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Abstract 

In multi-processor database systems there are 
processor initialization and inter-communication 
overheads that diverge real systems from the ideal 
linear behaviour as the number of processors in- 
creases. Main-memory database systems suffer 
more since the database processing cost is small 
compared to disk-based database systems and thus 
comparable to the processor initialization cost. 
The usual uniform data fragmentation strategy 
divides a relation into equal data partitions, lead- 
ing to idleness of single processors after local 
query execution termination and before global 
termination. In this paper, we propose a new, 
non-uniform data fragmentation strategy that re- 
sults in concurrent termination of query process- 
ing among all the processors. The proposed 
fragmentation strategy is analytically modeled, 
simulated and compared to the uniform strategy. 
It is proven that the non-uniform fragmentation 
strategy offers inherently better performance for a 
parallel database system than the uniform 
strategy. Furthermore, the non-uniform strategy 
scales-up perfectly till an upper limit, after which 
a system re-configuration is needed. 

1. Introduction 

Modern dam-intensive database applications strive for 
enhanced performance. Many parallel database systems [4, 
10, 271 have appeared both as research prototypes [5, 9, 
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16,22,231 and as commercial products [24,25] to capture 
the demand for speed in database processing. Another di- 
rection for the search of performance improvement for 
time-lined database applications have been main-memory 
database systems [ 12, 131. The integration of the above 
two research directions have been studied in tbe context of 
PRISMNDB project [ 1,281. 

During the last decade, Object-Oriented Databases 
(OODBs) gained considerable attention [17] mainly be- 
cause they reduce the “semantic gap” between real world 
concepts and data representation models. A major draw- 
back of OODBs is the low speed of query execution, due 
to the sequential processing of independent entities and the 
slow disk-based access of large objects. 

Recently, in order to overcome the above limitations, 
parallel OODB systems have been proposed [2, 19, 26, 
271, following the research for parallel relational 
databases. Among them, the PRACTIC parallel main- 
memory OODB system [2] includes an object data model 
and an abstract hierarchical multi-processor architecture 
that its performance on query execution has been studied 
analytically [33. The hierarchical architecture has been 
proved inherently better than a flat one [28]. 

In this paper we try to improve performance of query 
execution further, by proposing a non-uniform data frag- 
mentation strategy on the nodes of a multi-processor 
database system, to compensate for the effect of sequential 
query start-up at each processor from the coordinator. 
Results show that this new approach a) improves by 44% 
the peak performance of the parallel database system, and 
b) scales-up perfectly until an upper bound, after which a 
system re-configuration is needed. Furthermore, the strat- 
egy can be easily implemented on any multi-processor 
database system, both relational and object-oriented. 

The rest of the paper is structured as follows: section 
2 refers to related work on the performance analysis of 
parallel database systems; section 3 presents the non-uni- 
form data fragmentation strategy; section 4 analyses the 
performance, fragmentation and hashing of tbe proposed 
strategy, while section 5 focuses on system scalability. 
Section 6 presents simulation results, and finally, section 
7 concludes this paper with a summary of the main points 
and a discussion of future work. 
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2. Related Work 

The performance of query execution in parallel 
database systems using various data fragmentation strate- 
gies has been extensively studied [5, 7, 9, 10, 14, 151. 
Most of the systems use full and uniform declustering as 
data fragmentation strategy, i.e. all relations are distributed 
over all nodes uniformly, to advantage from the parallel 
execution of an operator among the partitions. 

In the Bubba system [5] it is argued that full and uni- 
form declustering is not always the best strategy [7, 141, 
since the access frequency of each relation partition may 
vary, therefore the most frequently accessed partition may 
become a bottleneck to the system performance. The anal- 
ysis in 17, 141 concerns multi-user database systems, as- 
suming certain workloads that arise from concurrent 
database accesses and/or small transactions. Therefore, the 
purpose of their declustering strategies is to achieve higher 
transaction throughput, i.e. more transactions per second. 

In order to achieve this, they base their declustering 
strategies not only on the size of each partition, but also 
on the access frequency of the tuples that are stored within 
its partition. This kind of non-uniform partitioning results 
in a uniform workload per partition, which is a pre-requi- 
site for the full exploitation of a multi-processor system. 

Our work instead concerns the performance improve- 
ment of single large, decision-support queries or batch 
transactions in a parallel database system. Therefore our 
purpose is to minimize query response time, sacrificing 
(probably) memory and disk utilization. 

The performance of such queries has also been studied 
in [6, 281. More specifically, in [28] it is concluded both 
theoretically and experimentally for the PRISMA/DB par- 
allel main-memory relational database system, that there 
is always an upper limit in speed-up. This upper limit is 
lower in main-memory than disk-based database systems, 
because main-memory processing is faster and the proces- 
sor initialization costs are comparable to the actual query 
processing costs. The limited scalability is due to the fact 
that the query execution coordinator node initializes only 
one node each time, sequentially. 

The main concept behind our fragmentation strategy 
is to distribute data non-uniformly into partitions in order 
to achieve non-uniform workloads per processing node. 
The non-uniform workload distribution will compensate 
for the effect of sequential initialization of the processing 
nodes. As a result all nodes will terminate query process- 
ing at the same time, achieving minimal global query re- 
sponse time. 

Another major difference of our fragmentation strat- 
egy for an OODB with previous approaches for relational 
databases is that they use hash or range partitioning [7, 
141, based on the most frequently accessed attribute of the 
relation. In contrast, our strategy is based on the most fre- 
quently evoked method of the class. Furthermore, the sin- 
gle hashing attribute is the object identifier, since in 
OODBs objects are usually accessed through that. Thus, 
multi-attribute declustering strategies [ll, 15, 20, 211 do 

not apply to our case, except if they are adapted for multi- 
ple methods. 

In the following sub-section, the analytical perfor- 
mance of PRISMA/DB query execution is summarized as 
background knowledge, because it will be used as a mea- 
sure of comparison with our analysis. 

2.1. Background 

The abstract architecture of a parallel shared-nothing 
database system [8,28] consists of a flat, linear multi-pro- 
cessor network (fig. 1). There is one master processor that 
coordinates query execution and several slave processors 
that execute relational operations on the partition of the 
relation they store. Relations are fragmented into equally 
sized partitions for the shake of uniformity and simplicity. 

h w slave . . . processors 

Disks 

Figure 1. A shared-nothing parallel database architecture 

The master processor is assumed to initiate query exe- 
cution on each slave processor sequentially and then each 
slave processor proceeds on its own. 
Theorem 1. The response time of a uniformly frag- 
mented system is: 

“R=m+c~ (1)) 
n 

where (w is the initialization time of each slave processor, 
c is the processing time per tuple in respect to a specific 
relational operator, N is the total number of tuples of the 
relation and n is the number of slave processors that the 
relation is distributed into. The index u is used to denote 
that the fragmentation strategy is “uniform”. 
Theorem 2. The “speed-up” that a uniformly fragmented 
system offers is: 

“S = a+cN 
Al 

fXil+cfI- 
n 

Theorem 3. The optimal configuration for a uniformly 
fragmented system is: 

‘no = J CN - 
a (2) 

where the maximum speed-up and the minimum response 
time are achieved: 

Proofs. See [28]. 

“R. = 245% 
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In [28] it is argued that in order to increase n,, i.e. 
increase the scalability of the system, either c must be in- 
creased (as in disk-based DBMSs) or a must be decreased, 
which is a more rational solution, since it decreases the 
query response time as well. 

In this paper we argue that if the data fragmentation 
strategy is changed into a non-uniform one, it is possible 
to increase the scalability (and performance) of a parallel 
database system, another 44% more than the maximum of 
theorem 3. In addition to the use of a hierarchical abstract 
architecture and query execution strategy proposed in [3], 
our data fragmentation strategy can provide for a very in- 
creased performance in a parallel OODB system. 

3. Non-Uniform Fragmentation Strategy 

In this section we first review the query execution 
model of the commonly used in parallel database systems 
uniform strategy and then we discuss the proposed non- 
uniform data fragmentation strategy, which is the main 
contribution of this paper. 

The theoretical characteristics of the parallel execution 
of an operation on a uniformly fragmented relation [28], 
are depicted in fig. 2, where each line represents one opera- 
tion process. It is inevitable, that the last node starts exe- 
cution some time after the first one, since the master pro- 
cessor cannot initialize all slaves at once. It is obvious 
that when a node finishes with local operation execution, 
it stays idle till the very last node finishes as well; this is 
a consequence of the uniform distribution of data among 
nodes, i.e. each node has an equal workload, therefore if it 
starts late, it will end late. 

P 

lime 
Figure 2. The behaviour of uniform fragmentation 

We argue that the last effect can be avoided if the data 
distribution is not uniform. In fig. 3 there is a schematic 
approach to our proposal. The main point is that nodes 
should terminate local query processing at the same (or at 
least around the same) time, in order not to waste compu- 
tational power. Since, query execution cannot start at the 
same time on each node, the amount of data on each pro- 
cessor should be different. 

If the processing time per object/tuple is not the same 
for all objects, the above model can still be used by con- 
sidering workload distribution instead of data distribution. 
Therefore, in the following analysis the term “data frag- 
mentation” can be substituted by the term “workload dis- 
tribution” without any problem. 

thne 
Figure 3. The behaviour of non-uniform fragmentation 

4. Analytic Performance Model 

In this section an analytic performance model for the 
proposed query execution model and data fragmentation 
strategy is developed. The study is based on the analysis 
of [28], using a slightly different terminology: 
l Class is used instead of relation. A single class isolated 

from its sub- or super- classes of the class-hierarchy, 
will only be considered. 

l Method is used instead of operation. 
l Object is used instead of tuple. 

Throughout this and later sections the results obtained 
for the non-uniform fragmentation strategy are compared 
to the equivalent results for the uniform strategy. 

4.1. System Response Time 

In this section the global query response time is 
studied and compared to the uniform strategy. 
Definition 1. The node workload Wi is the number of 
objects per node, times the averagd method execution time 
per object: 

Wi = cNi 
where Ni is the number of objects on the i-th node. The 
method execution time per object, is assumed to be 
common for all objects, or at least very near around an av- 
erage time. 
Definition 2. The initialization time INZTi for each 
processor is defined as the sum of the actual initialization 
time that is spent for each node from the query coordinator 
processor, plus the waiting time for each node, which 
equals the sum of the initialization times of all previous 
(i- 1) nodes: 

INIT, = a+a(i-l)= ai 
where o is the initialization cost, common for each node. 
Definition 3. The response time Ri of the i-th node is 
the sum of the node workload and the initialization time: 

Ri=lNITi+Wi=ai+cN, 
Lemma 1. In order to achieve simultaneous termination 
according to the non-uniform fragmentation strategy, the 
number of objects Ni per node should be: 

N, = N + n+l-2i a 
’ n 2 c 
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where N is the total number of class instances and n the 
total number of nodes. 
Proof. The proposed data fragmentation assumes that the 
response time Ri of each node is the same (fig. 3): 

Ri = R,+,,ViE[l,n) (3) 
If definition 3 is substituted: 

a(i + 1) + cNi+, =ai+cNiaNi+,=Ni-E (4) 

Thus, the number of objects at each node is anCarithmetic 
progression, as equation (4) implies, with a common 
(negative) difference of -a/c. The i-th node has Ni objects: 

Ni = N, -(i-l)E (5) 

To calculate Nl, the objects in all iodes are summed and 
set equal to the total number of objects N: 

N,=N=st 2N,-(n-l)% 
[ 1 =N (6) 

i=l c 

Thus Nl is calculated as: 

N =E+n-l a -- 
1 n 2 c 

Finally, the substitution of Nl in (5) yields Ni. 0 
The inverse operation, i.e. to find in which node a 

certain object resides, is performed by the hashing 
function, which is analyzed in a later section. 
Corollary 1. The response time n”R of the system (nu 
stands for “non-uniform”) is: 

n+l N ““R= R, =a+cN, =a-+c- 
2 n 

(8) 

Note that it does not matter which Ri we choose, since 
they are all the same, as equation (3) suggests. 
Theorem 4. The non-uniform fragmentation strategy 
provides faster response time than the uniform strategy, 
i.e. it is n”RcUR, Vol. 
Proof. Equations (8) and (1) differ only in the first part, 
which is a(n+l)/:! and an, respectively. However, for each 
n>l, it is: 

n+l n>l*n+n>l+n*n>- 
2 

therefore it is also nUR~UR. 0 
The above result is depicted in fig. 4. We note here 

that certain assumptions were made for the system param- 
eters used for all the plots. These are shown in table 1, 
along with the deduced, optimal number of processors for 
both strategies (explained later). The order of magnitude 
for the system parameters is based on actual measurements 
on experimental systems [28]. 
Lemma 2. The response time is minimal when the 
number of processors is n”no: 

“U n, = 2cN (9) 
a 

Proof. The response time in equation (8) is a function of 
the number of processors n and the number of objects N. 

In this section it is assumed that N is constant. The 
derivative of nUR is calculated and set to zero: 

For ncnuno, it is: 

therefore the derivative is negative, and for nP”n, it is 
equivalently positive. Thus at “%, the response time is 
minimal. Cl 

0.0 ,I1 
0 20 40 60 

nodes 
Figure 4. Global query response time 

Table 1: Assumptions for system parameters 

Theorem 5. The non-uniform fragmentation strategy of- 
fers 44% better scalability than the uniform strategy. 
Proof. Comparing the result of lemma 2 with the opti- 
mal number of processors for the uniform strategy 
(equation 2): 

n”no ==&i”no 
it is derived that the non-uniform fragmentation strategy is 
inherently more scalable than the uniform strategy, by 
about 44% (42~1.44). 0 
Corollary 2. If nun0 is substituted in equation (8), the 
minimum response time of the non-uniform strategy is 
found to be: 

or in other words, 44% less1 than the uniform fragmenta- 
tion strategy (theorem 3). 

lit is assumed that the constant term a/2 becomes 
insignificant for large databases (NNa). 
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4.2. Scalability Limitation 

The number of objects on each node, as it is calcu- 
lated using lemma 1, decreases linearly with i. Since Ni is 
physically constrained to be greater than zero, i cannot 
grow indefinitely. 
Theorem 6. The number of objects per node Ni is posi- 
tive for every iln. 
Proof. Since Ni is a decreasing function of i, it suffices 
to show that N,,>O, for every plausible value of n, i.e. for 
each nPn 0’ 

N 
n 

,0HN+n+l-2n a ->OOnn(n-1)<22 
n 2 c a 

If nUno is substituted (equation 9), the above becomes: 

n2 - n?ni 
The in-equality is true, since: 

nlnUno m n21nunz @ n2 - n < n2SnunjY 
Thus Ni>O, for every i<nSnuno. c] 
Theorem 7. The minimum number of objects that can 
reside at the last (n-th) node, which is also the very lowest 
number of objects that can reside on any node, is al2c. 
Proof. Following lemma 1, the last node has N, ob- 
jects: 

N n-la N, z---s 
2 c 

The derivative of the abovenquantity: 

dlv, _ N la,0 -$y-yT-T; 
suggests that N, is a decreasing function of n, therefore 

/Nn is minimum when n is maximum: 

1, cN . 
N d 

Z---l 
N,, =-- a 

1 I- 

a~N ,a 
2 ; 

0 
2cN “O 2c 

The above result suggests that it is not possible to 
add more nodes to the system than the optimal number of 
nodes n”no, because equation (4) would yield a negative 
number of objects for the new node, subtracting the quan- 
tity a/c. 

4.3, Interpretation of the Optimal Case 

An interesting conclusion to be drawn from the inter- 
pretation of the optimal case is the following theorem. 
Theorem 8. When the global query response time is 
minimal, the average initialization time per node equals 
the average workload per node. _ 
Proof. Transforming equation (9) it is derived that: 

(10) 

From definition 2 it is derived that the average initial- 
ization time is: 

(INIT;)=i$ai=aT 
t-l 

The average initialization time calculated above differs 
from the quantity in the left-hand side of (10) by a con- 
stant factor of c(/2 which can be ignored. 

The average workload per node can be calculated using 
definition 1: 

The above theorem implies that if more nodes are 
added to the system, then the initialization time will over- 
power the method processing time and the performance 
will degrade. 

Following the same line of reasoning for the uniform 
fragmentation strategy [28]: 

a”n, = e 
“no 

it is derived that at the optimal case, the maximum initial- 
ization time of a node (the last node) equals the common 
(and also average) workload per node. 

The qualitative difference between the uniform and 
non-uniform fragmentation cases is that in the uniform 
case (equation 11) the scalability of the system is limited 
to nodes that have more (or the same) workload than ini- 
tialization time, while in the non-uniform case (equation 
10) the scalability of the system is extended beyond those 
nodes that spend the same time with the useful working 
time, waiting. The “average” initialization time implies 
that there are nodes with initialization time more than the 
average working time (fig. 11). 

4.4. Processor Utilization 

Definition 4. The total “useful” execution time is de- 
fined as the total workload: 

Tu,y, = CN 
Definition 5. The total “occupation” time is defined as 
the total time that all processors are occupied by global 
query execution, including the time they stay idle. This 
always equals the total number of processors, times the 
response time of query execution at the “slowest” node, 
which is also the system’s response time: 

T,, = Rn 
Definition 6. The average processor utilization is de- 
fined as the fraction of the “useful” time, divided by the 
“occupation” time: 

IA -‘T,, 
ml: - T f”f 

Corollary 3. The processor utilization is calculated as 
follows, if definitions 4 to 6 are combined: 
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CN 
u =- 
av8 Rn 

Corollary 4. The processor utilization for the two 
fragmentation strategies is: 

%“8 = 
cN 

an2 -I- CN 

nu CN 
U avg = 

an(n+l) +cN 

2 
if equations (1) and (8) are substituted into u,,~. 
Theorem 9. Processors are used more productively in 
the non-uniform fragmentation strategy, than the uniform 
one (fig. 5). 
Proof. The denominator of nU~,,g is less than the de- 
nominator of uu,Vg for each ml, (see proof of theorem 
4), thus it is n”uavg>uua,,g, for each n>l. Cl 

O%!, , , : , , I , : !I, I 
0 20 32 40 45 60 

nodes 
Figure 5. Processor utilization 

Theorem 10. At the minimum response time case, the 
non-uniform distribution has worse utilization than the 
corresponding case of the uniform distribution. 
Proof. If the optimal number of processors, for both 
strategies (equations 2, 9) is substituted into the average 
processor utilization, for both strategies, it becomes: 

%“&, = 
CN CN 1 =- 

“n~a+cN = CN --a+cN 2 
a 

“W = CN CN 
u. 

a’y8, 
2 

Thus, it is proved that n”u,,g,cuu,vgo. Cl 
However, the difference between the optimal cases is 

insignificant, since usually it is cN>>a, in the denominator 
of Yl a,,g,, and utilization becomes =1/2. Note also that 
utilization at the optimal cases (Uu,VgO, n”uaVg,) is 
computed for different number of processors, while general 

utilization equations (“u,vg, n”ua,,s) are computed for the 
same number of processors. In fig. 5 this small difference 
is demonstrated. 

This similarity at the low-end of processor utilization 
is based on the logical observation that it is no use to op- 
erate a multi-processor system when less than half proces- 
sor time is used productively. The worst case (for proces- 
sor utilization) is when half the processor time is spent on 
“useful” work and the other half is either idle time or is 
spent on “auxiliary” work, like communication, initializa- 
tion, etc. 

Here we note that at the non-uniform strategy, the 
last nodes are utilized very little, when working close to 
the optimal case (fig. 11). This is the trade-off between 
global query response time minimization and local proces- 
sor utilization. Some of the individual processors are used 
too little in order to achieve 44% faster query response. 

The analysis of this paper has only considered a sin- 
gle class. If more classes of the OODB schema are consid- 
ered for query processing (inter-class parallelism [2, 3, 
19]), then multiple classes can be interlaced within the 
same processors. This will ,achieve better processor uti- 
lization both at the local and the global levels, because the 
idle time of a processor during query processing for a cer- 
tain class will be used for its neighbouring class. 
However, this requires new scheduling algorithms and 
fragmentation strategies to be developed. Furthermore, the 
analysis of a such a system is more complex, exceeding 
the scope of this paper. 

4.5. The Hashing Function 

This section studies how a hashing function can be 
defined for the proposed strategy, in order to locate where 
objects reside. Since objects are usually referred to by their 
object identifier (OID), it is also used here for the defini- 
tion of the hashing function [2]. But first we define an 
auxiliary function. 
Definition 7. The “accumulating” function o(i) is de- 
fined as the total number of objects of all the nodes from 
the first up to i-th (i-th included): 

o(i)=iN,,iE[l,n] 
j=l 

where Nj is the number of objects in the j-th node. Note 
that the “accumulating” function is defined for any frag- 
mentation strategy. 
Corollary 5. From the definition of (T it is understood 
that u(n)=N. 

The following definition makes understood why such 
a function is defined. 
Definition 8. The object z%class resides on node i, if 
the following condition holds: 

o(i - 1) < z I o(i) 
where z is a positive integer and iln. 

The following theorem establishes the relationship 
between the “accumulating” function and the hashing 
function. 
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Theorem 11. The hashing function H(z) is related to the 
inverse “accumulating” function as follows: 

H(z) = p’(z)1 

Proof. We must first prove that the inverse function u1 
of the “accumulating” function (T always exists. From the 
definition of a: 

i+l 

u((‘+l)-u(i)=~Nj-~Nj=Ni+l>O 

j=l j=l 

since the number of objects per node is always a positive 
integer. Thus o is an increasing function of i, therefore its 
inverse function is always defined and is also an increasing 
function of i. 

The hashing function returns the i-th node that a 
given object z%class resides. Definition 8 combined with 
the above result about fll gives the condition that holds: 

z I a(i) w f?(z) I CT-‘(o(i)) w i 2 o-‘(z) w 

i=p’(z)l=~(z) 0 

It is clear now that in order to calculate the hashing 
functions of both strategies, we must first calculate the 
corresponding “accumulating” functions and their inverses. 
Lemma 3. The “accumulating” function (J for the uni- 
form fragmentation strategy is: 

“0((i) = NF 
n 

Proof. Each node has the same number of objects N/n. 
We substitute this into the sum in the definition of o : 

0 

Theorem 12. The hashing function for the uniform 
fragmentation strategy is: 

The solution with the positive sign (equation 13) is 
rejected, since it leads to a false conclusion: 

W(z)= + 1 1 
Proof. The inverse “accumulating” function is calculated 
from lemma 3: 

z=“o(i,) +$~-yz)=i, Z-L 
N/n 

Therefore, ,the inverse “accumulating” function n”fll, is 
the solution of equation (12) with the negative sign 
(equation 13). Cl 

This, combined with theorem 11, proves the theorem. 0 
Lemma 4. The u function for the non-uniform fragmen- 
tation strategy is: 

““O(i)=: $+n-i i ( 1 

Comparing theorems 12 and 13, it is clear that the 
hashing function of the non-uniform fragmentation strat- 
egy is more complex than the uniform one, but the over- 
head is insignificant compared to the performance im- 
provement. 
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Proof. We substitute Nj from lemma 1 into the sum in 
the definition of 0 : 

5. Analytic Model of System Scalability 

““o(i) = $2$+n-i)i 

In the previous section the performance of the system 
has been studied according to the response time. This sec- 
tion focuses more on the extensibility of the system, i.e. 
its ability to evolve both in terms of processor numbers 
and database size, using two metrics: “speed-up” and 
“scale-up” [ 10,271. 

2We use the inequality zSN*-z2-N and equation (9). 

and then we replace the maximum number of processors 
nUno (equation 9) and the theorem is proved. 0 
Theorem 13. The hashing function of the non-uniform 
fragmentation strategy is: 

n”*(z)=[+[!$+n-j~)] 

Proof. In order to calculate fll, the following equation 
must be solved: 

z+CJ(i,)*z=~ d+n-iz 
( 1 2c n 

i, @ 

2 
.2 

I - L 

( 1 
%+n i,+$z=O 
n 

The above equation has two real numbers as solutions: 

i, =+[$+n*JM) (13) 

because its “discriminant” A is positive2: 

A =(g+nj2 

2 

-8”>(!L+n)2--= 
8cN 

n a n a 

=($-i-n)2-4n~ =(g+n+2n,X$+n-2n,)= 
n n 

= ~(n,+n)(n,-n) 2 20 1 
The equality holds only when z=N’and n=no, where there 
is only one solution (A=O). 

n2 >n,‘*n>n, 



5.1. Processor-only Scale-up 

The performance of the system depends heavily on the 
number of processors, as equation (8) demonstrates. In or- 
der to improve performance new nodes are added to the 
system, while the database size remains fixed. The appro- 
priate quantity that is used to measure how well the sys- 
tem “scales-up” in this case is called “speed-up”. 
Definition 9. “Speed-up” is the fraction of the query re- 
sponse time of sequential query processing divided by the 
equivalent time on a parallel system: 

S(n) = Rseq (NJ 
Rpm (n, N) 

where R,,-&N) is the response time of the sequential exe- 
cution of a query on N objects, while R&n,N) is the re- 
sponse time of the parallel execution of the same query, 
on the same number of objects, distributed over n proces- 
sors. 
Definition 10. A system speeds-up “ideally” if S is a 
linear function of n [ 101. 
Definition 11. The response time of the sequential 
query execution is always the same and equals the total 
workload, plus the initialization time of a single proces- 
sor: 

l?,,,(N) = a+cN (14) 

Corollary 6. The speed-up of the non-uniform strategy 
is (from definitions 9-10 and corollary 1): 

a+cN 
““S= n+l 

-+cN 
a2 n 

Theorem 14. The non-uniform fragmentation strategy 
offers better speed-up than the uniform strategy (fig. 6). 
Proof. From theorem 4 and definitions 9 and 11: 

Non-uniform 
------ 

0 20 40 60 

nodes 
Figure 6. Speed-up 

Theorem 15. The maximum speed-up that the non-uni- 
form strategy offers is 44% more than the uniform strat- 
egy. 

Proof. Since the minimum response time is achieved for 
n, processors, speed-up is maximum for the same number 
of processors, for both strategies. Maximum speed-up for 
the non-uniform strategy is calculated by substituting 
n”nO (equation 9) in n”S: 

or in other words, 44% more speed-up than the uniform 
fragmentation strategy (theorem 3). 0 

Notice that even if the two fragmentation strategies 
offer different performances, both at the maximum speed- 
up case achieve half of the linear speed-up [28]. 

5.2. Data-only Scale-up 

The response time of both fragmentation strategies 
depends also on the number of the objects N (equations 1, 
8). In the previous sections it was assumed that N was 
constant. In this section we consider the case where more 
objects are added to the system, but these are stored on ex- 
isting nodes, i.e.’ no new nodes are added to the system. 
Speed-up is no longer a valid metric, since the system re- 
mains constant, so the response time is studied instead. 
Theorem 16. The response time grows linearly with the 
number of added objects, with the same rate for both 
strategies. 
Proof. We differentiate the response times for both 
strategies using equations (l), (8): 

d”R d”“R c 
dN=dN=n 

cl 

New objects must be added uniformly to existing 
nodes, in a round-robin manner, as figs. 7 and 8 show. 

P 

time 
Figure 8. Data-only scale-up (non-uniform) 
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d”L -=- a(a+cN) <o 
dn (an + cNj2 

we derive that the more nodes (and objects) are added to the 
system, the worse it scales up. 0 

The explanation for this behaviour is depicted in fig. 
10, where it is shown how new nodes with new data be- 
have in time. Since new nodes are still initialized sequen- 
tially by the same master processor, processing begins 
later at each new node. 

5.3. Processor and Data Scale-up 

This section considers the case where new data are 
stored on new nodes that are added to the system. This is 
called “system scale-up” [lo] and its purpose is to achieve 
the same performance despite data increase. The speed-up 
is no longer a valid measure, since the sequential and the 
parallel performances are not achieved with the same data 
size. Instead, “scale-up” L is used to measure the parallel 
system’s “goodness”. 
Definition 12. “Scale-up” is the fraction of the query 
response time of sequential query processing divided by 
the equivalent time of a larger query on a parallel system: 

L(n) = &es (NJ 
R,,,,Cn, N’) 

where Rseq(N) is the response time of the sequential sys- 
tem on N objects and Rpa,(n,N’) is the response time of 
the parallel system with n nodes and N’ objects (N’>N), 
where N’ also depends on n and the rest of the known sys- 
tem parameters. 
Definition 13. A system scales-up “ideally” if L equals 
1 (or close) for all n’s [lo]. 
Lemma 5. The “scale-up” of the uniform strategy is: 

a+cN “L = - 
an+cN 

Proof. According to the uniform fragmentation strategy, 
when there are N objects stored on a single node, then 
there should be N’=nN objects stored on n nodes, since the 
system configuration insists that an equal amount of ob- 
jects resides at each node. Therefore, scale-up is, according 
to definition 12 and equations (14, 1): 

“L = a+cN a+cN a+cN 
N’ = =- 

nN 
an+c- an+c- an+cN q 

n n 

1.00 -, 
. Non-uniform 

: 0.98 
-\ \ 

6 
.N 

z 0.96 
. . 

UniforZ \ . . . 
‘. 
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Figure 9. Scale-up 

Theorem 17. The uniform fragmentation strategy does 
not “scale-up” ideally and its “scalability” worsens with 
the number of nodes (fig. 9). 
Proof. From lemma 5 it is clear that uL<l, Vn>l. 
Taking also the derivative of uL: 

P 

time 
Figure 10. Processor and data scale-up (uniform) 

Theorem 18. The response time ;of a uniformly frag- 
mented system is monotonically increased when new 
nodes and objects are added to the system: 

%=a>() 
dn 

Proof. We must calculate the derivative of UR, bearing in 
mind that both N and n are variables: 

d”R a”R i”‘R dN 
-=T-l+aNdn dn 

The partial derivatives are calculated directly from equation 
(1). In order to calculate the derivative of N as a function 
of n, we note that the number of objects per node is con- 
stant and equals to Nln, thus: 

N,=Q=fi*N=Qn=, 
n 

$Q=+ 

We substitute all the derivatives: 

!!?=(a-c &)+CN=a q 
dn ’ n“ nn 

Theorem 19. The non-uniform fragmentation strategy 
scales-up “ideally” (fig. 9). 
Proof. According to definition 12 and equations (14, 8) 
the “scale-up” of the non-uniform strategy is: 

a+cN, ““L= n+l 
-2 

a2 n 
where N1 is the number of objects that reside in the first 
node of a non-uniformly fragmented system, if we con- 
sider that an one-node system is equivalent to a sequential 
system. 

If we substitute Nl using equation (7): 
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nu = 
L a+c(X+yq) = a+cf+at-4 =, 

-2 n+l 
a2 n 

z+az+c” 
n 

According to the above equation and definition 13, a 
non-uniformly fragmented system scales-up ideally. 0 

When new nodes with new objects are added to the 
system (fig. ll), they do not affect the response time of 
the system, since the fragmentation strategy insists that 
all nodes terminate at the same time. 

time 
Figure 11. Processor and data scale-up (non-uniform) 

Theorem 20. The response time of a non-uniformly 
fragmented system remains constant when new nodes and 
objects are added to the system: 

d”“R - 0 
dn 

Proof. Using the same line of reasoning with the proof 
of theorem 18, we calculate the derivative of the response 
time, using equation (8): 

The derivative of N is calculated using equation (6): 

-- 
) 

=N 2n-la --- 
’ 2c 

Now N1 (which is considered as a constant above) is sub- 
stituted using equation (7): 

dN N n-la 2n-la N na -=-+ -__- -=--es 
dn n 2c 2c n 2c 

Finally, the above derivative is substituted in the total 
derivative: 

=o Cl 

The scalability of a non-uniformly fragmented system 
is ideal, but limited to a certain number of objects and 
nodes. When the system is scaled-up the number of ob- 
jects at the last node is constantly decreased, until the op- 
timal configuration, with n, nodes, is reached. Then no 

further scale-up can take place, because the last node has 
the lowest allowable number of objects (see section 4.2), 
that cannot be further reduced (fig. 11). If more objects 
(and nodes) are to be added to the system there must be a 
system reconfiguration in order to fit into the nodes. 

6. Simulation Measurements 

In this section we present the simulation we per- 
formed to justify the theoretical analysis of the non-uni- 
form fragmentation strategy. The simulation was per- 
formed on a multi-processor network of 5 transputers, us- 
ing CS-Prolog [ 181 as the simulation language. The same 
hardware/software platform is used to build a prototype of 
the PRACTIC system [2]. 

The simulation treats processor initialization and 
method execution times as “do-nothing” periods of time. 
Simulation parameters are shown in table 2. The master 
processor coordinates the execution by sequentially start- 
ing-up processing at the slave nodes. When slaves finish 
processing they inform the master by sending a message. 
When the master processor gathers all the messages, it 
terminates the global process. 

Table 2. Simulation parameters 

The global query response time we measure starts be- 
fore master begins initialization and ends after master re- 
ceives all the terminating messages from the slave nodes. 
The results are shown in table 3 for both fragmentation 
strategies. 

N 1 2 3 4 

Non-uniform 1,000 9.47 6.61 6.57 - 
2,000 17.90 10.84 9.43 9.39 

I 5.000 43.02 23.55 18.04 15.88 
I 

Uniform 1,000 1 10.20 7.41 7.70 9.48 
2,000 19.46 12.94 12.27 12.70 
.5,000 44.60 25.09 20.05 18.19 

Table 3. Simulation response time measurements (set) 

From table 3, it is clear that the non-uniform strategy 
outperforms the uniform strategy at all cases. Figs. 12-14 
compare graphically the two fragmentation strategies and 
the simulation time to the theoretical time calculations, 
for different numbers of objects. Simulation time is de- 
picted with squares, while calculated time with rhom- 
buses. Furthermore, uniform strategy is depicted with 
solid marks, while non-uniform with outlined symbols. 

Although the measured time is different from the the- 
oretical, the behaviour of the curves is identical. The dif- 
ference between theoretical and simulated results is around 
100% and is mainly due to extra overheads caused from 
program execution, inter-processor communication, etc. 
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However, these overheads add similarly to both strategies, 
therefore the comparison between strategies is not affected. 
Furthermore, the simulated times show minima at the 
same as the calculated number of processors (table 4). 

j 4.00 -=a-’ 

0.00 -1 

1 2 3 4 

nodes 
Figure 12. Simulation vs. calculation (1000 objects) 

0.00 II 
1 2 3 4 

nodes 
Figure 13. Simulation vs. calculation (2000 objects) 

50.00 T 

;iii~T 

1 2 3 4 

nodes 
Figure 14. Simulation vs. calculation (5000 objects) 

1 2 3 4 

nodes 
Figure 15. Response time difference between strategies 31f equation (8) is subtracted from (1): dR=a(n-1)/2. 

The difference in time between the two strategies is 
plotted in fig. 15. The theoretical difference is linear and 
depends only on the number of processors3, while the 
simulated time difference is not perfectly linear but fol- 
lows a linear trend. Furthermore, fig. 15 shows that the 
time difference between the two strategies depends on the 
number of objects, since the overheads affect both the 
master and the slaves. 

1 Non-uniform I Uniform 
N theore- simu- theore- simu- 

tical lation tical lation 
1,000 2.8 3 2.0 2 
2,000 4.0 4 2.8 3 
5,000 6.3 >4 4.5 -4 

Table 4. Simulation vs. calculation (optimal processors) 

As a general remark, fig. 12 shows that the uniform 
strategy can work non-optimally after 2 processors, while 
non-uniform strategy cannot operate at all after 3 proces- 
sors. As the number of objects increases the difference 
between the two strategies decreases, because the optimal 
number of processors is more than 4. Unfortunately our 
hardware resources were limited to 4 processors. 

7. Conclusions and Future Work 

In this paper, we have studied the analytic perfor- 
mance of query execution in a parallel object-oriented 
database, using a non-uniform object fragmentation policy 
in a flat multi-processor architecture. The proposed frag- 
mentation strategy is based on the simultaneous termina- 
tion of query processing among the processors into which 
a class is partitioned, despite the sequential initialization 
of the processes from the master processor. The process 
initialization time can be significant compared to actual 
query processing time, in main-memory database systems. 

Results show that the new approach improves by 
44% the fragmentation ability of the database, and thus 
provides better query performance than the uniform frag- 
mentation strategy that has been widely used in parallel 
database systems [28]. Furthermore, the non-uniform 
fragmentation strategy offers perfect scale-up for both the 
system and data, ,until a certain upper limit is reached, af- 
ter which system re-configuration must occur. 

In practical terms the non-uniform fragmentation 
method can be used in a parallel database system, either re- 
lational or object-oriented, based on the most frequently 
accessed attribute or executed method, respectively. 
However, it must be noted that if the system is to be 
scaled-up frequently, then the initial configuration must 
not be too close to the optimal configuration, because 
then scalability is strictly limited to the optimal number 
of processors, in contrast to the uniform fragmentation, 
where scalability beyond the optimal configuration keeps 
‘the system working, non-optimally though. 
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Current work includes the study of improved object 
partitioning strategies that will further increase the upper 
limit in the scalability of the system. These strategies 
will combine the non-uniform fragmentation of objects 
with a hierarchically structured multi-processor architec- 
ture [3], to take advantage of both. Furthermore, data of 
neighbouring classes will be interlaced into common pro- 
cessors, to provide better processor utilization. Finally, all 
the above fragmentation strategies will be incorporated and 
tested into the parallel OODB system PRACTIC [2], 
which is under development. 
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