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Abstract 

In this paper we introduce generalized pro- 

jections (GPs), an extension of duplicate- 
eliminating projections, that capture aggre- 
gations, groupbys, duplicate-eliminating pro- 
jections (distinct), and duplicate-preserving 
projections in a common unified framework. 
Using GPs we extend well known and simple 
algorithms for SQL queries that use distinct 
projections to derive algorithms for queries us- 
ing aggregations like sum, max, min, count, 
and avg. We develop powerful query rewrite 
rules for aggregate queries that unify and ex- 
tend rewrite rules previously known in the lit- 
erature. We then illustrate the power of our 
approach by solving a very practical and im- 
portant problem in data warehousing: how 
to answer an aggregate query on base tables 
using materialized aggregate views (summary 
tables). 

1 Introduction 

With the growing number of large data warehouses 
for decision support applications, efficiently executing 
aggregate queries (queries involving aggregation) is be- 
coming increasingly important. Aggregate queries are 
frequent in decision support applications, where large 
history tables often are joined with other tables and 
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aggregated. Because the tables are large, better opti- 
mization of aggregate queries has the potential to re- 
sult in huge performance gains. Unfortunately, aggre- 
gation operators behave differently from standard rela- 
tional operators like select, project, and join. Thus, ex- 
isting rewrite rules for optimizing queries almost never 
involve aggregation operators. 

To reduce the cost of executing aggregate queries 
in a data warehousing environment, frequently used 
aggregates are often precomputed and materialized. 
These materialized aggregate views are commonly re- 
ferred to as summary tables. Summary tables can be 
used to help answer aggregate queries other than the 
view they represent, potentially resulting in huge per- 
formance gains. However, no algorithms exist for re- 
placing base relations in aggregate queries with sum- 
mary tables so the full potential of using summary 
tables to help answer aggregate queries has not been 
realized. This paper makes three contributions to effi- 
ciently answering aggregate queries. 
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1.1 

We propose a framework for treating aggregation 
operators as an extension of duplicate-eliminating 
projection operators. 

Using this framework we present more powerful 
query rewrite rules for aggregation operators than 
rules known previously. 

Utilizing our rewrite rules, we extend existing 
work on answering queries using materialized 
views by giving an algorithm for answering aggre- 
gate queries using materialized aggregate views. 

Optimizing Aggregations 

Viewing aggregation as an extension of duplicate- 
eliminating (distinct) projection provides very useful 
intuition for reasoning about aggregation operators in 
query trees. Rewrite rules for duplicate-eliminating 
projection often can be used as building blocks to de- 
rive rules for the more complex case of aggregation. In 
addition to the intuition obtained by viewing aggre- 
gation as extended duplicate-eliminating projection, 
modeling both with one operator makes sense from 
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an implementation point of view. Typically, in exist- 
ing query optimizers both aggregations and duplicate- 
eliminating projections are implemented in the same 
module [G93]. 

We present a set of query rewrite rules for moving 
aggregation operators in a query tree. Other authors 
have previously given rewrite rules for pulling aggre- 
gations up a query tree [Day87, CS95] and for pushing 
aggregations down a query tree [CS94, YL94]. Our 
work unifies their results in a single intuitive frame- 
work, and using this framework we derive more pow- 
erful rewrite rules. We present new rules for pushing 
aggregation operators past selection conditions (and 
vice-versa) and show how selection conditions with in- 
equality comparisons can cause aggregate functions to 
be introduced into or removed from a query tree. We 
also present rules for coalescing multiple aggregation 
operators in a query tree into a single aggregation op- 
erator, and conversely, rules for splitting a single ag- 
gregation operator into two operators. 

1.2 Materialized Views with Aggregates 

The new rewrite rules we present have enabled us to 
develop an algorithm for determining whether mate- 
rialized aggregate views can be used to answer ag- 
gregate queries. The algorithm uses the rewrite rules 
to transform a query tree containing aggregation op- 
erators into an equivalent tree with some or all of 
the base relations replaced by materialized views. 
Previous work on answering queries with material- 
ized views has dealt only with simple Select-Project- 
Join (SPJ) type queries and views without aggrega- 
tion [CKPS95, LMSS94]. Our algorithm is a novel 
and important result for efficiently executing aggre- 
gate queries using preexisting materialized aggregate 
views. 

Currently, to use a materialized view in a query, the 
view must be specified explicitly in the FROM clause. 
However, requiring that materialized views be spec- 
ified in the FROM clause puts the onus on the query 
writer to be aware of all available views and to know 
whether using the views is more efficient than querying 
the base relations. A better approach is to allow the 
query optimizer to choose which materialized views 
are used in answering a query. Using our algorithm 
a query optimizer can transform an aggregate query 
tree over base relations into a query that incorporates 
materialized aggregate views and choose the most effi- 
cient tree. Our algorithm can easily be integrated into 
a conventional query optimizer using the approach for 
SPJ-type queries and views developed in [CKPS95]. 

1.3 Outline of Paper 

Section 2 motivates our work with an example showing 
how an aggregate query tree can be transformed into 
a more efficient query tree that takes advantage of a 
materialized aggregate view. The example illustrates 
how our framework for reasoning about aggregation 

and the rewrite rules we present can be brought to- 
gether into an algorithm for solving an important and 
practical problem. 

The body of this paper is divided into three sections 
describing our three contributions. Section 3 presents 
our framework for reasoning about aggregation. The 
query rewrite rules are given in Section 4. The al- 
gorithm for transforming an aggregate query into one 
that uses materialized views is given in Section 5. It 
is possible to read later sections first, referring back to 
previous sections as necessary. 

Related work is discussed in Section 6. We give our 
conclusions in Section 7. [GHQ95] is the full version 
of this paper and is available online. 

2 Motivating Example 

We give an example showing how a materialized ag- 
gregate view can be used to help answer an aggregate 
query. We do not explain the query rewrite rules or 
the algorithm used for transforming the query tree in 
this section. We revisit this example and explain the 
transformations involved when we describe our algo- 
rithm in Section 5. 

EXAMPLE 2.1 Consider a data warehouse with 
historical sales data for a large chain of department 
stores. The data warehouse has the following relations. 

item(item-id, item-name, category, 
manufacturer, our-cost) 

store(store-id, street-addr, city, state) 
sales(sales-id, item-id, store-id, 

month, year, sale-amt ) 

The first attribute of each relation is a key for the re- 
lation. The item relation contains information about 
each item that is stocked. The our-cost attribute con- 
tains the wholesale cost of the item. The store rela- 
tion contains the address of each store. The sales 
relation contains one tuple for every sale that is made. 
Due to periodic discount and clearance sales, the sale 
amount of items sold is not functionally determined 
by item-id. It is instead stored in the sales relation. 
The relations have the following characteristics. 

l There are 1000 items in the item relation, 10 of 
which are in the toy category. 

l There are 1000 stores in the store relation, 100 
of which are in the state of California. 

l There are 10 years worth of sales in the sales 
relation, from 1986 through 1995. 

l On average each store sells each item 200 times a 
year, resulting in two billion entries in the sales 
relation. 

Suppose one wants to know if toy sales made by 
stores in the state of California have been going up or 

359 



down during the past five years. This type of query, 
aggregating large amounts of data, is typical of deci- 
sion support applications. The following SQL query 
can be written to calculate total sales of all toys in 
all California stores by year. The expression tree cor- 
responding to this query appears in Figure 1. In the 
figure, each arc of the query tree has been annotated 
with the number of tuples flowing up the arc. We as- 
sume uniform selectivity of the selection conditions. 
The sizes of intermediate results is often a good pre- 
dictor of query execution time, so we annotate the arcs 
to compare the query trees before and after using the 
materialized view. In the annotations, we abbreviate 
billion as “B,” million as “M,” and thousand as “K.” 

SELECT year, sum(sale-amt) 
FROM sales, store, item 
WHERE sales.store-id = store.store-id 

AND sales.item-id = item.item-id 
AND sales.year >= 1991 
AND item.category = “toy” 
AND store.state = “CA” 

GROUPBY year 
1 
4 

Select year, sum(sale-smt) 

sales item 

Figure 1: Query tree to compute total toy sales for 
California stores by year 

Now suppose a yearlysales view is materialized, 
listing the total yearly sales by item and store for stores 
in the state of California. The view definition appears 
below. The tree corresponding to the view definition 
appears in Figure 2. 

CREATE 
SELECT 

FROM 
WHERE 

AIVD 

VIEW yearly-sales AS 
sales.store-id, sales.item-id, 
sales.year, SUM(sale-amt.) AS total 
sales, store 
sales.store-id = store.store-id 
store. state = “CA” 

GROUPBY sales.store-id, sales.item-id, 
sales.year 

Notice that the materialized view involves the rela- 
tions sales and store, while the query involves the 
relations sales, store, and item. Starting with the 
query tree of Figure 1, by reordering the joins and 
using our rewrite rules (see Section 4.3) to push the 
aggregation down past the topmost join, the tree in 

Select store-ld,item-ld,year, 
sum(sale-amt) as total 

Groupby Item-id, store-id, year 

c 
stste=“CA” 

store 

Figure 2: Query tree corresponding to yearlysales 
view definition 

Figure 3 is obtained. Using our algorithm for an- 
swering aggregate queries using materialized aggregate 
views (see Section 5), we can now transform this query 
tree into one that uses the yearlysales materialized 
view, shown in Figure 4. Since the number of tuples 
in yearlysales is several orders of magnitude less 
than the number of tuples in sales, the query tree 
using the materialized view is likely to be much more 
efficient than the query over the base relations. Using 
our rewrite rules and algorithm, a cost-based optimizer 
could generate both trees and select the best one. 0 

ET 
i 

Select vear. sumfXl 

Select item-id,year, 
Groupbi year . . 

sales store 

Figure 3: Query tree after reordering joins and pushing 
an aggregation down past the topmost join 

m 
1 

Select year, sum(X) 
Groupby year 

yearly-sales 

Figure 4: Query tree after integrating materialized 
view 

3 GP Framework 

This section defines GPs and then state some proper- 
ties of GPs that are used in later sections. 
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3.1 GP Definition 

A central theme of this paper is that algorithms 
for optimizing duplicate elimination can be extended 
to handle aggregation-groupby operators. Duplicate- 
eliminating projection, also referred to as distinct 
projection, is the simplest form of aggregation because 
it can be expressed as a simple groupby statement 
that does not compute any aggregates. Thus, we intro- 
duce a generalized projection operator (GP), denoted 
by the same operator T as we use for distinct projec- 
tions. This extension of notation is appropriate, since 
a GP with no aggregate components behaves exactly 
like a distinct projection, i.e.: 

select distinct D from R z GP : XD (R(D,S)) 
- = select D from R groupby D 

In general, a GP takes as its argument a relation R 
and produces a new relation according to the subscript 
of the GP. The subscript has two parts: 

1. A set of groupby components. We refer to them 
as components and not attributes because they 
may be functions of attributes and not just at- 
tributes. For instance, the GP ~TD(R) is written 
as the following SQL query: 

select D from R groupby D. 

2. A set of aggregate components. For example, we 
can write the GP 7fo,max(s) (R) as the query: 

select D, max(S) from R groupby D. 

Here D is the only groupby component and 
max(S) is the only aggregate component. 

For GPs that use only SQL aggregate components like 
max or sum, the equivalent SQL query is obtained by 
copying the entire subscript of the GP as the select 
clause of the SQL query and by copying the groupby 
components as the arguments of the groupby clause 
of the SQL query. 

We use a different symbol 7fdup to denote con- 
ventional projections that preserve duplicates. Sec- 
tion 4.3.2 discusses how to use GPs to represent these 
projections as well. Thus, GPs capture distinct 
projections, aggregate computations, and duplicate- 
preserving projections. 

Baaed on the aggregate components of a GP we clas- 
sify GPs into two categories: 

l duplicate insensitive: The generation or removal 
of duplicate tuples in their input does not affect 
the result of such GPs. E.g. distinct projections 
and aggregations like max and min. 

l duplicate sensitive: Duplicates must be preserved 
in their input. E.g. aggregations sum and count. 

3.2 Properties 

The following properties of GPs should be noted: 

l If a GP uses only SQL aggregate components like 
max or sum, then the GP can be expressed using 
one SQL aggregate query. In the general case GPs 
may have non-SQL aggregate components requir- 
ing multiple SQL queries to express them (refer 
to Example 4.1). 

l The groupby components of a GP are the key 
of the result. Thus, a GP outputs exactly one 
tuple for each value of the groupby components 
and produces no duplicates in its output. 

l If the groupby components of a GP include a key 
of the input of the GP, then we can always rewrite 
the GP to have no aggregate components. 

3.3 Scope Of Results 

We develop rules for transforming aggregate queries 
and for answering aggregate queries using aggregate 
materialized views. We consider queries and views 
whose query trees have the following nodes: selec- 
tion nodes, cross-product nodes, and GP nodes. For 
ease of exposition we represent join nodes as a cross- 
product followed by a selection. The query trees we 
consider in this paper represent SQL queries hav- 
ing the select, from, where, groupby, having key- 
words. We do not consider correlated subqueries. The 
relations in the from clause can be base relations or 
views. The views can themselves be single block SQL 
queries with the same structure. The query tree may 
thus have nested aggregates. We consider aggregates 
where the aggregate over a set of tuples S can be 
computed from aggregates over subsets of S. The 
SQL aggregates max, min, sum, count are exam- 
ples (we handle avg by expressing it in terms of sum 
and count). 

4 GP Transformations 
4.1 Overview 

This section considers three important query transfor- 
mations 

l pushing GPs down query trees. 

l pulling GPs up query trees. 

l coalescing two GPs into one, or equivalently, split- 
ting up a GP into two. 

These transformations are not independent of each 
other but are derived from the same underlying query 
equivalences. 

We outline below our approach at deriving the 
transformation rules. We start by extending the rules 
for distinct projections to duplicate-insensitive GPs. 
Then we extend the rules for duplicate-insensitive GPs 
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to derive those for duplicate-sensitive GPs. Our ap- 
proach enables us to derive more powerful rules than 
those previously known. 

Duplicate-insensitive aggregation has two compo- 
nents: (a) fragmenting the input relation into groups 
of tuples (b) for each group computing the required 
aggregate function. A distinct projection involves step 
(a) only. When transforming an aggregate query, the 
GPs interact with other operators like selections, other 
GPs, and cross-products. The transformation rules for 
distinct projections address the interaction of step (a) 
with these operators. We extend these transformation 
rules to consider how step (b) interacts with these op- 
erators. 

Note, step (a) is done on a tuple-by-tuple basis and 
thus is a tuple-based operation. On thi other hand, 
step (b) deals with sets of tuples at a time and thus is 
a relation-based operation. Relational operators like 
selections and distinct projections are tuple-based and 
hence relation-based computations cannot be “folded 
into” them. Therefore, to obtain transformation rules 
for duplicate-insensitive GPs we extend the rules for 
transforming queries with distinct projections to han- 
dle this mismatch in computation types. In particu- 
lar, for the push-down and pull-up transformations we 
augment the corresponding distinct transformations 
for the case where a selection predicate involves aggre- 
gation attributes. In the coalescing transform, we add 
rules for the case when an attribute created by an ag- 
gregate computation is used in another GP, since we 
want to move this computation into the other GP. 

Now consider duplicate-sensitive GPs. Such GPs 
behave differently from duplicate-insensitive GPs only 
when duplicates are generated or destroyed. Of the 
relational operators, only cross product nodes intro- 
duce duplicates because a cross product node causes 
tuples on either incoming branch to get repeated many 
times, above the cross product. Thus, the transforma- 
tions for duplicate-insensitive GPs are extended only 
for the cross-product node case to get the correspond- 
ing transformations for duplicate-sensitive GPs. The 
interaction of a duplicate-sensitive GP with other re- 
lational operators is similar to that of a duplicate- 
insensitive GP. 

In this paper we also show a close relationship be- 
tween duplicate-insensitive GPs and selection predi- 
cates which involve the arithmetic comparisons >, > 
, <, 5. We use such comparisons to generate or re- 
move aggregations like max, min in certain cases. 

4.2 Arithmetic Comparisons: The T And I 
Functions 

This section discusses the interaction of GPs with se- 
lection conditions that use arithmetic comparisons by 
discussing what happens if GPs are pushed below such 
selections. The ideas developed herein also apply to 
GP pull-up and coalescing. 

Consider any attribute that occurs in a query tree. 

If the attribute is needed as an output of the query 
tree, we cannot delete any distinct value of this at- 
tribute by pushing GPs down. Similarly, all distinct 
values of an attribute are required if the attribute par- 
ticipates in an equality predicate (=, f). For instance, 
consider a generalized projection TA being pushed 
down a query tree below a selection predicate b&C. 
Since we require all distinct values of B, C to make the 
comparison, and we need all the distinct values of A 
in the answer, a new GP rA,B,C is introduced below 
the selection predicate. However, if the attribute only 
occurs in an’ arithmetic comparison (< , >, >,I), we 
can do better. The following example suggests how. 

EXAMPLE 4.1 Consider a GP TA being pushed 
down a query tree below a selection predicate aB>C. 
The GP TA’ says that above the selection predicate, 
only distinct values of attribute A are needed. Let 
the the selection predicate take as input the relation 
W, B, Cl. 

Eventually we want all those A values that have 
associated with them a B and C value that satisfies 
cB>C. Now consider two tuples of R: tl = (a,40,10) 
and t2 = (a,30,20). Since t1.B 2 t2.B and t1.C 5 
t2.C, whenever t2 satisfies the selection predicate so 
does tl. Now, both tuples contribute the same value 
of A to the answer, and the answer does not retain 
duplicates. Thus, tl can be discarded even before the 
selection node, without affecting the final answer. We 
can thus prune the relation R to remove irrelevant tu- 
ples such as t 1. cl 

In the above example the attributes B, C are merely 
“filters” and their actual values are not important. We 
create the new aggregate functions T, I when we push 
down GPs below selection nodes with such filfeis. In 
Example 4.1, on pushing r;TTA below gB>C we get the 
new GP ~A,T(B),I(c). The GP ~A,T(B),L(c)(R) says 
that we can discard any tuple s in R, if there exists 
another tuple t such that s.A = t.A, s.B 2 t.B, and 
s.c 2 t.c. 

Consider now the GP TA!T(B). It says we can dis- 
card any tuple s if there exists another tuple t such 
that s.A = t.A and s.B _< t.B. In particular, this 
means that we only need to keep the max(B) value 
for each value of A. In other words: 

rG,T(B)= ~G,maX(B) 

where G is a set of groupby attributes. A similar 
equality relates I and min. 

While the functions T and I seem the same as max 
and min respectively, there are some important differ- 
ences. Since ~A,T(B),~(c) merely prunes the relation 
R(A, B, C), we have the following important property 
of T ,I operators: 

~G,T(B),I(c)(R(G,B,C)) C R(G,B,C) 

where G is a set of groupby attributes. The functions 
max and min do not satisfy this property. To see 
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this, consider R(A, B, C) = {(a,40,20), (a, 30,lO)). 
lr A,max(B),min(c) (R(A, B, C)) = {(a, 40,lO) which 
is not a subset of R. Thus in general, XA,r(n),A(C) # 

TA,max(B),min(C). 
We can replace T (I) by max(min) in GPs that 

have no other aggregate components. In the presence 
of other aggregate components the rules for evaluating 
T (I) are more involved. The T, I operators and their 
algebra are explained in greater detail in [HG94]. 

4.3 GP Push-down 

Now we discuss pushing GPs down query trees and 
examine the interaction of GPs with the different types 
of nodes in the query tree. 

4.3.1 Duplicate-Insensitive GPs 

Selection Nodes: Duplicate-insensitive GPs behave 
similarly to distinct projections if the selection predi- 
cate does not contain an attribute used to compute an 
aggregation. To see why, consider pushing a distinct 
projection r;TTA down below the selection node bo=D. 
On push-down, we get the new projection ~A,c,I) and 
we keep the original projection above the selection 
node, since the attributes C, D do not appear in the 
output. The new projection XA,C,D does a “partial” 
duplicate elimination: for each C, D value we eliminate 
all duplicate values of A. The original projection 71~ 
then does the total duplicate elimination. The above 
technique of doing partial and total duplicate elimina- 
tion is applicable to aggregations like max,min too. 
By a similar reasoning, on pushing ;TTA,max(n) be- 
low bC=D, we get the new GP ~A,C,L),max(B). The 
new GP computes the partial maxima and the original 
GP, the total maxima. Thus when the selection pred- 
icate does not involve aggregation attributes, we have 
the same rule as distinct projections for all duplicate- 
insensitive projections: 

PDRule 1 When a selection predicate does not in- 
volve any attribute used in aggregation computation, 
we can push D GP P betow it. We add the attributes 
occurring in the selection predicate as groupby at- 
tributes, to get the new GP & and keep the original 
GP P above the selection. 0 

As a general rule, if the new GP, after push-down, 
is no different from the original GP then the original 
GP can be discarded on push-down because the partial 
aggregation is the same as the total aggregation. Thus, 
as a special case of Rule 1 we obtain the following 
query equivalence: 

TG,H(“.f(G)) = af(G)(%d (1) 

where G and H are the groupby and aggregate com- 
ponents respectively. 

By using push-down rule 1 and by adding attributes 
to the original GP to get the new GP, we may cause 

an attribute to appear in multiple components of the 
GP. We rewrite such GPs where possible by dropping 
the redundant component. 

EXAMPLE 4.2 Consider pushing the GP 
rA,x=max(n) below the selection on=C. By push- 
down rule 1, we get the new GP ~A,B,C~X=maX(B). 
We write this GP as ~A,B,C since computing max(B) 
is redundant. 0 

In the presence of certain arithmetic comparisons, 
we can create and push aggregation computations 
(Section 4.2). In particular, we saw that we can add 
the T and I functions as follows: 

PDRule 2 When a selection predicate is of the form 
B 2 C or B > C, on pushing, a GP P below the 
selection, we get the new GP .Q which is P with the 
additional components T(B) and I(C). 0 

Push-down rule 2 extends previous work on pushing 
down aggregation computation and allows us to create 
aggregation computation in queries that had none to 
start with. 

Example 4.2 also illustrates that in general it is 
not possible to push aggregate computations when the 
selection predicate involves an aggregation attribute. 
We cannot compute partial maxima, since we need all 
distinct values of B for the selection.. However in cer- 
tain cases, by using the T and I functions, we can in- 
deed push aggregation computations even if the selec- 
tion predicate involves an aggregation attribute. The 
following example illustrates this: 

EXAMPLE 4.3 
Consider pushing the GP KA,X=maX(B) below the 
selection an>ia. By push-down rule 2, the new GP 
created is ~TA,x=T(B). Now since there is no other ag- 
gregate computation in the GP, we can replace the T 
by a max to get XA,x=max(B). 0 

Example 4.3 leads to the following commutativity re- 
lationship: 

~G,X=max(B) (aB>C) = aX>C (rG,X=max(B)) 

Note G is a set of groupby attributes and C is an at- 
tribute belonging to the set G.‘,If the GP being pushed 
has other aggregate components, then the above rela- 
tionship does not hold. A similar result holds for I 
and 5, <. 

Cross-Product Nodes: For duplicate-insensitive 
GPs it does not matter if the aggregation computa- 
tion is done above or below the cross product, since 
the presence of duplicate attribute values does not af- 
fect the result of such computations. The following 
example illustrates this fact. 

EXAMPLE 4.4 Let ~;TTA,B,x=max(c),Y=max(o) be 
pushed through a cross product. Let attributes A, C 
belong to the left branch and attributes B, D to the 
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right branch. On pushing ~A,B,X=maX(C),Y=maX(D) 

we get ~A,X=maX(C) in the left branch and 
rF,Y=max(D) in the right branch and we drop the 
original GP. 0 

We have the same rule as for distinct projections: 

PDRule 3 On pushing u GP P through u cross- 
product node, we drop P and get the new GPs Qleft 
and Qright on the left and right brunches respectively. 
Qleft(Q,.ight) contains the components of P whose at- 
tributes ore from the.left (right) brunch. 0 

Push-down rule 3 also extends previous work on push- 
ing down aggregations. 

GP nodes: If while being pushed down, a GP en- 
counters another GP, we attempt to coalesce the two 
GPs into one. The rules for coalescing are given in Sec- 
tion 4.5. The interaction of GPs with conventional pro- 
jections that preserve duplicates during push down is 
syntactic (renaming of attributes) just as with pushing 
distinct projections below duplicate-preserving pro- 
jections. 

4.3.2 Duplicate-Sensitive GPs 

The output of a generalized projection is always a set, 
i.e., there are no duplicates. It is still possible to use a 
GP to write a conventional projection that outputs du- 
plicates. We use r d”p to denote a conventional projec- 
tion that preserves duplicates in its output. Consider 
now the GP rA,X=cOUnt(,J and the conventional pro- 

jection .Iry. We do not lose any information by drop 
ping duplicates and incorporating a count column to 
indicate multiplicity because the two forms are equiva- 
lent. We introduce the “expand” operator e to express 
this equivalence: 

dw 
eX (TA,X=cOUnt(*)) = rA 

Consider a relation R(A, B, X), for each tuple (a, b, 3) 
in R, the expand operator ex outputs x copies of the 
tuple (a, b). Thus we do not need to change the out- 
put semantics of GPs to accommodate duplicates. GPs 
only produce sets as outputs (no duplicates). Dupli- 
cate semantics are simulated using count and the ex- 
pand operator e. 

Properties of the Expand Operator e: The ex- 
pand operator helps us understand aggregations that 
are sensitive to duplicates in their input. Usually e is 
pulled up a query tree; so we mention some relevant 
properties of the expand operator. 

It can be seen that the expand operator commutes 
(can be pulled up) with selection and cross product 
nodes. Also the expand operator can be discarded 
when it encounters above it a duplicate-insensitive GP. 
The interactions of interest arise when an expand op- 
erator encounters a duplicate-sensitive GP. For the 

aggregate sum: 

~A,Y=SUm(B) (eX) = ~A,Y=SUm(B*X) 

since X just indicates how many times each B value 
is repeated. The aggregate count can be thought of 
as being sum( 1) which gives us 

We use these results in explaining the push down al- 
gorithm for aggregates like sum and count. The ex- 
pand operator also lets us create count aggregations 
anywhere in a query tree and can be used to reduce 
the size of intermediate relations when there are many 
duplicate tuples [GHQ95]. Prior work on rewriting 
aggregate queries has not considered introducing ag- 
gregates in queries. 

We now consider pushing a duplicate-sensitive GP 
down a query tree and examine its interactions with 
the different nodes present in the tree, 

Selection Nodes: As mentioned in Section 4.1 
duplicate-sensitive GPs follow the same basic al- 
gorithm as duplicate-insensitive GPs for selections. 
Push-down rule I thus applies to all GPs. However, 
as illustrated below, .arithmetic comparisons cannot be 
used to create the T and I functions with duplicate- 
sensitive GPs. So we cannot use push-down rule 2. 

EXAMPLE 4.5 Consider pushing GP ~A,,oUnt~,~ 
below a selection node bC>D. In this case for a given 
value of A we are not just hterested in seeing if there 
exists some C, D that will cause the value of A to be 
selected. Instead we are interested in the number of 
times such a value will be selected. Adding T(C) and 
I(D) to the projection pushed below oC>D allows 
us to determine only if there exists some c, D such 
that C 1 D. In some sense we end up getting only a 
TRUE/FALSE answer for each A value where we want 
a number. So on pushing rA,eount(*) below ao>D 

we get rA,C,D,COUnt(*) as the new Gpa Cl 

Cross-Product Nodes: When a duplicate-sensitive 
aggregation computation is pushed down one branch 
we have to account for the multiplicative effect of the 
other branch. Thus we cannot eliminate duplicates in 
the other branch if the GP is duplicate-sensitive. 

EXAMPLE 4.6 Let rA,Al,X=sUm(B) be pushed 
down through a cross product where attributes A, B 
go down the left branch and A’ down the right. Since 
sum requires duplicates be preserved in its input we 
cannot eliminate duplicates in the right branch, and so 
must push the conventional duplicate-preserving pro- 
jection r$r rather than the GP TAl. But we can 
replace n$p by eX(~A,,X=cOUnt(+)). We thus have 
the following expression after push down: 
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Unlike with duplicate-insensitive GPs, we require the 
original GP to do the computation above the cross 
product. Now, pulling up the expand operator and 
merging into the GP above the cross product, we get 

Since A, A’ are keys of the left and right branches (be- 
ing groupby attributes), A,A’ is a key of the rela- 
tion above the cross product. Hence we can replace 
sum(L * X) by L * X above the cross product. 0 

The detailed algorithm for GP push down is in [HG94]. 

4.4 Pulling Up GPs 

We are often interested in pulling GPs up query trees 
for a number of reasons. One important reason is to 
express queries with aggregations in a normal form 
(Section 5.1). The pull-up rules are derivable from the 
push-down rules we saw earlier. 

Selection Nodes: From query equivalence 1 we have 
the following rule: 

PURule 1 A GP can always be pulled up above a se- 
lection if all the attributes in the selection predicate 
occur as groupby attributes in the GP. 0 

From push-down rule 2 we have the following pull-up 
rule: 

PURule 2 If all the attributes in the selection predi- 
cate are groupby, T, or I aggregate attributes of the 
GP and if the T(I) attributes occur to the left (right) 
of a 1 or > comparison in the selection predicate, we 
can pull up the GP. 0 

Cross-Product Nodes: From push-down rule 3 we 
have the corresponding pull-up rule: 

PURule 3 If we have two GPs that are duplicate- 
insensitive on either branch of a GP, we can pull them 
up as one GP, by combining all their attributes. @ 

We can derive the pull-up rule for duplicate- 
sensitive GPs from the push-down rule for duplicate- 
sensitive GPs. We state the rule without derivation. 

PURule 4 To pull up a GP above a cross product 
when the other branch of the cross product has no du- 
plicates, we add all the attributes coming up the other 
branch as groupby attributes of the GP. 0 

The above rule is very general and applies to all GPs 
but is less powerful than pull-up rule 3 for duplicate- 
insensitive GPs. 

When the other branch in the cross product has du- 
plicate tuples we cannot pull up GPs as we did above. 
This statement applies even to the simple distinct 
projection. 

EXAMPLE 4.7 Consider a cross product node with 
the distinct projection 7’f~,~ on the left branch and 
R(C, D) on the right branch, where R is some relation 
that may have duplicates. Then, 

~A,B(S(A,B,F))~R(C,D)#. 
~A,B,c,D(S(A,B,F)XR(C, D)). 

We can use the GP pull-up rule 4 if R is mad: 
duplicate-free. There are many ways of making 
R duplicate-free. One method is to add key at- 
tributes (or unique tuple ids) to R. This method 
of adding keys or tuple ids to relations with dupli- 
cates is similar to the ADDKEYS rule in the Starburst 
Query Rewrite facility [PHH92] and the rule given 
in [Day87]. Another option to making R duplicate- 
free is to use the expand operator e. We can re- 
place R(C, D) with ex(7’f C,D,X=count(*)(R(C, D))). 
We can now pull ex up above the cross product as 
mentioned in section 4.3.2. After we pull up e we 
have ~rC,D,X=COUnt(~~(R(C, D)) on the right branch, 
which has no duplicates. With these modifications, 
we can apply pull-up rule 4. Note, when we have 
duplicate-sensitive GPs on each branch of the cross 
product, we pull them up one at a time, using pull-up 
rule 4. 

4.5 Coalescing GPs 

This section gives rules for combining two GPs into 
one GP (coalescing) and thus the reverse, splitting a 
GP into two GPs (splitting). Coalescing and split- 
ting are valuable tools in rewriting query trees with 
aggregations. Coalescing has not been considered by 
researchers before. 

When we attempt to coalesce two GPs, we try to 
move all the computation from the lower GP into the 
upper GP and then to drop the lower GP. We as- 
sume that all the attributes occurring in the upper 
GP are output by the lower GP, because otherwise 
the original query is incorrect. In Section 4.1 we saw 
that the difference between distinct projections and 
other duplicate-insensitive GPs was in the inability to 
move relation-based computations into tuple-based op- 
erators. In coalescing, this inability translates to addi- 
tional rules when the upper GP contains an attribute 
created by aggregate computation in in the lower GP. 
First the simple distinct projection rule: 

CRule 1 If the upper GP is duplicate-insensitive and 
all the attributes required by the upper GP occur as 
groupby attributes of the lower GP, we can discard 
the lower GP. 0 

What happens if an attribute A required by the up- 
per GP is created by an aggregate computation at the 
lower GP? There are two cases to consider here: at- 
tribute A is a groupby attribute of the upper GP or 
attribute A is an aggregate attribute of the upper GP. 

Consider the first case. As we saw in Section 4.1, 
groupby computations in a GP are tuple based, so we 
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cannot move the aggregation computation of the lower 
GP into a groupby component of the upper GP. 

CRule 2 Zf a groupby attribute in the upper GP is 
created by an aggregate computation in the lower GP 
we cannot coalesce the two GPs. 0 

Consider now the second case: an aggregate at- 
tribute in the upper GP is created by an aggregation 
computation in the lower GP. We can coalesce GPs 
when the lower GP does a partial aggregation compu- 
tation and the upper GP, the total aggregation. So for 
the aggregates like sum, max, min where partial ag- 
gregation and the total aggregation involve the same 
aggregate function, we have the following rule: 

CRule 3 If an aggregation attribute in the upper GP 
is created by an aggregation computation in the lower 
GP and if both aggregations are the same and are 
max,min,sum then we can do the aggregation com- 
putation in the upper GP. a 

When we do a partial computation of count, the 
total computation of count requires the use of a sum 
aggregation. We can use the same principle as coalesc- 
ing rule 3 above, to remove the partial computation. 

If we can move all the aggregation computation into 
the upper GP, using coalescing rule 3, we can drop the 
lower GP. Otherwise we cannot coalesce the two GPs 
and must let them remain as they were originally. It 
is incorrect to move some aggregation computation up 
and not others. 

5 Answering Queries Using Material- 
ized Views 

We now present an algorithm for transforming an ag- 
gregate query tree over base relations into one that 
uses a materialized aggregate view. 

Given an aggregate query tree Q and the tree cor- 
responding to a materialized aggregate view definition 
V, if the algorithm determines that Q can be answered 
using V it returns a modified query tree Q’ such that 
Q’(V) = Q. The aggregate query tree Q may be a 
subtree of a larger query tree, so in general the al- 
gorithm can be applied to several subtrees of a large 
query tree, resulting in the incorporation of several 
materialized views. 

The GP framework and transformation rules have 
proven very useful in the development of our algo- 
rithm. Rewrite rules for moving GPs up a query tree 
allow us to transform the query and view definition 
into a normal form (described later) making reasoning 
about aggregation easier. Rewrite rules for pushing 
GPs down a query tree make it possible to obtain a 
tree rooted at a GP operator having the same base re- 
lations as the materialized view under consideration. 
Rewrite rules for pushing selection conditions through 
GPs and for splitting one GP into two GPs are used 
by the algorithm to transform the aggregate query tree 
into one that uses a materialized aggregate view. 

Section 5.1 describes the,class of queries and views 
handled by the algorithm. The algorithm is outlined 
in Section 5.2. Section 5.3 illustrates how the query 
tree of our motivating example (see Section 2) is trans- 
formed by the algorithm. Due to space limitations we 
are unable to present the full details of the algorithm. 
The details can be found in [GHQ95]. 

5.1 Preconditions on View V and Query Q 

Our algorithm requires that the view and query be 
put into a normal form that has all aggregations and 
selections above all joins. The normal form makes rea- 
soning about aggregation much easier than if the query 
had nested aggregations. The normal form consists of 
a a selection over a generalized projection over a selec- 
tion over a set of joins, i.e., 

In the normal form 01 and bh are conjunctive selection 
conditions, ;rT is the GP, and the X symbol represents 
a set of join operations. 

A large class of aggregate queries can be reduced to 
this normal form using the GP push-down and pull- 
up rules (see Section 4). In particular, select-from- 
where-groupby-having queries can be reduced to 
this normal form if the attributes in the groupby 
and having clauses appear in the select clause, 
no aggregate function definition uses the distinct 
keyword (e.g., SUM(DISTINCT sale-auk)), and the 
where clauses are conjunctive. In addition, queries 
that include in the from clause one or more nested 
aggregate views can be rewritten in this form if the 
aggregates can be pulled above the joins and coalesced 
into a single GP. 

We require that view V and query Q use the same 
set of relations Ri, . . . , R, joined using the same join 
conditions. We refer to the GP and selection condi- 
tions in view V as GP(V), uh(v), q(v). Similarlyfor 
query Q. 

Due to the undecidability of the implication prob- 
lem for the class of aggregations we consider [RSSS94] 
there are cases where a query can be answered using a 
view that are not detected by the algorithm. However, 
the algorithm handles a very large class of queries and 
views that includes many common cases. 

5.2 Algorithm 

The input to the algorithm is a query tree Q and a 
tree for view V. Both trees must have been reduced 
to the prescribed normal form of Section 5.1 using our 
transformation rules. Note, since Q can be a subtree 
of a larger query tree, the algorithm is applicable to 
a larger class of queries that cannot be completely re- 
duced to this normal form. If Q is a subtree of a larger 
query tree, before applying the algorithm it is useful to 
push as many selection conditions as applicable from 
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the larger query tree into Q, because further restrict- 
ing Q makes it more likely that Q is computable using 
V. 

The output of the algorithm is either FAIL if the 
algorithm cannot determine that Q can be answered 
using V, or a modified query tree Q’ over V instead of 
the base relations such that Q’(V) = Q. 

Intuitively, Q’ is derived by transforming Q such 
that the bottom portion of the tree is equivalent to the 
query tree for V’ and the upper portion becomes the 
query tree Q’. The steps of the algorithm are outlined 
below. 

In Step 1 we push selection conditions from bh down 
through the GP to 01 for both the query and the view. 
[GHQ95] gives a table, derived from the rules in Sec- 
tion 4, that enumerates the cases when selection con- 
ditions can be pushed down past GPs. Selection con- 
ditions are pushed down in preparation for Step 2. 

In Step 2 we test whether the selection conditions in 
the resulting (~1 (V) are more restrictive than the selec- 
tion conditions in the resulting ul(Q). If so, then tu- 
ples that could appear in the groups formed by GP(Q) 
would be filtered out by ul(V), and the algorithm de- 
termines it is not possible to derive Q’. 

In Step 3(a) we transform query tree Q to include 
a GP operator similar to GP(V). If the groupby com- 
ponents of GP(Q) are a proper subset of the groupby 
components of GP(V) and q,(V) is empty, then the 
groups created by V partition the groups needed in 
Q. We can therefore combine the groups created by V 
into the groups needed by Q using a GP operator. We 
split GP(Q) into two GPs, GPbot(Q) and GPt,(Q). 
GPt,(Q) does the same computation as the original 
GP(Q). G&t(Q) has the same groupby components 
as GP(V). An enumeration of the GP-splitting rules 
is given in [GHQ95]. 

If the groupby components of GP(Q) and GP(V) 
are the same, then GP(Q) is not split and G&(Q) 
and GPt,(Q) in th e remainder of the algorithm both 
refer to GP(Q). 

If there are additional groupby components in 
GP(Q) then Q is grouping at a different (or finer) gran- 
ularity than V, and the algorithm determines it is not 
possible to derive Q’. 

In Step 3(b) we test whether each aggregate com- 
ponent of G&t(Q) is computable from the aggregate 
components of GP(V). If not, then the algorithm de- 
termines it is not possible to derive Q’. 

In Step 4 we identify conditions in al(Q) that are 
not implied by ul( V) and try to pull them up past 
GPbot(Q). If a selection condition in al(Q) is not im- 
plied by the selection conditions in 61 (V) and it cannot 
be pulled up past GPbot (Q), then tuples that could ap- 
pear in the groups formed by GP(V) would be filtered 

1 Actually, it is possible for the bottom portion of the query 
tree to return a superset of the tuples returned by V, so long as 
additional selection conditions in the upper portion of the query 
tree filter out the additional tuples. 

out by the conditions of 01(Q), and the algorithm de- 
termines it is not possible to derive Q’. 

In Step 5 we test whether the selection conditions 
in oh(V) are more restrictive than the selection con- 
ditions in uh(&). If so, then tuples that could appear 
in the result of Q would be filtered out by the condi- 
tions of bh(V), and the algorithm determines it is not 
possible to derive Q’. 

After Step 5 the view tree V is equivalent to the 
subtree of the transformed query tree Q rooted at 
GPb,t(Q).2 The algorithm returns as Q’ the trans- 
formed query tree Q with the subtree rooted at 
G&,t(Q) replaced by the materialized view. 

We have omitted several enhancements that extend 
the algorithm to cover additional cases when Q’ can be 
derived. The enhancements can be found in [GHQ95]. 

5.3 Example 

We illustrate how the algorithm can be applied to the 
query and view from Example 2.1. 

EXAMPLE 5.1 Consider again Example 2.1. A 
query is posed to compute total sales of all toys 
in all California stores for each year beginning with 
1991. The initial query tree for the query appears 
in Figure 5 using our GP notation. Materialized view 
yearlysales computes total yearly sales by item and 
store for stores in California (Figure 2). We want to 
determine if view yearlysales can be used to answer 
the query. 

K year, sum(sale-amt) 
? 

Figure 5: Initial query 

Note that the query is over the relations sales, 
store, and item, while the year$ysales view is only 
over relations sales and store. We reorder the joins 
in the query so that sales is joined first with store, 
then with item. To facilitate join reordering, all GPs 
are first pulled up above all joins in the query using 
the rules for GP pull-up. In our example the single GP 
is already above all joins. Next we use the GP push- 
down rules from Section 4.3 to push the GP down past 
the topmost join to the subtree that contains only the 
sales and store relations. We refer to the subtree 
rooted at this new GP as Q. 

Before applying our algorithm we put the query 
trees in the normal form described in Section 5.1. V 
is normalized by pulling up the selection condition on 

21t is possible for the subtree rooted at CPbot(Q) to return 
additional tuples as mentioned in an earlier footnote. 
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sales store 

Figure 6: Normalized view yearlysales 

sales store 

Figure 7: Query tree after normalizing subtree Q 

state above the join (Figure 6). Q is normalized by 
pulling up the selection conditions on year and state 
above the join. Figure 7 shows the entire query tree 
after subtree Q has been normalized. Note that for our 
example or(Q) is year >= 1991 AND state = “CA”, 
q(V) is state = “CA”, and uh(Q) and oh(v) are both 
empty. 

We now apply the algorithm. Step 1 can be skipped 
since uh(Q) and u*(V) are both empty. 

All selection conditions in uj( V) are also in ui (Q) 
so the test in step 2 succeeds. 

7-r item-id,year, 
X=sum(Y) 

1 &tore-id Item-id year, 
I y=sum(~ale-amtj 

1991 state=“CA” , 

sales store 

Figure 8: Subqtree Q after splitting GP(Q) 

Step 3(a) identifies that the groupby components of 
GP(Q) (item-id and year) are a proper subset of the 
groupby components of GP(V) (itemid, year, and 
store-id). GP(Q) is split into GPt,,(Q) and G&,t(Q) 
as shown in Figure 8. 

The aggregate function Y = sum(sale-amt) 
of GPbot(&) can be obtained from total = 
sum(sale-amt) of GP(V) so the test in step 3(b) suc- 

ceeds. 

7-r Item-id,year, 
X-sum(Y) 

r ’ uyeah= 1991 

sales store 

Figure 9: Pulling up year >_ 1991 after splitting ‘GP(Q) 

Step 4 identifies that the condition year >= 1991 in 
ul (Q) is not implied by ul (V). Since year is a groupby 
component of G&(Q) the condition can be pulled up 
above G&t(Q), yielding the query tree in Figure 9. 

Both ah(Q) and Q(V) are’empty so the test in step 
5 succeeds. 

- 
1 \year, sum(X) 7 

7-T 
- i p;;alqL ~.~ I * 

oP u yeah= 1991 

yearly-sales 

Figure 10: After replacing subtree Q with Q’ 
At this point the subtree rooted at G&t(Q) is iden- 

tical to V, so the algorithm derives Q’ by replacing the 
subtree rooted at G’bot(Q) with view yearly-sales. 
Figure 10 shows the original query tree with subtree 
Q replaced by Q’ . 

7-T : year, sum(total) 

yearly-sales item 

Figure 11: Optimizing after replacing Q with Q’ 

The resulting query tree can be further transformed. 
For instance, the GP on the yearlysales material- 
ized view can be pulled up and coalesced with the GP 
at the top of the query tree to yield the tree shown in 
Figure 11. 0 

6 Related Work 
Answering queries using materialized views has been 
studied in [LY85, YL87, LMSS94, CKPS95]. However, 
existing work has not considered queries that.use ,ag- 
gregation. Aggregates are an important extension to 
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the previously considered queries because aggregations 
are at the heart of decision support and warehousing. 

The query transformations we give unify and prop- 
erly subsume the push-down transformations given 
in [CS94, YL94] and the pull-up transformations given 
in [Day87, (X95]. In particular, we give new transfor- 
mations for the following cases: 

l We use certain arithmetic comparisons to create 
aggregations in query trees that have none to start 
with and delete aggregations in those that do. 

l By treating duplicate-insensitive GPs differ- 
ently from duplicate-sensitive GPs, we can infer 
more powerful transformation rules for duplicate- 
insensitive GPs. For example, we can pull up two 
duplicate-insensitive GPs simultaneously past a 
cross product. 

l We can introduce the count aggregation any- 
where in a query tree using the expand operator. 

l We can push aggregation down both branches of 
a cross product. 

l We can coalesce and split aggregations. 

[CS94, CS95] d iscuss how to integrate aggregation 
push-down and pull-up into a system-R style query 
optimizer. 

7 Conclusions 
In this paper we present a new framework for reasoning 
with groupby and aggregation in SQL queries. We 
generalize distinct projections to yield the notion of 
“generalized projections” that capture groupby and 
aggregation computations. GPs also capture arith- 
metic comparison operators that are not expressible 
as SQL aggregate computations. The GP framework 
allows us to obtain many new and promising results. 
In this paper, we discuss two sets of results that we 
have obtained using the GP framework. 

For aggregate queries we derive transformation 
rules that unify and generalize previously proposed 
transformation rules. The new rules we derive include 
rules for coalescing multiple aggregate computations 
into single computations, introducing and eliminating 
aggregate computations’using arithmetic inequality se- 
lection conditions, and pushing aggregate computa- 
tions down both branches of a cross product (or join). 

We give an algorithm for a hitherto unsolved prob- 
lem, namely, how to use materialized aggregate views 
to help answer aggregate queries. This algorithm is 
very useful for decision support applications in data 
warehousing environments. The algorithm is devel- 
oped using the new transformation rules that we ob- 
tain using the GP framework. 

In [GHQ95] we discuss how the transformations 
given in section 4 can be used by query optimizers 
to reduce the cost of query evaluation. We pick the 

Starburst query optimizer [PHH92] and mention how 
and where our transformations can be used. We also 
briefly discuss how the expand operator can be used 
in query optimization when there are relations with 
many duplicates. 
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