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1 Introduction 

Abstract 

An important requirement for multimedia 
presentations is the ability to compose new 
multimedia objects from the existing ones us- 
ing temporal relationships. When composi- 
tions of continuous media objects are specified 
dynamically, the task of displaying these ob- 
jects poses new challenges. These challenges 
are addressed in this paper. We show that 
in the case of a single composite object re- 
trieval, a prefetching technique, simple slid- 
ing, provides an approach to reduce latency 
and buffering requirements. We extend this 
prefetching technique to the problem of re- 
trieving multiple composite objects simultane- 
ously. This new technique is termed buffered 
sliding. We consider several variants of the 
buffered sliding algorithm. A simulation- 
based study is used to compare their usage 
pattern of available memory and in determin- 
ing their relative merits in reducing latency 
and increasing disk bandwidth utilization. 
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An important requirement for multimedia informa- 
tion systems is the ability to compose new mul- 
timedia objects from the existing multimedia ob- 
jects [LG91]. Temporal primitives (e.g., before, after, 
overlaps [All83]) p rovide one of the most powerful and 
natural ways of authoring composition. Such composi- 
tion is necessary in the domain of electronic publishing, 
computer music, news editing and many other appli- 
cations. 

In this paper, we investigate how a multimedia stor- 
age system can display a composite object. We focus 
on composite objects that are authored dynamically. 
To illustrate an example environment, consider a TV- 
news editor preparing to present new footage on unrest 
in Bosnia. He requires background material to provide 
the audience with a context. He considers playing a se- 
quence of clips one after another from different footage 
taken at different times to author a thirty second pre- 
sentation. He may decide to accompany a footage with 
appropriate music in parts (i.e., music overlaps video). 
He may conclude his presentatiod with split windows 
that concurrently display short clips that leave us with 
the images of diverse scenes in Bosnia. During editing 
of such a presentation, he would try several possible 
composition, possibly picking different sets of clips or 
music from the repository. Surely, the editor would 
like to display his composition during the authoring 
process to evaluate his choice.’ Thus, the process of 
editing a news story consisted of specifying composite 
objects using temporal relationships and then display- 
ing those. 

Note that displaying atomic objects of high- 
bandwidth continuous media objects, such as video 
(requiring no composition) is a challenging task in 
itself. Video clips require a continuous bandwidth 
for their display. For example, the bandwidth re- 
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quired by NT%’ for “network-quality” video is about 
45 megabits per second (mbps) [Ha&g]. Even with 
a compression technique that provides a reasonable 
quality of presentation, the bandwidth requirement of 
the compressed object is typically quoted as 3 to 6 
mbps [Nat95, Tri95]. Video objects are large in size 
and almost always resident on a secondary storage de- 
vice. To support a continuous display, an object should 
be retrieved at its pre-specified rate. Otherwise, its 
display may suffer from frequent disruptions and de- 
lays, termed hiccups. Several studies have described 
techniques to support continuous display of a video 
clip [Po191, SG95, TPBG93, CL93, BGMJ94, GKS95]. 
These studies control the layout of data on a secondary 
storage device to ensure the continuous display of an 
object. 

When displaying a composite object, the system 
should ensure that the temporal constraints are sat- 
isfied. Since the composition is specified dynamically, 
no assumption can be made about the placement of the 
atomic objects. Furthermore, we would not be able to 
modify the placement of data each time a new presen- 
tation is authored because it may force the user to ob- 
serve a long wait time before the display starts. In fact, 
retrieval of the atomic objects that constitute the com- 
posite object may conflict with one another (making 
significant demands on buffering), as will be indicated 
later. It is this unique aspect of retrieval contention 
that distinguishes this study from the previous work in 
both real-time scheduling and synchronization in dis- 
tributed multimedia information systems (See [Buf94] 
for a survey). However, our results need to be used 
in conjunction with the past techniques for a complete 
solution to the problem of displaying composite ob- 
jects. 

The general problem of displaying composite ob- 
jects is a complex one. In this paper, we focus on 
an important special case of this problem where the 
atomic objects that comprise the composite object 
have the same bandwidth requirements (e.g., overlap- 
ping video newsclips). However, we must still take 
into account that the possibility that the bandwidth 
requirements can be high. For the sake of ease of ex- 
position, we will present the results in the context of 
binary composite objects, i.e., where the composite ob- 
ject consists of only two atomic objects. However, we 
have included sketches of generalizations necessary to 
retrieve arbitrary composite objects. 

We begin with a discussion on the challenges of re- 
trieval of composite objects (Section 2). We show how 
by using a technique, termed simple sliding, we need no 
more than a constant extra buffering, i.e., independent 

1 The US standard established by the National Television Sys- 
tem Committee. 

of the sizes of the individual atomic objects and the 
extent of overlap, to support display of a single com- 
posite object (Section 3). Our new technique uses the 
properties of layouts of atomic objects to compute a 
schedule of retrieval. We propose algorithms based on 
prefetching (using a generalization of simple sliding) 
that enable the system to display multiple composite 
objects (Section 4). The performance characteristics 
of these algorithms, using the metrics of usage pat- 
terns for available memory, bandwidth utilization and 
latency are studied in Section 5. The rest of this sec- 
tion provides a discussion of the framework for our 
proposed techniques. 

1.1 Framework 

As mentioned in the introduction, we assume that all 
objects belong to a single media type with identical 
bandwidth requirement, ~~~~~~~~~ We assume that 
the simple striping [SGM86, Pat931 technique is used 
to retrieve video (and audio) objects for continuous 
display. In this technique, we partition the aggregate 
bandwidth of the available disks into channels each 
with the bandwidth requirement of B~i*~l,,~. Hence, 
denoting the effective disk bandwidth (considering the 
maximum seek and latency time, see [BGMJ94]) with 
BDisk the number of channels (R) is computed as: 

R=@ 

;b~,re D is the number of disk drives and M = 
’ x. Note that R determines the number of si- 

mt%&eous requests supported by the system. We will 
denote these R channels by Cl, Cz, . . . . CR. When 
M < 1, each channel provides a fraction of a disk 
bandwidth (see Figure 1.a). If M 1 1 then each sub- 
object is declustered [GRAQOl] into M fragments and 
the aggregate bandwidth of M disk drives determine 
the required bandwidth of a channel (see Figure 1.b). 

In order to distribute the load imposed by a display 
of object X evenly across the channels, simple strip- 
ing technique stripes X into subobjects, and assigns 
the subobjects of X to the channels in a round-robin 
manner. The size of each subobject is fixed for all 
objects and determined at system configuration time. 
For example, in Figure l.a, 9 subobjects of X (Xl, X2, 
“., Xs) are assigned to an 8 channel system, starting 
with Cr. Simple striping also minimizes the amount 
of memory required by pipelining the data from the 
disk to a display. When the system displays an object 
X, it employs a single channel during each time inter- 
val. Thus, to ensure a continuous display of an object 
X, the display of Xi is overlapped with the retriewtl 
of Xi+1 [BGMJ94]. The duration of the retrieval of a 
subobject is fixed for all subobjects and is termed a 
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Platform 1 Platform 2 

a. A4 = 0.25, R = 8 b.M=4,R=2 

Platform 1 Platform 2 

Figure 1: Logical channels in simple striping 
time interval. Each display iterates over the channels, 
employing each in a round-robin manner. To illustrate, 
in Figure l.a, assume a time interval that corresponds 
to Ci is available. Employing that interval, Xi can be 
displayed. In the next interval the system employs C, 
to retrieve and display X2. This process repeats itself 
until X is displayed entirely. At the same time, R - 1 
other intervals can be utilized to service R - 1 other 
requests. 

1.2 Atomic Objects 

An atomic object X is a video clip that is retrieved 
in a sequential manner. Its subobjects are assigned to 
the channels in a round robin manner starting with an 
arbitrary channel. We use the function channel(Xi) 
to determine the channel that contains subobject Xi. 
Let channel(Xi) be ci. In a system that consists of R 
channels, if X consists of Ic subobjects then we can also 
represent the layout of X as the list: (cl, ..ck) where 
each ci E {l,.., R}. To illustrate, assume a system 
consisting of three channels (R = 3). The database 
consists of two objects: X and Y. Both objects are as- 
signed to the channels in a round-robin manner start- 
ing with channel 1. Each of X and Y consist of five 
and eight subobjects respectively. In this case, X is 
represented as (1 2 3 I 2) while Y is represented as 
(1 2 3 I 2 3 I 2). 

1.3 Schedule 

The schedule for the storage system reflects the state 
of the disks. It can be represented by specifying the set 
of busy channels for each time interval. We represent a 
schedule S as an array. The index of the array is time 
varying from “now” to 7, where ‘T is time until which 
at least one of the channels is busy. Each element 
of the array is the set of busy channels at that time 

interval. For example, assume that 7 = 4 and consider 
a schedule for the time period 1 through 4: S[l] = 
{1,2}, S[2] = {2,3}, S[3] = {3,1}, S[4] = {2}., This 
states that at time 1, channels 1 and 2 were busy, at 
time 2, channels 2 and 3 were busy etc. 

2 Problem Definition: Retrieval of 
Composite Objects 

In this paper, we consider the class of composite.mul- 
timedia objects that consist of two atomic objects. 
The temporal relationships between the display of two 
atomic objects may be specified in several ways. For 
simplicity, we assume the following model of specifica- 
tion: 

A composite object is a triplet (X, Y, j) indicating 
that the composite object consists of atomic objects X 
and Y. The parameter j is the lag parameter: It in- 
dicates that the start time of object Y (i.e., display of 
Yi) is synchronized with the display of subobject Xj. 
For example, to designate a complex object where the 
display of X and Y must start at the same time, we 
will use the notation (X, Y, 1). Likewise, the composite 
object specification (X, Y, 3) indicates that the display 
of Y is initiated with the display of the third subobject 
of X (see Figure 3a). This definition pf a composite 
object supports the alternative temporal relationships 
described in [A1183]. Table 2 lists these temporal rela- 
tionships and their representation using our notation 
of a composite object. Our proposed techniques sup- 
port all temporal constructs because they solve for: 
(1) arbitrary j values, (2) arbitrary sizes for both X 
and Y, and (3) placement of X and Y starting with 
an arbitrary channel. 

Since two overlapping objects need to be displayed 
at the same time during retrieval of the overlapping 
part of a composite object, request for retrieval of such 
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j = size(Y) - size(X) + I& size(X) < size(Y) 

Figure 2: Allen temporal relationships and their representation using our notation of a composite object 
an object must reserve the right number of channels 
at appropriate times in order to ensure a continuous 
display. Moreover, the identity of reserved channels is 
important due to placement of data. Without proper 
precautions, the system may fail to support contin- 
uous display of composite object if the placement of 
its participating atomic objects collide and reference 
subobjects that are stored on the same channel. To 
illustrate, assume a system consisting of 3 channels. 
Consider a single request displaying the composite ob- 
ject (X,Y,4) h w ere X is (I 2 3 I 2 3 I 2) and Y 
is (1 2 3 I 2 3 I). Note that the retrieval of X4 
and Yi conflict, resulting in hiccups. This illustrates 
the problem of retrieval of composite objects. There 
could be contentions within a single composite object 
because each atomic object is laid out independently. 
Such contention arises even though there are no other 
active requests. This contention is formalized below. 

Definition 2.1: A composite object (X,Y, j) has an 
internal contention if there is some i 2 1 such that 
channel(X~+j-1) = channel(Yj). I 

Note that our notation extends naturally to speci- 
fication of composite objects that contain more than 
one atomic objects. Thus, a composite object contain- 
ing n atomic objects can be characterized by (n - 1) 
lag factor, e.g., (Xl , ..X”, j2, ..j”) where j” denotes 
the lag factor of X’ with respect to the beginning of 
the display of X’. Note that Definition 2.1 can be 
generalized in a straight-forward fashion for the, case 
where the composite object contains multiple atomic 
objects. 

One might attempt to address the internal con- 
tention problem similar to retrieval of atomic objects 
in a multi-user environment. This is not appropriate 

for the following reason. The display of each atomic 
object in a multi-user environment is independent. 
Different scheduling policies may result in increased 
latency, but it is always possible to obtain a sched- 
ule that requires no additional buffer. However, be- 
cause of the synchronization constraint between the 
displays of overlapping objects, treating the objects in 
the composite object as independent objects may re- 
quire significant buffering. Indeed, when there is con- 
tention within a composite object, buffering might be 
unavoidable. In our previous example where X and Y 
collide, while scheduling X and Y independently does 
not need any buffer (if latency is acceptable), retrieval 
of (X, Y, 4) requires at least one buffer. 

In the rest of the paper, we will address the ques- 
tion of retrieval of composite objects. We will study 
the solutions using three metrics: latency time, mem- 
ory and disk utilization. Latency time is defined as 
the amount of time elapsed from the arrival time of 
a request to the onset of the display of its referenced 
composite object, Both memory and disk utilization 
are defined as the amount of time that the memory 
and disks are busy supporting displays as a function 
of total time, respectively. 

In the following section, we study the problem of 
displaying a single composite object. Section 4 extends 
the study to environments that support simultaneous 
display of several composite objects. 

3 Single Display Environment 

In this section, we describe how to minimize both the 
buffer requirements and latency of a display referenc- 
ing a single composite multimedia object. 
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Naive Pirefetching Strategy: Let us assume that 
the specification of the composite object is (X, Y, j) 
where X and Y have kl and k2 subobjects respec- 
tively, i.e., X = (Xl, ..‘, Xkr) and Y = (Yr , .., Ykz). The 
naive solution will be to prefetch the entire overlapped 
part, i.e., subobjects (Yi..Y,) where u = min(k1 - 
j, k2). Having fetched the overlapping part, we can 
now begin fetching the sequence of subobjects for X 
and then conclude by fetching the rest of Y. Thus, the 
sequence of retrieval may be depicted as follows: 

Yl, ..1 x7 Xl, . . . . Xkl 

Y u+1, ......, yk2 

However, note that this naive method incurs a latency 
of u time intervals and requires u buffers. Thus, in 
the example of Figure 3.a, we will incur an overhead 
of 3 buffers and a latency of 3 time intervals. Note 
that if a system is configured with a single channel 
(R = 1) then naive prefetching is the only alterna- 
tive that is available. In such a case, naive prefetch- 
ing reduces to retrieving the two objects one after 
the other. The contention prefetching strategy 
is the obvious improvement over the naive prefetch- 
ing. Given a composite object (X, Y, j), it prefetches 
only those subobjects Yi for which there is a re- 
trieval contention with the corresponding subobjects 
of X, i.e., channel(Yi) = channel(Xi+j-1). However, 
naive prefetching and contention prefetching behave 
in an identical manner because the subobjects of each 
atomic object are assigned to the channels in a round- 
robin manner. However, contention prefetching is a 
desirable method when the layout is not round-robin. 
Assume that we have to display the composite ob- 
ject (X,Y,4) h w ere the layout of X and Y are (2 1 
3 2 I 3 2 I 3) and (I 2 3 I 2 3 I) respectively. 
In that case, the naive prefetching would prefetch the 
first 6 subobjects of Y, which is the overlapping part 
of the object Y. In contrast, the contention prefetch- 
ing strategy will prefetch only the third and the sixth 
subobjects of Y since these are only subobjects whose 
retrieval would conflict with the retrieval of the cor- 
responding subobjects of X. Contention prefetching 
is appropriate when a presentation consists of several 
composite objects. The scenarios where contention 
prefetching is desirable are described in [CGS]. 

Simple Sliding Algorithm: The amount of 
prefetching in naive (and contention prefetching) tech- 
nique grows as the overlap between the atomic objects 
increase. Moreover, neither of these techniques exploit 
the round-robin assignment of subobjects. In contrast, 
by exploiting the layout! simple sliding technique min- 
imizes both latency and buffer requirement of a display 
independent of the size of overlap as long as R > 1. 

To illustrate the idea of simple sliding consider Fig- 
ure 3. Figure 3.a shows a composite object Z which 
comprises of two atomic objects X and Y where the 
lag parameter is 3. Assuming Xs and Yi reside on 
two different channels, the retrieval and display of Z 
can be depicted as in Figure 3.b. Trivially, no ex- 
tra buffer is required in this case. Now assume that 
channel(Y1) = channel(Xs). Exploiting the round- 
robin layout of the objects and assuming R > 2, 
we know that both channel(Yi) # chunnel(X2) and 
chunnel(Y1) # chunnel(X4). Thus, the system has 
two choices: either (1) slide the retrieval of Y up for 
one interval (upslide Y) and prefetch one subobject of 
Y, see Figure 3.c, or (2) slide the retrieval of Y down 
for one interval (downslide Y) and prefetch one sub- 
object of X, see Figure 3.d. Note that downsliding Y 
introduces latency. The rest of this section provides a 
formal description of simple sliding. 

We say that an object X has a regular layout cycle 
if the subobject Xj+i is placed at a channel “adjacent” 
t0 Xj: 

chunnel(Xj+l) = (chunnel(X1) + j) mod R + 1 

From this definition it follows that regular layouts dif- 
fer from one another only in the placement of their 
first subobjects. Observe that simple striping enforces 
precisely this property. For example, two regular lay- 
outs of X over five channels might be (I 2 3 4 6 I 
2 3). An alternative layout for X might be (3 4 6 
I 2 3 4 6). Thus, regular layout and simple striping 
are identical. 

Lemma 3.2 : Consider the retrieval of the com- 
posite object (X, Y, j), where both X and Y have a 
regular layout. There is a retrieval contention i# 
chunnel(Xj) = chunnel(Y1). 

As mentioned earlier, naive prefetching is the only 
option when there is single channel. However, the 
more interesting case is where R > 1. In such a case, 
the following identity holds (j > 1) since the subobject 
Xj-1 must be on a different channel from the subob- 
ject Yi: 

(chunnel(Xj) = chunnel(Y1)) 3 

(ChZTKl(Xj-1) # qhunnel(Yl)) 

In other words, when R > 1, then we know that 
(X, Y,j - 1) has no contention if (X, Y, j) has con- 
tention. Therefore, in such a case, we can prefetch 
subobject Yr during retrieval of X,-r. Such “upslid- 
ing” results in zero latency. However, it requires one 
extra buffer during the display of Y. 

In case j = 1, then we use the observation (sim- 
ilar to above) that (Y,X,2) does not have any con- 
tention whenever (X, Y, 1) does have contention. This 
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Figure 3: Simple Sliding 
motivates a technique that prefetches Yr and <hen be- 
gin fetching subobjects of X concurrently with the re- 
trieval of subobjects of Y. This “downsliding” results 
in latency of one time interval. In addition, it requires 
one extra buffer (during the display of X). 

We refer to this strategy as simple sliding. For the 
class of binary composite objects of the form (X, Y, j), 
it is the optimal algorithm for retrieval when (1) only 
a single display request is active and (2) objects have 
regular layouts (as in simple striping). It is notewor- 
thy that both the buffer requirement and latency of 
a display is independent of the size of the composite 
object. This algorithm is summarized below. We have 
omitted the details of buffering as they have already 
been explained. 

Algorithm Simple-Sliding(X,Yj) 
if there is a single channel then 

do naive prefetching 
else 

if j = 1 then fetch (Y, X, 2) 
else fetch (X, Y, j - 1) 

Assuming that the system must overlap the display 
of two atomic objects that constitute a composite ob- 
ject, this algorithm requires at most one extra buffer. 
Moreover, its incurred latency is bounded by one time 
interval. The technique of simple sliding is surprisingly 
robust even where the atomic objects do not satisfy the 
regular layout assumption. For example, the technique 
can be adapted with modifications for the case where 
new channels are added. 

We now briefly sketch the generalization of Sim- 
pleSliding when the composite object consists of more 
than two atomic objects, e.g., (Xl, ..Xn,j2, ..jn). For 

simplicity, assume that all ,the objects X’ (i = l..n) 
are mutually overlapping. The generalization ensures 
that the composite object can be displayed with the 
number of extra buffers (as well as latency) indepen- 
dent of the duration of overlap among atomic objects. 
Intuitively, since the sliding technique must use buffers 
independent of the extent of overlap, it must assign a 
channel for display of each of the R objects. Therefore, 
R 1 n. For binary composite objects, the condition 
reduces to R > 1, which we have already identified as a 
necessary condition for use of simple sliding for binary 
composite objects. It can be shown that the buffer re- 
quirements are at most n(n - 1)/2 and the latency is 
at most n - 1. The details of the generalization of the 
algorithm will be reported in [CGS]. 

4 Multi Display Environment 

The problem of retrieval contention becomes challeng- 
ing in the presence of multiple users displaying objects 
simultaneously. This is due to competition for disk 
bandwidths by multiple independent requests arriving 
at random times. In particular, in the case of a single 
user environment, we established that using an extra 
buffer, it is possible to bound the latency for retrieval 
with simple sliding. Such is. no longer the case for 
multi-user case. While a single extra buffer is still suf- 
ficient to remove internal contention, there may be sig- 
nificant latency due to: 1) demands on bandwidths by 
active users, and 2) active users colliding and referenc- 
ing data items that reside on one channel. Increased 
availability of memory may be utilized to prefetch ad- 
ditional objects that lead to contention. Therefore, a 
key issue in multi-user environment will be to study 
the role of memory to reduce latency. 
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We sssnme that the scheduler in a multi-user sys- 
tem consists of two modules (1) A priority govern- 
ing and (2) A task assignment module. The priority 
governing module is responsible for determining the 
priority of tasks among the queued jobs. Examples 
of heuristics that govern the priority governor may 
include First Come First Serve, Shortest Job First. 
Given a request to display a composite multimedia ob- 
ject, the task assignment module schedules it by taking 
into account the current status of the channels. The 
focus of our study is on the task assignment module. 
For simplicity, we will assume that scheduling is non 
preemptive, i.e., once a task is scheduled, it’s schedule 
remains unchanged. 

4.1 Buffered Sliding Algorithms 

The class of algorithms that we present here try to 
minimize latency by using available buffers. Let us 
assume that due to contention, we cannot schedule 
(X, Y, j) (j > 1) beginning at time t but can sched- 
ule (X, Y, j - 1) beginning at time t. In that case, 
we can use an extra buffer to prefetch Yr during re- 
trieval of X,-r. By virtue of prefetching, we are then 
able to display (X,Y, j) beginning at time t. We can 
generalize the idea to the case where if the display of 
(X, Y, j - b) is possible beginning at time t, then using 
b buffers, we can display (X, Y, j) beginning at time t 
(assuming j > b). We can think of such use of buffers 
as sliding upwards. Let us now assume that it is also 
possible to schedule (X, Y, j + 1) beginning at time t. 
In such a case, display of X will be ahead of display of 
Y by (j + 1) and by using an extra buffer to prefetch 
X, it is possible to display (X, Y, j) beginning at time 
t + 1. We can refer to such a scheduling technique as 
sliding downward. In the general case, given b extra 
buffers, if display of (X, Y, j + b) is possible beginning 
at time t, then display of (X, Y, j) can start beginning 
at t + 6. The above technique of sliding upwards and 
downwards is a generalization of prefetching based on 
simple sliding algorithm that was presented in Sec- 
tion 3. However, we are now allowing use of multiple 
buffers for prefetching. Informally, we refer to these 
as buflered sliding. Observe that if for scheduling of 
a display, sliding upwards and downwards require the 
same number of buffers, then we must prefer sliding 
upwards because it does not adversely impact latency. 

We will now describe the algorithms that use 
buffered sliding to avoid contention so that latency 
can be reduced and disk utilization can be increased. 
Given the current schedule S, these algorithms take as 
input a parameter B, which is the maximum number 
of extra buffers used for sliding, as well as the speci- 
fication of the composite object (X, Y, j) to be sched- 
uled. A key function invoked by buffered sliding al- 

gorithms is atomic-schedule-ufter(X, S, u, S’, u’). It 
consumes as its parameters an atomic object X, the 
current schedule S, a time u. It outputs a time 
u’ which is the earliest point in time when X can 
be displayed, i.e., u’ is the minimum value greater 
than u, such that channel(Xi) is free during inter- 
val u’ + i - 1 for each i E [l, lcl]. The other output 
parameter S’ indicates the updated schedule. The pro- 
cedure atomic-schedule-before(X, S, u, S’, u’) is simi- 
lar to atomic-schedule-after except that it computes 
an u’ that precedes u but is closest to it. Thus, 
atomic-schedule-after and atomic-schedule-before 
correspond to sliding up and down respectively using 
at most B extra buffers. 

The key functions, both atomic-schedule-after and 
atomic-schedule-before, should examine the availabil- 
ity of both channels and buffers per interval. Al- 
though the corresponding channels might be free, the 
system may not be able to schedule X because of 
the unavailability of buffers. This is because by slid- 
ing object Y upward (downward), the system is us- 
ing prefetching. During prefetching, the buffer re- 
quirements of a display has three states: a growing 
state, a steady state and a shrinking state. Once 
the time intervals that the object’s display and re- 
trieval starts are fixed, the buffer requirement per 
interval can be computed accurately. The functions 
atomic-schedule-after and atomic-schedule-before 
employ the models introduced in [SG95] to compute 
the buffer requirement for every interval. Subse- 
quently, if the buffer requirement for an interval ex- 
ceeds the maximum available memory they continue 
searching for another candidate interval to initiate the 
display of a candidate object. 

4.2 First-Match and Exhaust-B 

Given B extra buffers, there could be a family of algo- 
rithms baaed on alternative approaches that traverse 
the search space to incorporate the schedule of a dis- 
play with the current system schedule (corresponding 
to active displays). In our work, we have investigated 
two algorithms. The algorithm FirstiMatch is conser- 
vative in its approach of using extra buffers. On the 
other hand, the algorithm Exhaust-B tries to greed- 
ily use all B extra buffers for sliding. Thus, the latter 
tries to minimize latency at the cost of increased use of 
buffers whereas the former tries to minimize the use of 
extra buffers for the current display. Given a workload, 
it is interesting to see which of the two approaches lead 
to lower overall latency for a given amount of available 
buffers. In the performance section, we will address 
these questions. 

The algorithm First-Match (see Figure 4.a) assigns 
object X to the earliest location where it can be sched- 
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Algorithm First-Match 
210 = 0; 
repeat 

atomicscheduleafter(X, S, ug, &, 2~1); 
atomicschedule-be f ore(Y, S1, u1 + j, S2, us); 
if u2 2 u1 + j - B then return(&); 
atomicschedule-after(X, &, u1 + j, S2, 2~2); 
if ‘112 5 ui + j + B then return(&); 
uo = 211; 

forever 
a. First-Match Algorithm 

Algorithm Exhaust-B 
210 = 0; 
repeat 

atomicschedulen f ter(X, S, uo, S1 , ul); 
atomicscheduleafter(Y, SI, II + j - B, SZ,U~); 
if u2 5 u1 +j + B then return($); 
210 = u1; 

forever 

b. ExhaustB Algorithm 

Figure 4: Algorithms for Multi-User Environment 
uled as an atomic object (say u). It then tries to see 
whether Y can be scheduled at u+j. If so, then none of 
the extra B buffers will be needed. Otherwise, it looks 
for a match nearest to u + j, sliding upwards until it 
exhausts all B buffers. The reason for sliding upwards 
is to avoid increasing latency. If we fail to find a suit- 
able match, then attempts are made to schedule Y by 
sliding downwards using at most B buffers. This in- 
creases latency. If this also fails, a new time interval is 
sought to display X and the above steps are repeated. 

In contrast, the algorithm Edmust-B (see Fig- 
ure 4.b) uses the extra B buffers greedily. Using the 
buffers, it slides Y up as high as possible (u + j - B) 
for scheduling. On failure, it slides down incrementally 
until i + j + B. This results in utilization of channels 
prior to the current interval in favor of freeing up fu- 
ture channels. For example, Figure 5 demonstrates a 
portion of the schedule array for an eight channel sys- 
tem. Composite object 2 is defined as (X, Y, 4) and 
the retrieval of X is scheduled to start during the 3rd 
interval. First-Match will schedule the retrieval of Y 
from the 6th interval utilizing no buffers for prefetch- 
ing. This is done although B > 3. However, Exhaust- 
B slides Y upward for 2 intervals. It cannot slide it 
higher because the 6th channel is busy for higher inter- 
vals. Finally, observe that for a given B, in the worst 
case, the space of possibilities examined by these two 
algorithms is identical. 

Efficient implementations of First-Match and Ex- 
haust-B require careful indexing of information on 
availability of cahnnels so that repeated calls to 
atomic-schedule-before and atomic-schedule-after 
inexpensive. The implementations exploit the regu- 
lar layout property of simple striping and for large B 
also employ approximating techniques to reduce the 
search space of schedules [CGS]. 

4.3 Estimating B 

If the composite object has no internal contention, 
then the minimum required value of B is zero. In the 
worst case, such a value of B would result in starting 

X starts from Channel I 
Y 8tam from Channel 6 
B>3 

Figure 5: Exhaust-B vs. First-Match 
the display after all the currently scheduled displays 
have terminated. However, as explained in the single 
user case, if the composite object has internal con- 
tention, then the minimum required value of B is one. 
Increasing B potentially reduces latency. By adjust- 
ing B, the algorithm can be dynamically adjusted for 
available buffers. We use the following three simple 
heuristics to compute the value of B. See Figure 6. 

MinB: In this case the value.of B is fixed at 1 
which is the minimum buffer requirement. This 
limits the extent of sliding permitted. 

MaxB: This is a greedy approach where the value 
of B is always equal to the entire system memory 
(all buffers). This results in the maximum flexibil- 
ity for the buffered sliding algorithms. As shown 
in Section 5 this flexibility cannot be rendered ef- 
fective if we use the First-Match algorithm. 

F’unB: The value of B is a function of the number 
of availabel buffers and the maximum number of 
displays supported by a system: 

B = Maz(1,2 x 
MaxMem 

R ) (1) 
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3 

4 

Figure 6: Impact of B 

The above function is based on the following intu- 
ition. During a time interval, each object’s share 
of buffers is 2 x Maxzem. This is because during 
each time period at most R atomic objects are 
active simultaneously. Moreover, each composite 
object consists of 2 atomic objects where only one 
of them is using buffers for prefetching’. 

4.4 Generalization 

The algorithms for scheduling display of a composite 
object (X, Y, j) that we discussed have the following 
key steps. First, the atomic object X is scheduled. 
Next, the atomic object Y is scheduled while ensuring 
that the lag factor j is respected and the number of 
buffers utilized does not exceed B. Finally, if schedul- 
ing of Y fails to meet the above constraints, then X is 
rescheduled. 

When we consider a composite object consisting of 
more than two atomic objects, then the above steps 
can be generalized. Thus, we can attempt scheduling 
atomic objects X1, X2,.. ,X” in sequence while ensur- 
ing that the cumulative number of extra buffers as- 
signed to respect lag factors does not exceed B. If a 
partial consistent schedule (say, obtained by schedul- 
ing X1..Xk) cannot be extended, then XL is resched- 
uled. However, such an approach may have significant 
overhead in determining a schedule. Therefore, we are 
investigating other alternatives as well. Regarding as- 
signment of B to a display request, we can use the al- 
ternatives discussed in the previous section. Observe 
that minB is no longer 1, but may depend on n as 
well as on the lag factors. 

2An alternative heuristic is to define B as a function of 
the composite object structure. Assuming a composite object 
(X,Y,j), let’s define B as kfar(1, i). We investigated this 
heuristic in our experiments and eliminated it from this dis- 
cussion because it did not result in good performance. 

5 Performance Evaluation 

We implemented a simulation model to: 1) compare 
First-Match with Exhaust-B, and 2) investigate the im- 
pact of B and system memory on their performance. 
Our experiments focused on binary composite objects 
only. Therefore, it remains an open question whether 
our conclusions generalize to arbitrary composite ob- 
jects. First, we describe the simulation model. Next, 
we report the results of our experiments. 

5.1 Simulation Model 

For the purposes of this evaluation, we assumed a plat- 
form of 20 channels (i.e., R = 20). The effective band- 
width of each channel is 4 mbps (supports a single dis- 
play of MPEG-2 compressed clips). The system was 
configured with a 512 kilobyte block size. In other 
word, the size of each subobject is 512 Kbytes and the 
duration of a time interval is 1 seconds. 

The database consists of 200 atomic objects, each 
with a 4 mbps bandwidth requirement. The size of 
the objects was fixed at 65 subobjects, except for the 
last experiment where the objects had different sizes. 
Consequently, the display time of each atomic object is 
1.08 minutes. The rationale is that every 1.08 minutes 
the scene is changed (for example by using fade-in or 
fade-out requiring a small amount of overlap). The 
objects are assigned to the channels in a round-robin 
manner, starting with a random channel. 

The total number of requests submitted to the sys- 
tem is 3000. Each request references a composite ob- 
ject consisting of two atomic objects. We inquired five 
types of overlaps for the two atomic objects within a 
composite object: 

1. 

2. 

3. 

4. 

5. 

Small overlap: the two atomic objects overlap for 
2 seconds (2 subobjects). 

Moderate overlap: the two atomic objects overlap 
for 30 seconds (30 subobjects). 

Complete overlap: the two atomic objects overlap 
for 1.05 minutes (63 subobjects). 

Zero overlap: the two atomic objects do not over- 
lap, but meet [A1183]. 

Variable overlap: the amount of overlap between 
two atomic objects X and Y are chosen ran- 
domly between 1 and M&(&e(X), &e(Y)) sub- 
objects. 

We employed an open simulation model for our evalu- 
ation: requests arrive every think time intervals. We 
manipulated the parameter load to model two alter- 
native loads on the system: Heavy and light system 
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load. The value of think is a function of R, ObjSize, 
Overlap (the amount of overlap), and load: 

think0 = 
(2 x ObjSize) - Overlap + 2 

B 
2 

think0 
think = - 

load 

If loud = 1, the requests arrive so far apart that at 
least one idle channel is available when a request ar- 
rives (lightly loaded system). For load > 1, the com- 
partment of requests arrival is tighter (smaller think 
time), imposing a higher load on the system. 

5.2 Experiment Results 

For all the experiments we vary the amount of avail- 
able buffers from one to 400 subobjects (the x-axis of 
all the graphs) and we measured the average latency 
time in number of intervals (the y-axis). Note that 
the disk utilization is inversely proportional to the av- 
erage latency time. That is as the average latency time 
decreases, the total disk utilization increases. This is 
because, for lower average latency, the same number 
of requests were serviced in a relatively smaller num- 
ber of intervals. Hence, the total disk utilization was 
higher ( 

Figure 7 demonstrates the results of the first set 
of experiments where the system was heavily loaded3 
(load = 2) and First-Match algorithm was employed. 
In Figure 7.a, all the composite objects consisting of 
atomic objects with two subobject overlap. When 
B = 1 (MinB) the graph levels off at MazMem = 5 
because the extra amount of buffer cannot be utilized. 
However, both MaxB and FunB continue reducing the 
latency time by utilizing the buffers. MaxB also levels 
off at MaxMem = 100 because the first match inter- 
val can be found with smaller value of B. Hence, the 
extra amount of B is not beneficial. However, since 
the value of B for FunB is a function of the avail- 
able buffers, it will reach the level off point later than 
MaxB. Note that the effective search space of FunB 
is smaller than that of both MinB and MaxB. MinB 
suffers from repeated failures because B is too small 
to provide sufficient flexibility for prefetching. There- 
fore, many invocations of atomic-schedule-before and 
atomic-schedule-before need to be made. On the 
other hand, a large B value requires a significant num- 
ber of possible sliding positions. FunB by having a 
flexible value of B always tries to provide each request 
with no more than its own share of buffers. Hence, it 
provides a smaller search space as compared to both 

3We performed the same set of experiments for a lightly 
loaded system and although the average latency time was re- 
duced significantly, the basic observations were identical. 

MinB and MaxB. Figures 7.b and 7.c show the same 
observations when the amount of overlap is 30 and 63 
subobjects, respectively. 

We repeated the above set of experiments for the 
Exhaust-B algorithm. The basic observations for 
MinB, MaxB, and FunB remained the same. Figure 9a 
compares First-Match with Exhaust-B for FunB and 
MaxB with 2 overlap objects. An interesting phe- 
nomenon is that with Exhaust-B neither MaxB nor 
FunB levels off. Instead, they continue reducing the 
latency time as the system memory grows. This is be- 
cause Exhaust-B does not stop when it finds the first 
match and continues searching for an available time in- 
terval earlier than that determined by Firstmatch. By 
doing so, it utilizes more of the available buffers. Note 
that this will result in a large search space for Exhaust- 
B. To reduce its search space, we used a heuristic. In- 
stead of sliding the second object downward one in- 
terval at a time, the heuristic first detects the time 
interval that was responsible for the unavailability of 
buffers (failed-interval) and then slides the second ob- 
ject all the way to the failed-interval. 

Exhaust-B in combination with MaxB is a greedy 
algorithm that tries to allocate all the available buffers 
to currently active requests. When memory is a scarce 
resource this might force other requests to starve since 
display of composite objects with internal contention 
requires at least one extra buffer. In other words, these 
requests require at least one buffer to be scheduled. 
Figure 8.a supports this fact and it shows that for small 
amount of system buffers (less than 100 subobjects) 
FunB outperformed MaxB. Even MinB outperformed 
MaxB when the amount of system buffer is less than 
70 subobjects. An interesting observation is that the 
behavior of First-Match and Exhaust-B are identical 
for large overlaps (compare Figure 7.c with 8.b). This 
is because First-Match differs from Exhaust-B when 
the second object slides upward. For large overlaps 
the amount of upward sliding is very small (usually 2 
intervals in our experiments). Hence, both algorithms 
end up finding the same interval for scheduling the 
second object. 

In order to show that prefetching reduces the la- 
tency even when there is no overlap (simulating the 
meet temporal relationship proposed by [A1183]) we 
performed an experiment when Overlap = 0 (see Fig- 
ure 8.~). Since in this case there was no internal con- 
tention, we investigated B = 0 (no prefetching) as well. 
As shown in Figure 8.c, heuristics baaed on buffered 
sliding achieves a significantly lower average latency 
time as compared to no prefetching. 

Finally, to ensure that our techniques are indepen- 
dent of the fixed structure of composite objects, we 
conducted another experiment. In this experiment, 
the atomic objects were no longer equi-sized. Instead, 
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we randomly chose the size of atomic objects to be 
from 30 to 65 subobjects. Similarly, the amount of 
overlap between two objects X and Y was a random 
number between 1 and Min(size(X), size(Y)) subob- 
jects. The observations remain valid for both Exhaust- 
B and First-Match. The results are reported in Fig- 
ures 9b and 9c. 

6 Conclusion [CL931 

We investigated the problem of continuously display- 
ing composite objects that are dynamically specified. 
The ability to display such objects is likely to be im- 
portant in many multimedia applications. The prob- 
lem is challenging because a composite object consists 
of overlapped atomic objects. Therefore, in order to 
support continuous display of composite objects, we 
need to solve the problem arising due to contention 
during retrieval of overlapped objects. 

[GKS95] 

[GRAQSl] 

In this paper, we proposed techniques based on sim- 
ple sliding and buffered sliding that help support con- 
tinuous display by partial prefetching of overlapping 
objects instead of the naive strategy of prefetching 
overlapped objects entirely. The key idea in both these 
methods is to exploit the striped layout of the multi- 
media objects. Our strategies apply for single display 
and multi display environments. 

[Has891 

[LG91] 

Our study can be extended in several ways. We 
mention a few of those here. First, our experimen- 
tal study in the multi-display scenario has focused on 
composite objects consisting of only two atomic ob- 
jects. Identifying new approaches to scheduling when 
the composite object has more complex structure and 
comparing them experimentally are important prob- 
lems. Next, we need to extend our approach to the 
case where not all atomic objects in the composite ob- 
ject have the same bandwidth. 

[Nat951 

[Pat931 

[PO1911 

As a final remark, we should note that the problem 
of displaying a composite object is a complex problem 
since temporal synchronization is subject to several 
other system parameters that have not been consid- 
ered in our retrieval model. Thus, our proposed tech- 
nique should be viewed as a tool for retrieving com- 
posite objects and not as a complete solution in itself. 

[SG95] 

[SGM86] 

[TPBG93] 
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