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trees that minimize the computation and communication 
costs of parallel execution. We address the problem of finding parallel plans 

for SQL queries using the two-phase approach of 
join ordering and query rewrite (JOQR) followed 
by parallelization. We focus on the JOQR phase 
and develop optimization algorithms that account 
for communication as well as computation costs. 
Using a model based on representing the partition- 
ing of data as a color, we devise an efficient algo- 
rithm for the problem of choosing the partitioning 
attributes in a query tree so as to minimize total 
cost. We extend our model and algorithm to in- 
corporate the interaction of data partitioning with 
conventional optimization choices such as access 
methods and strategies for computing operators. 
Our algorithms apply to queries that include oper- 
ators such as grouping, aggregation, intersection 
and set difference in addition to joins. 

1 Introduction 
An important challenge in parallel database systems [DG92, 
Va193, BCC+90, DGG+86] is parallel query optimization. 
This is, the problem of finding optimal parallel plans for 
decision-support queries that include operators such as ag- 
gregation, grouping, union, intersection, set difference and 
calls to external functions in addition to joins. Following 
Hong and Stonebraker [HS91], we break the problem into 
two phases: join ordering and query rewrite (JOQR) fol- 
lowed by parallelization. This paper focuses on the JOQR 
phase and develops optimization algorithms to find query 

Coloring Away Communication in Parallel Query Optimization 

Partitioned parallelism [DG92] which exploits horizon- 
tal partitioning of relations is an important way of reducing 
the response time of queries. This may require data to be 
repartitioned among sites thus incurring substantial com- 
munication costs. 

Example 1.1 Assume that the tables ~hp ( enum, m, 
areacode, number) andCust(name,areaCode, 
number) are horizontally partitioned on two sites on the 
underlined attribute. Suppose we want to determine the 
number of employees who are also customers and group 
the result by areacode. After deciding it reasonable to 
guess an employee and a customer to be the same person if 
they have the same name and phone number, we may write 
the following query (SQL2 [X3H92] syntax used): 
Select areacode, Count(*) 
From Cust Intersect 
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(Select name, are&ode, number From Emp) 
Group by areacode; 
Figure 1 shows two query trees that differ only in how data is 
repartitioned. Since tuples with the same areacode need 
to come together, GroupBy is partitioned by areacode. 
However, Intersect maybepartitionedonanyattribute. 
If we choose to partition it by areacode, we will need 
to repartition the (projected) imp table. If we partition by 
name, we will need to repartition the Cus t table as well as 
the output of the intersection. Thus one or the other query 
tree may be better depending on the relative sizes of the 
intermediate tables. Cl 

We address the problem of choosing the partitioning at- 
tributes in a query tree to minimize the sum total of commu- 
nication and computation (i.e., diskand cpu costs other than 
communication) costs. By regarding partitioning attributes 
as colors, we model it as a query tree coloring problem in 
which repartitioning cost is saved when adjacent operators 
have the same color. Since the choice of partitioning inter- 
acts with decisions such as the choice of join predicates and 
join methods, we generalize the problem to incorporate such 
interactions between communication and computation. We 
generalize color differences to correspond to repartitioning 
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Figure 1: Query Trees: Hatched edges show repartitioning 
data sorting it, and/or building an index on it. This query 
free annotation and coloring problem requires choosing a 
strategy for each operator and a color for each input and 
output so as to minimize total cost. 

Communication costs are extremely significant in pro- 
cessing queries in parallel and primarily consist of the cpu 
cost of sending and receiving messages. Gray [Gra88] 
estimates communication using inter-processor messages 
over a LAN to be two orders of magnitude more expen- 
sive than intra-processor communication through procedure 
calls. Pirahesh et al [PM@903 use a model based on pro- 
jected path lengths of MVS and DB2 to estimate that the to- 
tal path length of a specific query doubles when all pipelines 
are modified to communicate data across processors. 

We have performed detailed experiments with Nonstop 
SQL/MP that break down the costs of queries into the costs 
of individual operators and communication. The interested 
reader is referred to [EGH95, Has953 for details. These 
experiments show that repartitioning cost can exceed the 
cost of common operators such as scans, groupings and 
joins, and thus establish the need for models and algorithms 
such as developed in this paper. 

The query tree coloring problem is related to the classical 
problem Of MULTIWAY CUTS. Dahlhaus, Johnson, Papadim- 
itriou, Seymour and Yannakakis [DJP+92] show several 
versions of the problem to have high complexity. However, 
the restriction of the problem to trees is solvable in poly- 
nomial time [CR9 1, ES94]. Our contribution is to simplify 
and extend known theory to adapt it for query optimization. 

Our work is in contrast to the use of a conventional 
query optimizer by Hong and Stonebraker [HS91, Hon921 
as the JOQR phase in XPRS. However, it should be noted 
that Hong [Hon92] conjectured the KPRS approach to be 
inapplicable to architectures such as shared-nothing that 
have significant communication costs. Other work on par- 
allel query optimization [SE93, LST91, SYT93, CLYY92, 
HLY93,ZZBS93, GHK92] also ignored modeling commu- 
nication overheads of parallelism. 

Our earlier work [HM94, CHM95] focussed on the par- 
allelization phase and has developed scheduling algorithms 
that account for the trade-off between parallelism and com- 
munication. 

Though query processing in parallel and distributed 
databases [CP84,OV91, YC84] is fundamentrdly similar, 
repartitioning intermediate results to reduce response time 

did not receive much attention until the appearance of par- 
allel machines. Shasha and Wang [SW911 investigated 
heuristics for join ordering that take repartitioning cost into 
account. These heuristics apply only to joins. Further, they 
assume the cost of a join to be proportional to the sum of 
the sizes of operands thus excluding common jbin methods 
that use indexes or sorting. 

Section 2 defines the Query Tree Coloring and Query 
Tree Annofafibn and Coloring optimization problems that 
are solved in this paper. Section 3 develops an efficient 
algorithm for query tree coloring and shows several ex- 
tensions. Section 4 reuses the basic ideas in coloring a 
query tree to develop an efficient algorithm that minimizes 
the combined communication and computation costs. Sec- 
tion 5 summarizes our contributions and discusses future 
work. 

2 A Model for the Problem 
2.1 S/W Architecture of a Parallel Query Optimizer 

We adopt a two-phase approach [HS91] to parallel query 
optimization: JOQR followed by parallelization. JOQR 
is similar in functionality to a conventional query opti- 
mizer. Given an SQL query, it produces an annotated query 
tree that fixes the order of operators and-other procedural 
decisions such as the strategy for each join. This phase 
minimizes the total cost for computing the query. The.par- 
allelization phase constructs a parallel plan (i.e., a schedule) 
for the annotated query tree to minimize response rime. It 
uses a detailed cost model that incorporates timing con- 
straints between operators and makes decisions about allo- 
cation of resources. 

Figure 2: Iwo-Phase Query Optimization (Algorithms de- 
veloped in this paper are shaded) 

One way of using the algorithms developed in this paper 
is to incorporate them in the JOQR phase as a post-pass 
to conventional optimization as shown in Figure 2. Some 
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alternatives are discussed in [Has95]. 

2.2 Partitioning 

We begin with a formal definition of partitioning. 

Definition 2.1 A partitioning is a pair (a, h) where a is 
an attribute and h is a function that maps values of a to 
non-negative integers. 

Given a table T, a partitioning produces fragments 
To,..., Tk such that a tuple i! E T occurs in fragment r if 
and only if h( t .a) = i. For example, the partitioning of Emp 
in Example 1.1 is represented as (name, hash (name) 
mod 2 ). Thefunction hash(name) mod 2 isapplied 
to each tuple of Emp and the tuple placed in fragment Empo 
or Emp, depending on whether the function returns 0 or 1. 

Partitioning provides a source of parallelism since the 
semantics of most database operators allows them to be 
applied in parallel t0 each fragment. SUppOSe SO, o. e , Sk 

and TO,..., Tk are fragments of tables S and T produced 
by the same partitioning (Y = (a, h). 

Definition 2.2 A unary operator f is partitionable with 
respect to (Y if and only if f(S) = f(So) U . . . U f(Sk). A 
binary operator f is partitionable with respect to (Y if and 
Only if f( S, T) = f(So , TO) U . . . U f(Sk , Tk). 

Example 2.1 Suppose that the two tables Emp ' (name 8 
areacode, number) and Cust(name, 
areacode, number) are each partitioned across two 
sites using the hash function hash (areacode) mod 2 D 
Since the tables have the same partitioning, Emp' fl Cus t = 
(E~P’~ fl Gusto) U (Emp’, rl Custl). This permits 
Eknp'ncust tobecomputed bycomputingEmp’ofKusto 
and ~mp’i n Custl in parallel. cl 

Definition 2.3 An attribute sensitive operator is partition- 
able only for partitionings that use a distinguished attribute. 
An attribute insensitive operator is partionable for all par- 
titionings. 

The equation S w T = Ui (Si w Ti) holds only if both S 
and T are partitioned on the (equi-)join attribute. Thus join 
is attribute sensitive. Similarly, grouping is attribute sensi- 
tive since it requires partitioning by the grouping attribute. 
UNION, INTERSECT and EXCEPT (Set diffeIw@, ag- 
gregution, selection and projection are attribute insensitive. 
External functions and predicates may be either sensitive or 
insensitive. 

2.3 Repartitioning Cost 

Communicating tuples between operators that use differ- 
ent partitionings requires redistributing tuples among sites. 
Some percentage of tuples remain at the same site under 
both partitionings and therefore do not need to be commu- 
nicated across sites. We believe that the crucial determinant 

of the extent of communication cost, given a “good” sched- 
uler, is the attribute used for partitioning. We argue the 
following all or nothing assumption to be reasonable. 
Good Scheduler Assumption: If two communicating op- 
erators use the same partitioning attribute, no inter-site 
communication is incurred. If they use distinct partitioning 
attributes then all tuples need to be communicated across 
sites. 

Consider the case of two operators with different parti- 
tioning attributes. The greatest savings in communication 
occur if the two operators use the same set of processors. 
If a table with m tuples equally partitioned across k sites is 
repartitioned on a different attribute, then assuming inde- 
pendent distribution of attributes, (1 - i)m tuples may be 
expected to change sites. Thus it is reasonable to assume 
all m tuples to be communicated across sites. 

Now consider the case of two operators with the same 
partitioning attribute. We believe that any good scheduler 
will choose to use the same partitioning function for both 
operators since it not only saves communication cost but 
also permits both operators to be placed in a single process 
at each site. 

For example, our assumption is exactly true for symmet- 
ric schedulers (such as those used in Gamma [DGG+861) 
that partition each operator equally over the same set of 
sites. 

2.4 Optimization Problems 

We associate colors with nodes as corresponding to the 
partitioning attribute. 

Definition 2.4 The color of a node in a query tree is the 
attribute used for partitioning the node. An edge between 
nodes i and j is multi-colored if and only if i and j are 
assigned distinct colors. 

In a query tree, the nodes for attribute sensitive operators 
or base tables are pre-colored while we have the freedom 
to assign colors to the remaining uncolored nodes. 

We will associate a weight c, with each edge e to rep- 
resent the cost of repartitioning. Since this cost is incurred 
only if the edge is multi-colored, the total repartitioning 
cost is the sum of the weights of all multicolored edges. 
Thus the optimization problem is: 
Query ‘bee Coloring Problem: Given a query tree T = 
(V, E), weight ce for edge e E E, and colors for some 
subset of the nodes in V, color the remaining nodes so as 
to minimize the total weight of multicolored edges. 

Conventional cost models [SAC+793 provide estimates 
for the size of intermediate results. The weight c, may 
therefore be estimated as a function of the size of inter- 
mediate results. Our work is applicable regardless of the 
model used for estimation of intermediate result sizes or the 
function for estimation of repartitioning cost. We assume 
some method of estimating ce to be available. 
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Query tree coloring models only communication costs. 
The next problem is to extend the model to capture the in- 
teraction between communication and computation costs. 
We extend the notion of a color to capture physical prop- 
erties that impact the cost of computation. Now recoloring 
of data corresponds to repartitioning it, sorting it, and/or 
building an index on it. We associate a set of strategies 
with each operator. Each strategy for an operator is an al- 
ternate method for computing the operator. The cost of an 
operator consists of the cost of applying the strategy plus 
the cost of recoloring the inputs to the colors expected by 
the strategy. The cost of a tree is the sum of the costs of all 
operators. 
Query Tree Annotation and Coloring Problem: Given 
a query tree, a collection of strategies for each operator, 
and colors for the leaf nodes, find a strategy and input and 
output colorsfor each node so as to minimize total tree cost. 

The next section deals with the query tree coloring prob- 
lem and several extensions. Section 4 deals with the query 
tree annotation and coloring problem. 

3 Query Tree Coloring 
In this section we develop an algorithm for coloring a query 
tree to minimize the cost of repartitioning. The problem of 
coloring the nodes of a tree may equivalently be viewed 
as a problem of cutting/collapsing edges. Edges between 
nodes of different colors may be considered cut while edges 
between nodes of the same color may be considered col- 
lapsed. This view is helpful since it allows us to constrain 
colors of adjacent nodes to be identical or distinct without 
fixing the actual colors. 

Example 3.1 Figure 3(i) shows the query tree for a query to 
count parts used in manufacture of aircraft but not of cars or 
boats. The three base tables are assumed to be partitioned 
on distinct attributes (colors) A, B, and C. Figures 3(ii) 
and 3(iii) show two colorings. The cost of a coloring is the 
sum of the cut edges which are shown hatched. The coloring 
in Figure 3(ii) is obtained by the simple heuristic of coloring 
an operator so as to avoid repartitioning the most expensive 
operand. The minimal coloring is shown in Figure 3(iii); 
here, UNION is not partitioned on the partitioning attributes 
of any of its operands. 0 

The query tree coloring problem is related to the classical 
problem of multiway cuts with the difference that multiway 
cut restricts pre-colored nodes to have distinct colors. Mul- 
tiway cut is NP-hard for graphs but solvable in polynomial 
time for trees [DJP+92]. Chopra and Rao [CR911 devel- 
oped an O(n2) algorithm (where n is the number of tree 
nodes) for multiway cut for trees using linear programming 
techniques. Our DLC algorithm is substantially simpler 
and has arunning time of O(n). Erdos and Szekely lES943 
provide an O(nc?) algorithm (where c is number of colors) 
for the case of repeated colors. Our ColorSplit algorithm 

is an 0( nc) algorithm based on a better implementation of 
their ideas. 

In Section 3.1, we develop an understanding of the prob- 
lem by presenting some simplifications. In Section 3.2, we 
develop a simple linear time algorithm for the case when 
all pre-colored nodes have distinct colors. Section 3.3 uses 
dynamic programming to develop an 0( nc) algorithm for 
the general case (n is the number of tree nodes and c the 
number of colors). Section 3.4 discusses extensions to deal 
with optimization opportunities provided by choices in ac- 
cess methods (due to indexes, replication of tables) and 
choices in join and grouping attributes. 

3.1 Problem Simplification 

The problem of coloring a tree can be reduced to coloring a 
set of trees which have the special property that all interior 
nodes are uncolored and all leaves are pre-colored. This 
follows from the following observations which imply that 
colored interior nodes may be split into colored leaves, and 
uncolored leaves may be deleted. 

(Split) A colored interior node of degree d may be split 
into d nodes of the same color and each incident edge 
connected to a distinct copy. This decomposes the 
problem into d sub-problems which can be solved in- 
dependently. 

(Collapse) An uncolored leaf node may be collapsed into 
its parent. This gives it the same color as its parent 
which is minimal since it incurs zero cost. 

The following procedure achieves the simplified form 
in time linear in the number of nodes in the original tree. 
Figure 4 illustrates the simplification process. 
Algorithm 3.1 Procedure Simplify 

1. while 3 uncolored leaf 1 with parent m do 
2. collapse 1 with m; 
3. while 3 colored interior node m with degree d do 
4. split m into d copies with each copy 

connected to distinct a edge. 

3.2 Algorithm for Distinct FVe-Colorings 

We first develop an algorithm for the case when all pre- 
colored nodes are restricted to have distinct colors. By the 
discussion in the previous section, we need to develop an 
algorithm for trees in which a node is pre-colored if and 
only if it is a leaf node. 
Definition 3.1 A node is a mother node if and only if all 
adjacent nodes with at most one exception are leaves. The 
leaf nodes are termed the children of the mother node. 

The algorithm repeatedly picks mother nodes and pro- 
cesses them by either cutting or collapsing edges. Each 
such step creates smaller trees while preserving the invari- 
ant that all and only leaf nodes are colored. We are finally 
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Figure 4: (i) Split colored interior node (ii) Collapse uncolored leaves 
left with a set of trivial trees that may be easily colored. 
Before presenting the algorithm we show two lemmas that 
make such processing possible. 

Suppose m is a mother node with edges el, . ~. . ed to 
leaf children VI,. . . , Vd. Assume we have numbered the 
children in order of non-decreasing edge weight, i.e., c,, < 
ce* 5 ...<CQ. 

Lemma 3.1 There exists a minimal coloring that cuts 
el,... ,e&l. 

Proof: The proof uses the fact that all leaves have dis- 
tinct colors. In any coloring at least d - 1 leaves have a 
color different from m. If the optimal colors m differently 
from all leaves, the lemma is clearly true. If not, then sup- 
pose m has the same color as leaf vi and let this color be A. 
Let the color of Vd be B. Change all A-colored nodes (other 
than vi) to be B-colored nodes. Such a change is possible 
since no pre-colored node other than vi may have color A. 
Since c,, 2 c,~, the new coloring has no higher cost. 0 

Notice that after we cut edges using the above lemma, 
we are left with a mother node with one child. Consider 
the case in which the mother node has a parent. Then the 
mother node is of degree 2 and the following lemma shows 
how we can deal with this case. Let the incident edges be 
et and e:! such that ce, 5 cez. Since m is not pre-colored, 
a minimal coloring will always be able to save the cost of 
the heavier edge. 

Lemma 3.2 There is a minimal coloring that collapses e2. 

The last case is when the mother node has only one child 
and no parent. In other words, the tree has only two nodes. 
Such trees are termed trivial and can be optimally colored 
by giving the child the color of its mother. 

Notice that the invariant that exactly leaf nodes are 
colored remains true after any of the lemmas is used to 
cut/collapse edges. Thus, for any non-trivial tree, one of 
the two lemmas is always applicable. Since the application 
of a lemma reduces the number of edges, repeated applica- 
tion leads to a set of trivial trees. These observations lead 
to the algorithm given below for find a minimal coloring. 

Algorithm 3.2 Algorithm DLC 

1. while 3 mother node m of degree at least 2 do 
2. Let m have edges et, . . ., ed to d children; 
3. Let c,, 5 . . . 5 c,,; 
4. if d > 1 then cut el, . . ., e&l 
5. else Let eP be the edge from m to its parent; 
6. if ce, < c,, then collapse el 

else collapse eP. 
7. end while; 
8. color trivial trees. 

Since each iteration reduces the number of edges, the 
running time of the algorithm is linear in the number of 
edges. The following example should help to clarify this 
algorithm. 

Example 3.2 Figure 5 shows a trace of the algorithm for 
finding the minimal coloring for the tree of Example 3.1. 
In Step 1, the mother node is Union with degree 3 and 
its cheapest child is cut away. Step 2 has Union as a 
mother node of degree 2 and collapses the edge from the 
mother node to its parent. Step 3 and Step 4 are cutting 
and collapsing steps with Except as the mother node. We 
obtain a set of trivial trees. The coloring for the original 
tree is extracted by keeping track of node collapses. 0 
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Figure 5: Trace of Algorithm DLC 

A A A 

Figure 6: (i) Query Tree (ii) Suboptimal DLC coloring (cost=9) (iii) Optimal coloring (cost=@ 
3.3 Algorithm for Repeated Colors 

In the last section, we developed the DLC algorithm for the 
case when no two pre-colored nodes have the same color. 
The following example shows that DLC may not find the 
optimal coloring when colors are repeated. 

Example 3.3 Figure 6(i) shows a query tree for a query 
that finds employees who are customers as well as sup- 
pliers. Taking the tables Supp, Cust, and Emp to be 
partitioned on distinct attributes, we pre-color them by col- 
ors A, B, and C respectively. We now have repeated colors 
and two “widely separated” leaves are both pre-colored A. 
The DLC algorithm finds the sub-optimal coloring shown 
in Figure 6(b) since it makes a local choice of cutting away 
the A leaves. The optimal coloring shown in Figure 6(c) 
exploits the lie colored leaves to achieve a lower cost. 0 

The reason DLC fails to find the optimal coloring in 
the above example is that repeated colors make it difficult 
to make local choices of colors. One option is to use the 
brute force approach of enumerating all possible colorings. 
Unfortunately the number of colorings for c colors and n 
nodes is cn. This exponential complexity makes the brute 
force approach undesirable. 

We now develop an algorithm that exploits one of the 
observations made in Section 3 .l . We observed that a col- 
ored interior node may be split to decompose the problem 
into smaller subproblems that are independently solvable. 
Since interior nodes are all initially uncolored, this obser- 
vation can only be exploited after coloring an interior node. 
A further observation that we will make is that the subprob- 
lems can be posed in a manner that makes them independent 
of the color chosen for the interior node. We now develop 
an efficient algorithm based on dynamic programming that 
exploits problem decomposition while trying out different 
colors for each node. 

Definition 3.2 Optc(i, A) is defined to be the minimal cost 
of coloring the subtree rooted at i such that i is colored A. 
If node %’ is pre-colored with a color different from A, then 
Optc(i, A) = 00. 

Definition 3.3 Opt(i) is defined as min, Optc(i, a), i.e., 
the minimal cost of coloring the subtree rooted at i irre- 
spective of the color of i. 

Figure 7: Problem Decomposition after Coloring Node i 

Consider a tree (Figure 7) in which root node i has 
children (~1, (~2,. . . , Cyk. Let the edge from i to aj have 
weight Cj, and let Tj be the subtree rooted at aj. If we 
fix a color for node i, we can decompose the tree into k 
“new” trees by splitting node i into k copies. Since the only 
connection between new trees was through i, they may now 
be colored independently of each other. Thus Optc(i, A) is 
the sum of the minimal colorings for the k new trees. 

Consider the jth new tree. The minimal coloring either 
pays for the edge (i, aj ) or it does not. If it pays for the edge, 
then it can do no better than using the minimal coloring 
for Tj, thus incurring a cost of cj + O@(oj). If it does 
not pay for the edge, it can do no better than the minimal 
coloring that gives color A to node aj thus incurring a cost 
of Optc(oj , A). The next lemma follows by taking the cost 
of coloring the jth new tree to be the best of these cases. It 
provides a way of finding the cost of a minimal coloring. 

Lemma 3.3 The minimal cost Optc(i, A) of coloring the 
subtree rooted at i such that i gets color A is given by 
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Optc( i, A) = 

0” 
i precolored with color other than A 
i a leaf, uncolored or precolored A 

Xi=1 min[Optc(cuj, A), cj + Opt(aj)] otherwise 

Example 3.4 We show how Optc and Opt may be com- 
puted for the tree of Figure 6. It is useful to think of Optc 
and Opt as tables as shown in Figure 8. Lemma 3.3 may 
be applied to fill up columns of these tables in a left to right 
manner. The lirst column is for the tip, node that is pre- 
colored by color A. By the first two cases of the formulaof 
Lemma 3.3, the row for color A in this column is 0 and the 
other two entries are 00. The entry in the Opt table is the 
minimum of the column values. 

NODES (POSTFIX ORDER) 

i”i,;i 

0 0 3 0 0 3 8 E 

Figure 8: Opt and Optc tables for tree of Figure 7 

Consider the last column of the table that represents en- 
tries for the Union node. This column is computed using 
the values in the columns for the children of the Union 
node,i.e.,columns for Intersect1 and Intersects. 
For example, by Lemma 3.3,Optc(Union, A) is the sum: 
min[Optc(Intersectl, A), 3 + Opt(Intersectl)]+ 
min[Optc(Intersect2, A), 3 + Opt(Intersectp)]. 

Cl 

We now consider how to extract the minimal coloring 
itself. If the query tree has root i, then Opt(i) is the cost 
of the any optimal coloring. If A is a color such that 
Optc(i, A) = Opt(i), then there must be an optimal color- 
ing the gives color A to i. Once we know an optimal color 
for i, we can pick optimal colors for the children of i by 
applying Lemma 3.3 in “reverse” as follows: 

Lemma 3.4 If i gets color A in some minimal coloring, 
there exists a minimal coloring such that child aj of i has 
color A if Optc(aj , A) 5 cj + Opt(auj ) and any color a 
for which Opt c( aj, a) = Opt (aj ) otherwise. 

Example 3.5 We now show that the optimal coloring 
shown in Figure 6 may be obtained from the tables of Ex- 
ample 3.4. Since Opt(Union) = Optc(Union,A) = 
8, the optimal coloring has a cost of 8 and assigns 
color A to Union. Lemma 3.4 may be applied in a 
top-down fashion to obtain the colors of the remaining 
nodes. Now, Optc(Intersect2,A) = 4 which is less 
CUnion,Intersectz + Opt(Intersect2) = 3 + 3. Thus 

Intersect2 must be of color A. The colors of other 
nodes may be similarly extracted using Lemma 3.4. 0 

Lemmas 3.3 and 3.4 lead to the following ColorSplir 
algorithm. Letting C be the set of colors used for pre 
colored nodes, the algorithm has arunning timeof 0( nICl). 

Algorithm 3.3 Algorithm ColorSplit 

I. for each node i in postfix order do 
2. for each color a E C do 
3. compute Optc(i, a) using Lemma 3.3; 
4. Opt(i) = min, Optc(i, a) 
5. end for 
6. end for; 
7. Let a E C be such that Optc(r, a) = Opt(r); 
8. color(r) = a; 
9. for each non-root node ‘Yj in prefix order do 
10. Let i be the parent of CY~ ; 
11. Let cj the weight of edge between i and aj; 
12. if OptC(aj, COlOP(i)) 5 Cj + Opt(CVj) 
13. then color(cUj) = CO~OT(~) 

14. else color(cUj) = a E C such that 
OptC(cYj, a) = Opt(cYj) 

15. end for. 
We further observe that ColorSplit does not require the 

input tree be such that all and only the leaf nodes are pre- 
colored. It finds the optimal coloring for any tree. In other 
words, the tree need not be pre-processed by the Simplify 
algorithm of Section 3.1. Having pre-colored interior nodes 
actually reduces the running time of ColorSplit since the 
first two cases of Lemma 3.3, which are simpler than the 
third case, may be used. 

ColorSplit is a fast algorithm. Whilepre-processing with 
Simplify offers the possibility of reducing the running time 
of ColorSplit (by reducing the number of colors in each new 
tree), additional gains may not be worth the implementation 
effort. 

3.4 Extensions 

We now focus on extending our results to cover several 
practical issues. We show that the mechanism of using a ser 
of colors rather than a single color to pre-color anode makes 
several extensions possible. Handling sets of colors does 
not increase the complexity of ColorSplit. The intuitive 
reason is that any pre-coloring constrains the search space 
and thus can only reduce the running time of the algorithm. 

We first describe modifications to the ColorSplit algo- 
rithm to allow a pre-coloring to specify a set of colors for 
each node. We then describe a variety of extensions to ex- 
ploit optimization opportunitiessuch as choices in access 
methods (due to indexes, replication of tables), choices in 
join and grouping attributes and the use of distinct parti- 
tioning functions on the same attribute are covered by this 
mechanism. 
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3.4.1 Set of Colors: A Swiss Army Knife 

Precoloring with a set of nodes serves to restrict the choices 
of colors that the ColorSplitalgorlthm may make for a node. 
This restriction is implemented by the formula given in 
Lemma 3.3 which may be modified as shown below. 

Lemma 3.5 (Modified Lemma 3.3) The minimal cosl 
Optc(i, A) of coloring the subtree rooted at i such that 
i gets color A is given by 
Optc(i, A) = 

0” 
if A is not in set of pre-colors for i 
if i a leaf, uncolored or has A as a pre-color 

E;=l min[Optc(aj, A), cj + Opt( otherwise 

This is the only modification needed for ColorSplit to 
work with a set of pre-colors. The modified algorithm is 
guaranteed to find the optimal in 0( nlCl) running time. 
Notice that using a set of pre-colors does not change the 
worst case running time of the algorithm since any pre- 
coloring (set or single color) reduces the running time of 
the algorithm by simplifying the computation of Optc. 

3.4.2 Access Methods 

Typically, the columns needed from a table may be accessed 
in several alternate ways. For example if a table is replicated 
then any copy may be accessed. Further, an index provides 
a copy of the indexing columns as well as permits access to 
the remaining columns. 

Each access method may potentially provide a different 
partitioning. We may mode1 this situation by associating 
a set of colors with each base table node, one color per 
partitioning. 

We observe that each access method may have a different 
cost in addition to delivering a different partitioning. Such 
interactions between the cost of computation and commu- 
nication are handled in Section 4. 

3.4.3 Compound Attributes 

Thus far we have considered attribute sensitive operators 
such as joins and groupings to have a single color. When 
such operators are based on compoundattributes, additional 
opportunities for optimization arise that may be expressed 
by sets of pre-colors. 

Example 3.6 Given the tables Fhp (emp#, dep#, 
city) and Dep(dep#, city ) , the following query 
finds employees whxe in the same city as the the lo- 
cation of their department. 
Select e From Emp e, Dep d 
Where e.dep# = d.dep# and e.city = d.city 
Since a join operator has to be partitioned on the join col- 
umn, the required partitioning depends on the predicate 
chosen to be the join predicate. In Figure 9, the lint query 
tree uses the join predicate on dep# and requires the Ehp 

Da Da 
e.dep# = d.de 

Q Emp Deu 
(city ) (d-h 1 (city ) 

Figure 9: Interaction of Repartitioning with Join Predicates 
table to be repartitioned. The second uses the join predicate 
on city and requires Dep to be repartitioned. 

The optimization opportunities provided by join predi- 
cates may be modeled by pm-coloring the join node by a set 
of two colors { dep#, c i t y }. We observe that choice of the 
join predicate may impact the cost of the join-method. Such 
interactions between the cost of computation and commu- 
nication are postponed to Section 4. cl 

Similar observations apply to other attribute sensi- 
tive operators. Given a grouping of employees by 
department and city, wepre-colorthe GROUPBY op- 
eratorby {dep#,city}. 

A partitioning guarantees that tuples that agree on the 
partitioning attribute(s) are assigned to the same site. Given 
some set of attributes X, a partitioning on any non-empty 
subset of X is also a partitioning on X. The most general 
way of modeling this situation is by pre-coloring an attribute 
sensitive operator that has compound attribute X by a set 
colors, one color for each non-empty subset of X. 

3.4.4 Partitioning Functions 

Suppose two base tables are partitioned on the same at- 
tribute A using different partitioning functions (We con- 
sider two attributes to be the “same” attribute w.r.t. a query 
if they are equated by an equality predicate.) For example, 
one table may be hash partitioned on A and the other range 
partitioned. We will fix this situation by giving distinct 
colors (say Br and &) to the two tables. Any attribute 
sensitive operator that needs a partitioning on A could use 
either of the two partitions and will therefore be given the 
set of colors {Bt , Bz}. 

4 Combining Computation and Communica- 
tion Costs 

We have so far been concerned with the communication 
costs incurred by repartitioning and have considered the 
cost of computing (i.e. disk and cpu costs other than com- 
munication) an operator to be independent of the partition- 
ing attribute. We now extend our mode1 to account for the 
interaction of these costs and show how the basic ideas of 
the ColorSpEr algorithm carry over to the extended mode1 
to yield an efficient optimization algorithm. 

Several alternate strategies, each with a different cost, 
may be available for an operator. The following example 
shows the interaction between between computation and 
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communication costs using the standard scenario of having 
several strategies for computing operators such as joins and 
grouping. 

Example 4.1 Given the schema Emp ( emp# , salary, 
dep# , city) andDep(dep#, city),thefollowing 
query finds the average salaries of employees grouped by 
city for those employees who live in the same city as the 
the location of their department. 
Select e.city, avg( e.salary) 
From Emp e, Dep d 
Where e.dep# = d.dep# and e.city = d.city 
Group by e.city; 

Suppose Emp is partitioned by city and each partition 
is stored in sorted order by city. Suppose Dep is parti- 
tioned by dep# and each partition has an index on dep#. 
Figure 10 shows two query trees. The computation of Avg 
is assumed to be combined with GroupBy. The first query 
tree uses the join predicate on dep# and repartitions the 
Emp table. Due to the availability of an index on Dep, a 
nested-loops strategy may be the cheapest for joining each 
partition of Emp (outer) with its corresponding partition of 
Dep (inner). The grouping operator is implemented by a 
hash-grouping strategy. 

The second query tree uses the join predicate on city 
and repartitions the Dep table. Since each partition of Emp 
is presorted, it may be cheapest to use a sort-merge join for 
joining corresponding partitions. Since the output of merge 
join is pre-sorted in addition to being pre-partitioned on the 
city, the grouping operator uses a sort-grouping strategy. 

cl 

The example illustrates several points. Firstly, while par- 
titioning impacts communication costs,other physical prop- 
erties (sort-order and indexes) impact computation costs. 
We will generalize the notion of a color to capture all phys- 
ical properties. 

Secondly, a strategy expects its inputs to have certain 
physical properties and guarantees its output to have some 
other properties. We will specify such input-output con- 
straints using color patterns. 

Thirdly, the overall cost is reduced when an input to a 
strategy happens to have the expected physical property. 
We will therefore break the cost of computing an operator 
into the intrinsic cost of the strategy itself and the cost 
of getting the inputs into the right form. The latter will 
be modeled as a recoloring cost that may or may not be 
incurred. 

In Section 4.1, we develop the details of the model out- 
lined above. In Section 4.2, we show how the basic al- 
gorithmic ideas developed in Section 3.3 carry over to the 
extended model. Finally, in Section 4.3, we show that col- 
oring also interacts with the order of operators and indicate 
that it can be incorporated into the traditional System R 
algorithm. 

4.1 Annotated Query Trees and their Cost 

We now develop a mode1 in which each interior node of a 
query tree is annotated by a strategy, an output color, and a 
color for each input. The leaf nodes have an output color 
but no strategy. 

The cost of a query tree is the sum of the costs of all 
nodes. The cost of a node consists the cost of recoloring 
the outputs of its children to have the color of its inputs plus 
the cost of executing the strategy itself. 

Any classical cost mode1 typically consists of two parts: 
(a) estimation of statistics (such as size, number of unique 
values in columns) for intermediate results; and, (b) esti- 
mation of cost of an operator given statistics and physical 
properties of operands. The formulas in any such model 
can be easily extended to account for repartitioning as well. 
Our goal is not to provide new formulas, but to provide 
abstractions that make it possible to reason with them in a 
general context. 

We have so far used a color to represent the attribute on 
which data is partitioned. We now generalize a color to be 
a triple (p : al, s : a2, i : a3) where al is the partitioning 
attribute, a2 the sort attribute and as the indexing attribute. 

A strategy specifies a particular algorithm for computing 
an operator. It requires the inputs to satisfy some constraints 
and guarantees some properties for its output. We will use 
color patterns to specify such input-output constraints. A 
COnStEiint has the form Inp~ri,. . . , InpUtk -+ Output, 
where Znputj and Output are color patterns. A color 
pattern is similar in syntax to a color but allows the use 
of variables and wild-cards. Table 1 shows examples of 
input-output constraints for several strategies. 

If some input is not colored in the required manner, a 
recoloring is needed. Recoloring requires repartitioning, 
sorting, or building an index. 
Example 4.2 The Emp table of Example 4.1 (Figure 10) 
has the output color (p : city, s : city, i : none) while 
Dep has (p: dep#,s:none,i:dep#). 

In the 6rst query tree of Figure 10, the join uses the 
nested-loops strategy and its output has the color (p : 
dep#, s : city, i : none). From the lirst row of ‘pd- 
ble 1, this implies that the color of input1 (Emp) should be 
(p : dep#, s : city, i : *) and that of input2 (Dep) should 
be(p: dep#,s:*,i: dep#). The color of Dep matches 
the requirements but that of Emp does not. Cl 

Definition 4.1 inpCol(s, A, j) is defined to be the color 
pattern needed by strategy s for input j for the output to be 
of color pattern A. 

Definition 4.2 recolor(R, Cold, c,,,) is defined to be the 
cost of changing the color of table R from C&j to c,,,. 

Example 4.3 The color required for the first input of the 
nested-loops join in the tirst query tree of Figure 10 is 
C nem = (p : dep#, s : city, i : *). Since the output 
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Figure 10: Annotated Query Trees 

Table 1: Examples of Input-Output Constraints 
color (call it c,ld) of Emp differs in partitioning attribute, 
recolor( R, Cold T hew ) is the cost of repartitioning Emp on 
the c i ty attribute. cl 

The cost of an annotated query tree is the sum of the 
costs of all operators. The cost of an operator consists of 
recoloring the inputs to have colors needed by the chosen 
strategy plus the cost of the strategy itself. This is more 
formally expressed as follows. Suppose we have a tree T 
in which the root uses strategy s and has output color a, 
and furthermore that T has Ic subtrees Tl , . . . , Tk and that 
Tj produces table Rj with color cj. 

Cost(T) = StrategyCost(s, RI,. . D , Rk) 
k 

+ C recolor(Rj, Cj, inpCOl(S, U, j)) 
j=l 

k 

+ Ccostg) 
j=l 

If T is a leaf, we take its cost as zero since we count the 
cost of accessing operands as part of the cost of a strategy. 

The cost model above has several important properties. 
Firstly, no restriction is placed on the form of the Strate- 
gyCost() or recolorf) functions. For example, these may 
have non-linear terms such as logarithms, product and di- 
vision. Such terms do occur in cost models such as System 
R [SAC+791. Secondly, SfruregyCosr() and recolor0 rep- 
resent respectively the cost of the strategy and the cost to get 
the inputs into the physical form assumed by the strategy. 
This separation of cost into two components is the key to 
developing the optimization algorithm. 

4.2 Optimization Algorithm: Extension of ColorSplit 

We will now develop an optimization algorithm that given 
a tree with colors for the leaf nodes finds a strategy (and 

input and output colors) for each interior node of the query 
tree so as to minimize total cost. The algorithm (and its 
proof) is more complex than the CoZorSpZir algorithm of 
Section 3.3 but the basic ideas are similar. 
Definition 4.3 O&i, A) is defined to be the minimal cost 
of the subtree rooted at node i such that i has output color 
A. OptcStrategy(i, A) is defined to be the strategy that 
achieves this minimal value (pickany one strategy if several 
are minimal). 

For a leaf node i, Optc(i, A) = 0 if i is precolored with 
a color compatible with A and co otherwise. We will treat 
OptcStrategy(i, A) as undefined for leaf nodes. 
Definition 4.4 Opt(i) for node i is defined to be the min- 
imal cost of the subtree rooted at i. OptStrategy is 
defined to be the strategy and OptCoZor( i) the output color 
for which the minima is achieved. 

Definition 4.5 Strategies(i, A) is the set of strategies ap- 
plicable to the operator represented by node i and whose 
input-output constraint permits A as an output color. 

The following is a generalization of Lemma 3.3, Let 
node i havechildren (~1, . . . , ok. Supposethesubtreerooted 
at CY~ computes table Rj as its output. The minimum cost 
of the tree rooted at i such that i has output color A is 
obtained by trying out all strategies capable of producing 
output color A. The lemma shows that for any such strategy 
s, the lowest cost is achieved by individually minimizing 
the cost of each input. The minimum cost for the j’thinput 
is the best of two possibilities: (1) the minimum subtree 
whose output color matches the input color needed by s; 
and, (2) the minimum subtree plus the cost of recoloring its 
output. 

Lemma 4.1 For a leaf node i, Optc(i, A) is 0 if i has a 
color compatible with A and 00 otherwise. For non-leaf 
node i, Optc(i, A) obeys the following recurrence. 
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O&i, A) = min,EQIStrategyCost(s, A @l,...,Rk) 

+ Cf=, min[y:, yjll where & = Strategies(i, A) 
yj = Optc(aj, inpCol(s, A, j)) 
yj = Opt(aj) + reccdor(Rj, 0ptC010r(~~j), inpC01(~, A, j)) 

( skil!# ) 
(anpw) 

The lemma shows that it is possible to compute Opt c and 
Opt (as well as OptcStrategy, OptStrategy, OptColor) 
in a bottom-up manner. The following generalization of 
Lemma 3.4 allows to extract colors and strategies by atop- 
down pass. 

Lemma 4.2 If i gets color A and strategy s in some mini- 
mal solution, then there exists a minimal solution such that 
the j’th child Cyj of i has color Aj and strategy sj as fol- 
10~s. If $ < yj then Aj = inpCol(s, A, j) and sj = 
OptcStrutegy(cxj, Aj). Otherwise Aj = OptColor 
and sj = OptStrategy( 

The following algorithm applies Lemma 4.1 in a bottom- 
up pass followed by a top-down pass for Lemma 3.4. C is 
the set of allowable colors and r is the root of the tree. 

Algorithm 4.1 Algorithm ExtendedColorSplit 

1. for each node i in postfix order 
2. Use Lemma 4.1 to compute Optc(i, u) 
3. and OptcStrategy(i, u) for each color a E C 
4. Let a = A be a color for which Optc(i, a) is minimal 
5. Opt(i, u) is set to minimal value 
6. OptColor = A 
7. OptStrategy = OptcStrutegy(i, A) 
8. end for 

12. Use Lemma 4.2 to compute culur(uj) and strutegy(cy;) 

9. strategy(r) = OptStrategy 
10. color(r) = OptColor 
11. for each non-root node aj in prefix order 

’ ‘ing that combines communication and computation. Our 
algorithms are efficient, guarantee optimal@, and apply to 
queries that include operators such as grouping, aggrega- 
tion, intersection and set difference in addition to joins. 

(empw) (empt) (skw) (a;lpt)) 

Figure 11: Interaction of Repartitioning with Order of Joins 
Example 4.4 Suppose the tables imp ( emp#, city), 
EmpSkills(emp#, skill#), and 
Skills(skill#, skilltype) arepartitionedbythe 
underlined attributes. The following query finds employees 
who live in Palo Alto and have analytical skills. 
Select e From Emp e, EmpSkills es, Skills s 
Where e.emp# = es.emp# and es.skill# = s.skill# and 

s.skilltype = analytical and e.city = palo alto 
Figure 11 shows two alternate query trees. The trees 

use different join orders and incur different repartitioning 
costs. If “s.skilltype = analytical" is ahighly 
selective predicate, the second tree may achieve a low cost 
due to the small size of the intermediate table (Ski 11 s w 
EmpSkills). However, the 6rst tree avoids the cost of 
repartitioning the possibly very large EmpSki 11 s table. 
Thus repartitioning cost needs to be accounted for in join 
ordering. cl 

communication costs and query tree annotation and color- 

5 Conclusions and Future Work 
We have developed models and algorithms for the JOQR 
phase of a parallel query optimizer. Our work uses a model 
based on using color as an abstraction for the physical prop- 
erties of data such as how it is partitioned, sorted, or ac- 
cessible by indexes. We have proposed and solved two 
optimization problems: query tree coloring that models 

13. end for 
The algorithm has a worst-case running time of nSlC[ 

where S is the number of strategies, ICI the number of 
allowable colors and n the number of nodes in the tree. 

Since n and IS( are typically small, the running time 
of the algorithm is dependent on ICI. However, ICI can 
become large when we permit the extensions discussed in 
Section 3.4. The magnitude of ICI may be kept small by 
observing (1) no strategy yields an output relation with an 
index. Thus only 2 components of the triple for colors are 
relevant for interior nodes (2) only colors that might be 
useful to subsequent operator need to be considered. 

4.3 Interaction with Join Ordering 

We now show an example of how repartitioning costs inter- 
act with the order of joins. The reader is referred to [Has951 
for an extension of the System R style dynamic program- 
ming algorithm that integrates repartitioning costs into the 
join-ordering problem. 

An interesting direction is to devise optimization al- 
gorithms that permit “fragment and replicate” strate- 
gies [CPM] in additioned to partitioned strategies. Frag- 
ment and replicate is advantageous when, for example, a 
small table is joined with a large table. It may be cheaper 
to replicate the small table rather than repartition the large 
table. 

As shown in Section 4.3, there is interaction between 
the cost of repartitioning and join ordering. The standard 
solution for the join ordering problem is the System R dy- 
namic programming algorithm which has high computa- 
tional complexity. Integrating coloring further increases 
the cost of this algorithm [Has951. It would be interest- 
ing to evaluate whether the expensive integrated approach 
results in significantly better plans as compared to using 
coloring as a post-pass. 
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Emerging read-intensive decision-support applications 
may benefit data placement strategies that use both vertical 
and horizontal partitioning as well as replication. Such data 
placement may offer advantages such as reduced communi- 
cation and IO costs. Development of query processing and 
optimization techniques for such generalized data place- 
ment may be useful. 
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