for large query sizes. Moreover, the algorit,hm
presented in [23] uses the optimal parallelism in single-
user mode as input. This parameter can be hard to
estimate especially since it is a complex function of
the configuration, memory, and the memory alloca-
tion policy. Algorithms for processor and memory al-
location were also studied in [24]. [MurpSl] use the
concept of matching processing rates of operators in a
query plan to determine buffer allocation.

11 Conclusions

This paper has investigated the problem of managing
intra-operator parallelism in a multi-query environ-
ment for a parallel database system. Four algorithms
for deciding the degree of operat,or para.llelism and six
algorithms for selecting the assignment of operat,or in-
stances to processors were considered. A detailed per-
formance evaluation of the algorithms showed that us-
ing the RateMatch algorithm for deciding the degree
of parallelism and the CPU-Util algorithm for select-
ing processors achieves the best performance irrespec-
tive of the workload and hardware configuration. The
RateMatch algorithm calculates the degree of paral-
lelism based on the rate at which tuples are processed
by various operat,ors, while the CPU-Util algorithm
selects the processor with the least CPU-Utilization.
Both algorithms use information about the current
system state and can therefore dynamically adapt to
different workloads. However, experiments also show
that if the workload consists of large queries, or if the
configuration is disk-intensive, simpler allocation al-
gorithms like MaxDp can perform equally well. This
implies that processor allocation can be significantly
simplified in several cases.

In this paper, the RateMatch algorithm was used
only to determine the degree of join parallelism for bi-
nary join queries in a shared-nothing system. However,
we feel that the paradigm of matching the rate of tu-

393

ple flow between operators can be used in other cases
also. For example, it can be used in a complex query
to match the rat#e of flow bet,ween the opera.tors in a
parallel-query pipeline. Similarly, the algorithm can
be used to decide the degree of parallelism for other
operators like sorts and aggregates. We plan to explore
these issues further in the future. Another direction of
future research is t,he application of the RateMatch
algorithm t,o shared-memory and sha,red-disk sy&ems.

The results presented in this st,udy have also shown
the importance of decoupling processor allocation from
data placement. The MinDp algorithm, for inst.ance,
can underestimate the degree of operator parallelism
and cause high query response times. Similarly, the
MaxDp algorit,hm can overest,imate operator paral-
lelism and lead to higher startup and termination
costs. The decoupling of processor allocation a.nd
da.ta placement can have a significant impact on sev-
eral other area.s of research in shared-nothing paral-
lel database syst,ems as well. For example, all of the
studies on declustering policies [ll] [15] also make the
implicit, assumption that operations like joins are ex-
e&ed on the nodes where data is accessed. A re-
exa.mination of the algorithms proposed in t,hese st,ud-
ies will be required if this assumption is removed.

References
[l] K. Brown, M. Mehta, M. Carey, and M. Livnp. To-

wards automated performance tuning for complex
workloads. In Proc. VLDB Conf., Santiago, Chile,
September 1994.

[2] M. Carey, M. Livny, and H. Lu. Dynamic task alloca-
tion in a distributed database system. In Proc. Intl.
Conf. On Disk. Computing Systems, May 1985.

[3] D. Davison and G. Graefe. Dynamic resource broker-
ing for multi-user query execution. In Proc. SIGMOD
Cont., San Jose, Ca, May 1995.

[4] D. Dewitt and J. Gray. Parallel database systems:
The future of high performance database systems.
CACM, 35(6), March 1992.

[5] C. Nyberg et. al. Alphasort: A rise machine sort. In
Proc. SIGMOD Conf., Minneapolis, MN, May 1994.

[6] D. Dewitt et. al. Implementation techniques for main

memory databases. In Proc. SIGMOD Conj., Boston,
MA, June 1984.

[i’] D. Dewitt et. al. The gamma database machine
project. IEEE Trans. on Knowledge and Data Engg.,
2(l), March 1990.

[8] H. Boral et. al. Prototyping bubba, a highly paral-
lel database system. IEEE Trans. on Knowledge and
Data Engg., 2(l), March 1990.

[9] Ming-Ling Lo et. al. On optimal processor allocation
to support pipelined hash joins. In SIGMOD, pages
69-78, Washington DC, June 199’3.

lo] Ming-Syan Chen et. al. Using segmented right,-deep
trees for the execution of pipelined hash joins. In
VLDB, Vancouver, Canada, August 1992.

[ll] S. Ghandeharizadeh. Ph,ysical Database Design in
Multiprocessor Systems. PhD thesis, TJniversity of
Wisconsin-Madison, 1990.

[la] G. Graefe. Volcano: An extensible and parallel
dataflow query processing system. Technical report,
Oregon Graduate Cent,er, June 1989.

[13] Tandem Performance Group. A benchmark of non-
stop sql on the debit credit transaction. In Proc. SIG-
MOD Con!.. Chicago, IL, November 1988.

[14] W. Hong. Exploiting inter-operation parallelism in
xprs. In Proc. ACM SIGMOD Conj., San Diego, CA,
June 1992.

[15] Ii. A. Hua and C. Lee. An adaptive data placement
scheme for parallel database computer systems. In
Proc. VLDB Conf., Brisbane, Aust,ralia, 1990.

[16] Int’l Business Machines. Scalable PO WERparollel Sys-
terns, GA23-2475-02 edition, February 1995.

[li’] L. Kleinrock. Queueing Systems - Vol. 2: Computer
Applications. John Wiley and Sons, 1976.

[18] H. Lu and M. Carey. Some experimental results on
dist,ributed join algorit,hms in a local network. In Proc.
VLDB Conf., Stockholm. Sweden. August 1985.

[19] H. Lu and K. Tan. Dynamic and load-balanced task-
orient,ed database query processing in paralle systems.
In Proc. EDBT Conf.. 1992.

[20] M. Meh&. Resource illlocation for Parallel Shared-
Nothing Database Systems. PhD thesis, Univer-
sity of Wisconsin-Madison, 1994. available at.
http://www.cs.wisc.edu/ mmehta/mmehta.html.

[21] M. Meht,a and D. Dewitt. Dynamic memory allo-
cation for multiple-query workloads. In Proc. VLDB
Conj., Dublin. Ireland, August 1993.

[22] P. S. Yu Ming-Syan Chen and K. L. Wu. Schedul-
ing and processor allocation for parallel execution of
multi-join queries. In Proc. of the 8th Int. Conj. on
Data Engineering, Pheonix, AZ, February 1992.

[23] E. Rahm and R. Marek. Analysis of dynamic load bal-
ancing strategies for parallel shared nothing database
systems. In VLDB, Dublin, Ireland, August 1993.

[24] E. Rahm and R. Marek. Dynamic multi-resource load
balancing in parallel database systems. Technical Re-
port 2 (1994), University of Leipzig, June 1994.

[25] M. Stonebraker. The case for shared nothing. Data
Engineering, 9(l), March 1986.

[26] Teradata Corp. DBC’/l012 Data Base Computer Sys-
tem Manual, document no. clO-0001-02, release 2.0
edition, November 1985.

[27] A. Wilschut, J. Flokstra, and P. Apers. Paral-
lelism in a main-memory dbms: The performance
of prisma/db. In Proc. VLDB C&f., Vancouver,
Canada, August 1992.

[28] P. Yu and D. Cornell. Buffer management based on
return on consumption in a multi-query environment.
VLDB Journal, 2(l), January 1993.

394

