
A Cost Model for Clustered Object-Oriented Databases*

Georges Gardarint’ Jean-Robert Grusert
‘Prism Laboratory tProjet Rodin

University of Versailles INRIA, Rocquencourt
7803.5 Versailles, France 78153 Le Chesnay, France
last-name@przsm.uvsq.fr East-name@rodin.inria.fr

Zhao-Hui TangOT
STechGnosis France
34, Bld Sebastopol
75003 Paris, France

Abstract

Query processing is one of the most, critical
issues in Object-Oriented DBMSs. Extensible
opt,imizers with efficient, search strategies re-
quire a cost model to select the most efficient
execution plans. In this paper we propose
and partially validate a generic cost-model
for Object-Oriented DBMSs. The storage
model and its access methods support clus-
t,ered and nested collections, links, and path
indexes. Queries may involve complex predi-
cates with qualified path expressions. We pro-
pose a, method for estimating the number of
block a,ccesses to clustered collections and a
paramet,erized execution model for evaluating
predicat,es. We estimate the costs of path ex-
pression traversals in different cases of phys-
ical clustering of the supporting collections.
Thr model is validated through experiments
with the 02 DBMS.

1 Introduction

One of the basic functionalities of object-oriented
tla.tabase systems is a declarative query language de-
rived from a.n object. extension of SQL. Standard query
languages have been proposed [Cat93, Me1931 and the
issue> of query optimization is now crucial. R.esearch

*This work has been partially funded by the Commission of
the European Communities under the Esprit project IDEA.

I’tr~~lission to copy without fee all OT part of this material is
gnrnttd provided that the copies aTe not made or distribsted jar
dirrr.t commercial advantage. th,P VLDB copyright notice and
I/I~ title o,f the publication and its date appear, and notice is
gir,cn that copying is by permgssion of the Very Large Data Base
Exdownent. To copy otherwise, OT to republish. requires a jee
,rnd/o?. specral permrsszon from thf Endowment.

Proceedings of the Zlst VLDB Conference
Ziirich, Switzerland, 1995

has been done on query rewriting techniques [GM93,
HCF+89, CD92, MDZ93, FG94] and search strategies
for discovering optimal execution plans [IK90, LV91].
All these techniques assume a cost model to eval-
uate query plans, taking into account the I/O and
CPU costs. Little work has been done to define and
validate a generic cost model for object databases.
Cost models have been sketched for several optimiz-
ers [BF92, BMG93, CD92, COA+94, Zai94], but to
our knowledge, none of them have been implemented
and validated on real databases.

In this paper, we assume that the query optimizer
is able to break the encapsulation of objects and look
at the data structure used to implement them. We
then propose a generic cost model for object databases,
which takes into account various aspects of object stor-

age
l

models including:

Clustering. Object of different classes can be
physically grouped together according to multiple
predicates with a priority scheme.

Linking and Embedding. Associated objects can
be linked through object identifiers; nesting tar-
get objects of associations inside source objects to
constitute composite objects is also supported as
a variant of clustering.

Indexing. Simple indexes on attributes of a class
and complex indexes on path expressions are sup-
ported.

Methods. The cost of user operations on objects
are integrated in the model through parameter-
ized access to computed attributes.

This generic cost model has been validated on sim-
ple queries using the 02 database system. The results
show good predictions for searches of clustered collec-
tions.

The main contribution of our approach is first,
the generality of the cost model. It. is defined by a

323

class graph with clustering predicates, embedded and
linked classes, path indexes, and virtual attribute ac-
cess costs. Thus, the generality of the cost model is
assured by both its generality and the introduction of
relevant, parameters. Second, our cost formulas include
an evaluation of the block hit rate when evaluating a
predicate on a clustered collection: we extend the Yao
r’ormula [Yao77] to the clustered case. Third, we es-
t.imate the cost of searches with complex predicates
t.o include qualified path expressions [JWKLSO]. Fi-
Irally, our cost model is validated through experiments
on the 02 DBMS. The validation demonstrates the
rnodel validity for processing queries.

The organization of this paper is as follows. In sec-
t,ion 2 we present the physical storage model, partic-
ularly how objects from different classes are clustered
or embedded together and how path indexes are in-
t.egrated. Section 3 is devoted to a discussion of the
caxecution model. We focus on the evaluation of pred-
icat,es with path expressions. In section 4 we first in-
t#roduce the cost model parameters and then present
a. method for estimating the number of block accesses
t.o a clustered collection given the predicate selectiv-
ity. The next section describes the cost formulas for
searching through collections with complicated predi-
cates. Section 6 uses these results to compute the costs
of sequential and index scans. Section 7 describes the
results of experiments done on the 02 DBMS to vali-
clat,e our analytical cost, model.

2 The Object Storage Model

ln t,his section, we introduce a generic storage model
for Object-Oriented DBMSs. This model captures var-
ious types of object identifiers, clustering techniques,
and indexes. It is general enough to be specialized
f’or representing the internal model of most object-
orient,ed DBMSs, as shown below with 02.

2.1 Object Identifiers

Most. object,-oriented database systems store object on
slot,ted pages. A slotted page contains a variable ar-
ray of slots at, the end of the page. The offset of each
object from the beginning of the page is kept in the
slot,. Physical object identifiers (OlDs) consist of the
hegment. number, the page number and the slot num-
ber. Physical OlDs are used in ObjectStore for ex-
ample [Obj94] [GA93]. Although physical OlDs are
efficiently decoded, they do not allow free movement
of objects in databases. To avoid this problem, other
syst.ems have implemented logical OlDs, a value that
~na.ps through a hash table to retrieve the actual loca-
t.ion of the object Our generic cost model considers
t,he type of OID as an input parameter. This parame-
t.er effects directly the cost of object link traversals.

2.2 Indexing

To speed up predicate evaluation, Object-Oriented
DBMSs support classical indexes to class instances.
Indexes are generally organized as B-trees containing
attribute values with OID lists. Indexes can be clus-
tered. In our model, an index is a function from an
attribute value to a list of OlDs. The cost of travers-
ing the index is a parameter giving the cost formulas
of the function.

Further, some Object-Oriented DBMS provide path
indexes, which follow a sequence of objects linked by
relationships. There exist various implementation of
path indexes [BK89]. We consider a path index as a
function associating the end of the path to all prefixes
of the path. The cost of the function can be changed
to model various implementation.

2.3 Object linking and Embedding

In most Object-Oriented DBMSs internal models, as-
sociated objects can be stored together as composite
objects or stored separately and linked through OlDs.
In the case of composite objects, a l-l or 1-N rela-
tionship gives rise to an object with 1 or N embedded
objects. In the case of linking, a relationship gives rise
to a mono or multi-valued attribute pointer. Linking
or embedding related objects is a very important de-
cision for query costs. Thus, our model captures this
structure through a graph description. Links are rep-
resented by edges between their class nodes. Embed-
dings are also represented by links. We distinguish em-
bedding links by marking them using a double-arrow-
dotted line in the database schema and placement
graph.

2.4 Clustering

Database accesses in an Object-Oriented DBMS are
much more complex due to the rich variety of type
constructors provided. In addition to traditional scans
of sets of objects, Object-Oriented DBMSs often use
navigation-like access among related objects. Such
inter-object references can generate random disk ac-
cess if the entire database does not fit in main memory.
A well-known approach to speed access to related ob-
jects is clustering by object associations. Clustering
groups objects of possibly different classes into con-
tiguous disk pages (i.e., clusters) using information on
object contents or relationships (i.e., association, in-
heritance, aggregation). To capture a large set of clus-
tering strategies, we adopt a predicate based definition
of clustering. Predicates that reference class proper-
ties are used to define the set of objects stored together
in clusters. To support shared objects, we adopt the
priority concept described in [GA93]. Clustering in-
formation is presented using a graph defined by the

324

w-s
A. COMPANY ‘> ,

__,’

fi--.
I’COMPANY I: I

; IO

V

B PROD”&-” I
s.__I’

at. Default Clustcrmg b Slmplc Clustering

‘+-.
A:COMPANY : 1 *--. Y-.

‘.__/’ A COMPANY : I D: PROPOSAL ’ ’

II,:” .‘. x
‘.__,’ ‘.__,’

.’
#’ “., 5 ,1 Y

IO

fi-, e-\ L---,
H PRODUCT : I C: COMMAND ‘. 1 C : COMMAND : I

x.__l’ \.__,I 5.__,’

L Cmjuncdvc Clusrcring d. Disjunctive Clustering

Figure 1: Clustering Possibilities
tlatahase administrator. Edges correspond to cluster-
ing predicates. A priority weight from 1 to 10 is given
l’o each edge. For object instances of nodes shared
hy several edges, the edge with the highest weight is
selected.

Figure 1 shows four possibilities for collection clus-
t.ering as follows:

The default clustering : All the objects of the
collection are physically grouped in contiguous disk
space. If no clustering predicate is provided for a col-
lection, this default grouping is implicit. In Figure l.a,
company has the default clustering.

The simple clustering : This is the classical clus-
t.eriug of two collections according to a join predicate.
In Figure l.b, the produd collection objects are clus-
t,ered with the corresponding objects of the company
collection with priority 10. All the companies which do
uot, have any products are grouped together with pri-
ority 1. All products of unknown company are grouped
t.oget(her with priority 1.

The conjunctive clustering : In Figure 1.c: all
t.he product objects and the command objects are clus-
t,ered with t,heir associated companies. This cluster-
ing strategy allows the clustering of several collections
wit,11 one.

The disjunctive clustering : In the case of Fig-
llre l.d, each command object should be stored with
rit,her the associated company or the associated pro-
posnl. Since objects cannot be duplicated, they are
assumed to follow the edge with the highest weight.

2.5 A Database Example

Figure 2 shows an example of a database relationship
and its physical data grouping. Solid lines with ar-
rows represent the database schema. The cardinal-
ity permitted by the relationship type is indicated by
t,he arrows at the ends of the solid line. For exam-
ple, the line between company and command indicates
a. one-to-many relationship between these two collec-
Gons. A path index is represented by a set of arrow

:Comp;my.Comm;md .Pnpxd

Figure 2: Placement Graph

cluster COMPANY on (workunits, products);
cluster COMMAND on (proposition);

Figure 3: Creating a cluster in 02
lines starting from the collection at the end of the path
and pointing to all the intermediate collections. For
example, Company. Command. Proposal is a path in-
dex. Dotted lines indicate object clustering, they are
labelled by priority weights. A double-arrow dotted
line represents object embedding. The label of a dot-
ted line can include a predicate for clustering. In the
graph, all the products produced after 1994 are clus-
tered with their company with priority 3. Since there
is no dotted line between command and company, com-
mands are stored independently of their companies.

The placement graph induces a physical organiza-
tion of data. Each generated cluster can be seen as a
partition of a collection. For example there are two
partitions for company : Cl(company,wor~un~t~ (work
unit objects are embedded with company objects) and

2.6 Object Clustering in 02

A typical 02 application runs in client-server mode.
Clients and servers exchange physical disk pages. Thus
data transfer is quite expensive and data clustering can
largely improve performance since it decreases com-
munication cost. In 02, objects are mapped into page
slots and a physical cluster is a set of records [BD90].
Logical cluster in 02 has no size limit, whilst a physi-
cal cluster is bounded to the page size. The clustering
strategy is defined using a placement tree. When in-
stances of a given class are created, the placement tree
associated with this class generates the physical orga-
nization on secondary memory.

3 An Execution Model for Predicate
Evaluation

The execution model for scanning a collection with
predicate evaluation uses an algorithm that involves
three low level operators : Fetch, Comp (for compare
two values) and Dot (for get an attribute of an object

325

.Dot

Ketrwr the value of a tuple field or apply B method on the object state

wth the given argument.\ The state of the object must be already
present m memory. It returns the value of the attribute or the resullt

of the method.

I-.valuate il simple predicate and returns True or False.

Fetch

Find the phyxal address of an object by its OID and loads it mto memory

II it IS not churged yet.

Figure 4: Low Level Operators
or apply a method). The combination of these low level
operators directly influences the cost of a query execu-
t,iou. In this section, we detail the three low level op-
c\ra.t.ors and discuss the algorithm for evaluating pred-
ic.at,ta with path expression.

3.1 Low Level Operators

I,ow level operators are described in Figure 4. We dis-
I.illguish thr access to an object from its OID (Fetch
operateor), t,he evaluation of a simple predicate on an
object. already in memory (Comp operator), and the
I)rojrction of an object on an attribute or method
value (Dot operator parameterized by the attribute or
tnt,t.hod name). The costs of these three operators are
I)a.ra.met,ers of our cost, model.

In general. Fetch costs little CPU time but one
or zero I/OS; on the contrary. Comp and Dot cost
only CPU t,ime. The Fetch operator should be ap-
I)lird before evaluating a predicate or before get.ting
an at,tribut,r value, especially when traversing a col-
Nion wit,h a qualifying predicate. The Dot, operator
is generic in the sense that it is parameterized by a
Ilroperty name. The property can be an attribute or
;I mrt,hod; the property is an important parameter for
cost computat,ion.

3.2 Path Expression Evaluation

hn a.tomic predicate can be a simple predicate (e.g.. x
111 Product,. x.year > 30) or a complex predicate con-
t a.iuing a pat,h expression. Our model integrates qual-
ified path expressions. Thus, each collection involved
in a pa.th expression can be qualified with a simple
I)rrdica.t.e [FLU94]. F or example, let x be a variable on
collection Person

x. vehicle [color=“Red”] . company Cname=“Renault”l ;

is a valid path expression. A query with a predi-
ca.tr containing a path expression can be executed in
different. ways. At the execution level, to estimate the

Given a sub-path expression
(,2, E Ci, ~ci(Pi).C~+l(Pi+l)..C~(P*).U~~r~~~~e)

where ci is a set of references to an object of Ci and
Pi is a qualified predicate, we have :

Depth-First-Fetch Algorithm:

DFF(xi(Pi).ci+i(Pi+l). I~ .cn(Pn)>
1

if (i<n)

for x in (xi.ci+i)

(
FETCH(x)

if COMP(Pi) = TRUE
return DFF((FETCH(x.ci+l>(Pi+l)

3 *
ci+2(Pi+2). “. .cn(Pn>)>

3
else return COMP(Pn)

3

Figure 5: The DFF Algorithm
cost of a path traversal, we consider a Depth-First-
Fetch (DFF) evaluation given in Figure 5. We select
this algorithm because it is implemented in DBMSs
such as 02 and appears to be the best algorithm with
large memory. It recursively processes the object com-
position graph corresponding to the path using depth
first search. (Breadth first search is also possible, but
the path must be rewritten into equivalent logical al-
gebraic expression [CD921 and expressed as a sequence
of explicit joins in the execution plan. The cost model
will then compute the cost of the cascaded joins, using
traditional join cost formulas [Zai94]). After the query
optimization procedure, if an execution plan still con-
tains a path expression, we assume that the qptimizer
specifies the Depth-First-Fetch method.

When using the DFF procedure, we evaluate pred-
icates of intermediate collections along the path ex-
pression once the instances of the intermediate col-
lections are loaded into memory. The advantage of
this approach compared to traditional depth-first-fetch
is that, it avoids joining intermediate results several
times. For example, if a query has to find the per-
son who has a red car made by company Renault,
i.e., x.car.company[name=“Renault”] and x.car[color
= “red”], qualified path expressions only traverse the
x.car collection once. More generally, we permit
any predicate that, is a conjunction of disjunctions of
atomic predicates.

In summary, we assume a rather specific execution
model, but with sufficient parameterization (e.g., for
low level operators) and flexibility (e.g., for path ex-
pressions) to capture a large class of search algorithms.

326

We also provide several join cost formulas not de-
scribed in this paper due to space limitation. Further,
we use clustering, embedding, linking, and indexing in-
I’ormation to compute the number ofobjects processed
by a query.

4 Cost Model Parameters and Clus-
tered Block Hit

A cost model is a set of formulas to estimate the cost
of an execution plan. Cost-based query optimizers
select. the most efficient execution plan based on the
cost. estimations among the equivalent execution plans
[Zai94]. There are several major components of the
cost: CPU-Cost, IO-Cost, COM-Cost. CPU-Cost is
t,he cost of executing CPU instructions, for example,
(valuating a predicate, executing a loop. IO-Cost is
t’hr input/output cost for reading and writing data be-
t.ween memory and disk. COM-Cost is the cost of net-
work communication among different nodes. In this
sect,ion, we present a cost model designed for an ob-
ject’ oriented database which permits object cluster-
ing. In our case, since the database is centralized, our
cost. model focuses on the IO-Cost and CPU-Cost; the
communication cost is not taken into account. A cost
Inodel can be very complex. We aim at defining a us-
a.blr cost model for a query optimizer. Thus, it has to
remain rrs simple as possible. To simplify the evalua-
Gon of cost. estimations, we assume that objects have
a size less than a page, also, we use a uniform distri-
hut,ion model for attribute values in domains.

4.1 Parameters

‘I%e cost, model uses statistics about the database com-
ponents to estimate a given execution plan cost. The
staGstics contain information concerning collections in
t,he database like the cardinality of collection, the size
of objects, the number of distinct values of an at-
t,ribute, indexes and clustering. The system parame-
t.ers and some calculated expressions are also included
in these statistics. This section describes the details of
these parameters.

Statistical information on collections are defined as
follows:

l IIC’II: cardinality of collection C

l) ICil(: cardinality of cluster i of collection C

l IG’il: number of pages of cluster i of collection C

l SC: average object size in collection C

Statistical information on attribute distribution are
a.s follows:

fanc, ,ca : average number of references from a Cl
object to C2 objects

DC, ,~a : number of distinct references from a Cl
object to C2 objects.

XcI,cZ: number of Cl objects having NULL ref-
erences to C2 objects.

From these parameters, we calculate the following
expressions :

l -&,ca: average number of distinct references to
C2 objects of those Cl objects who have at least
one non NULL reference:

%,~a * Ml
zc1vc2 = l(C111 - XCI,C2

l Sel(Predicate): The selectivity of a predicate.
(usual formulas can be found in [SACt79, MCS88,
PSC84])”

Others parameters:

b: B tree fanout

BLevel(1): number of Btree levels of the index I

S,: the page size

Proj-Cost: CPU cost to project one attribute of
an object

m: available memory (unit: page)

Costloadpage : Cost to load a page in memory
(one IO)

Estimating the Page Number of a Clus-
tered Collection

In this section, we present a method to estimate the
page numbers of each partition of a collection when it
is clustered with other collections.

In a storage system where there is no object cluster-
ing (like in the default clustering of Figure l.a), there
are [z] objects in a page and the total pages of a
collection can be calculated by:

IAl = $j

But in a system where objects of different collec-
tions can be clustered together, the page number can
not be calculated using the above formula, since a
collection may have several physical partitions. In a
given partition, objects belong to the same collection
while in other partitions objects are physically grouped
with objects from different collections. We propose a

327

tnet.hod for estimating the total pages of a collection
after clustering. We assume that objects are not dupli-
cnt,ed and the cardinality of a collection is not changed
;lft#t,r clustering. Suppose that collection B is clustered
wit,11 collection A (see Figure 1.b). The average object.
size of collection A objects is Saand the average size
of collect,ion B objects is Sg. We suppose that SA and
SS are both smaller than a page size.

We first estimate the number of pages of collection
A. which is the root, of the cluster tree. There are two
I)hysical pa.rtitlons of collection A after clustering: a
Imrt,ition clustered with B C/A-B and a partition (21~
where there are only collection A objects inside.

l For CIA. the number of collection A objects inside
is IIA~:l,(I = XA.B, then :

lAlcla = *
i$i

l For CIA-B? the number of root objects in this
clust,er is I \A(I-X A,B. the cluster size is SclnbB =
5~ + (ZA,B *S,), then

The t,otal number of pages is

I4 = I~cI~ + I~cI,+.~
111 t,he second step. we estimate the page numbers

of collect,ion B (a. non-root, node in clustering graph)
;\.ft,clr clustering. The different, partitions where we can
find of collection B are CIA-B and C/s.

l For CUB, the number of B objects which is not
referred by any A objects is (IB((- ([[All * DA,B),
r,heu we have

IBlaB =
IIBII - (llAll * DA,B)

IL?21 LseJ

l For C’~A--B the size and the number of objects
per Cluster remains the same, but the number of
Clusters to access is now X&,a-B = Min(2A.B *
,yA,B, SA,B) and we have :

And t,he t,otal number of pages is

PI = IBIc~, + IBIcII~-~

Partition of A Stored Independent Partition of A clustered with C

Partition of A Clustered with B Partitim of A Clustered with BC

A

J

Figure 6: Physical partitions of collection A after clus-
tering

We use the same method of calculation for the con-
junctive, the disjunctive and the combination of all
clustering techniques. Thus, in the case of more com-
plicated clustering, the complexity of the formulas in-
creases with the shape of the placement tree.

4.3 Extending the Yao Formula to Clustered
Collections

During query optimization, the optimizer computes
the selectivity of a predicate and we need to estimate
the number of page accesses to a collection. In rela-
tional database, Yao [Yao77] has derived a formula to
calculate the expected number of page access. This is
given by the following theorem:

Theorem Yao: Given n records uniformly dis-
tributed into m blocks(1 < m <= n), each contains
n/m records. If k records (k <= n) are randomly
selected from the n records, the expected number of
block hits is given by

yao(n, m, k) = m * [l - fi “,“I::,‘] where d = 1 - l/m
,=I

For a clustered collection C , we can not simply
apply Yao’s formula to estimate the page hits by
yao(llCll, ICI,Sel(P)* IlCll) as often done in RDBMS.
The reason is that a clustered collection has more than
one partition. Certain objects are clustered with ob-
jects from different, collections, while others are stored
alone. Thus, the densities of objects in the different
partitions are not the same. In this case, we extend the
Yao formula to Yao’ given by the following theorem:

Theorem yao’: Given a collection C which has
p partitions, each partition has IICII; objects. If k
(k < CL1 IlGll) bj t o ec s are randomly selected from
C. the expected number of block hits is given by

yao’(C,W = f:Yao~IIC,ll. lCi19k,)
&=I

328

Figure 7: comparison of formule Yao and Yao’

where ,ki is the number of objects to be selected in
partition Ci.

If objects to be selected are placed uniformly among
41 t,he partitions, we have ti = (IlCill/llCll)*k. When
t,he objects that satisfy the predicate are not placed
uniformly among the different partitions, we have to
use the selectivity on each partition to get the right
value of each ki. The yao’ formula is more general
t.ha,n the Yao formula, and the latter is a particular
case of yao’ when collection C has only one partition.

We now illustrate the two formulas through a simple
c>xa.mple. Suppose we have 3 collections Gee Figure 6):
A,B, and C where B and C are clustered with A. The
a.verage object sizes of collec_tion A, B, C are the same,
which equal to one-tenth of a page. The cardinality of
A is 10,000. After clustering, 1500 objects of collection
X a.re stored with B and C, 3000 A objects are stored
wit,h B. 2500 A objects are grouped with C and the
remaining 3000 A objects are stored independently.
We select the object A with a given predicate.

In Figure 7, we trace the results of the Yao and Yao’
functions for different predicate selectivities. We sup-
pose the selectivity is uniform among all the clusters.
The vertical axis represents the number of pages of col-
Iect,ion A to be accessed and the horizontal axis is the
nunlber of objects that satisfy the selection predicate.
When the selectivity is greater than 10 percent, we
notice a significant difference between Yao and Yao’.
The value of Yao is lower than Yao’ since it considers
t.hat, all the C objects are grouped together, thus the
density is higher and the probability of two objects
stored in the same page is higher. This result verifies
t.hat when objects are clustered with other collection
objects, the sequential scan and index scan become
r0stiy.

5 Cost Formulas for Typical Operators

5.1 Cost of Dot

The Dot operator is applied to retrieve the value of
an attribute when the object is present .&memory
or to execute a method on an object state. The at-
tribute can be calculated through a method. Thus, to
evaluate the CPU cost of Dot, a user given parame-
ter is required for non directly implemented attributes.
We assume that objects document themselves through
methods. Then, we have :

IO-Dot-Cost = 0
CPU-Dot-Cost = constant or the CPU cost of the
method

5.2 Cost of Comp

The Comp operator is applied to test a predicate when
the object is present in memory. Before applying the
Comp operator, we have to apply the Dot operator
to compute the attribute values in memory. Thus, we
have :

IOXompXost = 0
CPU-Camp-Cost = constant (If no predicate is de-
fined, the default predicate is set to TRUE and, in
this case, we have : CPU-Camp-Cost = 0)

5.3 Cost of Fetch

The cost of fetch depends on whether the object is
present in memory or not :

IO-Fetch-Cost =
1

0 if the object is in memory
1 if a page has to be loaded

CPU-Fetch-Cost = 0

5.4 Cost of Accessing an Index

We assume that indexes are implemented with B tree
structures as usual. Suppose the Btree fanout is b,
with Blevel levels, the CPU cost of index scan is

CPU-index-Cost(I) = logzb(I) * Blevel(I)

*CPU-CompXost

The IO cost of accessing an index is equal to the
index tree level. IOindexXost(1) = Blevel(1)

5.5 Cost of Creating Temporary Results

During the execution of a query, the system needs
to generate some temporary results. The size of the
results depends on the predicate applied on the in-
put collection C and on the projected attribute length

329

\ ,i,,,.,,j J. We determine the size of the output collection
I,y :

Iloutll = WP) * IlCll

lout1 = I
1 *I

Managing the output collection requires 10s only
when the results have to be swapped on disk; thus, if
m is t.he number of pages available in main memory,
\VE get:

if m < lout1
otherwise

‘rhr CPU cost is the time to construct the (lout)1 ob-
,jcct,s given by:

(‘PI--out-Cost(P,C,proj) = 1 lout I I *Proj-Cost*Nbproj

5.6 Cost for Evaluating Predicate

\Ve assume that the required pages of the mput col-
Sect ions are already loaded in memory. Two cases have
t,o br considered :

l predicate without path expression

l predica.te with path expression

5.6.1 Predicate without Path Expression

‘l’he CPU-Cost is the cpu time for making a Dot on
c\a.ch objects and for comparing two atomic values. The
IO-cost, is null since the object state is already in mem-
ory. It yields :

IO~Evul-Cost(P) = 0

(‘PU-EveLCost(P) = llCll* (CPUDot-Cost

+CPU-Comp-Cost)

5.6.2 Predicate with Path Expression

ln t,he execution model, a predicate with path expres-
sion is executed with Depth-First-Fetch algorithm. Of
course there are other ways of evaluating a path ex-
pression as explicit joins [GGT95]. These execution
plans are expressed without path expression at the
physical level. The Depth-First-Fetch has to find for
each object of the input collection, the corresponding
a.t.tribute.

Since they are p memory pages to process the
predicate, we make the assumption that the num-
ber of pages is at least equal to the path length
(p > n), which is usually the case. Thus there

330

is at least one page for each collection in memory
during execution. Given a path expression (Z &
Cl, x.c2(P2).cs(P3)..cn(P~).attribute) where ci is aref-
erence to an object of Ca and Si are the selectivity of
the predicate Pi (Si = Sel(Pi)).

We first define the number of distinct references in-
volved in the Path Refi = (1 - Probi) * IlCill. Pi is
the probability of an object of collection i to be not
involved in the path, we have :
Probi = (1 - &) (Ref,-1*S*-r*fanc*-1,c,)

with Refi = IIC’111.
Depending on the memory size, we have three hy-

potheses :

l if p is large enough to store all pages involved in
the path expression? each page is loaded once and
only once. The Yao’ formula approximates the
number of pages to be loaded : this is the large
memory hypothesis.

Pagemin =
0 if Ci-1 is clustered with Ci
Yao’(G, Refi)

l if p is equal to the path length (p = n), we have
the extreme case of the small memory hypothesis.

NbPage,,, =
0 if Ca-1 is clustered with Ci

l if n < p < Pagemin, the memory is not able
to store entirely all involved pages of the path
expression. The IO cost will directly rely on
the page replacement policy mechanism of the
database. Some pages will be reloaded many
times. In this case, we approximate the IO cost
by a linear function on linking the maximum and
the minimum number of pages. We assume that
such an approximation is sufficient to compare ex-
ecution plans. We have :

NbPage =
Pwmaz - Pagemin

Pagemin - n * (n - P)

+ Pagema,

Finally the IO cost of a predicate P evaluation with
p pages is :

IOXval-Cost(P) =
NbPage if n 5 p < Pagemin
Pwmin if p 2 PIXgemin

The discrepancy of execution plans is based on the
comparison between break points of the search cost

curves.(see Section 7) The break point is given by :
BrrukPoint = Pagemin * S,.

The CPU cost, of this evaluation is the cost of do-
ing a. Dot along all objects and a Comp for all simple
predicate in the path :

CPI~-EvalLCost(P) = llClll* (CPU-Dot-Cost

+CPUXomp-Cost)
n d

6 Search Cost

We define Search the operation which applies a predi-
cat,e to a possibly indexed collection and retrieves the
results. The cost of the search operation can be bro-
ken up into several components : the cost. of accessing
an index (if it exists), the cost of loading the collec-
t.ion, the cost, of evaluating the predicate, and finally
t.he cost of building the result.

The IO cost of a search is the cost of loading the
relevant, pages of the collection C plus the IO cost of
t.he predicate evaluation. Two cases are considered,
sequential scan and index scan.

Figure 8: IO cost of scan
The CPU cost derives from the evaluation of a pred-

icate P over the objects of C :

CPU-ind-scan(C, P, proj) = CPU-index-cost(I)

+CPli-out-Cost(P, C, proj)

Finally, the total time to evaluate a search opera-
tion is obtained by converting the IO-Cost to the unit
of time by multiplying the time that takes one IO op-
eration. That yields :

6.1 Sequential Scan

The basic operation formulas given m the previous sec- Total-time = IO(-ind)-scan * Cost-load-page
t,ion entail: +CPU(ind)-scan

IO-scan(C, P, proj) = ICI To illustrate the formulas, we use our model to
+IOEval-Cost(P) compute the IO cost of a sequential search in func-

+IO-out-Cost(P, C, proj) tion of the memory buffer size. The results are given
in Figure 8. The curves represent the number of

The CPU cost is proportional to the number of ob- 10s for scanning a collection of 1000 objects clustered
jects to scan : with objects from different collections. The predicate

of scan contains a path expression over 5 collections
c7PU-scan(C, P, proj) = CPU Eva/-Cost(P) (x E Cl, x.c2.c3.c4.c5.attribute = value). The num-

+CPU-out-Cost(P,C,proj) ber of objects pointed in the path expression is half
of the number of objects of the precedent collection

6.2 Index Scan (Dc,,c, = 0.5). There are five curves in the figure,

If an index I is used to access the collection, the IO
cost. only takes into account the number of pages of C
determined by accessing the index. We determine the
restricted collection C’ by :

which represent the different cases of physical cluster-
ing of objects. It is clear from our result that when
collections are clustered together, the IO cost for eval-
uating a predicate with a path expression is lower.

7 Cost Model Validation
yao’(C, I ICI I * Sel(P))

I”(= { Se/(P) * ICI
if I is non-clustered
if I is clustered The validation of our cost model is done on the 02

Client/Server database system [BCD89] on a SPARC

IlC’ll = Sel(P) * IICII
It follows that :

IO-ind-scan(C, P, proj) = IO-index-cost(I)

+IC’I + IO-out-Cost(P, C,proj)

station LX. The 02 server and the 02 client run on
the same machine on a single user configuration. The
cost of an IO is the time to load a page of 4 kBytes
into the buffer of the server plus the time to transmit
this page to the buffer of the client. We measure an
average time of 25 ms to load a page and transmit it.

331

0 A f 0 A 4500 Q ‘, 3500

A 0 c AC
.’

.’
.’ .*

cm\

B C
g yi 6@&p&

J

Figure 9: Example of a Database

- - Not Clustered

- TheoretIcal

-- Theorel~cal Not

I
0 2000 4000 8000 8000 ,000o 12000 14000 16000

Cardhullty of A

Figure 10: Evaluation of Path Expression

Queries are executed on two equivalent databases:
t.he first. one is clustered in the way described in Fig-
ure 9 and the second one uses the default clustering
strat,egy for each collection. We create an index on
t.he attribute “IndexId” of each collection. The links
between A, B and C are generated at random. A non
indexed attribute “id” gives a unique identifier for each
object. During our experimentation. each query is ex-
ecuted 10 times in the same condition. The average
va.lue of response times is used as an element of the
result..

(‘lustering Validation :

In t,he first experiment, we process the following query
on t,hese two databases, which scans A collection with
a predicate containing a path expression traversing B
and C collections.

select x from x in A where x.b.c.id != 0 ;

The experiment validates how the clustering influ- In this experiment we want to show how the memory
ences the execution cost of this query and how the re- size impacts the execution of a search when collections
sults match our cost model. We measure the response are clustered. We execute the query of the first experi-
t,imes by varying the cardinality of collection A (see ment on these two databases and we vary the memory

0 , I

0 20 40 60 80 100

sd.ctl”lty (Y)

Figure 11: Yao’ Validation

Figure 10). The result shows’ h’ow the clustering tech-
nique improves the performance of the query. In this
example, the performance of the clustered database
appears six times better than a non Iclustered one
which corresponds to the estimations given by the for-
mulas.

Yao’ Validation :

Experiments have been done to validate the Yao’ for-
mula. We process the following query on the two sep-
arate databases of Figure 9.

select x from x in A where x.IndexId >= N% ;

The query scans the collection A by using an index
on IndexId. We use an index to avoid scanning the
whole collection. The non clustered database verifies
the usual Yao formula while the clustered database
validates the Yao’ formula.

The size of an object is 300 bytes and a data page
can hold 12 objects. Figure 11 shows the results with
multiple selectivities in the case of a large memory
size. The proportionality between the two formulas is
respected by our cost model. But for low selectivity,
there is a difference between the experimental curves
and the theoretical ones. We explain these differences
by the effect of the UNIX buffer mechanism for small
collections. When the client queries the server for
pages, the server may use pages already present into
memory; this mechanism is more sensible for a small
number of pages.

Search Validation :

332

Break Point I 1941 Kbytes

- Not Clustered

I------
- * Approximation

- Clustered

IO

0

200 1200 2200 3200 4200 5200 6200 7200

Buffer Size (KBytes)

Figure 12: Search Execution with Clustering
buffer size for processing the query. To reduce the ef-
fect, of the UNIX buffer, we flush out the system buffer
hefore each query. Figure 12 shows time spent for ex-
c>cut,ing the search with different memory sizes.

The first, remark comes from the difference between
t.he clust(ering and the non clustering case : clust(ered
collections (due to the number of IO) much better tol-
c1rat.e memory size variations.

In the case of default, clustering of these three col-
lect,ions, we have : Refi = 14500, Ref:! = 3965 and
Refs = 1202. Then POgemin = Yao’(C2, Refz) +
yno’(C3, Refs) = 485.26. The Break Point is equal to
-285.26 * S, 2 194lli’Bytes. It is important to notice
t,hat, the model allows us to determine the break point
of t,he curve. When memory size is smaller than this
point,, the10 cost becomes much higher for depth-
first.-fetch algorithm and the query optimizer should
ma,ke a choice between pointer navigations and a set
of binary joins.

Errors Analysis:
Figure 13 summarizes for all experiments the max-

imum error by overestimation (Max-O) and the max-
Imum error by underestimation (Max-U), the average
overest,imation error (Ave-0) and the average under-
c&mation (Ave-U), with the standard deviation (St-
Dev). The corresponding formulas can be found in
[Knu68. Swa89, Zai94]. We notice that, for these sim-
ple queries. the percentage of errors are low. But for
more complex queries with nested predicates, the error
rat,e may increase due to the complication of the cost
Lbrmulas.

8 Conclusions and Future Work

‘I’llis paper has presented a cost model for query opti-
Inizer in an Object-Oriented system. The model takes
into account, object clustering and indexing. Based on
I,he statistics and placement. information, the model

ISearch I(0,0641 0,1431 O,OlSl 0,0141 O,i?q

Figure 13: Errors
correctly estimates the cost of different access meth-
ods for scanning collections and evaluating predicates
with path expressions. We also propose a method to
estimate page accesses to a clustered collection (Yao’).
Further, we explore the effect on the cost of query ex-
ecution of different object grouping cases. Experiment
with 02 system allow us to verify the most important
hypothesis of the proposed cost model.

In the next future, we plan to do more performance
tests to validate all the cost formulas. We will like to
compare the costs of evaluating path expressions using
explicit joins versus OID pointer navigations. Results
would be helpful to find good heuristic strategies for
Object-Oriented query optimizers. We plan to extend
our cost model to a distributed system where commu-
nication costs will be considered.

References

[BCD89]

[BD90]

[BF92]

[BK89]

[BMG93]

F. Bancilhon, S. Cluet, and C. Delobel. A
query language for the 02 object-oriented
database system. In R. Hull, R. Morri-
son, and D. Stemple, editor, Proc. 2nd Intl.
Workshop on Database Programming Lan-
guages, page 122, Gleneden Beach, Oregon,
June 1989. Morgan Kaufmann.

V. Benzaken and C. Delobel. Enhancing
performance in a persistent object store:
Clustering strategies in 02. In Fourth Int’l
Workshop on Persistent Object Sys., page
375, Martha’s Vineyard. MA, September
1990.

E. Bertino and P. Foscoli. An analyti-
cal model of object-oriented query costs.
In Persistent object Systems, Workshop in
Computing Series. Springer-Verlag, 1992.

E. Bertino and W. Kim. Indexing tech-
niques for queries on nested objects. In
IEEE Transaction on Knowledge and Data
Engineering, 1989.

J. Blakeley, W. Mckenna, and G. Graefe.
Experiences building the open oodb query

333

optimizer. IIY Proceedings of ACM-
SIGMOD International Conference on
Management of Data, 287-296., 1993.

[Cat 931 R.G.G. Cattell. The Object Database Stan-
dard: ODMG-93. Morgan Kaufmann,
1993.

[JWKLSO] 8. Jenq, D. Woelk, W. Kim, and W.-L.
Lee. Query processing in distributed orion.
In Advances an Database Technology-
EDBT’90. Springer- Verlag,169-187., 1990.

[Knu68]

[CD921 S. Cluet. and C. Delobel. A gen-
eral framework for the optimization of
object-oriented queries. Proceedings of
.4CM-SIGMOD International Conference
on Management of Data, 383-392., 1992.

[LV91]

[C’OA+94] A. Dogac CT Ozkan, B. Arpinar? T. Okay, [MCS88]

[FG94]

[FLIT941

[GAO31

[NT951

[GM931

[HCF+89]

[IK90]

and C. Evrendilek. Metu object-oriented
dbms. Advances an Object-Oraented
Database Systems, Eds.Spranger- Verlag.,
1994.

B. Finance and G. Gardarin. Rule-based
query optimizer with adaptable search
strategies. Data and Knowledge Engzneer-
ang, 13(2), 1994.

J. Frohn. G. Lausen. and H. Uphoff. Ac-
cess to objects by path expressions and
rules. In Proceedings of the 20th Very Large
DataBase Conference, 1994.

0. Gruber and L. Amsaleg. Object group-
ing in eos. Dastributed Object Management,
1993.

G.Gardarin, J.R. Gruser, and Z.H. Tang.
Efficient processing of path expressions in
object-oriented databases. Submited to
Data Enganeerang, 1995.

G. Graefe and W. McKenna. The vol-
cano optimizer generator. In Proceedings of
9th International Conference dn Data En-
ganeerang, 209-218.. 1993.

L. M. Haas, W. F. Cody, J. C. Freytag,
G. Lapis, B. G. Lindsay, G. M. Lohman,
K. Ono, and H. Pirahesh. Extensible query
processing in startburst. In Proceedings of
ACM SIGMOD International Conference
on, Management of Data, 377-388., 1989.

Y. Ioannidis and Y. Cha Kang. Radom-
ized algorithms for optimizing large join
queries. In Proceedings of ACM-SIGMOD
Internataonal Conference on Management
of Data. 312-321., 1990.

[MDZ93]

[Me1931

[Obj94]

[PSC84]

[SAC+791

[Swa89]

[Yao77]

[Zai94]

D. E. Knuth. The Art of Computer Pro-
gramming, volume 1. Addition-Wesley,
1968.

R. Lanzelotte and P. Valduriez. Extending
the search strategy in a query optimizer.
In Proceedings of ACM-SIGMOD Interna-
tional Conference on Management of Data,
287-296.: 1991.

M. V. Mannino, P. Chu, and T. Sager. Sta-
tistical profile estimation in database sys-
tems. ACM Computing Surveys, 20(3):191,
September 1988.

G. Michell, U. Dayal, and S. Zdonik.
Control of an extensible query optimizer:
A planning-based approach. Proceedangs
of 19th International Conference on Very
Large Databases, 517-528., 1993.

J. Melton, editor. ISO/A NSI Working
Draft Database SQL (SQL3). X3H2-93-091
IS0 DBL YOK-003, 1993.

ObjectStore, editor. ObjectStore User
Guide Release 3.0. 1994.

G. Piatetsky-Shapiro and C. Connell. Ac-
curate estimation of the number of tuples
satisfying a condition. In Proc. ACM SIG-
MOD Conf., page 256, Boston, MA, June
1984.

P. G. Selinger, M. M. Astrahan, D. D.
Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational
database management system. In Proc.
ACM SIGMOD Conf., page 23, Boston,
MA, May-June 1979. Reprinted in M.
Stonebraker , Readings in Database Sys.,
Morgan Kaufmann, San Mateo, CA, 1988.

A. Swami. A validated cost model for main
memory databases. Perfomance Evalua-
tion Review, May 1989.

S. B. Yao. Approximating the number of
accesses in database organizations. Comm.
of the ACM, 20(4):260, April 1977.

M. Zait. Optimisation de requetes relation-
nelles pour execution parallele. PhD thesis,
Universite Pierre et Marie Curie, PARIS
VI, June 1994.

334

