
A Non-Uniform Data Fragmentation Strategy for Parallel Main-Memory
Database Systems

N. Bassiliades* I. Vlahavas
Dept. of Informatics,

Aristotle University of Thessaloniki,
54006 Thessaloniki, Greece.

nbassili@athenu.auth.gr, vlahavas@olymp.cc$auth.gr

Abstract

In multi-processor database systems there are
processor initialization and inter-communication
overheads that diverge real systems from the ideal
linear behaviour as the number of processors in-
creases. Main-memory database systems suffer
more since the database processing cost is small
compared to disk-based database systems and thus
comparable to the processor initialization cost.
The usual uniform data fragmentation strategy
divides a relation into equal data partitions, lead-
ing to idleness of single processors after local
query execution termination and before global
termination. In this paper, we propose a new,
non-uniform data fragmentation strategy that re-
sults in concurrent termination of query process-
ing among all the processors. The proposed
fragmentation strategy is analytically modeled,
simulated and compared to the uniform strategy.
It is proven that the non-uniform fragmentation
strategy offers inherently better performance for a
parallel database system than the uniform
strategy. Furthermore, the non-uniform strategy
scales-up perfectly till an upper limit, after which
a system re-configuration is needed.

1. Introduction

Modern dam-intensive database applications strive for
enhanced performance. Many parallel database systems [4,
10, 271 have appeared both as research prototypes [5, 9,

* Supported by a scholarship from the Greek Foundation of
State Scholarships (F.S.S. - I.K.Y.).

Permission to co

f
ranted provide cp

y without fee all or part of this material is
that the copies are not made or distributed

or direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date ap
is given that copying is by permission of the e

ear, and notice
ery Large Data

Base Endowment. To copy otherwise, or to republish, requires
a fee and/or special permission from the Endowment.

Pgcc~dio s of the 21st VLDB Conference
, #wizerland, 1995

16,22,231 and as commercial products [24,25] to capture
the demand for speed in database processing. Another di-
rection for the search of performance improvement for
time-lined database applications have been main-memory
database systems [12, 131. The integration of the above
two research directions have been studied in tbe context of
PRISMNDB project [1,281.

During the last decade, Object-Oriented Databases
(OODBs) gained considerable attention [17] mainly be-
cause they reduce the “semantic gap” between real world
concepts and data representation models. A major draw-
back of OODBs is the low speed of query execution, due
to the sequential processing of independent entities and the
slow disk-based access of large objects.

Recently, in order to overcome the above limitations,
parallel OODB systems have been proposed [2, 19, 26,
271, following the research for parallel relational
databases. Among them, the PRACTIC parallel main-
memory OODB system [2] includes an object data model
and an abstract hierarchical multi-processor architecture
that its performance on query execution has been studied
analytically [33. The hierarchical architecture has been
proved inherently better than a flat one [28].

In this paper we try to improve performance of query
execution further, by proposing a non-uniform data frag-
mentation strategy on the nodes of a multi-processor
database system, to compensate for the effect of sequential
query start-up at each processor from the coordinator.
Results show that this new approach a) improves by 44%
the peak performance of the parallel database system, and
b) scales-up perfectly until an upper bound, after which a
system re-configuration is needed. Furthermore, the strat-
egy can be easily implemented on any multi-processor
database system, both relational and object-oriented.

The rest of the paper is structured as follows: section
2 refers to related work on the performance analysis of
parallel database systems; section 3 presents the non-uni-
form data fragmentation strategy; section 4 analyses the
performance, fragmentation and hashing of tbe proposed
strategy, while section 5 focuses on system scalability.
Section 6 presents simulation results, and finally, section
7 concludes this paper with a summary of the main points
and a discussion of future work.

370

2. Related Work

The performance of query execution in parallel
database systems using various data fragmentation strate-
gies has been extensively studied [5, 7, 9, 10, 14, 151.
Most of the systems use full and uniform declustering as
data fragmentation strategy, i.e. all relations are distributed
over all nodes uniformly, to advantage from the parallel
execution of an operator among the partitions.

In the Bubba system [5] it is argued that full and uni-
form declustering is not always the best strategy [7, 141,
since the access frequency of each relation partition may
vary, therefore the most frequently accessed partition may
become a bottleneck to the system performance. The anal-
ysis in 17, 141 concerns multi-user database systems, as-
suming certain workloads that arise from concurrent
database accesses and/or small transactions. Therefore, the
purpose of their declustering strategies is to achieve higher
transaction throughput, i.e. more transactions per second.

In order to achieve this, they base their declustering
strategies not only on the size of each partition, but also
on the access frequency of the tuples that are stored within
its partition. This kind of non-uniform partitioning results
in a uniform workload per partition, which is a pre-requi-
site for the full exploitation of a multi-processor system.

Our work instead concerns the performance improve-
ment of single large, decision-support queries or batch
transactions in a parallel database system. Therefore our
purpose is to minimize query response time, sacrificing
(probably) memory and disk utilization.

The performance of such queries has also been studied
in [6, 281. More specifically, in [28] it is concluded both
theoretically and experimentally for the PRISMA/DB par-
allel main-memory relational database system, that there
is always an upper limit in speed-up. This upper limit is
lower in main-memory than disk-based database systems,
because main-memory processing is faster and the proces-
sor initialization costs are comparable to the actual query
processing costs. The limited scalability is due to the fact
that the query execution coordinator node initializes only
one node each time, sequentially.

The main concept behind our fragmentation strategy
is to distribute data non-uniformly into partitions in order
to achieve non-uniform workloads per processing node.
The non-uniform workload distribution will compensate
for the effect of sequential initialization of the processing
nodes. As a result all nodes will terminate query process-
ing at the same time, achieving minimal global query re-
sponse time.

Another major difference of our fragmentation strat-
egy for an OODB with previous approaches for relational
databases is that they use hash or range partitioning [7,
141, based on the most frequently accessed attribute of the
relation. In contrast, our strategy is based on the most fre-
quently evoked method of the class. Furthermore, the sin-
gle hashing attribute is the object identifier, since in
OODBs objects are usually accessed through that. Thus,
multi-attribute declustering strategies [ll, 15, 20, 211 do

not apply to our case, except if they are adapted for multi-
ple methods.

In the following sub-section, the analytical perfor-
mance of PRISMA/DB query execution is summarized as
background knowledge, because it will be used as a mea-
sure of comparison with our analysis.

2.1. Background

The abstract architecture of a parallel shared-nothing
database system [8,28] consists of a flat, linear multi-pro-
cessor network (fig. 1). There is one master processor that
coordinates query execution and several slave processors
that execute relational operations on the partition of the
relation they store. Relations are fragmented into equally
sized partitions for the shake of uniformity and simplicity.

h w slave . . . processors

Disks

Figure 1. A shared-nothing parallel database architecture

The master processor is assumed to initiate query exe-
cution on each slave processor sequentially and then each
slave processor proceeds on its own.
Theorem 1. The response time of a uniformly frag-
mented system is:

“R=m+c~ (1))
n

where (w is the initialization time of each slave processor,
c is the processing time per tuple in respect to a specific
relational operator, N is the total number of tuples of the
relation and n is the number of slave processors that the
relation is distributed into. The index u is used to denote
that the fragmentation strategy is “uniform”.
Theorem 2. The “speed-up” that a uniformly fragmented
system offers is:

“S = a+cN
Al

fXil+cfI-
n

Theorem 3. The optimal configuration for a uniformly
fragmented system is:

‘no = J CN -
a (2)

where the maximum speed-up and the minimum response
time are achieved:

Proofs. See [28].

“R. = 245%

371

In [28] it is argued that in order to increase n,, i.e.
increase the scalability of the system, either c must be in-
creased (as in disk-based DBMSs) or a must be decreased,
which is a more rational solution, since it decreases the
query response time as well.

In this paper we argue that if the data fragmentation
strategy is changed into a non-uniform one, it is possible
to increase the scalability (and performance) of a parallel
database system, another 44% more than the maximum of
theorem 3. In addition to the use of a hierarchical abstract
architecture and query execution strategy proposed in [3],
our data fragmentation strategy can provide for a very in-
creased performance in a parallel OODB system.

3. Non-Uniform Fragmentation Strategy

In this section we first review the query execution
model of the commonly used in parallel database systems
uniform strategy and then we discuss the proposed non-
uniform data fragmentation strategy, which is the main
contribution of this paper.

The theoretical characteristics of the parallel execution
of an operation on a uniformly fragmented relation [28],
are depicted in fig. 2, where each line represents one opera-
tion process. It is inevitable, that the last node starts exe-
cution some time after the first one, since the master pro-
cessor cannot initialize all slaves at once. It is obvious
that when a node finishes with local operation execution,
it stays idle till the very last node finishes as well; this is
a consequence of the uniform distribution of data among
nodes, i.e. each node has an equal workload, therefore if it
starts late, it will end late.

P

lime
Figure 2. The behaviour of uniform fragmentation

We argue that the last effect can be avoided if the data
distribution is not uniform. In fig. 3 there is a schematic
approach to our proposal. The main point is that nodes
should terminate local query processing at the same (or at
least around the same) time, in order not to waste compu-
tational power. Since, query execution cannot start at the
same time on each node, the amount of data on each pro-
cessor should be different.

If the processing time per object/tuple is not the same
for all objects, the above model can still be used by con-
sidering workload distribution instead of data distribution.
Therefore, in the following analysis the term “data frag-
mentation” can be substituted by the term “workload dis-
tribution” without any problem.

thne
Figure 3. The behaviour of non-uniform fragmentation

4. Analytic Performance Model

In this section an analytic performance model for the
proposed query execution model and data fragmentation
strategy is developed. The study is based on the analysis
of [28], using a slightly different terminology:
l Class is used instead of relation. A single class isolated

from its sub- or super- classes of the class-hierarchy,
will only be considered.

l Method is used instead of operation.
l Object is used instead of tuple.

Throughout this and later sections the results obtained
for the non-uniform fragmentation strategy are compared
to the equivalent results for the uniform strategy.

4.1. System Response Time

In this section the global query response time is
studied and compared to the uniform strategy.
Definition 1. The node workload Wi is the number of
objects per node, times the averagd method execution time
per object:

Wi = cNi
where Ni is the number of objects on the i-th node. The
method execution time per object, is assumed to be
common for all objects, or at least very near around an av-
erage time.
Definition 2. The initialization time INZTi for each
processor is defined as the sum of the actual initialization
time that is spent for each node from the query coordinator
processor, plus the waiting time for each node, which
equals the sum of the initialization times of all previous
(i- 1) nodes:

INIT, = a+a(i-l)= ai
where o is the initialization cost, common for each node.
Definition 3. The response time Ri of the i-th node is
the sum of the node workload and the initialization time:

Ri=lNITi+Wi=ai+cN,
Lemma 1. In order to achieve simultaneous termination
according to the non-uniform fragmentation strategy, the
number of objects Ni per node should be:

N, = N + n+l-2i a
’ n 2 c

372

where N is the total number of class instances and n the
total number of nodes.
Proof. The proposed data fragmentation assumes that the
response time Ri of each node is the same (fig. 3):

Ri = R,+,,ViE[l,n) (3)
If definition 3 is substituted:

a(i + 1) + cNi+, =ai+cNiaNi+,=Ni-E (4)

Thus, the number of objects at each node is anCarithmetic
progression, as equation (4) implies, with a common
(negative) difference of -a/c. The i-th node has Ni objects:

Ni = N, -(i-l)E (5)

To calculate Nl, the objects in all iodes are summed and
set equal to the total number of objects N:

N,=N=st 2N,-(n-l)%
[1 =N (6)

i=l c

Thus Nl is calculated as:

N =E+n-l a --
1 n 2 c

Finally, the substitution of Nl in (5) yields Ni. 0
The inverse operation, i.e. to find in which node a

certain object resides, is performed by the hashing
function, which is analyzed in a later section.
Corollary 1. The response time n”R of the system (nu
stands for “non-uniform”) is:

n+l N ““R= R, =a+cN, =a-+c-
2 n

(8)

Note that it does not matter which Ri we choose, since
they are all the same, as equation (3) suggests.
Theorem 4. The non-uniform fragmentation strategy
provides faster response time than the uniform strategy,
i.e. it is n”RcUR, Vol.
Proof. Equations (8) and (1) differ only in the first part,
which is a(n+l)/:! and an, respectively. However, for each
n>l, it is:

n+l n>l*n+n>l+n*n>-
2

therefore it is also nUR~UR. 0
The above result is depicted in fig. 4. We note here

that certain assumptions were made for the system param-
eters used for all the plots. These are shown in table 1,
along with the deduced, optimal number of processors for
both strategies (explained later). The order of magnitude
for the system parameters is based on actual measurements
on experimental systems [28].
Lemma 2. The response time is minimal when the
number of processors is n”no:

“U n, = 2cN (9)
a

Proof. The response time in equation (8) is a function of
the number of processors n and the number of objects N.

In this section it is assumed that N is constant. The
derivative of nUR is calculated and set to zero:

For ncnuno, it is:

therefore the derivative is negative, and for nP”n, it is
equivalently positive. Thus at “%, the response time is
minimal. Cl

0.0 ,I1
0 20 40 60

nodes
Figure 4. Global query response time

Table 1: Assumptions for system parameters

Theorem 5. The non-uniform fragmentation strategy of-
fers 44% better scalability than the uniform strategy.
Proof. Comparing the result of lemma 2 with the opti-
mal number of processors for the uniform strategy
(equation 2):

n”no ==&i”no
it is derived that the non-uniform fragmentation strategy is
inherently more scalable than the uniform strategy, by
about 44% (42~1.44). 0
Corollary 2. If nun0 is substituted in equation (8), the
minimum response time of the non-uniform strategy is
found to be:

or in other words, 44% less1 than the uniform fragmenta-
tion strategy (theorem 3).

lit is assumed that the constant term a/2 becomes
insignificant for large databases (NNa).

373

4.2. Scalability Limitation

The number of objects on each node, as it is calcu-
lated using lemma 1, decreases linearly with i. Since Ni is
physically constrained to be greater than zero, i cannot
grow indefinitely.
Theorem 6. The number of objects per node Ni is posi-
tive for every iln.
Proof. Since Ni is a decreasing function of i, it suffices
to show that N,,>O, for every plausible value of n, i.e. for
each nPn 0’

N
n

,0HN+n+l-2n a ->OOnn(n-1)<22
n 2 c a

If nUno is substituted (equation 9), the above becomes:

n2 - n?ni
The in-equality is true, since:

nlnUno m n21nunz @ n2 - n < n2SnunjY
Thus Ni>O, for every i<nSnuno. c]
Theorem 7. The minimum number of objects that can
reside at the last (n-th) node, which is also the very lowest
number of objects that can reside on any node, is al2c.
Proof. Following lemma 1, the last node has N, ob-
jects:

N n-la N, z---s
2 c

The derivative of the abovenquantity:

dlv, _ N la,0 -$y-yT-T;
suggests that N, is a decreasing function of n, therefore

/Nn is minimum when n is maximum:

1, cN .
N d

Z---l
N,, =-- a

1 I-

a~N ,a
2 ;

0
2cN “O 2c

The above result suggests that it is not possible to
add more nodes to the system than the optimal number of
nodes n”no, because equation (4) would yield a negative
number of objects for the new node, subtracting the quan-
tity a/c.

4.3, Interpretation of the Optimal Case

An interesting conclusion to be drawn from the inter-
pretation of the optimal case is the following theorem.
Theorem 8. When the global query response time is
minimal, the average initialization time per node equals
the average workload per node. _
Proof. Transforming equation (9) it is derived that:

(10)

From definition 2 it is derived that the average initial-
ization time is:

(INIT;)=i$ai=aT
t-l

The average initialization time calculated above differs
from the quantity in the left-hand side of (10) by a con-
stant factor of c(/2 which can be ignored.

The average workload per node can be calculated using
definition 1:

The above theorem implies that if more nodes are
added to the system, then the initialization time will over-
power the method processing time and the performance
will degrade.

Following the same line of reasoning for the uniform
fragmentation strategy [28]:

a”n, = e
“no

it is derived that at the optimal case, the maximum initial-
ization time of a node (the last node) equals the common
(and also average) workload per node.

The qualitative difference between the uniform and
non-uniform fragmentation cases is that in the uniform
case (equation 11) the scalability of the system is limited
to nodes that have more (or the same) workload than ini-
tialization time, while in the non-uniform case (equation
10) the scalability of the system is extended beyond those
nodes that spend the same time with the useful working
time, waiting. The “average” initialization time implies
that there are nodes with initialization time more than the
average working time (fig. 11).

4.4. Processor Utilization

Definition 4. The total “useful” execution time is de-
fined as the total workload:

Tu,y, = CN
Definition 5. The total “occupation” time is defined as
the total time that all processors are occupied by global
query execution, including the time they stay idle. This
always equals the total number of processors, times the
response time of query execution at the “slowest” node,
which is also the system’s response time:

T,, = Rn
Definition 6. The average processor utilization is de-
fined as the fraction of the “useful” time, divided by the
“occupation” time:

IA -‘T,,
ml: - T f”f

Corollary 3. The processor utilization is calculated as
follows, if definitions 4 to 6 are combined:

374

CN
u =-
av8 Rn

Corollary 4. The processor utilization for the two
fragmentation strategies is:

%“8 =
cN

an2 -I- CN

nu CN
U avg =

an(n+l) +cN

2
if equations (1) and (8) are substituted into u,,~.
Theorem 9. Processors are used more productively in
the non-uniform fragmentation strategy, than the uniform
one (fig. 5).
Proof. The denominator of nU~,,g is less than the de-
nominator of uu,Vg for each ml, (see proof of theorem
4), thus it is n”uavg>uua,,g, for each n>l. Cl

O%!, , , : , , I , : !I, I
0 20 32 40 45 60

nodes
Figure 5. Processor utilization

Theorem 10. At the minimum response time case, the
non-uniform distribution has worse utilization than the
corresponding case of the uniform distribution.
Proof. If the optimal number of processors, for both
strategies (equations 2, 9) is substituted into the average
processor utilization, for both strategies, it becomes:

%“&, =
CN CN 1 =-

“n~a+cN = CN --a+cN 2
a

“W = CN CN
u.

a’y8,
2

Thus, it is proved that n”u,,g,cuu,vgo. Cl
However, the difference between the optimal cases is

insignificant, since usually it is cN>>a, in the denominator
of Yl a,,g,, and utilization becomes =1/2. Note also that
utilization at the optimal cases (Uu,VgO, n”uaVg,) is
computed for different number of processors, while general

utilization equations (“u,vg, n”ua,,s) are computed for the
same number of processors. In fig. 5 this small difference
is demonstrated.

This similarity at the low-end of processor utilization
is based on the logical observation that it is no use to op-
erate a multi-processor system when less than half proces-
sor time is used productively. The worst case (for proces-
sor utilization) is when half the processor time is spent on
“useful” work and the other half is either idle time or is
spent on “auxiliary” work, like communication, initializa-
tion, etc.

Here we note that at the non-uniform strategy, the
last nodes are utilized very little, when working close to
the optimal case (fig. 11). This is the trade-off between
global query response time minimization and local proces-
sor utilization. Some of the individual processors are used
too little in order to achieve 44% faster query response.

The analysis of this paper has only considered a sin-
gle class. If more classes of the OODB schema are consid-
ered for query processing (inter-class parallelism [2, 3,
19]), then multiple classes can be interlaced within the
same processors. This will ,achieve better processor uti-
lization both at the local and the global levels, because the
idle time of a processor during query processing for a cer-
tain class will be used for its neighbouring class.
However, this requires new scheduling algorithms and
fragmentation strategies to be developed. Furthermore, the
analysis of a such a system is more complex, exceeding
the scope of this paper.

4.5. The Hashing Function

This section studies how a hashing function can be
defined for the proposed strategy, in order to locate where
objects reside. Since objects are usually referred to by their
object identifier (OID), it is also used here for the defini-
tion of the hashing function [2]. But first we define an
auxiliary function.
Definition 7. The “accumulating” function o(i) is de-
fined as the total number of objects of all the nodes from
the first up to i-th (i-th included):

o(i)=iN,,iE[l,n]
j=l

where Nj is the number of objects in the j-th node. Note
that the “accumulating” function is defined for any frag-
mentation strategy.
Corollary 5. From the definition of (T it is understood
that u(n)=N.

The following definition makes understood why such
a function is defined.
Definition 8. The object z%class resides on node i, if
the following condition holds:

o(i - 1) < z I o(i)
where z is a positive integer and iln.

The following theorem establishes the relationship
between the “accumulating” function and the hashing
function.

375

Theorem 11. The hashing function H(z) is related to the
inverse “accumulating” function as follows:

H(z) = p’(z)1

Proof. We must first prove that the inverse function u1
of the “accumulating” function (T always exists. From the
definition of a:

i+l

u((‘+l)-u(i)=~Nj-~Nj=Ni+l>O

j=l j=l

since the number of objects per node is always a positive
integer. Thus o is an increasing function of i, therefore its
inverse function is always defined and is also an increasing
function of i.

The hashing function returns the i-th node that a
given object z%class resides. Definition 8 combined with
the above result about fll gives the condition that holds:

z I a(i) w f?(z) I CT-‘(o(i)) w i 2 o-‘(z) w

i=p’(z)l=~(z) 0

It is clear now that in order to calculate the hashing
functions of both strategies, we must first calculate the
corresponding “accumulating” functions and their inverses.
Lemma 3. The “accumulating” function (J for the uni-
form fragmentation strategy is:

“0((i) = NF
n

Proof. Each node has the same number of objects N/n.
We substitute this into the sum in the definition of o :

0

Theorem 12. The hashing function for the uniform
fragmentation strategy is:

The solution with the positive sign (equation 13) is
rejected, since it leads to a false conclusion:

W(z)= + 1 1
Proof. The inverse “accumulating” function is calculated
from lemma 3:

z=“o(i,) +$~-yz)=i, Z-L
N/n

Therefore, ,the inverse “accumulating” function n”fll, is
the solution of equation (12) with the negative sign
(equation 13). Cl

This, combined with theorem 11, proves the theorem. 0
Lemma 4. The u function for the non-uniform fragmen-
tation strategy is:

““O(i)=: $+n-i i (1

Comparing theorems 12 and 13, it is clear that the
hashing function of the non-uniform fragmentation strat-
egy is more complex than the uniform one, but the over-
head is insignificant compared to the performance im-
provement.

376

Proof. We substitute Nj from lemma 1 into the sum in
the definition of 0 :

5. Analytic Model of System Scalability

““o(i) = 2+n-i)i

In the previous section the performance of the system
has been studied according to the response time. This sec-
tion focuses more on the extensibility of the system, i.e.
its ability to evolve both in terms of processor numbers
and database size, using two metrics: “speed-up” and
“scale-up” [10,271.

2We use the inequality zSN*-z2-N and equation (9).

and then we replace the maximum number of processors
nUno (equation 9) and the theorem is proved. 0
Theorem 13. The hashing function of the non-uniform
fragmentation strategy is:

n”*(z)=[+[!$+n-j~)]

Proof. In order to calculate fll, the following equation
must be solved:

z+CJ(i,)*z=~ d+n-iz
(1 2c n

i, @

2
.2

I - L

(1
%+n i,+$z=O
n

The above equation has two real numbers as solutions:

i, =+[$+n*JM) (13)

because its “discriminant” A is positive2:

A =(g+nj2

2

-8”>(!L+n)2--=
8cN

n a n a

=($-i-n)2-4n~ =(g+n+2n,X$+n-2n,)=
n n

= ~(n,+n)(n,-n) 2 20 1
The equality holds only when z=N’and n=no, where there
is only one solution (A=O).

n2 >n,‘*n>n,

5.1. Processor-only Scale-up

The performance of the system depends heavily on the
number of processors, as equation (8) demonstrates. In or-
der to improve performance new nodes are added to the
system, while the database size remains fixed. The appro-
priate quantity that is used to measure how well the sys-
tem “scales-up” in this case is called “speed-up”.
Definition 9. “Speed-up” is the fraction of the query re-
sponse time of sequential query processing divided by the
equivalent time on a parallel system:

S(n) = Rseq (NJ
Rpm (n, N)

where R,,-&N) is the response time of the sequential exe-
cution of a query on N objects, while R&n,N) is the re-
sponse time of the parallel execution of the same query,
on the same number of objects, distributed over n proces-
sors.
Definition 10. A system speeds-up “ideally” if S is a
linear function of n [101.
Definition 11. The response time of the sequential
query execution is always the same and equals the total
workload, plus the initialization time of a single proces-
sor:

l?,,,(N) = a+cN (14)

Corollary 6. The speed-up of the non-uniform strategy
is (from definitions 9-10 and corollary 1):

a+cN
““S= n+l

-+cN
a2 n

Theorem 14. The non-uniform fragmentation strategy
offers better speed-up than the uniform strategy (fig. 6).
Proof. From theorem 4 and definitions 9 and 11:

Non-uniform

0 20 40 60

nodes
Figure 6. Speed-up

Theorem 15. The maximum speed-up that the non-uni-
form strategy offers is 44% more than the uniform strat-
egy.

Proof. Since the minimum response time is achieved for
n, processors, speed-up is maximum for the same number
of processors, for both strategies. Maximum speed-up for
the non-uniform strategy is calculated by substituting
n”nO (equation 9) in n”S:

or in other words, 44% more speed-up than the uniform
fragmentation strategy (theorem 3). 0

Notice that even if the two fragmentation strategies
offer different performances, both at the maximum speed-
up case achieve half of the linear speed-up [28].

5.2. Data-only Scale-up

The response time of both fragmentation strategies
depends also on the number of the objects N (equations 1,
8). In the previous sections it was assumed that N was
constant. In this section we consider the case where more
objects are added to the system, but these are stored on ex-
isting nodes, i.e.’ no new nodes are added to the system.
Speed-up is no longer a valid metric, since the system re-
mains constant, so the response time is studied instead.
Theorem 16. The response time grows linearly with the
number of added objects, with the same rate for both
strategies.
Proof. We differentiate the response times for both
strategies using equations (l), (8):

d”R d”“R c
dN=dN=n

cl

New objects must be added uniformly to existing
nodes, in a round-robin manner, as figs. 7 and 8 show.

P

time
Figure 8. Data-only scale-up (non-uniform)

377

d”L -=- a(a+cN) <o
dn (an + cNj2

we derive that the more nodes (and objects) are added to the
system, the worse it scales up. 0

The explanation for this behaviour is depicted in fig.
10, where it is shown how new nodes with new data be-
have in time. Since new nodes are still initialized sequen-
tially by the same master processor, processing begins
later at each new node.

5.3. Processor and Data Scale-up

This section considers the case where new data are
stored on new nodes that are added to the system. This is
called “system scale-up” [lo] and its purpose is to achieve
the same performance despite data increase. The speed-up
is no longer a valid measure, since the sequential and the
parallel performances are not achieved with the same data
size. Instead, “scale-up” L is used to measure the parallel
system’s “goodness”.
Definition 12. “Scale-up” is the fraction of the query
response time of sequential query processing divided by
the equivalent time of a larger query on a parallel system:

L(n) = &es (NJ
R,,,,Cn, N’)

where Rseq(N) is the response time of the sequential sys-
tem on N objects and Rpa,(n,N’) is the response time of
the parallel system with n nodes and N’ objects (N’>N),
where N’ also depends on n and the rest of the known sys-
tem parameters.
Definition 13. A system scales-up “ideally” if L equals
1 (or close) for all n’s [lo].
Lemma 5. The “scale-up” of the uniform strategy is:

a+cN “L = -
an+cN

Proof. According to the uniform fragmentation strategy,
when there are N objects stored on a single node, then
there should be N’=nN objects stored on n nodes, since the
system configuration insists that an equal amount of ob-
jects resides at each node. Therefore, scale-up is, according
to definition 12 and equations (14, 1):

“L = a+cN a+cN a+cN
N’ = =-

nN
an+c- an+c- an+cN q

n n

1.00 -,
. Non-uniform

: 0.98
-\ \

6
.N

z 0.96
. .

UniforZ \ . . .
‘.

0.94, , , , : , I I : I I I I
0 20 40 60

nodes
Figure 9. Scale-up

Theorem 17. The uniform fragmentation strategy does
not “scale-up” ideally and its “scalability” worsens with
the number of nodes (fig. 9).
Proof. From lemma 5 it is clear that uL<l, Vn>l.
Taking also the derivative of uL:

P

time
Figure 10. Processor and data scale-up (uniform)

Theorem 18. The response time ;of a uniformly frag-
mented system is monotonically increased when new
nodes and objects are added to the system:

%=a>()
dn

Proof. We must calculate the derivative of UR, bearing in
mind that both N and n are variables:

d”R a”R i”‘R dN
-=T-l+aNdn dn

The partial derivatives are calculated directly from equation
(1). In order to calculate the derivative of N as a function
of n, we note that the number of objects per node is con-
stant and equals to Nln, thus:

N,=Q=fi*N=Qn=,
n

$Q=+

We substitute all the derivatives:

!!?=(a-c &)+CN=a q
dn ’ n“ nn

Theorem 19. The non-uniform fragmentation strategy
scales-up “ideally” (fig. 9).
Proof. According to definition 12 and equations (14, 8)
the “scale-up” of the non-uniform strategy is:

a+cN, ““L= n+l
-2

a2 n
where N1 is the number of objects that reside in the first
node of a non-uniformly fragmented system, if we con-
sider that an one-node system is equivalent to a sequential
system.

If we substitute Nl using equation (7):

378

nu =
L a+c(X+yq) = a+cf+at-4 =,

-2 n+l
a2 n

z+az+c”
n

According to the above equation and definition 13, a
non-uniformly fragmented system scales-up ideally. 0

When new nodes with new objects are added to the
system (fig. ll), they do not affect the response time of
the system, since the fragmentation strategy insists that
all nodes terminate at the same time.

time
Figure 11. Processor and data scale-up (non-uniform)

Theorem 20. The response time of a non-uniformly
fragmented system remains constant when new nodes and
objects are added to the system:

d”“R - 0
dn

Proof. Using the same line of reasoning with the proof
of theorem 18, we calculate the derivative of the response
time, using equation (8):

The derivative of N is calculated using equation (6):

--
)

=N 2n-la ---
’ 2c

Now N1 (which is considered as a constant above) is sub-
stituted using equation (7):

dN N n-la 2n-la N na -=-+ -__- -=--es
dn n 2c 2c n 2c

Finally, the above derivative is substituted in the total
derivative:

=o Cl

The scalability of a non-uniformly fragmented system
is ideal, but limited to a certain number of objects and
nodes. When the system is scaled-up the number of ob-
jects at the last node is constantly decreased, until the op-
timal configuration, with n, nodes, is reached. Then no

further scale-up can take place, because the last node has
the lowest allowable number of objects (see section 4.2),
that cannot be further reduced (fig. 11). If more objects
(and nodes) are to be added to the system there must be a
system reconfiguration in order to fit into the nodes.

6. Simulation Measurements

In this section we present the simulation we per-
formed to justify the theoretical analysis of the non-uni-
form fragmentation strategy. The simulation was per-
formed on a multi-processor network of 5 transputers, us-
ing CS-Prolog [181 as the simulation language. The same
hardware/software platform is used to build a prototype of
the PRACTIC system [2].

The simulation treats processor initialization and
method execution times as “do-nothing” periods of time.
Simulation parameters are shown in table 2. The master
processor coordinates the execution by sequentially start-
ing-up processing at the slave nodes. When slaves finish
processing they inform the master by sending a message.
When the master processor gathers all the messages, it
terminates the global process.

Table 2. Simulation parameters

The global query response time we measure starts be-
fore master begins initialization and ends after master re-
ceives all the terminating messages from the slave nodes.
The results are shown in table 3 for both fragmentation
strategies.

N 1 2 3 4

Non-uniform 1,000 9.47 6.61 6.57 -
2,000 17.90 10.84 9.43 9.39

I 5.000 43.02 23.55 18.04 15.88
I

Uniform 1,000 1 10.20 7.41 7.70 9.48
2,000 19.46 12.94 12.27 12.70
.5,000 44.60 25.09 20.05 18.19

Table 3. Simulation response time measurements (set)

From table 3, it is clear that the non-uniform strategy
outperforms the uniform strategy at all cases. Figs. 12-14
compare graphically the two fragmentation strategies and
the simulation time to the theoretical time calculations,
for different numbers of objects. Simulation time is de-
picted with squares, while calculated time with rhom-
buses. Furthermore, uniform strategy is depicted with
solid marks, while non-uniform with outlined symbols.

Although the measured time is different from the the-
oretical, the behaviour of the curves is identical. The dif-
ference between theoretical and simulated results is around
100% and is mainly due to extra overheads caused from
program execution, inter-processor communication, etc.

379

However, these overheads add similarly to both strategies,
therefore the comparison between strategies is not affected.
Furthermore, the simulated times show minima at the
same as the calculated number of processors (table 4).

j 4.00 -=a-’

0.00 -1

1 2 3 4

nodes
Figure 12. Simulation vs. calculation (1000 objects)

0.00 II
1 2 3 4

nodes
Figure 13. Simulation vs. calculation (2000 objects)

50.00 T

;iii~T

1 2 3 4

nodes
Figure 14. Simulation vs. calculation (5000 objects)

1 2 3 4

nodes
Figure 15. Response time difference between strategies 31f equation (8) is subtracted from (1): dR=a(n-1)/2.

The difference in time between the two strategies is
plotted in fig. 15. The theoretical difference is linear and
depends only on the number of processors3, while the
simulated time difference is not perfectly linear but fol-
lows a linear trend. Furthermore, fig. 15 shows that the
time difference between the two strategies depends on the
number of objects, since the overheads affect both the
master and the slaves.

1 Non-uniform I Uniform
N theore- simu- theore- simu-

tical lation tical lation
1,000 2.8 3 2.0 2
2,000 4.0 4 2.8 3
5,000 6.3 >4 4.5 -4

Table 4. Simulation vs. calculation (optimal processors)

As a general remark, fig. 12 shows that the uniform
strategy can work non-optimally after 2 processors, while
non-uniform strategy cannot operate at all after 3 proces-
sors. As the number of objects increases the difference
between the two strategies decreases, because the optimal
number of processors is more than 4. Unfortunately our
hardware resources were limited to 4 processors.

7. Conclusions and Future Work

In this paper, we have studied the analytic perfor-
mance of query execution in a parallel object-oriented
database, using a non-uniform object fragmentation policy
in a flat multi-processor architecture. The proposed frag-
mentation strategy is based on the simultaneous termina-
tion of query processing among the processors into which
a class is partitioned, despite the sequential initialization
of the processes from the master processor. The process
initialization time can be significant compared to actual
query processing time, in main-memory database systems.

Results show that the new approach improves by
44% the fragmentation ability of the database, and thus
provides better query performance than the uniform frag-
mentation strategy that has been widely used in parallel
database systems [28]. Furthermore, the non-uniform
fragmentation strategy offers perfect scale-up for both the
system and data, ,until a certain upper limit is reached, af-
ter which system re-configuration must occur.

In practical terms the non-uniform fragmentation
method can be used in a parallel database system, either re-
lational or object-oriented, based on the most frequently
accessed attribute or executed method, respectively.
However, it must be noted that if the system is to be
scaled-up frequently, then the initial configuration must
not be too close to the optimal configuration, because
then scalability is strictly limited to the optimal number
of processors, in contrast to the uniform fragmentation,
where scalability beyond the optimal configuration keeps
‘the system working, non-optimally though.

380

Current work includes the study of improved object
partitioning strategies that will further increase the upper
limit in the scalability of the system. These strategies
will combine the non-uniform fragmentation of objects
with a hierarchically structured multi-processor architec-
ture [3], to take advantage of both. Furthermore, data of
neighbouring classes will be interlaced into common pro-
cessors, to provide better processor utilization. Finally, all
the above fragmentation strategies will be incorporated and
tested into the parallel OODB system PRACTIC [2],
which is under development.

Acknowledgments

We wish to thank the anonymous referees for their
valuable comments on the paper.

References

HI

PI

[31

[41

151

El

[71

VI

[91

WI

r111

P. Apers, C. Berg, J. Flokstra, P. Grefen, M.
Kersten, A. Wilschut, PRISMA/DB: A parallel,
main memory relational DBMS, in [12] 541-554.
N. Bassiliades, I. Vlahavas, PRACTIC: A concur-
rent object data model for a parallel object-oriented
database system, to be published, Znformation
Sciences, 1995.
N. Bassiliades, I. Vlahavas, A hierarchical abstract
architecture for parallel query execution in an ob-
ject-oriented database system, submitted for publi-
cation, 1994.
B. Bergsten, M. Couprie, P. Valduriez, Overview
of parallel architectures for databases, The
Computer Journul, 36(8) (1993) 734-740.
H. Boral, W. Alexander, L. Clay, G. Copeland, S.
Danforth, M. Franklin, B. Hart, M. Smith, P.
Valduriez, Prototyping Bubba, a highly parallel
database system, in [22], 4-24.
L. BGszSrmtnyi, J. Eder, C. Weich, PPOST: A
parallel database in main memory, Proc. Database
& Expert System Applications, Athens, Greece
(1994) 754-758.
G. Copeland, W. Alexander, E. Boughter, T.
Keller, Data placement in Bubba, Proc. ACM-
SIGMOD Int. Conf. Management of Data,
Chicago, USA (1988) 99-108.
Z. Cvetanovic, The effects of problem partitioning,
allocation and granularity on the performance of
multi-processor systems, IEEE Trans. Computers,
36(4) (1987).
D. Dewitt, S. Ghandeharizadeh, D.A. Schneider,
A. Bricker, H. Hsiao, R. Rasmussen, The
GAMMA database machine project, in [22], 44-62.
D. Dewitt, J. Gray, Parallel database systems: The
future of high performance database systems,
Comm. ACM, 35(6) (June 1992) 85-98.
H. Du, J. Sobolewski, Disk allocation for Cartesian
product files on multiple disk systems, A CM
Trans. Database Systems, 7(1) (1982) 82- 101.

WI

[I31

u41

[I51

U61

[I71

WI

r191

WI

WI

P21

v31

1241

~251

W-Y

~271

P81

M. Eich (ed.), Special section on main-memory
databases, IEEE Trans. Knowledge & Data Eng.,
4(6) (Dec. 1992).
H. Garcia-Mollina, K. Salem, Main memory
database systems: An overview, in [121, 509-5 16.
S. Ghandeharizadeh, D. Dewitt, A multiuser per-
formance analysis of alternative declustering strate-
gies, Proc. 6th Int. IEEE ConJ: Data Eng. (1990)
466-475.
S. Ghandeharizadeh, D. Dewitt, W. Qureshi, A
performance analysis of alternative multi-attribute
declustering strategies, Proc. ACM-SIGMOD Int.
Con5 Management of Data (1992) 29-38.
G. Graefe, Volcano, An extensible and parallel
dataflow query processing system, IEEE Trans.
Knowledge & Data Eng., 6(l) (1994) 120-135.
P. Gray, K. Kulkarni, N. Paton, Object-Oriented
Databases, A Semantic Data Model Approach
(Prentice Hall, 1992).
P. Kacsuk, I. Futo, Multi&ansputer implementa-
tion of CS-Prolog, Proc. AI & Comm. Process
Architecture, (Wiley & Sons, 1989) 131-148.
K. Kim, Parallelism in object-oriented query pro-
cessing, Proc. 6th Int. IEEE Con& Data
Engineering (1990) 209-217.
J. Neievergelt, H. Hinterberger, K. Sevcik, The
grid file: An adaptable, symmetric multikey file
structure, ACM Trans. Database Systems, 9(l)
(1984) 38-71.
J. Srivastava, T. Niccum, B. Himatsingka, Data
declustering in PADMA: A parallel database man-
ager, Data Eng., 17(3) (1994) 3-13.
M. Stonebraker (ed.), Special issue on database pro-
totype systems, IEEE Trans. Knowledge & Data
Eng., 2(1). (Mar. 1990).
M. Stonebraker, R. Katz, D. Patterson, J.
Ousterhout, The design of XPRS, 14th Znt. Con&
Very Large Data Buses, Los Angeles, CA (Sept.
1988) 318-330.
Tandem Performance Group, A benchmark of non-
stop SQL on the debit-credit transaction, Proc.
ACM SIGMOD Conf Management of Data,
Chicago, IL (June 1988) 337-341.
Teradata Corporation, DBU1012 Data Base
Computer System Manual, Dot. NO. ClO-OOOl-
02, Release 2.0 (Nov. 1985).
A. Thakore, S. Su, Performance analysis of parallel
object-oriented query processing algorithms,
Distributed & Parallel Databases, 2(1) (Jan. 1994)
59-100.
P. Valduriez, Parallel database systems: Gpen prob-
lems and new issues, Distributed & Parallel
Databases, l(2) (Apr. 1993).137-165.
A. Wilschut, J. Flokstra, P. Apers, Parallelism in
a main-memory DBMS: The, performance of
PRISMA/DB, Proc. 18th Int. Conf. Very Large
Data Bases, Vancouver, Canada (1992) 521-532.

381

