Bypassing Joins in Disjunctive Queries*

Michael Steinbrunn† Klaus Peithner† Guido Moerkotte† Alfons Kemper†

†Universität Passau
Fakultät für Mathematik und Informatik
Lehrstuhl für Dialogorientierte Systeme
94030 Passau, Germany
(lastname)@db.fmi.uni-passau.de

‡RWTH Aachen
Lehrstuhl für Informatik III
52074 Aachen, Germany
moer@gom.informatik.rwth-aachen.de

Abstract

The bypass technique, which was formerly restricted to selections only [KMPS94], is extended to join operations. Analogous to the selection case, the join operator may generate two output streams—the join result and its complement—whose subsequent operator sequence is optimized individually. By extending the bypass technique to joins, several problems have to be solved. (1) An algorithm for exhaustive generation of the search space for bypass plans has to be developed. (2) The search space for bypass plans is quite large. Hence, partial exploration strategies still resulting in sufficiently efficient plans have to be developed. (3) Since the complement of a join can be very large, those cases where the complement can be restricted to the complement of the semijoin have to be detected. We attack all three problems. Especially, we present an algorithm generating the optimal bypass plan and one algorithm producing near optimal plans exploring the search space only partially.

As soon as disjunctions occur, bypassing results in savings. Since the join operator is often more expensive than the selection, the savings for bypassing joins are even higher than those for selections only. We give a quantitative assessment of these savings on the basis of some example queries. Further, we evaluate the performance of the two bypass plan generating algorithms.

1 Introduction

Since the early stages of relational database development, query optimization has received a lot of attention. Consequently, this attention has recently shifted to so-called “next-generation” database systems [FMV93]. [Fre87, GD87, Loh88] made rule-based query optimization popular, which was later adopted in the object-oriented context, as e.g., [OS90, KM90, CD92]. Many researchers have worked on optimizer architectures that facilitate flexibility: [Bat86, GD87, BMG93, GM93] are proposals for optimizer generators; [HFLP89, BG92] described extensible optimizers in the extended relational context; [MDZ93, KMP93] proposed architectural frameworks for query optimization in object bases.

Besides these works on optimizer architectures, optimization strategies for both traditional and “next-generation” database systems are being developed. [LMS94] introduces a technique for moving predicates across query components, where a component constitutes, for instance, a view definition. [HS93] deals with the optimal placement of predicates within the query graph. The authors pointed out that the ordering of the selection predicate evaluation is particularly important in the presence of expensive conditions. These may occur in relational systems in the form of nested subqueries and, in extended relational and object-oriented systems additionally in the form of user-defined functions. [HS93]'s work is based on ordering the conditions in a sequence according to their relative selectivity and evaluation cost. This approach yields the optimal evaluation sequence for conjunctive selection predicates [MS79].

However, it is striking that in all these works the optimization of disjunctive query predicates tends to be neglected. The traditional approaches transform a query predicate (i.e., either selection or join predicate) into a normal form (namely, conjunctive or disjunctive normal form), thus reducing the problem...
to the common, purely conjunctive case: either disjunctions are considered atomic within a single conjunction (conjunctive normal form, for instance in System R [SAC+79]) or the predicate is subdivided into several conjunctive streams that are optimized separately (disjunctive normal form, e.g., [BGW'81, KTY82, OS90, Mur88]).

In this paper, we show that both approaches fail to exploit a vast optimization potential, because a sufficiently fine tuned adaptation to a particular query's characteristics cannot be done that way. The bypass technique fills the gap between the achievements of traditional query optimization and the theoretical potential. In this technique, specialized operators are employed that yield the tuples that fulfill the operator's predicate and the tuples that do not on two different, disjoint output streams. This gives the opportunity of performing an individual, "customized" optimization for both streams. Bypass optimization used to be restricted to selections [KMP94], but is now enhanced in order to permit join operations yielding two output streams as well. This extension requires the development of algorithms for generating bypass plans. Since Hellerstein speculates in [Hel94] that a well-working heuristic solution for placing selections in the presence of join operations might be hard to obtain (or even impossible), we propose two "building-block algorithms" which are comparable to algorithms based on dynamic programming. We present an algorithm generating the optimal bypass plan and another one producing near optimal plans exploring the search space only partially. Another problem that has to be addressed is the reduction of the bypass join's high total result cardinality (namely equal the Cartesian product of its operands) by semijoins whenever possible.

In Section 2, the idea of join bypassing and its superiority to traditional techniques is illustrated by means of an example query. Section 3 goes into different construction methods for evaluation plans, and Section 4 provides a quantitative performance analysis of the generated plans with respect to its traditional counterparts. Section 5 concludes the paper.

2 Why Bypassing Joins?

2.1 Example Query

In order to illustrate the potential savings, let us consider the following example query from the domain of a book shop database. The underlying schema consists of five object types, namely Book, Work, Publisher, Order and Person. The attributes of these object types are:

<table>
<thead>
<tr>
<th>Object Type</th>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book</td>
<td>work: Work, publisher: Publisher, stock: integer</td>
</tr>
<tr>
<td>Work</td>
<td>author: Person, title: string</td>
</tr>
<tr>
<td>Publisher</td>
<td>pname: string, paddress: string</td>
</tr>
<tr>
<td>Person</td>
<td>name: string, first: string, address: string</td>
</tr>
</tbody>
</table>

A Work is written by an author (a Person) and bears a title, that, if published by a Publisher, makes up a Book. A Work may be published by more than one Publisher (e.g., different publishers for hard cover and paperback versions). The purchase of a Book requires an Order, which involves a customer (a Person, too) and comprises a certain quantity. Note that even though this schema is designed for an object-oriented database system similar to the ODMG standard [Cat94], the application of the bypassing technique described below is definitely not limited to this kind of systems, but can also be used in conventional relational and extended relational database systems without any modification.

Based on this schema, we might state the following query—formulated in an object-oriented extension of SQL [KM94] and resembling OQL [Cat94]—that retrieves particularly "interesting" authors and their works:

```sql
select distinct w.author.name, w.author.first, w.title
from w in Work, o in Order, p in Publisher
where (o.book.work.author = o.customer and w = o.book.work)
  or (o.quantity > o.book.stock and w = o.book.work)
  or w.author.address = p.paddress
```

The query predicate's disjuncts have the following meaning:

- disjunct `(o.book.work.author = o.customer and w = o.book.work)` selects authors that buy the books they have written themselves,
- `(o.quantity > o.book.stock and w = o.book.work)` determines orders for a book with a quantity exceeding the number in stock, and
- `(w.author.address = p.paddress)` selects authors that publish themselves (assuming that this is the case if they share their address with a publisher).
Abbreviating the four atomic conditions within the query's selection predicate in the following way:

\[
\begin{align*}
C_{\text{customer}}(o) & \text{ as } (o.\text{book}.\text{work}.\text{author} = o.\text{customer}), \\
C_{\text{work}}(w, o) & \text{ as } (w = o.\text{book}.\text{work}), \\
C_{\text{quantity}}(o) & \text{ as } (o.\text{quantity} > o.\text{book}.\text{stock}), \text{ and} \\
C_{\text{address}}(w, p) & \text{ as } (w.\text{author}.\text{address} = p.\text{paddress}),
\end{align*}
\]

the result of the query can be expressed as the set:

\[
\{ w \in \text{Work} \mid \exists o \in \text{Order}, p \in \text{Publisher} : \\
C_{\text{customer}}(o) \land C_{\text{work}}(w, o) \lor \\
C_{\text{quantity}}(o) \land C_{\text{work}}(w, o) \lor C_{\text{address}}(w, p) \}
\]

(1)

The generated query evaluation plans are (logical) algebraic expressions dealing with relations. There is one scan operator (\text{scan}) loading the objects of a particular type extension (or tuples of a relation) into a main memory buffer. Furthermore, our algebra is restricted to projection \(\pi\), selection \(\sigma\), join \(\Join\), semi join \(\bowtie\), and \(\times\), cross product \(\times\) and two union operators (\(\cup\) and \(\dot{\cup}\)) with and without duplicate elimination, respectively. Due to this restricted set of operators that comprises the about lowest common denominator for any relational or object-oriented database system, our results are not limited to a particular data model. The transformation of the logical into physical (executable) operators is not the topic of this paper. However, we will mention how indices and (physical) join methods can be applied.

2.2 Evaluation Plan Alternatives

In this section, we shall show the benefits of bypass evaluation plans by means of the example query stated above. Figure 1 depicts the optimal bypass evaluation plan for the query. The role of the if-statement is twofold: first, the result can be presented very quickly in case at least one of the base relations is empty, and second, it ensures conformance to the SQL semantics for a query of this kind (cf. [Mur88]). For comparison purposes, the optimal evaluation plans that are based on the conjunctive normal form (CNF) and the disjunctive normal form (DNF) of the query predicate, respectively, are shown as well (Figure 2 and 3). The latter two approaches are the prevailing strategies in existing database systems for dealing with predicates in general and disjunctive predicates in particular.

However, comparing the average evaluation cost figures for these three alternatives shows that the two "classic" strategies are not capable of computing the query result with costs as low as the bypass plan's (16,000 units). A closer look at the three evaluation plans will reveal the reason for the differences. Please note that in this section, we shall give just the results of the cost calculations according to our cost model. The cost model itself and a sample application (namely, for the bypass plan) is provided in [SPMK94].

The bypass evaluation plan starts on the left-hand side with the semijoin operation \(\bowtie_{\text{Publisher}}\) and \text{Work} and the selection \(\sigma_{\text{quantity}}\) of \text{Order} on the right-hand side. Tuples satisfying \(C_{\text{quantity}}\) are certain to be elements of the result set, hence they may bypass the other operation nodes of the evaluation plan. A similar reasoning applies to the two selection operations on the right-hand side: satisfying either \(C_{\text{quantity}}\) or \(C_{\text{customer}}\) suffices in order to qualify for further processing. The merge union node \(\dot{\cup}\) re-unites these two streams and, in turn, provides one of the semijoin's \(\bowtie_{\text{work}}\) input streams. The second input stream consists of all the tuples that do not satisfy the already mentioned other semijoin \(\bowtie_{\text{address}}\). The output of \(\bowtie_{\text{work}}\) is the second of the two (disjoint) subsets that make up the query's result. It can be noted as the main characteristic of bypass evaluation plans that enhanced selection and join operators are employed which do not merely provide those tuples that satisfy the operation's predicate, but those that do not as well. The resulting two tuple streams are necessarily disjoint, which makes expensive duplicate eliminating union operators dispensable. Subsequently, each of these two streams undergoes an individual, "customized" optimization process which entails the very

if Publisher = 0 or Work = 0 or Order = 0

then Result = 0

else Result =

Figure 1: Optimal (Bypass) plan for example query

Average cost: 16,000 units
efficient query evaluation plans—in contrast to traditional techniques. The plans derived by the traditional techniques are depicted in Figure 2 (CNF) and 3 (DNF). Both CNF- and DNF-based evaluation plans are common approaches for evaluating predicates in join and selection operations.

Let us first turn to the CNF-based evaluation plan in Figure 2. CNF-based plans employ a limited kind of bypassing within Boolean factors (for instance, if C_{address} in the join predicate of Figure 2's plan turns out to be true, evaluation of C_{work} is bypassed) and between Boolean factors (if the Boolean factor $C_{\text{address}} \lor C_{\text{work}}$ turns out to be false, evaluation of $C_{\text{address}} \lor C_{\text{quantity}} \lor C_{\text{customer}}$ is not carried out). Hence, CNF-based plans are a proper subset of bypass evaluation plans: every CNF-based plan can be expressed as a bypass plan, but not vice versa. However, being the optimal CNF-based evaluation plan for the example query, Figure 2 suggests that the conjunctive normal form (namely, $(C_{\text{address}} \lor C_{\text{work}}) \land (C_{\text{address}} \lor C_{\text{quantity}} \lor C_{\text{customer}})$) is probably not the construction base of choice for disjunctive queries. The division into Boolean factors requires joining of all relations involved in the query before the first selection takes place. If there are more than two relations, cartesian products are unavoidable. This fact is reflected in the CNF-based plan's average evaluation cost of 1,460,130 units, almost ninety times the cost of the equivalent bypass plan. The join operation is the biggest contributor, due to high input cardinalities. This figure already takes into account the implicit bypassing expressed by the CNF-plan as well as caching of condition evaluation results. It is striking that no cost-reducing semijoin can be employed, because attributes from both of the join's input relations are needed further on. Clearly, CNF-based query evaluation plans cannot be the answer to our problem, although they work quite well for queries without joins.

In contrast, DNF-based plans are much more capable of dealing with disjunctive queries, as Figure 3 shows. As the main difference compared to CNF-based plans, the “cloning” of tuple streams can be noted. For each of the disjuncts of the DNF (the query has already been stated as DNF, cf. equation (1) on page 3), a separate tuple stream is generated. The resulting plan is far less expensive to evaluate than the CNF-based plan, but with 22,175 units it still comes short of the bypass plan (in terms of saved cost) by about 6,000 units. The reason for this shortcoming is chiefly the need to eliminate duplicates in the final union operation and the fact that a condition has to be evaluated repeatedly for a given tuple (namely, once for each stream). A predicate like $a \land (c \lor d \lor e)$ illustrates this phenomenon: because the DNF is $(a \land c) \lor (a \land d) \lor (a \land e)$, condition a would appear in each of the three streams, and the higher condition a's relative cost were, the more apparent the DNF approach's weakness would be.

Our cost model does not consider indices and physical properties such as sorting, since in our opinion this would not lead to additional insight. The presence of indices does not tip the scale in favour of the traditional evaluation techniques; consider, for instance, the bypass plans (Figure 1) and the two con-

1 By the same reasoning as for bypass plans (Figure 1), we need to first test whether any of the argument relations is empty.
ventional plans (Figures 2 and 3). A hash index on Publisher.paddress can be exploited by an index semi-join in the bypass plan as well as in the DNF-based plan, but not in the CNF-based plan. In addition, only the bypass plan and the DNF-based plan can easily use a sort-merge implementation of the second join operator (semi-join on C_work). There is only one scenario—two indices on Order using the complex predicates C_quantity and C_customer as filters—where the bypass plan might be slightly inferior to the DNF-based plan.

From these considerations the conclusion can be drawn that the bypass technique is a universally applicable strategy that combines the advantages of both CNF- and DNF-based approaches and avoids their disadvantages: neither duplicate elimination nor caching is required for bypass evaluation plans to work.

3 Constructing Evaluation Plans

In this section, we shall outline two algorithms that generate bypass plans with joins, and—for comparison purposes—the traditional construction algorithms. Their working principles will be explained by means of the example query from Section 2.1, equation (1). For convenience, we repeat the query predicate below.

\[C_{\text{customer}}(o) \land C_{\text{work}}(w,o) \lor C_{\text{quantity}}(o) \land C_{\text{work}}(w,o) \lor C_{\text{address}}(w,p) \]

3.1 Bypass Plans

Before we start, we make some definitions. First, substituting a condition \(C_i \) by the constant "true" ("false") is denoted as \(g_{C_i:=true} \) (\(g_{C_i:=false} \)). For instance, \(g_{C_i:=true} = C_2 \land C_3 \) for \(g = C_1 \land C_2 \land C_3 \).

The second definition introduces the notion of a bundle with a control function: Let \(e_1, e_2, \ldots, e_n \) be some algebraic expressions, \(g \) be a Boolean function, and \(C \) be a condition of \(g \). Then,

\[
\begin{align*}
\sigma_g(e_1 \times \cdots \times e_n) &= \\
g_{C_i:=true}(e_1 \times \cdots \times e_n) &= \\
g_{C_i:=false}(e_1 \times \cdots \times e_n) &= \\
\end{align*}
\]

holds if \(e_i \) binds the free variable(s) of \(C \) and

\[
\begin{align*}
\sigma_g(e_1 \times \cdots \times e_n) &= \\
g_{C_i:=true}(e_1 \times \cdots \times e_i \land_C e_j \times \cdots \times e_n) &= \\
g_{C_i:=false}(e_1 \times \cdots \times e_i \land_C e_j \times \cdots \times e_n) &= \\
\end{align*}
\]

holds if \(e_i \) and \(e_j \) together bind the free variables of \(C \).

Recall that \(\cup \) denotes the union operator that needs not perform duplicate elimination, as duplicates cannot occur here. For the description of the construction algorithms, we shall use the more convenient notation \(\{ e_1, \ldots, e_n \}_g \) for the expression \(\sigma_g(e_1 \times \cdots \times e_n) \). We call \(\{ e_1, \ldots, e_n \}_g \) a bundle with control function \(g \). Employing this notation, equation (2) can be written as

\[
\{ e_1, \ldots, e_n \}_g = \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{address}}}(w,p) \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{quantity}}}(o) \land_{C_{\text{work}}}(w,o) \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{customer}}}(o) \land_{C_{\text{work}}}(w,o) \\
\]

and equation (3) as

\[
\{ e_1, \ldots, e_n \}_g = \\
\{ e_1, \ldots, e_i \land_C e_j \times \cdots \times e_n \}_g \land_{C_{\text{address}}}(w,p) \\
\{ e_1, \ldots, e_i \land_C e_j \times \cdots \times e_n \}_g \land_{C_{\text{quantity}}}(o) \land_{C_{\text{work}}}(w,o) \\
\{ e_1, \ldots, e_i \land_C e_j \times \cdots \times e_n \}_g \land_{C_{\text{customer}}}(o) \land_{C_{\text{work}}}(w,o) \\
\]

For a query \(\sigma_g(R_1 \times \cdots \times R_n) \), the following algorithms start with the initial bundle \(\{ R_1, \ldots, R_n \}_g \) and apply equation (4) or (5) repeatedly until a set of bundles with control functions \(g' = true \) or \(g' = false \) is obtained. This construction method builds up the query evaluation plans step by step in a bottom up fashion. In this respect, our optimizing technique is similar to the very well-known dynamic programming approach of [SAC+79] which orders joins starting from the entire scan-operations—as we do. A subsequent example will illustrate our approach.

FIX The first algorithm is called "FIX" since it integrates the conditions \(C_1, C_2, \ldots, C_n \) of the entire selection predicate in a FIXed order. An exhaustive search of all possible orders leads to the solution of "FIX." Let us consider the example: First, there is a single bundle consisting of the scan operators and the entire selection predicate as control function: \(\{ \text{scan(Publisher), scan(Work), scan(Order)} \} \) is denoted as \(\{ P, W, O \} \).

\[
\{ P, W, O \}_g = \{ e_1, \ldots, e_n \}_g \land_{C_{\text{address}}}(w,p) \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{quantity}}}(o) \land_{C_{\text{work}}}(w,o) \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{customer}}}(o) \land_{C_{\text{work}}}(w,o) \\
\]

Now, the conditions \(C_{\text{address}}, C_{\text{quantity}}, C_{\text{customer}} \) and \(C_{\text{work}} \) (in exactly this order) of the entire selection predicate in a FIXed order. An exhaustive search of all possible orders leads to the solution of "FIX." Let us consider the example: First, there is a single bundle consisting of the scan operators and the entire selection predicate as control function: \(\{ \text{scan(Publisher), scan(Work), scan(Order)} \} \) is denoted as \(\{ P, W, O \} \).

\[
\{ P, W, O \}_g = \{ e_1, \ldots, e_n \}_g \land_{C_{\text{address}}}(w,p) \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{quantity}}}(o) \land_{C_{\text{work}}}(w,o) \\
\{ e_1, \ldots, e_n \}_g \land_{C_{\text{customer}}}(o) \land_{C_{\text{work}}}(w,o) \\
\]

The first of these two bundles does not need further consideration, because the control function "true" indicates that tuples in this bundles are elements of the result set.
The next condition to be incorporated is C_{quantity}. As a result, the second bundle is split into two, which makes a total of three bundles so far:

\[
\{(P \leftarrow \text{C_address} W), O\} \quad \text{true} \cup \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{quantity}}(O)} C_{\text{work}}(w,o)\} \quad \text{false} \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{quantity}}(O)} C_{\text{customer}}(o) \land C_{\text{work}}(w,o)\}
\]

The third condition from our list is C_{customer}. After its introduction, one bundle bears the control function "false" and can thus be discarded (its tuples are certain not to be elements of the result set).

\[
\{(P \leftarrow \text{C_address} W), O\} \quad \text{true} \cup \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{quantity}}(O)} C_{\text{work}}(w,o)\} \quad \text{false} \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{customer}}(\sigma_{C_{\text{quantity}}(O)})} C_{\text{work}}(w,o)\}
\]

Now there are two bundles with the same control function. They can be merged into a single bundle; this operation yields:

\[
\{(P \leftarrow \text{C_address} W), O\} \quad \text{true} \cup \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{quantity}}(O)} \cup \sigma_{C_{\text{customer}}(\sigma_{C_{\text{quantity}}(O)})} \} C_{\text{work}}(w,o)
\]

And finally, after introducing the last condition C_{work}, two true- and one false-bundle remain.

\[
\{(P \leftarrow \text{C_address} W), O\} \quad \text{true} \cup \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{quantity}}(O)} \cup \sigma_{C_{\text{customer}}(\sigma_{C_{\text{quantity}}(O)})} \} \quad \text{false} \\
\{(P \leftarrow \text{C_address} W), \sigma_{C_{\text{customer}}(\sigma_{C_{\text{quantity}}(O)})} \}
\]

The two true-bundles are led together by a merge union \cup resulting in the optimal evaluation plan in Figure 1. Note that we can omit the cartesian product with O (= Order) if we assure that there is at least one element in this extension. Thus, for generating an efficient query evaluation plan we can employ Murakrishna's idea [Mur88] of applying an if-statement; this is already reflected in Figure 1.

The only remaining difference to Figure 1, the kind of join nodes employed, will be discussed in Section 3.2 below. If a bundle consists of more than one expression which binds variables interesting for the outcome of the query, a cross product of the expressions will be applied before performing the union.

For a selection predicate with n conditions, the "FIX" strategy has to consider $n!$ permutations as candidates for the optimal fixed order bypass evaluation plan.

OPT The "FIX" strategy as described above constructs evaluation plans where the conditions' evaluation order is the same for all possible paths from the first stage (relation scan) to the final stage (union of all disjoint streams). In other words, the evaluation order is always determined for the entire evaluation plan.

However, sometimes it is advantageous to construct evaluation plans where the evaluation orders are not determined globally, but independently for each possible path a tuple might take from the first to the last stage. For instance, it may be the best solution to pursue the evaluation order C_1, C_2, C_3 if C_1 = true for a particular tuple, but C_1, C_3, C_2 in case C_1 = false. This is the way the strategy "OPT" works: the order in which atomic conditions are introduced into bundles is chosen for each bundle independently. Thus, the search space examined by "OPT" is considerably larger: up to $(n - 0)^4$ alternatives have to be considered in the first step, $(n - 1)^2$ in the second step, and $(n - k + 1)^{2k-1}$ in the kth step, resulting in a worst-case total of $\prod_{i=1}^{n}(n-i + 1)^{2i-1}$ instead of a total of $n!$ (as for "FIX") evaluation plan candidates, but in contrast to "FIX," "OPT" is certain to come up with the optimal bypass evaluation plan. However, our quantitative assessment indicates that in almost all practical cases "FIX" generates the optimal evaluation plan, although it considers fewer alternatives.

3.2 Semijoins

One open issue concerning both algorithms ("FIX" and "OPT") remains to be discussed: the introduction of semijoins. In the final evaluation plan for the example query (cf. Figure 1), both join operators are replaced by semijoins. This last step in the construction of the evaluation will now be discussed. A semijoin $R_1 \bowtie C R_2$ is defined as:

\[
R_1 \bowtie C R_2 = \{ \langle r_1, r_2 \rangle \mid r_1 \in R_1 \land \forall r_2 \in R_2 : C(r_1, r_2) \}
\]

Therefore, the cardinality of $R_1 \bowtie C R_2$ is bounded by the cardinality of R_1 instead of the cardinality of the cartesian product $R_1 \times R_2$ as in ordinary join operations. This property makes the semijoin especially well suited for bypass evaluation plans: since the false-output from a join operation is needed as well as the true-output, a total of $|R_1|$ tuples have to be processed for a semijoin node, but $|R_1 \times R_2| = |R_1| \times |R_2|$ tuples for a join node. Note, that the semijoin effect can be applied for the true- and the false-output independently of each other.

Because the evaluation cost depends heavily on the number of tuples processed, it is obvious that join operators ought to be replaced by semijoin operators.
(cf., e.g., [Bry89]) whenever possible. In Figure 1, both joins could be replaced since none of the attributes from the respective second operand were needed in later stages of the evaluation plan. Fortunately, introducing semijoins into bypass plans is rather straightforward: we choose the "cheapest operator combination" of \(\land, \lor \) and \(\Rightarrow \) for the two output streams depending on the set of attributes needed further on.

3.3 Traditional Plans

For comparison purposes, we also implemented the two traditional approaches that are based on normal forms. Since these approaches are well-known [JK84] we shall only sketch them.

CNF For the CNF approach, the entire selection predicate is transformed into the Conjunctive Normal Form (CNF), and each disjunct of this normal form is regarded as a Boolean factor. Then, a two-phase optimization is performed—ordering the Boolean factors and ordering the conditions within the Boolean factors.

However, as shown for the running example (Section 2.2), the CNF approach is likely to lead to plans that produce intermediate results of enormous cardinality—a source of high costs. Furthermore, particular conditions may appear in more than one Boolean factor, which makes caching indispensable if repeated evaluation of those conditions is to be avoided. That is especially true for "expensive" conditions [HS93, He194]. Anyway, the optimal CNF-based evaluation plan cannot possibly perform better than the optimal bypass plan, since the set of CNF-plans is a proper subset of the set of bypass plans.

DNF For the DNF approach, the entire selection predicate is transformed into the Disjunctive Normal Form (DNF), and each conjunct of this normal form is regarded as a Boolean factor. Then, each Boolean factor is independently optimized by ordering selections [MS79], ordering joins [KBZ86], and ordering selections into join orderings [HS93].

However, the derived evaluation plans contain non-disjoint tuple streams that must be united by union operators that eliminate duplicates (unlike the special-case "merge" union operators for disjoint operands that can be employed in bypass plans). Furthermore, exactly as for the CNF approach, conditions may be evaluated more than once for a given tuple (namely, if they appear in more than one stream).

4 Quantitative Assessment

The quantitative assessment described in this section compares the bypass evaluation technique with the conventional techniques based on a normal form on one hand, and the optimization algorithms "OPT" and "FIX" on the other hand. In order to carry out these comparisons, two parameters have to be varied: the queries and the profile of the object base.

The queries are specified as Boolean functions with sets of projections which are, in turn, subsets of the extensions involved. The profile of the object base is expressed as a set of so-called basic values. These basic values comprise the cardinalities of the object extensions (relations), the selectivities of the conditions and the conditions' evaluation cost per invocation.

In this section, the optimization potential of the bypass evaluation technique with respect to conventional techniques is determined first. Because of the lack of a standardized query benchmark, only simple queries are used, which is, in our opinion, sufficient for the purpose of this comparison. But in order to fully appreciate the performance of the two bypass optimization flavours "OPT" and "FIX," generating more complex queries is imperative. Based on a particular object base profile, we generate a large set of different queries of that kind to be optimised.

4.1 Optimizing a very simple function

In the first benchmark series, we want to examine the following two questions:

- What is the impact of the basic values, i.e., the database profile?
- Which optimization potential is obtained by applying the bypass evaluation technique—even for a simple query?

For that, we optimized the function

\[C_1(r_1) \lor (C_2(r_2) \land J(r_1, r_2)) \]

for \(r_1 \in R_1 \) and \(r_2 \in R_2 \) with projection on attributes only of \(R_1 \) choosing 89 different settings of the basic values. But, before we outline the experimental results, a closer look at the Boolean functions reveals us the following possibilities for optimizations:

1. The expression \(C_2(r_2) \land J(r_1, r_2) \) can be bypassed by objects satisfying \(C_1(r_1) \).
2. The condition \(C_1(r_1) \) can also be bypassed; however, in this case the join \(J(r_1, r_2) \) and the condition \(C_2(r_2) \) have to be evaluated before \(C_1(r_1) \).
3. The join $J(r_1, r_2)$ can be transformed into a semi-join if the condition $C_2(r_2)$ is applied before the join.

4. The inputs of $J(r_1, r_2)$ can be reduced to those objects r_1 which do not satisfy $C_1(r_1)$ and those objects r_2 which satisfy $C_2(r_2)$, respectively.

The conventional evaluation techniques fail at least in one of these points. For example, the DNF-based plans can bypass neither $C_2(r_2) \land J(r_1, r_2)$ nor $C_1(r_1)$. And, since both Boolean factors of the conjunctive normal form select R_1 as well as R_2, the CNF-based plans cannot take advantage of semijoins. Let us quantitatively assess these shortcomings of the conventional evaluation techniques.

In the following diagrams (Figure 4–6), the two quotients CNF/OPT and DNF/OPT are depicted—we omit the quotient FIX/OPT since for this simple function “FIX” always computes the optimal plan, hence the quotient always equals 1.0. We varied the invocation costs and the selectivity factors of the conditions and the cardinalities of the extensions. All parameters except the varied one are set to default values which are depicted in Table 1.

Varying the cost values of $C_1(r_1)$ and $C_2(r_2)$ results in the diagrams of Figure 4. The CNF-based optimization cannot transform the join $J(r_1, r_2)$ into a semijoin. This will lead to more than four times higher evaluation costs if the query is not dominated by high cost values of $C_1(r_1)$ or $C_2(r_2)$. The CNF-based optimization is not able to bypass the condition $C_1(r_1)$—a fact which is less important for low evaluation cost values of C_1. However, if the cost value of $C_1(r_1)$ exceeds 10,000, the optimal bypass plan applies the expression $C_2(r_2) \land J(r_1, r_2)$ before $C_1(r_1)$ which yields approximately 15% better performance. Bypassing $C_2(r_2) \land J(r_1, r_2)$ will even yield 100% better performance if the query’s evaluation costs are dominated by the join or by high evaluation costs of $C_2(r_2)$.

The bypass effect is increased by a high selectivity factor of $C_1(r_1)$, which is demonstrated in the left-hand side diagram of Figure 5. The higher this selectivity factor is, the more objects of R_1 can bypass the join and the better the bypass plan performs with respect to conventional plans. The diagram on the right-hand side of Figure 5 shows another interesting behavior. The CNF-based optimization cannot apply $C_2(r_2)$ as a restriction on R_2, since its Boolean factor also contains $C_1(r_1)$. If the selectivity factor of $C_2(r_2)$ is low, it results in a low input cardinality of the join in DNF-based and in bypass plans. Hence, these plans are about ten times more efficient than the equivalent CNF-based evaluation plan.

There is no impact of the cardinalities; the plots of the quotients CNF/OPT and DNF/OPT are almost straight lines parallel to the x-axis. Therefore, these diagrams are not shown.

4.2 Optimizing pure disjunctive joins

The second benchmark series assesses the benefits of bypassing joins in a disjunctive “star query”, i.e., the join graph of the query forms a star. Especially, the DNF-based evaluation plans cannot exploit the bypass effect in queries with disjunctively connected joins, since these plans evaluate all disjuncts independently of each other.

We optimized the Boolean functions f_0, f_1, \ldots, f_9 which are recursively defined as follows:

$$
\begin{align*}
 f_0 & = J_0(r, r_0) \\
 f_i & = f_{i-1} \lor J_i(r, r_i) \text{ for } 1 \leq i \leq 9
\end{align*}
$$

where r, r_0, \ldots, r_9 are bound to R, R_0, \ldots, R_9, respectively. As setup, we took one large extension ($\text{card}(R) = 10,000$) and some small joining extensions ($\text{card}(R_i) = 200; 0 \leq i \leq 9$). The costs of the joins are always 10 and the selectivity factors are always 0.01.

The results of this benchmark are depicted in Figure 6. For this kind of queries, the CNF-based plans are inordinately bad, since they have to generate the cross product of all involved extensions. But also, the DNF-based plans are extremely bad because of the inability of bypassing: the evaluation costs of the optimal DNF-based plans are between 77% and 771% worse than the optimal bypass plans’ costs for $1 \leq x \leq 9$, i.e., from two to ten joins.

4.3 Comparison of OPT and FIX

The third benchmark series evaluates the quality of “FIX” in comparison with “OPT.” For that, we took four extensions with cardinality 10, 100, 1000, and 10000. For choice for the randomly generated Boolean functions, there were one restriction per extension, and two joins per pair of extensions. The cost values and

<table>
<thead>
<tr>
<th>Relation</th>
<th>Cardinality</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>100</td>
</tr>
<tr>
<td>R_2</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>Selectivity Factor</th>
<th>Cost/Invocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_1(r_1)$</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>$C_2(r_2)$</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>$J(r_1, r_2)$</td>
<td>0.01</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1: Default Values of $C_1(r_1) \lor (C_2(r_2) \land J(r_1, r_2))$
the selectivity factors of the conditions were also randomly chosen within a given range. The range of the cost values was [1, 30000], and the selectivity ranges were [0.1, 0.5] for the restrictions and [0.0001, 0.5] for the joins.

As Boolean function, we took up to five conditions from the restrictions and the joins and connected them by and/or randomly. As projections, we took a random number of the extensions which are involved in the chosen Boolean function. In this manner, we generated 100 queries and optimized them by "FIX" and "OPT."

In total, "FIX" was only 2% worse than "OPT." But, in order to obtain a better idea of the quality of "FIX" we subdivided the queries according to the quotients FIX/OPT. We counted the number of queries and we determined the average of the quotients of generated alternatives between "FIX" and "OPT" within the intervals [1, 1], [1, 1.01], [1.01, 1.05], [1.05, 1.2], [1.2, 2], and (2, ∞). The results are depicted in Table 2. According to the third row in Table 2, "OPT" considered only about twice as many alternatives than "FIX," a figure that is far lower than the worst case

\[\prod_{i=1}^{n} (n - i + 1)^{2^{n-i} - 1} / n!\] (cf. Section 3). The reason is that a bundle's control function, once reduced to "true" or "false," does not need to be considered further, which effectively prunes the search space. To summarize, we note that "FIX" computed the optimal evaluation plan for 90% of the queries, although it considered on the average only about one half of OPT's search space.
5 Conclusion

In this paper, we introduced the new join bypass evaluation technique, a technique that is especially well suited for disjunctive queries in any kind of database system, be it relational, extended relational or object-oriented. The bypass technique is founded on specialized selection and join operators that distribute the respective input set into two output sets. One of the output sets contains the tuples that satisfy the selection or join predicate, the other those that do not.

In order to employ these operators in so-called bypass evaluation plans, we introduced two possible construction methods named "FIX" and "OPT" and compared the generated plans with those derived by traditional techniques, namely based on the conjunctive or disjunctive normal form. The quantitative assessment confirmed the presumption that the bypass technique as an evaluation method that does not perform superfluous computations is superior to the traditional methods employed in current database systems. Although the cost reductions that can be achieved depend on the particular shape of the query predicates, the relative cost of their conditions and the database profile, it turned out that bypass evaluation plans never performed worse than traditional plans, but much better in the vast majority of cases—as much as an order of magnitude.

Since it has been surmised that heuristic-based predicate placement might be hard in principle even for pure conjunctive selection predicates [Hel94], we proposed another approach which composes the predicates of a query to an evaluation plan step by step. A similar approach works well in the System R optimizer [SAC+79] for determining a join order, and the algorithms OPT and FIX are an extension of this idea for disjunctive queries with bypass evaluation.

Acknowledgements We thank Markus Lubert for implementing the algorithms OPT, FIX, CNF, and DNF and carrying out the benchmarks. We also gratefully acknowledge Jens Claußen’s help in implementing the query execution engine.

References

