
Avoiding Retrieval Contention for Composite
Multimedia Objects

Surajit Chaudhuri Shahram Ghandeharizadeh, Cyrus Shahabi*
Hewlett-Packard Labs University of Southern California
Palo Alto, CA 94304 Los Angeles, California 90089

1 Introduction

Abstract

An important requirement for multimedia
presentations is the ability to compose new
multimedia objects from the existing ones us-
ing temporal relationships. When composi-
tions of continuous media objects are specified
dynamically, the task of displaying these ob-
jects poses new challenges. These challenges
are addressed in this paper. We show that
in the case of a single composite object re-
trieval, a prefetching technique, simple slid-
ing, provides an approach to reduce latency
and buffering requirements. We extend this
prefetching technique to the problem of re-
trieving multiple composite objects simultane-
ously. This new technique is termed buffered
sliding. We consider several variants of the
buffered sliding algorithm. A simulation-
based study is used to compare their usage
pattern of available memory and in determin-
ing their relative merits in reducing latency
and increasing disk bandwidth utilization.

*Research supported in part by the National Science
Foundation under grants IRI-9203389, IRI-9258362 (NY1
award), and CDA-9216321, and a Hewlett-Packard unrestricted
cash/equipment gift.

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, Tequires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Swizerland, 1995

An important requirement for multimedia informa-
tion systems is the ability to compose new mul-
timedia objects from the existing multimedia ob-
jects [LG91]. Temporal primitives (e.g., before, after,
overlaps [All83]) p rovide one of the most powerful and
natural ways of authoring composition. Such composi-
tion is necessary in the domain of electronic publishing,
computer music, news editing and many other appli-
cations.

In this paper, we investigate how a multimedia stor-
age system can display a composite object. We focus
on composite objects that are authored dynamically.
To illustrate an example environment, consider a TV-
news editor preparing to present new footage on unrest
in Bosnia. He requires background material to provide
the audience with a context. He considers playing a se-
quence of clips one after another from different footage
taken at different times to author a thirty second pre-
sentation. He may decide to accompany a footage with
appropriate music in parts (i.e., music overlaps video).
He may conclude his presentatiod with split windows
that concurrently display short clips that leave us with
the images of diverse scenes in Bosnia. During editing
of such a presentation, he would try several possible
composition, possibly picking different sets of clips or
music from the repository. Surely, the editor would
like to display his composition during the authoring
process to evaluate his choice.’ Thus, the process of
editing a news story consisted of specifying composite
objects using temporal relationships and then display-
ing those.

Note that displaying atomic objects of high-
bandwidth continuous media objects, such as video
(requiring no composition) is a challenging task in
itself. Video clips require a continuous bandwidth
for their display. For example, the bandwidth re-

287

quired by NT%’ for “network-quality” video is about
45 megabits per second (mbps) [Ha&g]. Even with
a compression technique that provides a reasonable
quality of presentation, the bandwidth requirement of
the compressed object is typically quoted as 3 to 6
mbps [Nat95, Tri95]. Video objects are large in size
and almost always resident on a secondary storage de-
vice. To support a continuous display, an object should
be retrieved at its pre-specified rate. Otherwise, its
display may suffer from frequent disruptions and de-
lays, termed hiccups. Several studies have described
techniques to support continuous display of a video
clip [Po191, SG95, TPBG93, CL93, BGMJ94, GKS95].
These studies control the layout of data on a secondary
storage device to ensure the continuous display of an
object.

When displaying a composite object, the system
should ensure that the temporal constraints are sat-
isfied. Since the composition is specified dynamically,
no assumption can be made about the placement of the
atomic objects. Furthermore, we would not be able to
modify the placement of data each time a new presen-
tation is authored because it may force the user to ob-
serve a long wait time before the display starts. In fact,
retrieval of the atomic objects that constitute the com-
posite object may conflict with one another (making
significant demands on buffering), as will be indicated
later. It is this unique aspect of retrieval contention
that distinguishes this study from the previous work in
both real-time scheduling and synchronization in dis-
tributed multimedia information systems (See [Buf94]
for a survey). However, our results need to be used
in conjunction with the past techniques for a complete
solution to the problem of displaying composite ob-
jects.

The general problem of displaying composite ob-
jects is a complex one. In this paper, we focus on
an important special case of this problem where the
atomic objects that comprise the composite object
have the same bandwidth requirements (e.g., overlap-
ping video newsclips). However, we must still take
into account that the possibility that the bandwidth
requirements can be high. For the sake of ease of ex-
position, we will present the results in the context of
binary composite objects, i.e., where the composite ob-
ject consists of only two atomic objects. However, we
have included sketches of generalizations necessary to
retrieve arbitrary composite objects.

We begin with a discussion on the challenges of re-
trieval of composite objects (Section 2). We show how
by using a technique, termed simple sliding, we need no
more than a constant extra buffering, i.e., independent

1 The US standard established by the National Television Sys-
tem Committee.

of the sizes of the individual atomic objects and the
extent of overlap, to support display of a single com-
posite object (Section 3). Our new technique uses the
properties of layouts of atomic objects to compute a
schedule of retrieval. We propose algorithms based on
prefetching (using a generalization of simple sliding)
that enable the system to display multiple composite
objects (Section 4). The performance characteristics
of these algorithms, using the metrics of usage pat-
terns for available memory, bandwidth utilization and
latency are studied in Section 5. The rest of this sec-
tion provides a discussion of the framework for our
proposed techniques.

1.1 Framework

As mentioned in the introduction, we assume that all
objects belong to a single media type with identical
bandwidth requirement, ~~~~~~~~~ We assume that
the simple striping [SGM86, Pat931 technique is used
to retrieve video (and audio) objects for continuous
display. In this technique, we partition the aggregate
bandwidth of the available disks into channels each
with the bandwidth requirement of B~i*~l,,~. Hence,
denoting the effective disk bandwidth (considering the
maximum seek and latency time, see [BGMJ94]) with
BDisk the number of channels (R) is computed as:

R=@

;b~,re D is the number of disk drives and M =
’ x. Note that R determines the number of si-

mt%&eous requests supported by the system. We will
denote these R channels by Cl, Cz, CR. When
M < 1, each channel provides a fraction of a disk
bandwidth (see Figure 1.a). If M 1 1 then each sub-
object is declustered [GRAQOl] into M fragments and
the aggregate bandwidth of M disk drives determine
the required bandwidth of a channel (see Figure 1.b).

In order to distribute the load imposed by a display
of object X evenly across the channels, simple strip-
ing technique stripes X into subobjects, and assigns
the subobjects of X to the channels in a round-robin
manner. The size of each subobject is fixed for all
objects and determined at system configuration time.
For example, in Figure l.a, 9 subobjects of X (Xl, X2,
“., Xs) are assigned to an 8 channel system, starting
with Cr. Simple striping also minimizes the amount
of memory required by pipelining the data from the
disk to a display. When the system displays an object
X, it employs a single channel during each time inter-
val. Thus, to ensure a continuous display of an object
X, the display of Xi is overlapped with the retriewtl
of Xi+1 [BGMJ94]. The duration of the retrieval of a
subobject is fixed for all subobjects and is termed a

288

Platform 1 Platform 2

a. A4 = 0.25, R = 8 b.M=4,R=2

Platform 1 Platform 2

Figure 1: Logical channels in simple striping
time interval. Each display iterates over the channels,
employing each in a round-robin manner. To illustrate,
in Figure l.a, assume a time interval that corresponds
to Ci is available. Employing that interval, Xi can be
displayed. In the next interval the system employs C,
to retrieve and display X2. This process repeats itself
until X is displayed entirely. At the same time, R - 1
other intervals can be utilized to service R - 1 other
requests.

1.2 Atomic Objects

An atomic object X is a video clip that is retrieved
in a sequential manner. Its subobjects are assigned to
the channels in a round robin manner starting with an
arbitrary channel. We use the function channel(Xi)
to determine the channel that contains subobject Xi.
Let channel(Xi) be ci. In a system that consists of R
channels, if X consists of Ic subobjects then we can also
represent the layout of X as the list: (cl, ..ck) where
each ci E {l,.., R}. To illustrate, assume a system
consisting of three channels (R = 3). The database
consists of two objects: X and Y. Both objects are as-
signed to the channels in a round-robin manner start-
ing with channel 1. Each of X and Y consist of five
and eight subobjects respectively. In this case, X is
represented as (1 2 3 I 2) while Y is represented as
(1 2 3 I 2 3 I 2).

1.3 Schedule

The schedule for the storage system reflects the state
of the disks. It can be represented by specifying the set
of busy channels for each time interval. We represent a
schedule S as an array. The index of the array is time
varying from “now” to 7, where ‘T is time until which
at least one of the channels is busy. Each element
of the array is the set of busy channels at that time

interval. For example, assume that 7 = 4 and consider
a schedule for the time period 1 through 4: S[l] =
{1,2}, S[2] = {2,3}, S[3] = {3,1}, S[4] = {2}., This
states that at time 1, channels 1 and 2 were busy, at
time 2, channels 2 and 3 were busy etc.

2 Problem Definition: Retrieval of
Composite Objects

In this paper, we consider the class of composite.mul-
timedia objects that consist of two atomic objects.
The temporal relationships between the display of two
atomic objects may be specified in several ways. For
simplicity, we assume the following model of specifica-
tion:

A composite object is a triplet (X, Y, j) indicating
that the composite object consists of atomic objects X
and Y. The parameter j is the lag parameter: It in-
dicates that the start time of object Y (i.e., display of
Yi) is synchronized with the display of subobject Xj.
For example, to designate a complex object where the
display of X and Y must start at the same time, we
will use the notation (X, Y, 1). Likewise, the composite
object specification (X, Y, 3) indicates that the display
of Y is initiated with the display of the third subobject
of X (see Figure 3a). This definition pf a composite
object supports the alternative temporal relationships
described in [A1183]. Table 2 lists these temporal rela-
tionships and their representation using our notation
of a composite object. Our proposed techniques sup-
port all temporal constructs because they solve for:
(1) arbitrary j values, (2) arbitrary sizes for both X
and Y, and (3) placement of X and Y starting with
an arbitrary channel.

Since two overlapping objects need to be displayed
at the same time during retrieval of the overlapping
part of a composite object, request for retrieval of such

289

j = size(Y) - size(X) + I& size(X) < size(Y)

Figure 2: Allen temporal relationships and their representation using our notation of a composite object
an object must reserve the right number of channels
at appropriate times in order to ensure a continuous
display. Moreover, the identity of reserved channels is
important due to placement of data. Without proper
precautions, the system may fail to support contin-
uous display of composite object if the placement of
its participating atomic objects collide and reference
subobjects that are stored on the same channel. To
illustrate, assume a system consisting of 3 channels.
Consider a single request displaying the composite ob-
ject (X,Y,4) h w ere X is (I 2 3 I 2 3 I 2) and Y
is (1 2 3 I 2 3 I). Note that the retrieval of X4
and Yi conflict, resulting in hiccups. This illustrates
the problem of retrieval of composite objects. There
could be contentions within a single composite object
because each atomic object is laid out independently.
Such contention arises even though there are no other
active requests. This contention is formalized below.

Definition 2.1: A composite object (X,Y, j) has an
internal contention if there is some i 2 1 such that
channel(X~+j-1) = channel(Yj). I

Note that our notation extends naturally to speci-
fication of composite objects that contain more than
one atomic objects. Thus, a composite object contain-
ing n atomic objects can be characterized by (n - 1)
lag factor, e.g., (Xl , ..X”, j2, ..j”) where j” denotes
the lag factor of X’ with respect to the beginning of
the display of X’. Note that Definition 2.1 can be
generalized in a straight-forward fashion for the, case
where the composite object contains multiple atomic
objects.

One might attempt to address the internal con-
tention problem similar to retrieval of atomic objects
in a multi-user environment. This is not appropriate

for the following reason. The display of each atomic
object in a multi-user environment is independent.
Different scheduling policies may result in increased
latency, but it is always possible to obtain a sched-
ule that requires no additional buffer. However, be-
cause of the synchronization constraint between the
displays of overlapping objects, treating the objects in
the composite object as independent objects may re-
quire significant buffering. Indeed, when there is con-
tention within a composite object, buffering might be
unavoidable. In our previous example where X and Y
collide, while scheduling X and Y independently does
not need any buffer (if latency is acceptable), retrieval
of (X, Y, 4) requires at least one buffer.

In the rest of the paper, we will address the ques-
tion of retrieval of composite objects. We will study
the solutions using three metrics: latency time, mem-
ory and disk utilization. Latency time is defined as
the amount of time elapsed from the arrival time of
a request to the onset of the display of its referenced
composite object, Both memory and disk utilization
are defined as the amount of time that the memory
and disks are busy supporting displays as a function
of total time, respectively.

In the following section, we study the problem of
displaying a single composite object. Section 4 extends
the study to environments that support simultaneous
display of several composite objects.

3 Single Display Environment

In this section, we describe how to minimize both the
buffer requirements and latency of a display referenc-
ing a single composite multimedia object.

290

Naive Pirefetching Strategy: Let us assume that
the specification of the composite object is (X, Y, j)
where X and Y have kl and k2 subobjects respec-
tively, i.e., X = (Xl, ..‘, Xkr) and Y = (Yr , .., Ykz). The
naive solution will be to prefetch the entire overlapped
part, i.e., subobjects (Yi..Y,) where u = min(k1 -
j, k2). Having fetched the overlapping part, we can
now begin fetching the sequence of subobjects for X
and then conclude by fetching the rest of Y. Thus, the
sequence of retrieval may be depicted as follows:

Yl, ..1 x7 Xl, Xkl

Y u+1,, yk2

However, note that this naive method incurs a latency
of u time intervals and requires u buffers. Thus, in
the example of Figure 3.a, we will incur an overhead
of 3 buffers and a latency of 3 time intervals. Note
that if a system is configured with a single channel
(R = 1) then naive prefetching is the only alterna-
tive that is available. In such a case, naive prefetch-
ing reduces to retrieving the two objects one after
the other. The contention prefetching strategy
is the obvious improvement over the naive prefetch-
ing. Given a composite object (X, Y, j), it prefetches
only those subobjects Yi for which there is a re-
trieval contention with the corresponding subobjects
of X, i.e., channel(Yi) = channel(Xi+j-1). However,
naive prefetching and contention prefetching behave
in an identical manner because the subobjects of each
atomic object are assigned to the channels in a round-
robin manner. However, contention prefetching is a
desirable method when the layout is not round-robin.
Assume that we have to display the composite ob-
ject (X,Y,4) h w ere the layout of X and Y are (2 1
3 2 I 3 2 I 3) and (I 2 3 I 2 3 I) respectively.
In that case, the naive prefetching would prefetch the
first 6 subobjects of Y, which is the overlapping part
of the object Y. In contrast, the contention prefetch-
ing strategy will prefetch only the third and the sixth
subobjects of Y since these are only subobjects whose
retrieval would conflict with the retrieval of the cor-
responding subobjects of X. Contention prefetching
is appropriate when a presentation consists of several
composite objects. The scenarios where contention
prefetching is desirable are described in [CGS].

Simple Sliding Algorithm: The amount of
prefetching in naive (and contention prefetching) tech-
nique grows as the overlap between the atomic objects
increase. Moreover, neither of these techniques exploit
the round-robin assignment of subobjects. In contrast,
by exploiting the layout! simple sliding technique min-
imizes both latency and buffer requirement of a display
independent of the size of overlap as long as R > 1.

To illustrate the idea of simple sliding consider Fig-
ure 3. Figure 3.a shows a composite object Z which
comprises of two atomic objects X and Y where the
lag parameter is 3. Assuming Xs and Yi reside on
two different channels, the retrieval and display of Z
can be depicted as in Figure 3.b. Trivially, no ex-
tra buffer is required in this case. Now assume that
channel(Y1) = channel(Xs). Exploiting the round-
robin layout of the objects and assuming R > 2,
we know that both channel(Yi) # chunnel(X2) and
chunnel(Y1) # chunnel(X4). Thus, the system has
two choices: either (1) slide the retrieval of Y up for
one interval (upslide Y) and prefetch one subobject of
Y, see Figure 3.c, or (2) slide the retrieval of Y down
for one interval (downslide Y) and prefetch one sub-
object of X, see Figure 3.d. Note that downsliding Y
introduces latency. The rest of this section provides a
formal description of simple sliding.

We say that an object X has a regular layout cycle
if the subobject Xj+i is placed at a channel “adjacent”
t0 Xj:

chunnel(Xj+l) = (chunnel(X1) + j) mod R + 1

From this definition it follows that regular layouts dif-
fer from one another only in the placement of their
first subobjects. Observe that simple striping enforces
precisely this property. For example, two regular lay-
outs of X over five channels might be (I 2 3 4 6 I
2 3). An alternative layout for X might be (3 4 6
I 2 3 4 6). Thus, regular layout and simple striping
are identical.

Lemma 3.2 : Consider the retrieval of the com-
posite object (X, Y, j), where both X and Y have a
regular layout. There is a retrieval contention i#
chunnel(Xj) = chunnel(Y1).

As mentioned earlier, naive prefetching is the only
option when there is single channel. However, the
more interesting case is where R > 1. In such a case,
the following identity holds (j > 1) since the subobject
Xj-1 must be on a different channel from the subob-
ject Yi:

(chunnel(Xj) = chunnel(Y1)) 3

(ChZTKl(Xj-1) # qhunnel(Yl))

In other words, when R > 1, then we know that
(X, Y,j - 1) has no contention if (X, Y, j) has con-
tention. Therefore, in such a case, we can prefetch
subobject Yr during retrieval of X,-r. Such “upslid-
ing” results in zero latency. However, it requires one
extra buffer during the display of Y.

In case j = 1, then we use the observation (sim-
ilar to above) that (Y,X,2) does not have any con-
tention whenever (X, Y, 1) does have contention. This

291

Display

Xl

x2

x3, Yl

x4. Y2

x5, Y3

YO

Con~osite Object 2: (X, Y, 3)

a. Object Z c Case II: upslide Y MemOrY Xl
x2 n x3

x4

x5

disk channel-a Xl x2 1 x3
x4. Yl

x5, Y2

Y-3

Y4

9%

1
0

1

.a

3

4

6

Display

Xl

x2

x3, Yl

x4. Y2

disk channels

Xl

x2

x3, Yl

x4. Y2

x5, Y3

Y4

Xl

X2

x3, Yl

x4, Y2

x5. Y3

Y4

x5. Y3

Y4

b. Case I (No prefetcbin@ d. Case III: downslide Y

Figure 3: Simple Sliding
motivates a technique that prefetches Yr and <hen be-
gin fetching subobjects of X concurrently with the re-
trieval of subobjects of Y. This “downsliding” results
in latency of one time interval. In addition, it requires
one extra buffer (during the display of X).

We refer to this strategy as simple sliding. For the
class of binary composite objects of the form (X, Y, j),
it is the optimal algorithm for retrieval when (1) only
a single display request is active and (2) objects have
regular layouts (as in simple striping). It is notewor-
thy that both the buffer requirement and latency of
a display is independent of the size of the composite
object. This algorithm is summarized below. We have
omitted the details of buffering as they have already
been explained.

Algorithm Simple-Sliding(X,Yj)
if there is a single channel then

do naive prefetching
else

if j = 1 then fetch (Y, X, 2)
else fetch (X, Y, j - 1)

Assuming that the system must overlap the display
of two atomic objects that constitute a composite ob-
ject, this algorithm requires at most one extra buffer.
Moreover, its incurred latency is bounded by one time
interval. The technique of simple sliding is surprisingly
robust even where the atomic objects do not satisfy the
regular layout assumption. For example, the technique
can be adapted with modifications for the case where
new channels are added.

We now briefly sketch the generalization of Sim-
pleSliding when the composite object consists of more
than two atomic objects, e.g., (Xl, ..Xn,j2, ..jn). For

simplicity, assume that all ,the objects X’ (i = l..n)
are mutually overlapping. The generalization ensures
that the composite object can be displayed with the
number of extra buffers (as well as latency) indepen-
dent of the duration of overlap among atomic objects.
Intuitively, since the sliding technique must use buffers
independent of the extent of overlap, it must assign a
channel for display of each of the R objects. Therefore,
R 1 n. For binary composite objects, the condition
reduces to R > 1, which we have already identified as a
necessary condition for use of simple sliding for binary
composite objects. It can be shown that the buffer re-
quirements are at most n(n - 1)/2 and the latency is
at most n - 1. The details of the generalization of the
algorithm will be reported in [CGS].

4 Multi Display Environment

The problem of retrieval contention becomes challeng-
ing in the presence of multiple users displaying objects
simultaneously. This is due to competition for disk
bandwidths by multiple independent requests arriving
at random times. In particular, in the case of a single
user environment, we established that using an extra
buffer, it is possible to bound the latency for retrieval
with simple sliding. Such is. no longer the case for
multi-user case. While a single extra buffer is still suf-
ficient to remove internal contention, there may be sig-
nificant latency due to: 1) demands on bandwidths by
active users, and 2) active users colliding and referenc-
ing data items that reside on one channel. Increased
availability of memory may be utilized to prefetch ad-
ditional objects that lead to contention. Therefore, a
key issue in multi-user environment will be to study
the role of memory to reduce latency.

292

We sssnme that the scheduler in a multi-user sys-
tem consists of two modules (1) A priority govern-
ing and (2) A task assignment module. The priority
governing module is responsible for determining the
priority of tasks among the queued jobs. Examples
of heuristics that govern the priority governor may
include First Come First Serve, Shortest Job First.
Given a request to display a composite multimedia ob-
ject, the task assignment module schedules it by taking
into account the current status of the channels. The
focus of our study is on the task assignment module.
For simplicity, we will assume that scheduling is non
preemptive, i.e., once a task is scheduled, it’s schedule
remains unchanged.

4.1 Buffered Sliding Algorithms

The class of algorithms that we present here try to
minimize latency by using available buffers. Let us
assume that due to contention, we cannot schedule
(X, Y, j) (j > 1) beginning at time t but can sched-
ule (X, Y, j - 1) beginning at time t. In that case,
we can use an extra buffer to prefetch Yr during re-
trieval of X,-r. By virtue of prefetching, we are then
able to display (X,Y, j) beginning at time t. We can
generalize the idea to the case where if the display of
(X, Y, j - b) is possible beginning at time t, then using
b buffers, we can display (X, Y, j) beginning at time t
(assuming j > b). We can think of such use of buffers
as sliding upwards. Let us now assume that it is also
possible to schedule (X, Y, j + 1) beginning at time t.
In such a case, display of X will be ahead of display of
Y by (j + 1) and by using an extra buffer to prefetch
X, it is possible to display (X, Y, j) beginning at time
t + 1. We can refer to such a scheduling technique as
sliding downward. In the general case, given b extra
buffers, if display of (X, Y, j + b) is possible beginning
at time t, then display of (X, Y, j) can start beginning
at t + 6. The above technique of sliding upwards and
downwards is a generalization of prefetching based on
simple sliding algorithm that was presented in Sec-
tion 3. However, we are now allowing use of multiple
buffers for prefetching. Informally, we refer to these
as buflered sliding. Observe that if for scheduling of
a display, sliding upwards and downwards require the
same number of buffers, then we must prefer sliding
upwards because it does not adversely impact latency.

We will now describe the algorithms that use
buffered sliding to avoid contention so that latency
can be reduced and disk utilization can be increased.
Given the current schedule S, these algorithms take as
input a parameter B, which is the maximum number
of extra buffers used for sliding, as well as the speci-
fication of the composite object (X, Y, j) to be sched-
uled. A key function invoked by buffered sliding al-

gorithms is atomic-schedule-ufter(X, S, u, S’, u’). It
consumes as its parameters an atomic object X, the
current schedule S, a time u. It outputs a time
u’ which is the earliest point in time when X can
be displayed, i.e., u’ is the minimum value greater
than u, such that channel(Xi) is free during inter-
val u’ + i - 1 for each i E [l, lcl]. The other output
parameter S’ indicates the updated schedule. The pro-
cedure atomic-schedule-before(X, S, u, S’, u’) is simi-
lar to atomic-schedule-after except that it computes
an u’ that precedes u but is closest to it. Thus,
atomic-schedule-after and atomic-schedule-before
correspond to sliding up and down respectively using
at most B extra buffers.

The key functions, both atomic-schedule-after and
atomic-schedule-before, should examine the availabil-
ity of both channels and buffers per interval. Al-
though the corresponding channels might be free, the
system may not be able to schedule X because of
the unavailability of buffers. This is because by slid-
ing object Y upward (downward), the system is us-
ing prefetching. During prefetching, the buffer re-
quirements of a display has three states: a growing
state, a steady state and a shrinking state. Once
the time intervals that the object’s display and re-
trieval starts are fixed, the buffer requirement per
interval can be computed accurately. The functions
atomic-schedule-after and atomic-schedule-before
employ the models introduced in [SG95] to compute
the buffer requirement for every interval. Subse-
quently, if the buffer requirement for an interval ex-
ceeds the maximum available memory they continue
searching for another candidate interval to initiate the
display of a candidate object.

4.2 First-Match and Exhaust-B

Given B extra buffers, there could be a family of algo-
rithms baaed on alternative approaches that traverse
the search space to incorporate the schedule of a dis-
play with the current system schedule (corresponding
to active displays). In our work, we have investigated
two algorithms. The algorithm FirstiMatch is conser-
vative in its approach of using extra buffers. On the
other hand, the algorithm Exhaust-B tries to greed-
ily use all B extra buffers for sliding. Thus, the latter
tries to minimize latency at the cost of increased use of
buffers whereas the former tries to minimize the use of
extra buffers for the current display. Given a workload,
it is interesting to see which of the two approaches lead
to lower overall latency for a given amount of available
buffers. In the performance section, we will address
these questions.

The algorithm First-Match (see Figure 4.a) assigns
object X to the earliest location where it can be sched-

293

Algorithm First-Match
210 = 0;
repeat

atomicscheduleafter(X, S, ug, &, 2~1);
atomicschedule-be f ore(Y, S1, u1 + j, S2, us);
if u2 2 u1 + j - B then return(&);
atomicschedule-after(X, &, u1 + j, S2, 2~2);
if ‘112 5 ui + j + B then return(&);
uo = 211;

forever
a. First-Match Algorithm

Algorithm Exhaust-B
210 = 0;
repeat

atomicschedulen f ter(X, S, uo, S1 , ul);
atomicscheduleafter(Y, SI, II + j - B, SZ,U~);
if u2 5 u1 +j + B then return($);
210 = u1;

forever

b. ExhaustB Algorithm

Figure 4: Algorithms for Multi-User Environment
uled as an atomic object (say u). It then tries to see
whether Y can be scheduled at u+j. If so, then none of
the extra B buffers will be needed. Otherwise, it looks
for a match nearest to u + j, sliding upwards until it
exhausts all B buffers. The reason for sliding upwards
is to avoid increasing latency. If we fail to find a suit-
able match, then attempts are made to schedule Y by
sliding downwards using at most B buffers. This in-
creases latency. If this also fails, a new time interval is
sought to display X and the above steps are repeated.

In contrast, the algorithm Edmust-B (see Fig-
ure 4.b) uses the extra B buffers greedily. Using the
buffers, it slides Y up as high as possible (u + j - B)
for scheduling. On failure, it slides down incrementally
until i + j + B. This results in utilization of channels
prior to the current interval in favor of freeing up fu-
ture channels. For example, Figure 5 demonstrates a
portion of the schedule array for an eight channel sys-
tem. Composite object 2 is defined as (X, Y, 4) and
the retrieval of X is scheduled to start during the 3rd
interval. First-Match will schedule the retrieval of Y
from the 6th interval utilizing no buffers for prefetch-
ing. This is done although B > 3. However, Exhaust-
B slides Y upward for 2 intervals. It cannot slide it
higher because the 6th channel is busy for higher inter-
vals. Finally, observe that for a given B, in the worst
case, the space of possibilities examined by these two
algorithms is identical.

Efficient implementations of First-Match and Ex-
haust-B require careful indexing of information on
availability of cahnnels so that repeated calls to
atomic-schedule-before and atomic-schedule-after
inexpensive. The implementations exploit the regu-
lar layout property of simple striping and for large B
also employ approximating techniques to reduce the
search space of schedules [CGS].

4.3 Estimating B

If the composite object has no internal contention,
then the minimum required value of B is zero. In the
worst case, such a value of B would result in starting

X starts from Channel I
Y 8tam from Channel 6
B>3

Figure 5: Exhaust-B vs. First-Match
the display after all the currently scheduled displays
have terminated. However, as explained in the single
user case, if the composite object has internal con-
tention, then the minimum required value of B is one.
Increasing B potentially reduces latency. By adjust-
ing B, the algorithm can be dynamically adjusted for
available buffers. We use the following three simple
heuristics to compute the value of B. See Figure 6.

MinB: In this case the value.of B is fixed at 1
which is the minimum buffer requirement. This
limits the extent of sliding permitted.

MaxB: This is a greedy approach where the value
of B is always equal to the entire system memory
(all buffers). This results in the maximum flexibil-
ity for the buffered sliding algorithms. As shown
in Section 5 this flexibility cannot be rendered ef-
fective if we use the First-Match algorithm.

F’unB: The value of B is a function of the number
of availabel buffers and the maximum number of
displays supported by a system:

B = Maz(1,2 x
MaxMem

R) (1)

294

3

4

Figure 6: Impact of B

The above function is based on the following intu-
ition. During a time interval, each object’s share
of buffers is 2 x Maxzem. This is because during
each time period at most R atomic objects are
active simultaneously. Moreover, each composite
object consists of 2 atomic objects where only one
of them is using buffers for prefetching’.

4.4 Generalization

The algorithms for scheduling display of a composite
object (X, Y, j) that we discussed have the following
key steps. First, the atomic object X is scheduled.
Next, the atomic object Y is scheduled while ensuring
that the lag factor j is respected and the number of
buffers utilized does not exceed B. Finally, if schedul-
ing of Y fails to meet the above constraints, then X is
rescheduled.

When we consider a composite object consisting of
more than two atomic objects, then the above steps
can be generalized. Thus, we can attempt scheduling
atomic objects X1, X2,.. ,X” in sequence while ensur-
ing that the cumulative number of extra buffers as-
signed to respect lag factors does not exceed B. If a
partial consistent schedule (say, obtained by schedul-
ing X1..Xk) cannot be extended, then XL is resched-
uled. However, such an approach may have significant
overhead in determining a schedule. Therefore, we are
investigating other alternatives as well. Regarding as-
signment of B to a display request, we can use the al-
ternatives discussed in the previous section. Observe
that minB is no longer 1, but may depend on n as
well as on the lag factors.

2An alternative heuristic is to define B as a function of
the composite object structure. Assuming a composite object
(X,Y,j), let’s define B as kfar(1, i). We investigated this
heuristic in our experiments and eliminated it from this dis-
cussion because it did not result in good performance.

5 Performance Evaluation

We implemented a simulation model to: 1) compare
First-Match with Exhaust-B, and 2) investigate the im-
pact of B and system memory on their performance.
Our experiments focused on binary composite objects
only. Therefore, it remains an open question whether
our conclusions generalize to arbitrary composite ob-
jects. First, we describe the simulation model. Next,
we report the results of our experiments.

5.1 Simulation Model

For the purposes of this evaluation, we assumed a plat-
form of 20 channels (i.e., R = 20). The effective band-
width of each channel is 4 mbps (supports a single dis-
play of MPEG-2 compressed clips). The system was
configured with a 512 kilobyte block size. In other
word, the size of each subobject is 512 Kbytes and the
duration of a time interval is 1 seconds.

The database consists of 200 atomic objects, each
with a 4 mbps bandwidth requirement. The size of
the objects was fixed at 65 subobjects, except for the
last experiment where the objects had different sizes.
Consequently, the display time of each atomic object is
1.08 minutes. The rationale is that every 1.08 minutes
the scene is changed (for example by using fade-in or
fade-out requiring a small amount of overlap). The
objects are assigned to the channels in a round-robin
manner, starting with a random channel.

The total number of requests submitted to the sys-
tem is 3000. Each request references a composite ob-
ject consisting of two atomic objects. We inquired five
types of overlaps for the two atomic objects within a
composite object:

1.

2.

3.

4.

5.

Small overlap: the two atomic objects overlap for
2 seconds (2 subobjects).

Moderate overlap: the two atomic objects overlap
for 30 seconds (30 subobjects).

Complete overlap: the two atomic objects overlap
for 1.05 minutes (63 subobjects).

Zero overlap: the two atomic objects do not over-
lap, but meet [A1183].

Variable overlap: the amount of overlap between
two atomic objects X and Y are chosen ran-
domly between 1 and M&(&e(X), &e(Y)) sub-
objects.

We employed an open simulation model for our evalu-
ation: requests arrive every think time intervals. We
manipulated the parameter load to model two alter-
native loads on the system: Heavy and light system

295

load. The value of think is a function of R, ObjSize,
Overlap (the amount of overlap), and load:

think0 =
(2 x ObjSize) - Overlap + 2

B
2

think0
think = -

load

If loud = 1, the requests arrive so far apart that at
least one idle channel is available when a request ar-
rives (lightly loaded system). For load > 1, the com-
partment of requests arrival is tighter (smaller think
time), imposing a higher load on the system.

5.2 Experiment Results

For all the experiments we vary the amount of avail-
able buffers from one to 400 subobjects (the x-axis of
all the graphs) and we measured the average latency
time in number of intervals (the y-axis). Note that
the disk utilization is inversely proportional to the av-
erage latency time. That is as the average latency time
decreases, the total disk utilization increases. This is
because, for lower average latency, the same number
of requests were serviced in a relatively smaller num-
ber of intervals. Hence, the total disk utilization was
higher (

Figure 7 demonstrates the results of the first set
of experiments where the system was heavily loaded3
(load = 2) and First-Match algorithm was employed.
In Figure 7.a, all the composite objects consisting of
atomic objects with two subobject overlap. When
B = 1 (MinB) the graph levels off at MazMem = 5
because the extra amount of buffer cannot be utilized.
However, both MaxB and FunB continue reducing the
latency time by utilizing the buffers. MaxB also levels
off at MaxMem = 100 because the first match inter-
val can be found with smaller value of B. Hence, the
extra amount of B is not beneficial. However, since
the value of B for FunB is a function of the avail-
able buffers, it will reach the level off point later than
MaxB. Note that the effective search space of FunB
is smaller than that of both MinB and MaxB. MinB
suffers from repeated failures because B is too small
to provide sufficient flexibility for prefetching. There-
fore, many invocations of atomic-schedule-before and
atomic-schedule-before need to be made. On the
other hand, a large B value requires a significant num-
ber of possible sliding positions. FunB by having a
flexible value of B always tries to provide each request
with no more than its own share of buffers. Hence, it
provides a smaller search space as compared to both

3We performed the same set of experiments for a lightly
loaded system and although the average latency time was re-
duced significantly, the basic observations were identical.

MinB and MaxB. Figures 7.b and 7.c show the same
observations when the amount of overlap is 30 and 63
subobjects, respectively.

We repeated the above set of experiments for the
Exhaust-B algorithm. The basic observations for
MinB, MaxB, and FunB remained the same. Figure 9a
compares First-Match with Exhaust-B for FunB and
MaxB with 2 overlap objects. An interesting phe-
nomenon is that with Exhaust-B neither MaxB nor
FunB levels off. Instead, they continue reducing the
latency time as the system memory grows. This is be-
cause Exhaust-B does not stop when it finds the first
match and continues searching for an available time in-
terval earlier than that determined by Firstmatch. By
doing so, it utilizes more of the available buffers. Note
that this will result in a large search space for Exhaust-
B. To reduce its search space, we used a heuristic. In-
stead of sliding the second object downward one in-
terval at a time, the heuristic first detects the time
interval that was responsible for the unavailability of
buffers (failed-interval) and then slides the second ob-
ject all the way to the failed-interval.

Exhaust-B in combination with MaxB is a greedy
algorithm that tries to allocate all the available buffers
to currently active requests. When memory is a scarce
resource this might force other requests to starve since
display of composite objects with internal contention
requires at least one extra buffer. In other words, these
requests require at least one buffer to be scheduled.
Figure 8.a supports this fact and it shows that for small
amount of system buffers (less than 100 subobjects)
FunB outperformed MaxB. Even MinB outperformed
MaxB when the amount of system buffer is less than
70 subobjects. An interesting observation is that the
behavior of First-Match and Exhaust-B are identical
for large overlaps (compare Figure 7.c with 8.b). This
is because First-Match differs from Exhaust-B when
the second object slides upward. For large overlaps
the amount of upward sliding is very small (usually 2
intervals in our experiments). Hence, both algorithms
end up finding the same interval for scheduling the
second object.

In order to show that prefetching reduces the la-
tency even when there is no overlap (simulating the
meet temporal relationship proposed by [A1183]) we
performed an experiment when Overlap = 0 (see Fig-
ure 8.~). Since in this case there was no internal con-
tention, we investigated B = 0 (no prefetching) as well.
As shown in Figure 8.c, heuristics baaed on buffered
sliding achieves a significantly lower average latency
time as compared to no prefetching.

Finally, to ensure that our techniques are indepen-
dent of the fixed structure of composite objects, we
conducted another experiment. In this experiment,
the atomic objects were no longer equi-sized. Instead,

296

Avg. Latency (in Seconds) Avg. Latency (in !konds) Avg. Latency (in Seeds)

24m MUB

22&l.

2KO

18co

0
SiYMemo;% ““mEOf sugd,

ml
Size of Memory (in number of subobjects) Si of Memory (in number of subabjeds)

a. Overlap = 2 b. Overlap = 30 c. Overlap = 63

Figure 7: First-Match, Heavy loaded system

Avg. Latency (in Seconds)

500
‘MaxB ,

Si%emo$n numgof sd$Ls)
500

a. Overlap = 2

Avg. Latency (in Seconds)

. ..MinB .._
55

:‘,:._ ‘\ nB
45000 loo 200 300 4al i

Size of Memory (in number of sutcbjccts)

b. Overlap = 63

Figure 8: Exhaust-B, Heavy loaded system

so0

c. Overlap = 0

Avg. L&Ic~ (III SeconbF)

FunB, Fhhnatch ..,
MuB, First-match

a. Overlap = 2
Fixed ObjSize

Avg. Latency (in Seconds)

Siz.eeb?Memo~% numgof sub$cfs)
500

b. First-Match, Variable overlap
Variable ObjSize

Avg. Latency (in Seconds)

I5

Sizeb?Memo$~n numEof sul$&ts)
5&l

c. Exhaust-B, Variable overlap
Variable ObjSize

Figure 9: Exhaust-B vs. First-Match, Heavy loaded system

297

we randomly chose the size of atomic objects to be
from 30 to 65 subobjects. Similarly, the amount of
overlap between two objects X and Y was a random
number between 1 and Min(size(X), size(Y)) subob-
jects. The observations remain valid for both Exhaust-
B and First-Match. The results are reported in Fig-
ures 9b and 9c.

6 Conclusion [CL931

We investigated the problem of continuously display-
ing composite objects that are dynamically specified.
The ability to display such objects is likely to be im-
portant in many multimedia applications. The prob-
lem is challenging because a composite object consists
of overlapped atomic objects. Therefore, in order to
support continuous display of composite objects, we
need to solve the problem arising due to contention
during retrieval of overlapped objects.

[GKS95]

[GRAQSl]

In this paper, we proposed techniques based on sim-
ple sliding and buffered sliding that help support con-
tinuous display by partial prefetching of overlapping
objects instead of the naive strategy of prefetching
overlapped objects entirely. The key idea in both these
methods is to exploit the striped layout of the multi-
media objects. Our strategies apply for single display
and multi display environments.

[Has891

[LG91]

Our study can be extended in several ways. We
mention a few of those here. First, our experimen-
tal study in the multi-display scenario has focused on
composite objects consisting of only two atomic ob-
jects. Identifying new approaches to scheduling when
the composite object has more complex structure and
comparing them experimentally are important prob-
lems. Next, we need to extend our approach to the
case where not all atomic objects in the composite ob-
ject have the same bandwidth.

[Nat951

[Pat931

[PO1911

As a final remark, we should note that the problem
of displaying a composite object is a complex problem
since temporal synchronization is subject to several
other system parameters that have not been consid-
ered in our retrieval model. Thus, our proposed tech-
nique should be viewed as a tool for retrieving com-
posite objects and not as a complete solution in itself.

[SG95]

[SGM86]

[TPBG93]

Acknowledgement: We thank Umesh Dayal for use-
ful discussions and comments on the draft.

References

[AII83] James F. Allen. Maintaining Knowledge about
Temporal Intervals. Communications of the
ACM, pages 832-843, November 1983.

[BGMJ94] S. Berson, S. Ghandeharizadeh, R. Muntz, and
X. Ju. Staggered Striping in Multimedia Infor-

[Buf94]

P-w

[Tri95]

mation Systems. In In Proc. of SIGMOD94,
1994.

John Buford, editor. Multimedia Systems. Ad-
dison Wesley, 1994.

S. Chaudhuri, S. Ghandeharizadeh, and
C. Shahabi. Retrieval of Composite Multime-
dia Objects. Technical report, HP Lab. Tech-
nical Report, In preparation.

H.J. Chen and T. Little. Physical Storage
Organizations for Time-Dependent Multimedia
Data. In In Proc. of FODOSS, October 1993.

S. Ghandeharizadeh, S. H. Kim, and C. Sha-
habi. On Configuring a Single Disk Continuous
Media Server. In Proceedings of the 1995 ACM
SIGMETRICS/PERFORMANCE, May 1995.

S. Ghandeharizadeh, L. Ramos, Z. Asad, and
W. Qureshi. Object Placement in Parallel Hy-
permedia Systems. In In Proc. of VLDB91,
1991.

B. HaskeII. International standards activities
in image data compression. In Proceedings of
Scientific Data Compression Workshop, pages
439-449, 1989.

Thomas D.C. Little and Arif Ghafoor. Spatio-
temporal composition of distributed multime-
dia objects for value-added networks. IEEE
Computer, pages 42-50, November 1991.

K. Natarajan. Video Servers Take Root. IEEE
Spectrum, 32(4):66-69, April 1995.

D. Patterson. Massive Parallelism and Mas-
sive Storage: Trends and Predictions for 1995
to 2000 (Keynote Speaker). In Second Interna-
tional Conference on PDIS, January 1993.

V.G. PoIimenis. The Design of a File System
that Supports Multimedia. Technical Report
TR-91-020, ICSI, 1991.

C. Shahabi and S. Ghandeharizadeh. Contin-
uous Display of Presentations Sharing Clips.
ACM Journal of Multimedia Systems, 3(2):76-
90, May 1995.

K. Salem and H. Garcia-MoIina. Disk striping.
In Proceedings of International Conference on
Database Engineering, February 1986.

F.A. Tobagi, J. Pang, R. Baird, and M. Gang.
Streaming RAID-A Disk Array Management
System for Video Files. In First ACM Con-
ference on Multimedia, August 1993.

C. Tristram. Bottleneck Busters. Neurmedia,
pages 53-56, April 1995.

298

