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Abstract 

Query processing is one of the most, critical 
issues in Object-Oriented DBMSs. Extensible 
opt,imizers with efficient, search strategies re- 
quire a cost model to select the most efficient 
execution plans. In this paper we propose 
and partially validate a generic cost-model 
for Object-Oriented DBMSs. The storage 
model and its access methods support clus- 
t,ered and nested collections, links, and path 
indexes. Queries may involve complex predi- 
cates with qualified path expressions. We pro- 
pose a, method for estimating the number of 
block a,ccesses to clustered collections and a 
paramet,erized execution model for evaluating 
predicat,es. We estimate the costs of path ex- 
pression traversals in different cases of phys- 
ical clustering of the supporting collections. 
Thr model is validated through experiments 
with the 02 DBMS. 

1 Introduction 

One of the basic functionalities of object-oriented 
tla.tabase systems is a declarative query language de- 
rived from a.n object. extension of SQL. Standard query 
languages have been proposed [Cat93, Me1931 and the 
issue> of query optimization is now crucial. R.esearch 
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has been done on query rewriting techniques [GM93, 
HCF+89, CD92, MDZ93, FG94] and search strategies 
for discovering optimal execution plans [IK90, LV91]. 
All these techniques assume a cost model to eval- 
uate query plans, taking into account the I/O and 
CPU costs. Little work has been done to define and 
validate a generic cost model for object databases. 
Cost models have been sketched for several optimiz- 
ers [BF92, BMG93, CD92, COA+94, Zai94], but to 
our knowledge, none of them have been implemented 
and validated on real databases. 

In this paper, we assume that the query optimizer 
is able to break the encapsulation of objects and look 
at the data structure used to implement them. We 
then propose a generic cost model for object databases, 
which takes into account various aspects of object stor- 

age 
l 

models including: 

Clustering. Object of different classes can be 
physically grouped together according to multiple 
predicates with a priority scheme. 

Linking and Embedding. Associated objects can 
be linked through object identifiers; nesting tar- 
get objects of associations inside source objects to 
constitute composite objects is also supported as 
a variant of clustering. 

Indexing. Simple indexes on attributes of a class 
and complex indexes on path expressions are sup- 
ported. 

Methods. The cost of user operations on objects 
are integrated in the model through parameter- 
ized access to computed attributes. 

This generic cost model has been validated on sim- 
ple queries using the 02 database system. The results 
show good predictions for searches of clustered collec- 
tions. 

The main contribution of our approach is first, 
the generality of the cost model. It. is defined by a 
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class graph with clustering predicates, embedded and 
linked classes, path indexes, and virtual attribute ac- 
cess costs. Thus, the generality of the cost model is 
assured by both its generality and the introduction of 
relevant, parameters. Second, our cost formulas include 
an evaluation of the block hit rate when evaluating a 
predicate on a clustered collection: we extend the Yao 
r’ormula [Yao77] to the clustered case. Third, we es- 
t.imate the cost of searches with complex predicates 
t.o include qualified path expressions [JWKLSO]. Fi- 
Irally, our cost model is validated through experiments 
on the 02 DBMS. The validation demonstrates the 
rnodel validity for processing queries. 

The organization of this paper is as follows. In sec- 
t,ion 2 we present the physical storage model, partic- 
ularly how objects from different classes are clustered 
or embedded together and how path indexes are in- 
t.egrated. Section 3 is devoted to a discussion of the 
caxecution model. We focus on the evaluation of pred- 
icat,es with path expressions. In section 4 we first in- 
t#roduce the cost model parameters and then present 
a. method for estimating the number of block accesses 
t.o a clustered collection given the predicate selectiv- 
ity. The next section describes the cost formulas for 
searching through collections with complicated predi- 
cates. Section 6 uses these results to compute the costs 
of sequential and index scans. Section 7 describes the 
results of experiments done on the 02 DBMS to vali- 
clat,e our analytical cost, model. 

2 The Object Storage Model 

ln t,his section, we introduce a generic storage model 
for Object-Oriented DBMSs. This model captures var- 
ious types of object identifiers, clustering techniques, 
and indexes. It is general enough to be specialized 
f’or representing the internal model of most object- 
orient,ed DBMSs, as shown below with 02. 

2.1 Object Identifiers 

Most. object,-oriented database systems store object on 
slot,ted pages. A slotted page contains a variable ar- 
ray of slots at, the end of the page. The offset of each 
object from the beginning of the page is kept in the 
slot,. Physical object identifiers (OlDs) consist of the 
hegment. number, the page number and the slot num- 
ber. Physical OlDs are used in ObjectStore for ex- 
ample [Obj94] [GA93]. Although physical OlDs are 
efficiently decoded, they do not allow free movement 
of objects in databases. To avoid this problem, other 
syst.ems have implemented logical OlDs, a value that 
~na.ps through a hash table to retrieve the actual loca- 
t.ion of the object Our generic cost model considers 
t,he type of OID as an input parameter. This parame- 
t.er effects directly the cost of object link traversals. 

2.2 Indexing 

To speed up predicate evaluation, Object-Oriented 
DBMSs support classical indexes to class instances. 
Indexes are generally organized as B-trees containing 
attribute values with OID lists. Indexes can be clus- 
tered. In our model, an index is a function from an 
attribute value to a list of OlDs. The cost of travers- 
ing the index is a parameter giving the cost formulas 
of the function. 

Further, some Object-Oriented DBMS provide path 
indexes, which follow a sequence of objects linked by 
relationships. There exist various implementation of 
path indexes [BK89]. We consider a path index as a 
function associating the end of the path to all prefixes 
of the path. The cost of the function can be changed 
to model various implementation. 

2.3 Object linking and Embedding 

In most Object-Oriented DBMSs internal models, as- 
sociated objects can be stored together as composite 
objects or stored separately and linked through OlDs. 
In the case of composite objects, a l-l or 1-N rela- 
tionship gives rise to an object with 1 or N embedded 
objects. In the case of linking, a relationship gives rise 
to a mono or multi-valued attribute pointer. Linking 
or embedding related objects is a very important de- 
cision for query costs. Thus, our model captures this 
structure through a graph description. Links are rep- 
resented by edges between their class nodes. Embed- 
dings are also represented by links. We distinguish em- 
bedding links by marking them using a double-arrow- 
dotted line in the database schema and placement 
graph. 

2.4 Clustering 

Database accesses in an Object-Oriented DBMS are 
much more complex due to the rich variety of type 
constructors provided. In addition to traditional scans 
of sets of objects, Object-Oriented DBMSs often use 
navigation-like access among related objects. Such 
inter-object references can generate random disk ac- 
cess if the entire database does not fit in main memory. 
A well-known approach to speed access to related ob- 
jects is clustering by object associations. Clustering 
groups objects of possibly different classes into con- 
tiguous disk pages (i.e., clusters) using information on 
object contents or relationships (i.e., association, in- 
heritance, aggregation). To capture a large set of clus- 
tering strategies, we adopt a predicate based definition 
of clustering. Predicates that reference class proper- 
ties are used to define the set of objects stored together 
in clusters. To support shared objects, we adopt the 
priority concept described in [GA93]. Clustering in- 
formation is presented using a graph defined by the 
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Figure 1: Clustering Possibilities 
tlatahase administrator. Edges correspond to cluster- 
ing predicates. A priority weight from 1 to 10 is given 
l’o each edge. For object instances of nodes shared 
hy several edges, the edge with the highest weight is 
selected. 

Figure 1 shows four possibilities for collection clus- 
t.ering as follows: 

The default clustering : All the objects of the 
collection are physically grouped in contiguous disk 
space. If no clustering predicate is provided for a col- 
lection, this default grouping is implicit. In Figure l.a, 
company has the default clustering. 

The simple clustering : This is the classical clus- 
t.eriug of two collections according to a join predicate. 
In Figure l.b, the produd collection objects are clus- 
t,ered with the corresponding objects of the company 
collection with priority 10. All the companies which do 
uot, have any products are grouped together with pri- 
ority 1. All products of unknown company are grouped 
t.oget(her with priority 1. 

The conjunctive clustering : In Figure 1.c: all 
t.he product objects and the command objects are clus- 
t,ered with t,heir associated companies. This cluster- 
ing strategy allows the clustering of several collections 
wit,11 one. 

The disjunctive clustering : In the case of Fig- 
llre l.d, each command object should be stored with 
rit,her the associated company or the associated pro- 
posnl. Since objects cannot be duplicated, they are 
assumed to follow the edge with the highest weight. 

2.5 A Database Example 

Figure 2 shows an example of a database relationship 
and its physical data grouping. Solid lines with ar- 
rows represent the database schema. The cardinal- 
ity permitted by the relationship type is indicated by 
t,he arrows at the ends of the solid line. For exam- 
ple, the line between company and command indicates 
a. one-to-many relationship between these two collec- 
Gons. A path index is represented by a set of arrow 

:Comp;my.Comm;md .Pnpxd 

Figure 2: Placement Graph 

cluster COMPANY on (workunits, products); 
cluster COMMAND on (proposition); 

Figure 3: Creating a cluster in 02 
lines starting from the collection at the end of the path 
and pointing to all the intermediate collections. For 
example, Company. Command. Proposal is a path in- 
dex. Dotted lines indicate object clustering, they are 
labelled by priority weights. A double-arrow dotted 
line represents object embedding. The label of a dot- 
ted line can include a predicate for clustering. In the 
graph, all the products produced after 1994 are clus- 
tered with their company with priority 3. Since there 
is no dotted line between command and company, com- 
mands are stored independently of their companies. 

The placement graph induces a physical organiza- 
tion of data. Each generated cluster can be seen as a 
partition of a collection. For example there are two 
partitions for company : Cl(company,wor~un~t~ (work 
unit objects are embedded with company objects) and 

2.6 Object Clustering in 02 

A typical 02 application runs in client-server mode. 
Clients and servers exchange physical disk pages. Thus 
data transfer is quite expensive and data clustering can 
largely improve performance since it decreases com- 
munication cost. In 02, objects are mapped into page 
slots and a physical cluster is a set of records [BD90]. 
Logical cluster in 02 has no size limit, whilst a physi- 
cal cluster is bounded to the page size. The clustering 
strategy is defined using a placement tree. When in- 
stances of a given class are created, the placement tree 
associated with this class generates the physical orga- 
nization on secondary memory. 

3 An Execution Model for Predicate 
Evaluation 

The execution model for scanning a collection with 
predicate evaluation uses an algorithm that involves 
three low level operators : Fetch, Comp (for compare 
two values) and Dot (for get an attribute of an object 
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Figure 4: Low Level Operators 
or apply a method). The combination of these low level 
operators directly influences the cost of a query execu- 
t,iou. In this section, we detail the three low level op- 
c\ra.t.ors and discuss the algorithm for evaluating pred- 
ic.at,ta with path expression. 

3.1 Low Level Operators 

I,ow level operators are described in Figure 4. We dis- 
I.illguish thr access to an object from its OID (Fetch 
operateor), t,he evaluation of a simple predicate on an 
object. already in memory (Comp operator), and the 
I)rojrction of an object on an attribute or method 
value (Dot operator parameterized by the attribute or 
tnt,t.hod name). The costs of these three operators are 
I)a.ra.met,ers of our cost, model. 

In general. Fetch costs little CPU time but one 
or zero I/OS; on the contrary. Comp and Dot cost 
only CPU t,ime. The Fetch operator should be ap- 
I)lird before evaluating a predicate or before get.ting 
an at,tribut,r value, especially when traversing a col- 
Nion wit,h a qualifying predicate. The Dot, operator 
is generic in the sense that it is parameterized by a 
Ilroperty name. The property can be an attribute or 
;I mrt,hod; the property is an important parameter for 
cost computat,ion. 

3.2 Path Expression Evaluation 

hn a.tomic predicate can be a simple predicate (e.g.. x 
111 Product,. x.year > 30) or a complex predicate con- 
t a.iuing a pat,h expression. Our model integrates qual- 
ified path expressions. Thus, each collection involved 
in a pa.th expression can be qualified with a simple 
I)rrdica.t.e [FLU94]. F or example, let x be a variable on 
collection Person 

x. vehicle [color=“Red”] . company Cname=“Renault”l ; 

is a valid path expression. A query with a predi- 
ca.tr containing a path expression can be executed in 
different. ways. At the execution level, to estimate the 

Given a sub-path expression 
(,2, E Ci, ~ci(Pi).C~+l(Pi+l)..C~(P*).U~~r~~~~e) 

where ci is a set of references to an object of Ci and 
Pi is a qualified predicate, we have : 

Depth-First-Fetch Algorithm: 

DFF(xi(Pi).ci+i(Pi+l). I~ .cn(Pn)> 
1 

if (i<n) 

for x in (xi.ci+i) 

( 
FETCH(x) 

if COMP(Pi) = TRUE 
return DFF((FETCH(x.ci+l>(Pi+l) 

3 * 
ci+2(Pi+2). “. .cn(Pn>)> 

3 
else return COMP(Pn) 

3 

Figure 5: The DFF Algorithm 
cost of a path traversal, we consider a Depth-First- 
Fetch (DFF) evaluation given in Figure 5. We select 
this algorithm because it is implemented in DBMSs 
such as 02 and appears to be the best algorithm with 
large memory. It recursively processes the object com- 
position graph corresponding to the path using depth 
first search. (Breadth first search is also possible, but 
the path must be rewritten into equivalent logical al- 
gebraic expression [CD921 and expressed as a sequence 
of explicit joins in the execution plan. The cost model 
will then compute the cost of the cascaded joins, using 
traditional join cost formulas [Zai94]). After the query 
optimization procedure, if an execution plan still con- 
tains a path expression, we assume that the qptimizer 
specifies the Depth-First-Fetch method. 

When using the DFF procedure, we evaluate pred- 
icates of intermediate collections along the path ex- 
pression once the instances of the intermediate col- 
lections are loaded into memory. The advantage of 
this approach compared to traditional depth-first-fetch 
is that, it avoids joining intermediate results several 
times. For example, if a query has to find the per- 
son who has a red car made by company Renault, 
i.e., x.car.company[name=“Renault”] and x.car[color 
= “red”], qualified path expressions only traverse the 
x.car collection once. More generally, we permit 
any predicate that, is a conjunction of disjunctions of 
atomic predicates. 

In summary, we assume a rather specific execution 
model, but with sufficient parameterization (e.g., for 
low level operators) and flexibility (e.g., for path ex- 
pressions) to capture a large class of search algorithms. 
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We also provide several join cost formulas not de- 
scribed in this paper due to space limitation. Further, 
we use clustering, embedding, linking, and indexing in- 
I’ormation to compute the number ofobjects processed 
by a query. 

4 Cost Model Parameters and Clus- 
tered Block Hit 

A cost model is a set of formulas to estimate the cost 
of an execution plan. Cost-based query optimizers 
select. the most efficient execution plan based on the 
cost. estimations among the equivalent execution plans 
[Zai94]. There are several major components of the 
cost: CPU-Cost, IO-Cost, COM-Cost. CPU-Cost is 
t,he cost of executing CPU instructions, for example, 
(valuating a predicate, executing a loop. IO-Cost is 
t’hr input/output cost for reading and writing data be- 
t.ween memory and disk. COM-Cost is the cost of net- 
work communication among different nodes. In this 
sect,ion, we present a cost model designed for an ob- 
ject’ oriented database which permits object cluster- 
ing. In our case, since the database is centralized, our 
cost. model focuses on the IO-Cost and CPU-Cost; the 
communication cost is not taken into account. A cost 
Inodel can be very complex. We aim at defining a us- 
a.blr cost model for a query optimizer. Thus, it has to 
remain rrs simple as possible. To simplify the evalua- 
Gon of cost. estimations, we assume that objects have 
a size less than a page, also, we use a uniform distri- 
hut,ion model for attribute values in domains. 

4.1 Parameters 

‘I%e cost, model uses statistics about the database com- 
ponents to estimate a given execution plan cost. The 
staGstics contain information concerning collections in 
t,he database like the cardinality of collection, the size 
of objects, the number of distinct values of an at- 
t,ribute, indexes and clustering. The system parame- 
t.ers and some calculated expressions are also included 
in these statistics. This section describes the details of 
these parameters. 

Statistical information on collections are defined as 
follows: 

l IIC’II: cardinality of collection C 

l ) ICil(: cardinality of cluster i of collection C 

l IG’il: number of pages of cluster i of collection C 

l SC: average object size in collection C 

Statistical information on attribute distribution are 
a.s follows: 

fanc, ,ca : average number of references from a Cl 
object to C2 objects 

DC, ,~a : number of distinct references from a Cl 
object to C2 objects. 

XcI,cZ: number of Cl objects having NULL ref- 
erences to C2 objects. 

From these parameters, we calculate the following 
expressions : 

l -&,ca: average number of distinct references to 
C2 objects of those Cl objects who have at least 
one non NULL reference: 

%,~a * Ml 
zc1vc2 = l(C111 - XCI,C2 

l Sel(Predicate): The selectivity of a predicate. 
(usual formulas can be found in [SACt79, MCS88, 
PSC84])” 

Others parameters: 

b: B tree fanout 

BLevel(1): number of Btree levels of the index I 

S,: the page size 

Proj-Cost: CPU cost to project one attribute of 
an object 

m: available memory (unit: page) 

Costloadpage : Cost to load a page in memory 
(one IO) 

Estimating the Page Number of a Clus- 
tered Collection 

In this section, we present a method to estimate the 
page numbers of each partition of a collection when it 
is clustered with other collections. 

In a storage system where there is no object cluster- 
ing (like in the default clustering of Figure l.a), there 
are [z] objects in a page and the total pages of a 
collection can be calculated by: 

IAl = $j 

But in a system where objects of different collec- 
tions can be clustered together, the page number can 
not be calculated using the above formula, since a 
collection may have several physical partitions. In a 
given partition, objects belong to the same collection 
while in other partitions objects are physically grouped 
with objects from different collections. We propose a 
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tnet.hod for estimating the total pages of a collection 
after clustering. We assume that objects are not dupli- 
cnt,ed and the cardinality of a collection is not changed 
;lft#t,r clustering. Suppose that collection B is clustered 
wit,11 collection A (see Figure 1.b). The average object. 
size of collection A objects is Saand the average size 
of collect,ion B objects is Sg. We suppose that SA and 
SS are both smaller than a page size. 

We first estimate the number of pages of collection 
A. which is the root, of the cluster tree. There are two 
I)hysical pa.rtitlons of collection A after clustering: a 
Imrt,ition clustered with B C/A-B and a partition (21~ 
where there are only collection A objects inside. 

l For CIA. the number of collection A objects inside 
is IIA~:l,(I = XA.B, then : 

lAlcla = * 
i$i 

l For CIA-B? the number of root objects in this 
clust,er is I \A( I-X A,B. the cluster size is SclnbB = 
5~ + (ZA,B *S,), then 

The t,otal number of pages is 

I4 = I~cI~ + I~cI,+.~ 
111 t,he second step. we estimate the page numbers 

of collect,ion B (a. non-root, node in clustering graph) 
;\.ft,clr clustering. The different, partitions where we can 
find of collection B are CIA-B and C/s. 

l For CUB, the number of B objects which is not 
referred by any A objects is (IB(( - ([[All * DA,B), 
r,heu we have 

IBlaB = 
IIBII - (llAll * DA,B) 

IL?21 LseJ 

l For C’~A--B the size and the number of objects 
per Cluster remains the same, but the number of 
Clusters to access is now X&,a-B = Min(2A.B * 
,yA,B, SA,B) and we have : 

And t,he t,otal number of pages is 

PI = IBIc~, + IBIcII~-~ 

Partition of A Stored Independent Partition of A clustered with C 

Partition of A Clustered with B Partitim of A Clustered with BC 

A 

J 

Figure 6: Physical partitions of collection A after clus- 
tering 

We use the same method of calculation for the con- 
junctive, the disjunctive and the combination of all 
clustering techniques. Thus, in the case of more com- 
plicated clustering, the complexity of the formulas in- 
creases with the shape of the placement tree. 

4.3 Extending the Yao Formula to Clustered 
Collections 

During query optimization, the optimizer computes 
the selectivity of a predicate and we need to estimate 
the number of page accesses to a collection. In rela- 
tional database, Yao [Yao77] has derived a formula to 
calculate the expected number of page access. This is 
given by the following theorem: 

Theorem Yao: Given n records uniformly dis- 
tributed into m blocks(1 < m <= n), each contains 
n/m records. If k records (k <= n) are randomly 
selected from the n records, the expected number of 
block hits is given by 

yao(n, m, k) = m * [l - fi “,“I::,‘] where d = 1 - l/m 
,=I 

For a clustered collection C , we can not simply 
apply Yao’s formula to estimate the page hits by 
yao(llCll, ICI,Sel(P)* IlCll) as often done in RDBMS. 
The reason is that a clustered collection has more than 
one partition. Certain objects are clustered with ob- 
jects from different, collections, while others are stored 
alone. Thus, the densities of objects in the different 
partitions are not the same. In this case, we extend the 
Yao formula to Yao’ given by the following theorem: 

Theorem yao’: Given a collection C which has 
p partitions, each partition has IICII; objects. If k 
(k < CL1 IlGll) bj t o ec s are randomly selected from 
C. the expected number of block hits is given by 

yao’(C,W = f:Yao~IIC,ll. lCi19k,) 
&=I 
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Figure 7: comparison of formule Yao and Yao’ 

where ,ki is the number of objects to be selected in 
partition Ci. 

If objects to be selected are placed uniformly among 
41 t,he partitions, we have ti = (IlCill/llCll)*k. When 
t,he objects that satisfy the predicate are not placed 
uniformly among the different partitions, we have to 
use the selectivity on each partition to get the right 
value of each ki. The yao’ formula is more general 
t.ha,n the Yao formula, and the latter is a particular 
case of yao’ when collection C has only one partition. 

We now illustrate the two formulas through a simple 
c>xa.mple. Suppose we have 3 collections Gee Figure 6): 
A,B, and C where B and C are clustered with A. The 
a.verage object sizes of collec_tion A, B, C are the same, 
which equal to one-tenth of a page. The cardinality of 
A is 10,000. After clustering, 1500 objects of collection 
X a.re stored with B and C, 3000 A objects are stored 
wit,h B. 2500 A objects are grouped with C and the 
remaining 3000 A objects are stored independently. 
We select the object A with a given predicate. 

In Figure 7, we trace the results of the Yao and Yao’ 
functions for different predicate selectivities. We sup- 
pose the selectivity is uniform among all the clusters. 
The vertical axis represents the number of pages of col- 
Iect,ion A to be accessed and the horizontal axis is the 
nunlber of objects that satisfy the selection predicate. 
When the selectivity is greater than 10 percent, we 
notice a significant difference between Yao and Yao’. 
The value of Yao is lower than Yao’ since it considers 
t.hat, all the C objects are grouped together, thus the 
density is higher and the probability of two objects 
stored in the same page is higher. This result verifies 
t.hat when objects are clustered with other collection 
objects, the sequential scan and index scan become 
r0stiy. 

5 Cost Formulas for Typical Operators 

5.1 Cost of Dot 

The Dot operator is applied to retrieve the value of 
an attribute when the object is present .&memory 
or to execute a method on an object state. The at- 
tribute can be calculated through a method. Thus, to 
evaluate the CPU cost of Dot, a user given parame- 
ter is required for non directly implemented attributes. 
We assume that objects document themselves through 
methods. Then, we have : 

IO-Dot-Cost = 0 
CPU-Dot-Cost = constant or the CPU cost of the 
method 

5.2 Cost of Comp 

The Comp operator is applied to test a predicate when 
the object is present in memory. Before applying the 
Comp operator, we have to apply the Dot operator 
to compute the attribute values in memory. Thus, we 
have : 

IOXompXost = 0 
CPU-Camp-Cost = constant (If no predicate is de- 
fined, the default predicate is set to TRUE and, in 
this case, we have : CPU-Camp-Cost = 0) 

5.3 Cost of Fetch 

The cost of fetch depends on whether the object is 
present in memory or not : 

IO-Fetch-Cost = 
1 

0 if the object is in memory 
1 if a page has to be loaded 

CPU-Fetch-Cost = 0 

5.4 Cost of Accessing an Index 

We assume that indexes are implemented with B tree 
structures as usual. Suppose the Btree fanout is b, 
with Blevel levels, the CPU cost of index scan is 

CPU-index-Cost(I) = logzb(I) * Blevel(I) 

*CPU-CompXost 

The IO cost of accessing an index is equal to the 
index tree level. IOindexXost(1) = Blevel(1) 

5.5 Cost of Creating Temporary Results 

During the execution of a query, the system needs 
to generate some temporary results. The size of the 
results depends on the predicate applied on the in- 
put collection C and on the projected attribute length 
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\ ,i,,,.,,j J. We determine the size of the output collection 
I,y : 

Iloutll = WP) * IlCll 

lout1 = I 
1 *I 

Managing the output collection requires 10s only 
when the results have to be swapped on disk; thus, if 
m is t.he number of pages available in main memory, 
\VE get: 

if m < lout1 
otherwise 

‘rhr CPU cost is the time to construct the (lout)1 ob- 
,jcct,s given by: 

(‘PI--out-Cost( P,C,proj) = 1 lout I I *Proj-Cost*Nbproj 

5.6 Cost for Evaluating Predicate 

\Ve assume that the required pages of the mput col- 
Sect ions are already loaded in memory. Two cases have 
t,o br considered : 

l predicate without path expression 

l predica.te with path expression 

5.6.1 Predicate without Path Expression 

‘l’he CPU-Cost is the cpu time for making a Dot on 
c\a.ch objects and for comparing two atomic values. The 
IO-cost, is null since the object state is already in mem- 
ory. It yields : 

IO~Evul-Cost( P) = 0 

(‘PU-EveLCost( P) = llCll* (CPUDot-Cost 

+CPU-Comp-Cost) 

5.6.2 Predicate with Path Expression 

ln t,he execution model, a predicate with path expres- 
sion is executed with Depth-First-Fetch algorithm. Of 
course there are other ways of evaluating a path ex- 
pression as explicit joins [GGT95]. These execution 
plans are expressed without path expression at the 
physical level. The Depth-First-Fetch has to find for 
each object of the input collection, the corresponding 
a.t.tribute. 

Since they are p memory pages to process the 
predicate, we make the assumption that the num- 
ber of pages is at least equal to the path length 
(p > n), which is usually the case. Thus there 
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is at least one page for each collection in memory 
during execution. Given a path expression (Z & 
Cl, x.c2(P2).cs(P3)..cn(P~).attribute) where ci is aref- 
erence to an object of Ca and Si are the selectivity of 
the predicate Pi (Si = Sel(Pi)). 

We first define the number of distinct references in- 
volved in the Path Refi = (1 - Probi) * IlCill. Pi is 
the probability of an object of collection i to be not 
involved in the path, we have : 
Probi = (1 - &) (Ref,-1*S*-r*fanc*-1,c,) 

with Refi = IIC’111. 
Depending on the memory size, we have three hy- 

potheses : 

l if p is large enough to store all pages involved in 
the path expression? each page is loaded once and 
only once. The Yao’ formula approximates the 
number of pages to be loaded : this is the large 
memory hypothesis. 

Pagemin = 
0 if Ci-1 is clustered with Ci 
Yao’(G, Refi) 

l if p is equal to the path length (p = n), we have 
the extreme case of the small memory hypothesis. 

NbPage,,, = 
0 if Ca-1 is clustered with Ci 

l if n < p < Pagemin, the memory is not able 
to store entirely all involved pages of the path 
expression. The IO cost will directly rely on 
the page replacement policy mechanism of the 
database. Some pages will be reloaded many 
times. In this case, we approximate the IO cost 
by a linear function on linking the maximum and 
the minimum number of pages. We assume that 
such an approximation is sufficient to compare ex- 
ecution plans. We have : 

NbPage = 
Pwmaz - Pagemin 

Pagemin - n * (n - P) 

+ Pagema, 

Finally the IO cost of a predicate P evaluation with 
p pages is : 

IOXval-Cost( P) = 
NbPage if n 5 p < Pagemin 
Pwmin if p 2 PIXgemin 

The discrepancy of execution plans is based on the 
comparison between break points of the search cost 



curves.(see Section 7) The break point is given by : 
BrrukPoint = Pagemin * S,. 

The CPU cost, of this evaluation is the cost of do- 
ing a. Dot along all objects and a Comp for all simple 
predicate in the path : 

CPI~-EvalLCost(P) = llClll* (CPU-Dot-Cost 

+CPUXomp-Cost) 
n d 

6 Search Cost 

We define Search the operation which applies a predi- 
cat,e to a possibly indexed collection and retrieves the 
results. The cost of the search operation can be bro- 
ken up into several components : the cost. of accessing 
an index (if it exists), the cost of loading the collec- 
t.ion, the cost, of evaluating the predicate, and finally 
t.he cost of building the result. 

The IO cost of a search is the cost of loading the 
relevant, pages of the collection C plus the IO cost of 
t.he predicate evaluation. Two cases are considered, 
sequential scan and index scan. 

Figure 8: IO cost of scan 
The CPU cost derives from the evaluation of a pred- 

icate P over the objects of C : 

CPU-ind-scan(C, P, proj) = CPU-index-cost(I) 

+CPli-out-Cost( P, C, proj) 

Finally, the total time to evaluate a search opera- 
tion is obtained by converting the IO-Cost to the unit 
of time by multiplying the time that takes one IO op- 
eration. That yields : 

6.1 Sequential Scan 

The basic operation formulas given m the previous sec- Total-time = IO(-ind)-scan * Cost-load-page 
t,ion entail: +CPU(ind)-scan 

IO-scan(C, P, proj) = ICI To illustrate the formulas, we use our model to 
+IOEval-Cost(P) compute the IO cost of a sequential search in func- 

+IO-out-Cost(P, C, proj) tion of the memory buffer size. The results are given 
in Figure 8. The curves represent the number of 

The CPU cost is proportional to the number of ob- 10s for scanning a collection of 1000 objects clustered 
jects to scan : with objects from different collections. The predicate 

of scan contains a path expression over 5 collections 
c7PU-scan( C, P, proj) = CPU Eva/-Cost( P) (x E Cl, x.c2.c3.c4.c5.attribute = value). The num- 

+CPU-out-Cost(P,C,proj) ber of objects pointed in the path expression is half 
of the number of objects of the precedent collection 

6.2 Index Scan (Dc,,c, = 0.5). There are five curves in the figure, 

If an index I is used to access the collection, the IO 
cost. only takes into account the number of pages of C 
determined by accessing the index. We determine the 
restricted collection C’ by : 

which represent the different cases of physical cluster- 
ing of objects. It is clear from our result that when 
collections are clustered together, the IO cost for eval- 
uating a predicate with a path expression is lower. 

7 Cost Model Validation 
yao’(C, I ICI I * Sel( P)) 

I”( = { Se/(P) * ICI 
if I is non-clustered 
if I is clustered The validation of our cost model is done on the 02 

Client/Server database system [BCD89] on a SPARC 

IlC’ll = Sel(P) * IICII 
It follows that : 

IO-ind-scan(C, P, proj) = IO-index-cost(I) 

+IC’I + IO-out-Cost(P, C,proj) 

station LX. The 02 server and the 02 client run on 
the same machine on a single user configuration. The 
cost of an IO is the time to load a page of 4 kBytes 
into the buffer of the server plus the time to transmit 
this page to the buffer of the client. We measure an 
average time of 25 ms to load a page and transmit it. 
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Figure 10: Evaluation of Path Expression 

Queries are executed on two equivalent databases: 
t.he first. one is clustered in the way described in Fig- 
ure 9 and the second one uses the default clustering 
strat,egy for each collection. We create an index on 
t.he attribute “IndexId” of each collection. The links 
between A, B and C are generated at random. A non 
indexed attribute “id” gives a unique identifier for each 
object. During our experimentation. each query is ex- 
ecuted 10 times in the same condition. The average 
va.lue of response times is used as an element of the 
result.. 

(‘lustering Validation : 

In t,he first experiment, we process the following query 
on t,hese two databases, which scans A collection with 
a predicate containing a path expression traversing B 
and C collections. 

select x from x in A where x.b.c.id != 0 ; 

The experiment validates how the clustering influ- In this experiment we want to show how the memory 
ences the execution cost of this query and how the re- size impacts the execution of a search when collections 
sults match our cost model. We measure the response are clustered. We execute the query of the first experi- 
t,imes by varying the cardinality of collection A (see ment on these two databases and we vary the memory 

0 , I 

0 20 40 60 80 100 

sd.ctl”lty (Y) 

Figure 11: Yao’ Validation 

Figure 10). The result shows’ h’ow the clustering tech- 
nique improves the performance of the query. In this 
example, the performance of the clustered database 
appears six times better than a non Iclustered one 
which corresponds to the estimations given by the for- 
mulas. 

Yao’ Validation : 

Experiments have been done to validate the Yao’ for- 
mula. We process the following query on the two sep- 
arate databases of Figure 9. 

select x from x in A where x.IndexId >= N% ; 

The query scans the collection A by using an index 
on IndexId. We use an index to avoid scanning the 
whole collection. The non clustered database verifies 
the usual Yao formula while the clustered database 
validates the Yao’ formula. 

The size of an object is 300 bytes and a data page 
can hold 12 objects. Figure 11 shows the results with 
multiple selectivities in the case of a large memory 
size. The proportionality between the two formulas is 
respected by our cost model. But for low selectivity, 
there is a difference between the experimental curves 
and the theoretical ones. We explain these differences 
by the effect of the UNIX buffer mechanism for small 
collections. When the client queries the server for 
pages, the server may use pages already present into 
memory; this mechanism is more sensible for a small 
number of pages. 

Search Validation : 
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Figure 12: Search Execution with Clustering 
buffer size for processing the query. To reduce the ef- 
fect, of the UNIX buffer, we flush out the system buffer 
hefore each query. Figure 12 shows time spent for ex- 
c>cut,ing the search with different memory sizes. 

The first, remark comes from the difference between 
t.he clust(ering and the non clustering case : clust(ered 
collections (due to the number of IO) much better tol- 
c1rat.e memory size variations. 

In the case of default, clustering of these three col- 
lect,ions, we have : Refi = 14500, Ref:! = 3965 and 
Refs = 1202. Then POgemin = Yao’(C2, Refz) + 
yno’(C3, Refs) = 485.26. The Break Point is equal to 
-285.26 * S, 2 194lli’Bytes. It is important to notice 
t,hat, the model allows us to determine the break point 
of t,he curve. When memory size is smaller than this 
point,, the10 cost becomes much higher for depth- 
first.-fetch algorithm and the query optimizer should 
ma,ke a choice between pointer navigations and a set 
of binary joins. 

Errors Analysis: 
Figure 13 summarizes for all experiments the max- 

imum error by overestimation (Max-O) and the max- 
Imum error by underestimation (Max-U), the average 
overest,imation error (Ave-0) and the average under- 
c&mation (Ave-U), with the standard deviation (St- 
Dev). The corresponding formulas can be found in 
[Knu68. Swa89, Zai94]. We notice that, for these sim- 
ple queries. the percentage of errors are low. But for 
more complex queries with nested predicates, the error 
rat,e may increase due to the complication of the cost 
Lbrmulas. 

8 Conclusions and Future Work 

‘I’llis paper has presented a cost model for query opti- 
Inizer in an Object-Oriented system. The model takes 
into account, object clustering and indexing. Based on 
I,he statistics and placement. information, the model 

ISearch I( 0,0641 0,1431 O,OlSl 0,0141 O,i?q 

Figure 13: Errors 
correctly estimates the cost of different access meth- 
ods for scanning collections and evaluating predicates 
with path expressions. We also propose a method to 
estimate page accesses to a clustered collection (Yao’). 
Further, we explore the effect on the cost of query ex- 
ecution of different object grouping cases. Experiment 
with 02 system allow us to verify the most important 
hypothesis of the proposed cost model. 

In the next future, we plan to do more performance 
tests to validate all the cost formulas. We will like to 
compare the costs of evaluating path expressions using 
explicit joins versus OID pointer navigations. Results 
would be helpful to find good heuristic strategies for 
Object-Oriented query optimizers. We plan to extend 
our cost model to a distributed system where commu- 
nication costs will be considered. 
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