
Bypassing Joins in Disjunctive Queries*

Michael Steinbrunnt Klaus Peithnert Guido Moerkottet Alfons Kernpert

‘Uuiversitit Passau
FakultKt fiir Mathematik und Informatik
Lehrstuhl fiir Dialogorientierte Systeme

94030 Passau, Germany
(lastname)Qdb.fnai.uni-passau.de

Abstract

The bypass technique, which was formerly restricted
to selections only [KMPS94], is extended to join oper-
ations. Analogous to the selection case, the join op-
erator may generate two output streams-the join re-
sult and its complement-whose subsequent operator
sequence is optimized individually. By extending the
bypass technique to joins, several problems have to
be solved. (1) An algorithm for exhaustive generation
of the search space for bypass plans has to be devel-
oped. (2) The search space for bypass plans is quite
large. Hence, partial exploration strategies still result-
ing in sufficiently efficient plans have to be developed.
(3) Since the complement of a join can be very large,
those cases where the complement can be restricted to
the complement of the semijoin have to be detected.
We attack all three problems. Especially, we present
an algorithm generating the optimal bypass plan and
one algorithm producing near optimal plans exploring
the search space only partially.

As soon as disjunctions occur, bypassing results in
savings. Since the join operator is often more expen-
sive than the selection, the savings for bypassing joins
are even higher than those for selections only. We give
a quantitative assessment of these savings on the ba-
sis of some example queries. Further, we evaluate the
performance of the two bypass plan generating algo-
rithms.

‘This work was supported by the German Research Council
under contract DFG Ke401/6-2.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To COPY
otherwise, or to republish, requires a fee and/or special permission
from the Endowment.
Proceedings of the 21st VLDB Conference
Zurich, Switzerland, 1995

*RWTH Aachen
Lehrstuhl fiir Informatik III

52074 Aachen, Germany
moerQgom.informatik.rwth-aachen.de

1 Introduction

Since the early stages of relational database devel-
opment, query optimization has received a lot of at-
tention. Consequently, this attention has recently
shifted to so-called “next-generation” database sys-
tems [FMV93]. [Fre87, GD87, Loh88] made rule-based
query optimization popular, which was later adopted
in the object-oriented context, as e.g., [OS90, KM90,
CD92]. Many researchers have worked on optimizer
architectures that facilitate flexibility: [Bat86, GD87,
BMG93, GM931 are proposals for optimizer genera-
tors; [HFLP89, BG92] described extensible optimizers
in the extended relational context; [MDZ93, KMP93]
proposed architectural frameworks for query optimiza-
tion in object bases.

Besides these works on optimizer architectures, op-
timization strategies for both traditional and “next-
generation” database systems are being developed.
[LMS94] ’ t d m ro uces a technique for moving predicates
across query components, where a component consti-
tutes, for instance, a view definition. [HS93] deals
with the optimal placement of predicates within the
query graph. The authors pointed out that the or-
dering of the selection predicate evaluation is partic-
ularly important in the presence of expensive condi-
tions. These may occur in relational systems in the
form of nested subqueries and, in extended relational
and object-oriented systems additionally in the form
of user-defined functions. [HS93]‘s work is based on or-
dering the conditions in a sequence according to their
relative selectivity and evaluation cost. This approach
yields the optimal evaluation sequence for conjunctive
selection predicates [MS79].

However, it is striking that in all these works the
optimization of disjunctive query predicates tends to
be neglected. The traditional approaches transform
a query predicate (i.e., either selection or join pred-
icate) into a normal form (namely, conjunctive or
disjunctive normal form), thus reducing the problem

228

to the common, purely conjunctive case: either dis-
junctions are considered atomic within a single con-
junction (conjunctive normal form, for instance in
System R [SAC+79]) or the predicate is subdivided
into several conjunctive streams that are optimized
separately (disjunctive normal form, e.g., [BGW+81,
KTY82, OS90, Mur881).

In this paper, we show that both approaches fail to
exploit a vast optimization potential, because a suffi-
ciently fine tuned adaptation to a particular query’s
characteristics cannot be done that way. The bypass
technique fills the gap between the achievements of
traditional query optimization and the theoretical po-
tential, In this technique, specialized operators are
employed that yield the tuples that fulfll the operator’s
predicate and the tuples that do not on two different,
disjoint output streams. This gives the opportunity of
performing an individual, “customized” optimization
for both streams. Bypass optimization used to be re-
stricted to selections [KMPS94], but is now enhanced
in order to permit join operations yielding two output
streams as well. This extension requires the develop-
ment of algorithms for generating bypass plans. Since
Hellerstein speculates in [He1941 that a well-working
heuristic solution for placing selections in the presence
of join operations might be hard to obtain (or even im-
possible), we propose two “building-block algorithms”
which are comparable to algorithms based on dynamic
programming. We present an algorithm generating the
optimal bypass plan and another one producing near
optimal plans exploring the search space only partially.
Another problem that has to be addressed is the reduc-
tion of the bypass join’s high total result cardinality
(namely equal the Cartesian product of its operands)
by semijoins whenever possible.

In Section 2, the idea of join bypassing and its supe-
riority to traditional techniques is illustrated by means
of an example query. Section 3 goes into different con-
struction methods for evaluation plans, and Section 4
provides a quantitative performance analysis of the
generated plans with respect to its traditional coun-
terparts. Section 5 concludes the paper.

2 Why Bypassing Joins?

2.1 Example Query

In order to illustrate the potential savings, let us con-
sider the following example query from the domain of
a book shop database. The underlying schema con-
sists of five object types, namely Book, Work, Pub-
lisher, Order and Person. The attributes of these ob-
ject types are:

Book [work: Work, publisher: Publisher,
stock: integer]

Work [author: Person, title: string]

Publisher [pname: string, paddress: string]

Order [customer: Person, book: Book,
quantity: integer]

Person [name: string, first: string,
address: string]

A Work is written by an author (a Person) and bears
a title, that, if published by a Publisher, makes up
a Book. A Work may be publiihed by more than
one Publisher (e.g., diierent publishers for hard cover
and paperback versions). The purchase of a Book.re-
quires an Order, which involves a customer (a Per-
son, too) and comprises a certain quantity. Note that
even though this schema is designed for an object-
oriented database system similar to’the ODMG stan-
dard [Cat94], the application of the bypassing tech-
nique described below is definitely not limited to this
kind of systems, but can also be used in conventional
relational and extended relational database systems
without any modification.

Based on this schema, we might state the follow-
ing query-formulated in an object-oriented extension
of SQL [KM941 and resembling OQL [Cat94]- that
retrieves particularly “interesting” authors and their
works:

select distinct
w.author.name, w.author.first, w.title

from w in Work, o in Order, p in Publisher
where (o.book.work.author = o.customer and

w = o.book.work)
Or

(o.quantity > o.book.stock and
w = o.book.work)

Or

w.author.address = p.paddress

The query predicate’s disjuncts have the following
meaning:

l disjunct (0. book. work. author = oxustomer and
w = o.book.work) selects authors that buy the
books they have written themselves,

l (o.quantity > o.book.stock and w = o.book.work)
determines orders for a book with a quantity ex-
ceeding the number in stock, and

l (w.author.address = p.paddress) selects authors
that publish themselves (assuming that this is the
case if they share their address with a publisher).

229

Abbreviating the four atomic conditions within the
query’s selection predicate in the following way:

Ccustomer(o) as (o.book.work.author = o.customer),
F+(w,o) as (w = o.book.work),

guantity(o) as (o.quantity > o.book.stock), and
C addrew (as w.author.address = p.paddress),

the result of the query can be expressed as the set:

{ w E Work 1 30 E Onler,p E Publisher:

c customer (0) A Cwotk (w, 0) v
c quantity (0) A Cwork (W, 0) V Caddress (W,P) } (1)

The generated query evaluation plans are (logical) al-
gebraic expressions dealing with relations. There is
one scan operator (scan) loading the objects of a par-
ticular type extension (or tuples of a relation) into a
main memory buffer. Furthermore, our algebra is re-
stricted to projection ?r, selection cr, join W, semi-join #

and >Q, cross product x and two union operators (f

and u) with and without duplicate elimination, re-
spectively. Due to this restricted set of operators that
comprises the about lowest common denominator for
any relational or object-oriented database system, our
results are not limited to a particular data model. The
transformation of the logical into physical (executable)
operators is not the topic of this paper. However, we
will mention how indices and (physical) join methods
can be applied.

2.2 Evaluation Plan Alternatives

In this section, we shall show the benefits of bypass
evaluation plans by means of the example query stated
above. Figure 1 depicts the optimal bypass evaluation
plan for the query. The role of the if-statement is
twofold: first, the result can be presented very quickly
in case at least one of the base relations is empty, and
second, it ensures conformance to the SQL semantics
for a query of this kind (cf. [Mur88]). For comparison
purposes, the optimal evaluation plans that are based
on the conjunctive normal form (CNF) and the dis-
junctive normal form (DNF) of the query predicate,
respectively, are shown as well (Figure 2 and 3). The
latter two approaches are the prevailing strategies in
existing database systems for dealing with predicates
in general and disjunctive predicates in particular.

However, comparing the average evaluation cost fig-
ures for these three alternatives shows that the two
“classic” strategies are not capable of computing the
query result with costs as low as the bypass plan’s
(16,000 units). A closer look at the three evaluation
plans will reveal the reason for the differences. Please

if Publisher = 8 or Work = 0 or Order = 0

then Result = 0

else Result =

u

scan(P~bliaher) ecan(Work) scan(Order)

Figure 1: Optimal (Bypass) plan for example query
Average cost: 16,000 units

note that in this section, we shall give just the results of
the cost calculations according to our cost model. The
cost model itself and a sample application (namely, for
the bypass plan) is provided in [SPMK94].

The bypass evaluation plan starts on the left-hand
side with the semijoin operation Mc,,~~-,, of Publisher
and Work and the selection (TC,~,,~~,~ of Order on the
right-hand side. Tuples satisfying Cod&s8 are certain
to be elements of the result set, hence they may by-
pass the other operation nodes of the evaluation plan.
A similar reasoning applies to the two selection opera-
tions on the right-hand side: satisfying either Cg,,,,,.,tity
or Ccustomer suffices in order to qualify for further
processing. The merge union node 6 reunites these
two streams and, in turn, provides one of the semi:
join’s (KcWO,) input streams. The second input stream
consists of all the tuples that do not satisfy the al-
ready mentioned other semijoin Xcoddrr,,. The output

of ko* is the second of the two (disjoint) subsets
that make up the query’s result. It can be noted as
the main characteristic of bypass evaluation plans that
enhanced selection and join. operators are employed
which do not merely provide those tuples that sat-
isfy the operation’s predicate, but those that do not
as well. The resulting two tuple streams are. necessar-
ily disjoint, which makes expensive duplicate eliminat-
ing union operators dispensable, Subsequently, each
of these two streams undergoes an individual, “cus-
tomized” optimization process which entails the very

230

X \

/\ \
scan(Publisher) scan(Work) scan(Order)

Figure 2: CNF plan for example query
Average cost: 1,460,130 units

efficient query evaluation plans-in contrast to tra-
ditional techniques. The plans derived by the tradi-
tional techniques are depicted in Figure 2 (CNF) and 3
(DNF). Both CNF- and DNF-based evaluation plans
are common approaches for evaluating predicates in
join and selection operations.

Let us first turn to the CNF-based evaluation plan
in Figure 2. CNF-based plans employ a limited kind
of bypassing within Boolean factors (for instance,
if Caddms in the join predicate of Figure 2’s plan
turns out to be true, evaluation of Cworn: is bypassed)
and between Boolean factors (if the Boolean factor
C &dm8a V Cwork turns out to be false, evaluation of
C address v Cquclntity V Ccuatomar is not carried out).
Hence, CNF-based plans are a proper subset of bypass
evaluation plans: every CNF-based plan can be ex-
pressed as a bypass plan, but not vice versa. However,
being the optimal CNF-based evaluation plan for the
example query, Figure 2 suggests that the conjunctive
noMd f0MI-J (nmely, (Caddres8 v Cwork) A (Caddress v

C quantity V Ccuatomer)) is probably not the construc-
tion base of choice for disjunctive queries. The di-
vision into Boolean factors requires joining of all re-
lations involved in the query before the first selec-
tion takes place. If there are more than two rela-
tions, Cartesian products are unavoidable. This fact
is reflected in the CNF-based plan’s average evalua-
tion cost of 1,460,130 units, almost ninety times the
cost of the equivalent bypass plan. The join opera-
tion is the biggest contributor, due to high input car-
dinalities. This figure already takes into account the
implicit bypassing expressed by the CNF-plan as well
as caching of condition evaluation results. It is strik-
ing that no cost-reducing semijoin can be employed,

if Publisher = 0 or Work = 0 or Order = 0

then Result = 0

else Result = f

oCcustomer aCquantity

v
scan(Order)

acan(Publisher) ecan(Work)

Figure 3: DNF plan for example query
Average cost: 22,175 units

rk

because attributes from both of the join’s input rela-
tions are needed further on. Clearly, CNF-based query
evaluation plans cannot be the answer to our problem,
although they work quite well for queries without joins.

In contrast, DNF-based plans are much more ca
pable of dealing with disjunctive queries, as Figure 3
shows.’ As the main difference compared to CNF-
based plans, the “cloning” of tuple streams can be
noted. For each of the disjuncts of the DNF (the query
has already been stated as DNF, cf. equation (1) on
page 3), a separate tuple stream is generated. The
resulting plan is far less expensive to evaluate than
the CNF-based plan, but with 22,175 units it still
comes short of the bypass plan (in terms of saved
cost) by about 6,000 units. The reason for this short-
coming is chiefly the need to eliminate duplicates in
the final union operation and the fact that a condi-
tion has to be evaluated repeatedly for a given tu-
ple (namely, once for each stream). A predicate
like a A (c V d V e) illustrates this phenomenon: be-
cause the DNF is (a A c) V (a A d) V (u A e), condition a
would appear in each of the three streams, and the
higher condition a’s relative cost were, the more ap-
parent the DNF approach’s weakness would be.

Our cost model does not consider indices and phys-
ical properties such as sorting, since in our opinion
this would not lead to additional insight. The pres-
ence of indices does not tip the scale in favour of
the traditional evaluation techniques; consider, for in-
stance, the bypass plans (Figure 1) and the two con-

‘By the name reasoning aa for bypass plana (Figure l), we
need to first teat whether any of the argument relations is empty.

231

ventional plans (Figures 2 and 3). A hash index on
Pub1isher.paddre.w can be exploited by an index semi-
join in the bypass plan as well as in the DNF-based
plan, but not in the CNF-based plan. In addition, only
the bypass plan and the DNF-based plan can easily use
a sort-merge implementation of the second join opera-
tor (semijoin on Cwork). There is only one scenario-
two indices on Order using the complex predicates
c quantity and Ccustomer as filters-where the bypass
plan might be slightly inferior to the DNF-based plan.

From these considerations the conclusion can be
drawn that the bypass technique is a universally appli-
cable strategy that combines the advantages of both
CNF- and DNF-based approaches and avoids their dis-
advantages: neither duplicate elimination nor caching
is required for bypass evaluation plans to work.

3 Constructing Evaluation
Plans

In this section, we shall outline two algorithms that
generate bypass plans with joins, and-for compari-
son purposes-the traditional construction algorithms.
Their working principles will be explained by means of
the example query from Section 2.1, equation (1). For
convenience, we repeat the query predicate below.

C customer (0) A Cwork (w, 0) v

c quantity (0) A Cwotk (w, 0) v

Caddress @“VP)

3.1 Bypass Plans

Before we start, we make some definitions. First;
substituting a condition Ci by the constant “true”
(“false”) is denoted as gc+true (gCi:=fdse). For in-
stance, gcl:=true = CzACsforg=CrhCzAC$.

The second definition introduces the notion of a bun-
dle with a control function: Let ei, e2, . . . , e, be some
algebraic expressions, g be a Boolean function, and C
be a condition of g. Then,

ug (el x - . - x e,) =

~gc:=tru. (el x --a x uc(ei) x se- x e,) Cl

~!JC:=f*I.. (el x --. x u,c(ei) x e-m x e,) (2)

holds if ei binds the free variable(s) of C and

ug(el x .-a x e,) =

flga=tru. (el x . - - X ei WC ej X --a X e,) Cl

~gc:=r.1.. (el x e-m X ei Wyc ej X *** X e,) (3)

holds if ei and ej together bind the free variables of C.

Recall that 6 denotes the union operator that needs

not perform duplicate elimination, as duplicates can-
not occur here. For the description of the construc-
tion algorithms, we shall use the more convenient no-
tation {ei , . . . , en}g for the expression os(er x-q. x e,).
We call {ei , . . . , en}g a bundle with control function g.
Employing this notation, equation (2) can be written
as

{e1 ,... ,enjg =

{el,... , flc(ei), . . . , en~gc:=tru. U
{el,... 7 ~-c(Q), - - - , en)gC:=,a,.. (4)

and equation (3) as

{el, ...,en}g =

62, . . . , ei WC ej,. . . 7 4gC:=tru. 6

@l ,... ,ei W,c ej ,... 9 enh7-h (5)

For a query ns(R1 xv - - x &), the following algorithms
start with the initial bundle {RI,. . . , &}g and apply
equation (4) or (5) repeatedly until a set of bundles
with control functions g’ = true or g’ = false is ob-
tained. This construction method builds up the query
evaluation plans step by step in a bottom up fashion.
In this respect, our optimizing technique is similar to
the very well-known’ dynamic programming approach
of [SAC+791 which orders joins starting from the en-
tire scan-operations-as we do. A subsequent example
will illustrate our approach.

FIX The first algorithm is called “FIX” since it in-
tegrates the conditions Cl, C2, . . . , C,, of the entire
selection predicate in a FIXed order. An exhaus-
tive search of all possible orders leads to the solu-
tion of “FIX.” Let us consider the example: First,
there is a single bundle consisting of the scan opera-
tors and the entire selection predicate as control func-
tion ({scan(Publisher), scar&(work), scan(Order)} is
denoted as {P, W, 0)):

{P, w 01
(C~~,f~~~~(O)AC~~(W,O)VC~u~ntify(O)ACvlorL(W,O)V

C.ddn,,(W,p))

Now, the conditions Caddmss, Cquantity , Ccustomer
and &,rk (in exactly this order) are moved into
the bundle. After the first step, the introduction of
c =d&s8, the following two bundles are obtained:

i [; ;C.ddrw W), 0)tru.e b

-‘Caddrew w)F ‘1
(Ce”rton.r(o)ACuo~(W,O)V

C quontity(O)ACworh (w90))

The first of these two bundles does not need further
consideration, because the control function ‘true” in-
dicates that tuples in this bundles are elements of the
result set.

232

The next condition to be incorporated is Cg,,anti~y.
As a result, the second bundle is split into two, which
makes a total of three bundles so far:

w bddm,, wj, ohrue G

g:
+%dd,w w)Y uCguon,ity (o)k&“,O) ’
lcoddrras WI, g~Cqumatitv (O)}~cu,to~rr(~)/\~tuo*(~r~)

The third condition from our list is C cus omer* t After
its introduction, one bundle bears the control function
“false” and can thus be discarded (its tuples are certain
not to be elements of the result set).

it' W-Caddme w), ~C~u.nt(ty(')}C~onC(W,O) '

$l

~Caddrrm W))~Csu,tom.r(b'Csu.nlity(o))}C~uork(WrO) '

yCaddvers W P b~Ceu,toner (a~Cquontit,(o)) IfalSe

Now there are two bundles with the same control func-
tion. They can be merged into a single bundle; this
operation yields:

up w -C.ddm,, w) ?

(uCqmmri*v (0) fi ~ccwromrr (~~C~"."*ily(0)))}Cr.~(U),O)

And finally, after introducing the last condition CWO&,
two true- and one false-bundle remain.

The two true-bundles are led together by a merge

union 6 resulting in the optimal evaluation plan in
Figure 1. Note that we can omit the cartesian prod-
uct with 0 (= Order) if we assure that there is at least
one element in this extension. Thus, for generating an
efficient query evaluation plan we can employ Mura-
likrishna’s idea [Mur88] of applying an if-statement;
this is already reflected in Figure 1.

The only .remaining difference to Figure 1, the kind
of join nodes employed, will be discussed in Section 3.2
below. If a bundle consists of more than one expression
which binds variables interesting for the outcome of
the query, a cross product of the expressions will be
applied before performing the union.

For a selection predicate with n conditions, the
“FIX” strategy has to consider n! permutations as can-
didates for the optimal fixed order bypass evaluation
plan.

OPT The “FIX” strategy as described above con-
structs evaluation plans where the conditions’ evalua-
tion order is the same for all possible paths from the
first stage (relation scan) to the final stage (union of
all disjoint streams). In other words, the evaluation
order is always determined for the entire evaluation
plan.

However, sometimes it is advantageous to construct
evaluation plans where the evaluation orders are not
determined globally, but independently for each pos-
sible path a tuple might take from the first to the last
stage. For instance, it may be the best solution to pur-
sue the evaluation order Cr , Cz, Cs if Cr = true for
a particular tuple, but Cr , C’s, Cs in case Cr = false.
This is the way the strategy “OPT” works: the order
in which atomic conditions are introduced into bun-
dles is chosen for each bundle independently. Thus,
the search space examined by “OPT” is considerably
larger: up to (n - 0)’ alternatives have to be consid-
ered in the first step, (n - 1)2 in the second step, and
(n-k+l)sL-l in the lcth step, resulting in a ivorst-case
total of l-J:=, (n - i + 1)2’-’ instead of a total of n! (as
for “FIX”) evaluation plan candidates, but in contrast
to “FIX ,” “OPT” is certain to come up with the opti-
mal bypass evaluation plan. However, our quantitative
assessment indicates that in almost all practical cases
“FIX” generates the optimal evaluation plan, although
it considers fewer alternatives.

3.2 Semijoins

One open issue concerning both algorithms (“FIX”
and “OPT”) remains to be discussed: the introduc:
tion of semijoins. In the final evaluation plan for the
example query (cf. Figure l), both jom,operators are
replaced by semijoins. This last step in the construc-
tion of the evaluation will now be discussed. A semi-
join Rr KC R2 is defined as:

RI KcR2 = (t-1 E RI j3r2 E Rz:C(r~,rz)}

Therefore, the cardinality of RI Kc R2 is bounded by
the cardinality of RI instead of the cardinality of the
cartesian product RI x R2 as in ordinary join oper-
ations. This property makes the semijoin especially
well suited for bypass evaluation plans: since the false-
output from a join operation is needed as well as the
true-output, a total of IRl] tuples have to be processed
for a semijoin node, but /RI x R2] = ~RI I.IR2] tuples for
a join node. Note, that the semijoin effect can berap-
plied for the true- and the false-output independently
of each other.

Because the evaluation cost depends heavily on the
number of tuples processed, it is obvious that join
operators ought to be replaced by semijoin operators

233

(cf., e.g., [Bry89]) h w enever possible. In Figure 1, both
joins could be replaced since none of the attributes
from the respective second operand were needed in
later stages of the evaluation plan. Fortunately, intro-
ducing semijoins into bypass plans is rather straight-
forward: we choose the “cheapest operator combina-
tion” of >Q, D< and W for the two output streams de-
pending on the set of attributes needed further on.

3.3 Traditional Plans

For comparison purposes, we also implemented the two
traditional approaches that are based on normal forms.
Since these approaches are well-known [JK84] we shall
only sketch them.

CNF For the CNF approach, the entire selection
predicate is transformed into the Conjunctive Normal
Form (CNF), and each disjunct of this normal form
is regarded as a Boolean factor. Then, a two-phase
optimization is performed-ordering the Boolean fac-
tors and ordering the conditions within the Boolean
factors.

However, as shown for the running example (Sec-
tion 2.2), the CNF approach is likely to lead to
plans that produce intermediate results of enormous
cardinality-a source of high costs. Furthermore,
particular conditions may appear in more than one
Boolean factor, which makes caching indispensable
if repeated evaluation of those conditions is to be
avoided. That is especially true for “expensive” condi-
tions [HS93, He194]. Anyway, the optimal CNF-based
evaluation plan cannot possibly perform better than
the optimal bypass plan, since the set of CNF-plans is
a proper subset of the set of bypass plans.

DNF For the DNF approach, the entire selection
predicate is transformed into the Disjunctive Normal
Form (DNF), and each conjunct of this normal form
is regarded as a Boolean factor. Then, each Boolean
factor is independently optimized by ordering selec-
tions [MS79], ordering joins [KBZ86], and ordering se-
lections into join orderings [HS93].

However, the derived evaluation plans contain non-
disjoint tuple streams that must be united by union
operators that eliminate duplicates (unlike the special-
case “merge” union operators for disjoint operands
that can be employed in bypass plans). Furthermore,
exactly as for the CNF approach, conditions may be
evaluated more than once for a given tuple (namely, if
they appear in more than one stream).

4 Quantitative Assessment

The quantitative assessment described in this section
compares the bypass evaluation technique with the
conventional techniques based on a normal form on
one hand, and the optimization algorithms “OPT” and
“FIX” on the other hand. In order to carry out these
comparisons, two parameters have to be varied: the
queries and the profile of the object base.

The queries are specified as Boolean functions with
sets of projections which are, in turn, subsets of the
extensions involved. The profile of the object base is
expressed as a set of so-called basic values. These basic
values comprise the cardinalities of the object exten-
sions (relations), the selectivities of the conditions and
the conditions’ evaluation cost per invocation.

In this section, the optimization potential of the by-
pass evaluation technique with respect to conventional
techniques is determined first. Because of the lack of a
standardized query benchmark, only simple queries are
used, which is, in our opinion, sufficient for the purpose
of this comparison. But in order to fully appreciate the
performance of the two bypass optimization flavours
“OPT” and “FIX,” generating more complex queries
is imperative. Based on a particular object base pro-
file, we generate a large set of different queries of that
kind to be optimized.

4.1 Optimizing a very simple function

In the first benchmark series, we want to examine the
following two questions:

l What is the impact of the basic values, i.e., the
database profile?

l Which optimization potential is obtained by ap-
plying the bypass evaluation technique-even for
a simple query?

For that, we optimized the function

C&l) v (C2(9-2) A J(P1,~)) for rr E Rr and rz E R2

with projection on attributes only of RI choosing 89
diierent settings of the basic values. But, before we
outline the experimental results, a closer look at the
Boolean functions reveals us the following possibilities
for optimizations:

1. The expression Cz(rz) A J(ri, rz) can be bypassed
by objects satisfying Cr(ri).

2. The condition Cr(rr) can also be bypassed; how-
ever, in this case the join J(ri, rz) and the condi-
tion Cz(rz) have to be evaluated before Ci(r.1).

234

Carr ReTi

Condition Selectivity Factor Cost/Invocation

Psi,

Table 1: Default Values of Ci(ri) V (C~(Q) AJ(q, r-2))

3. The join J(ri, r2) can be transformed into a semi-
join if the condition Cz(rg) is applied before the
join.

4. The inputs of J(ri,rz) can be reduced to those
objects r-1 which do not satisfy Ci (rr) and those
objects rz which satisfy C&(Q), respectively.

The conventional evaluation techniques fail at least in
one of these points. For example, the DNF-based plans
can bypass neither Cz(rz) A J(rr, ~2) nor Ci (~1). And,
since both Boolean factors of the conjunctive normal
form select Ri as well as R2, the CNF-based plans
cannot take advantage of semijoins. Let us quanti-
tatively assess these shortcomings of the conventional
evaluation techniques.

In the following diagrams (Figure 4-6), the two quo-
tients CNF/OPT and DNF/OPT are depicted-we
omit the quotient FIX/OPT since for this simple func-
tion “FIX” always computes the optimal plan, hence
the quotient always equals 1.0. We varied the invoca-
tion costs and the selectivity factors of the conditions
and the cardinalities of the extensions. All parameters
except the varied one are set to default values which
are depicted in Table 1.

Varying the cost values of Ci(r1) and Cz(rz) re-
sults in the diagrams of Figure 4. The CNF-based
optimization cannot transform the join J(ri,rz) into
a semijoin. This will lead to more than four times
higher evaluation costs if the query is not dominated
by high cost values of Ci(ri) or Cz(rz). The DNF-
based optimization is not able to bypass the condition
Ci(ri)-a fact which is less important for low eval-
uation cost values of Cr. However, if the cost value
of Ci(ri) exceeds 10,000, the optimal bypass plan ap-
plies the expression C&(Q) A J(ri, r-2) before Ci(r1)
which yields approximately 15% better performance.
Bypassing Cz(r2)AJ(rl, rz) will even yield 100% better
performance if the query’s evaluation costs are domi-
nated by the join or by high evaluation costs of Cz(rz).

The bypass effect is increased by a high selectivity
factor of Ci(ri), which is demonstrated in the left-
hand side diagram of Figure 5. The higher this sel-

ectivity factor is, the more objects of RI can bypass
the join and the better the bypass plan performs with
respect to conventional plans. The diagram on the
right-hand side of Figure 5 shows another interesting
behavior. The CNF-based optimization cannot apply
C2(r2) as a restriction on R2, since its Boolean factor
also contains Ci(ri). If the selectivity factor of Cz(rz)
is low, it results in a low input cardinality of the join
in DNF-based and in bypass plans. Hence, these plans
are about ten times more efficient than the equivalent
CNF-based evaluation plan.

There is no impact of the cardinalities; the plots of
the quotients CNF/OPT and DNF/OPT are almost
straight lines parallel to the s-axis. Therefore, these
diagrams are not shown.

4.2 Optimizing pure disjunctive joins

The second benchmark series assesses the benefits of
bypassing joins in a disjunctive “star query”, i.e., the
join graph of the query forms a star. Especially, the
DNF-based evaluation plans cannot exploit the bypass
effect in queries with disjunctively connected joins,
since these plans evaluate all disjuncts independently
of each other.

We optimized the Boolean functions fs, fi, . . . , fa
which are recursively defined as follows:

f0 = Jo(v0)

fi = fi-1 V Ji(Ty7.i) for 1 5 i 5 9

where T, TO, r-9 are bound to R, &, . . . , &,
respectively. As setup, we took one large extension
(cad(R) = 10,000) and some small joining extensions
(cad(&) = 200; 0 < i 5 9). The costs of the joins are
always 10 and the selectivity factors are always 0.01.

The results of this benchmark are depicted in Fig-
ure 6. For this kind of queries, the CNF-based plans
are inordinately bad, since they have to generate, the
cross product of all involved extensions. But also,
the DNF-based plans are extremely bad because of
the inability of bypassing: the evaluation costs of
the optimal DNF-based plans are between 77% and
771% worse than the optimal bypass plans’ costs for
1 5 5 5 9? i.e., from two to ten joins.

4.3 Comparison of OPT and FIX

The third benchmark series evaluates the quality of
“FIX” -in comparison with “OPT.” For that, we took
four extensions with cardmality 10, 100, 1000, and
10000. For choice for the randomly generated Boolean
functions, there were one restriction per extension, and
two joins per pair of extensions. The cost values and

235

5
CNF/CPT

Varying cost/invocation of Ci Varying cost/invocation of Cs

Figure 4: Impact of the conditions’ cost values

r

Varying selectivity factor of Ci

1

l-

0 0.1 02 0.3 0.4 s.31ectMtyolc~0 0.5 0.7 0.8 0.9 1

Varying selectivity factor of Cz

Figure 5: Impact of the conditions’ selectivity factors

the selectivity factors of the conditions were also ran-
domly chosen within a given range. The range of the
cost values was [1,30000], and the selectivity ranges
were [0.1,0.5] for the restrictions and [0.0001,0.5] for
the joins.

As Boolean function, we took up to five conditions
from the restrictions and the joins and connected them
by and/or randomly. As projections, we took a ran-
dom number of the extensions which are involved in
the chosen Boolean function. In this manner, we gen-
erated 100 queries and optimized them by “FIX” and
“OPT.”

In total, “FIX” was only 2% worse than “OPT.”
But, in order to obtain a better idea of the quality of
“FIX” we subdivided the queries according to the quo-
tients FIX/OPT. We counted the number of queries
and we determined the average of the quotients of gen-
erated alternatives between “FIX” and “OPT” within
the intervals [l,l], (l,l.Ol], (1.01,1.05], (1.05,1.2],
(1.2,2], and (2,oo). The results are depicted in Ta-
ble 2. According to the third row in Table 2, “OPT”
considered only about twice as many alternatives than
“FIX,” a figure that is far lower than the worst case

Figure 6: Impact of the number of joins

ny.‘=,(n - i + 1)2i-1/n! (cf. Section 3). The reason
is that a bundle’s control function, once reduced to
“true” or “false,” does not need to be considered fur-
ther, which effectively prunes the search space. To
summarize, we note that “FIX” computed the opti-
mal evaluation plan for 90% of the queries, although
it considered on the average only ,about one half of
OPT’s search space.

236

cost Number of Alternatives considered References
FIX/OPT queries FIX/OPT

1Lll 90 0.48
(i,l.dl] 2 0.67

(1.01,1.05] 2 0.44

“il”“;:;“’

(ih

3 3 0.51 0.47

0 0.00

Table 2: Comparison between OPT and FIX

5 Conclusion

In this paper, we introduced the new join bypass eval-
uation technique, a technique that is especially well
suited for disjunctive queries in any kind of database
system, be it relational, extended relational or object-
oriented. The bypass technique is founded on special-
ized selection and join operators that distribute the
respective input set into two output sets. One of the
output sets contains the tuples that satisfy the selec-
tion or join predicate, the other those that do not.

In order to employ these operators in so-called by-
pass evaluation plans, we introduced two possible con-
struction methods named “FIX” and “OPT” and com-
pared the generated plans with those derived by tra-
ditional techniques, namely based on the conjunctive
or disjunctive normal form. The quantitative assess-
ment confirmed the presumption that the bypass tech-
nique as an evaluation method that does not per-
form superfluous computations is superior to the tradi-
tional methods employed in current database systems.
Although the cost reductions that can be achieved
depend on the particular shape of the query predi-
cates, the relative cost of their conditions and the da-
tabase profile, it turned out that bypass evaluation
plans never performed worse than traditional plans,
but much better in the vast majority of cases-as much
as an order of magnitude.

Since it has been surmised that heuristic-based pred-
icate placement might be hard in principle even for
pure conjunctive selection predicates [He194], we pro-
posed another approach which composes the predi-
cates of a query to an evaluation plan step by step.
A similar approach works well in the System R opti-
mizer [SAC+791 for determining a join order, and the
algorithms OPT and FIX are an extension of this idea
for disjunctive queries with bypass evaluation.

Acknowledgements We thank Markus Lubert for
implementing the algorithms OPT, FIX, CNF, and
DNF and carrying out the benchmarks. We also grate-
fully acknowledge Jens Claufien’s help in implementing
the query execution engine.

[Bat861 D. S. Batory. Extensible cost models and query
optimization in GENESIS. IEEE Database En-
gineering, 9(4), December 1986.

[BG92] L. Becker and R. H. Giiting. Rule-baaed opti-
mization and query processing in an extensible
geometric database system. ACM tins. on
Database Syatems, 17(2):247-303, June 1992.

[BGW+81] P. A. Bernstein, N. Goodman, E. Wong,
C. Reeve, and J. B. Rothnie. Query processing
in a system for distributed databases (sdd-1).
ACM tins. on Databuse Systems, 6(4), De-
cember 1981.

[BMG93]

Pv891

[Cat941

[CD921

[FMV93]

[F’re87]

[GD87]

[GM931

[He1941

[HFLP89)

J. A. Blakeley, W. J. McKenna, and G. Graefe.
Experiences building the Open OODB Query
Optimizer. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 287-295,
Washington, DC, USA, May 1993.

F. Bry. Towards an efficient evaluation of gen-
eral queries: Quantifiers and disjunction pro-
cessing revisited. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages
193-204, Portland, OR, USA, May 1989.

R. G. G. CatteII. Object Database Standard.
Morgan-Kaufmann Publ. Co., San Mateo, CA,
USA, 1994.

S. Cluet and C. Delobel. A general framework
for the optimization of object-oriented queries.
In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 383-392, San Diego,
USA, June 1992.

J.-C. Freytag, D. Maier, and G. Vossen, edi-
tors. Query Processing for Advanced Database
Syutems. Morgan-Kaufmann Publ. Co., San
Mateo, CA, USA, 1993.

J. C. Freytag. A rule-based view of query opti-
mization. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 173-180, San
Francisco, USA, May 1987.

G. Graefe and D. J. Dewitt. The EXODUS
optimizer generator. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages
169-172, San Francisco, USA, May 1987.

G. Graefe and W. J. McKenna. The Volcano
optimizer generator: Extensibility and efficient
search. In Proc. IEEE Conf. on Data Engi-
neering, pages 209-218, Vienna, Austria, April
1993.

J. M. Hellerstein. Practical predicate place-
ment. In Proc. of the ACM SIGMOD Conf.
on Management of Data, pages 325-335, Min-
neapolis, MI, USA, May 1994.

L. M. Haas, J. C. Freytag, G. M. Lohman,
and H. Pirahesh. Extensible query processing

237

[HS93]

[JK84]

[KBZ86]

[KM901

[KM941

[KMP93]

[KMPS94]

[KTY82]

[LMS94]

[Loh88]

[MDZ93]

in starburst. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 377-388,
Portland, OR, USA, May 1989.

J. M. Hellerstein and M. Stonebraker. Pred-
icate migration: Optimizing queries with ex-
pensive predicates. In Proc. of the ACM SIG-
MOD Conf. on Management of Data, pages
267-276, Washington, DC, USA, May 1993.

M. Jarke and J. Koch. Query optimization in
database systems. ACM Computing Surveys,
16(2):111-152, June 1984.

R. Krishnamurthy, H. Boral, and C. Zan-
iolo. Optimization of nonrecursive queries. In
Proc. of the Conf. on Very Large Data Bases
(VLDB), pages 128-137, Kyoto, Japan, 1986.

A. Kemper and G. Moerkotte. Advanced query
processing in object bases using access support
relations. In Proc. of the Conf. on Very Large
Data Bases (VLDB), pages 290-301, Brisbane,
Australia, 1990.

A. Kemper and G. Moerkotte. Object-Oriented
Database Management: Applications in Engi-
neering and Computer Science. Prentice Hall,
Englewood Cliffs, NJ, USA, 1994.

A. Kemper, G. Moerkotte, and K. Peithner.
A blackboard architecture for query optimiza-
tion in object bases. In Proc. of the Conf. on
Very Large Data Bases (VLDB), pages 543-
554, Dublin, Ireland, 1993.

A. Kemper, G. Moerkotte, K. Peithner, and
M. Steinbrunn. Optimizing disjunctive queries
with expensive predicates. In Proc. of the
ACM SIGMOD Conf. on Management of
Data, pages 336-347, Minneapolis, MI, USA,
May 1994.

L. Kerschberg, P. D. Ting, and S. B. Yao.
Query optimization in a star computer net-
work. ACM Zkans. on Database Systems,
7(4):678-711, December 1982.

A. Y. Levy, I. S. Mm&k, and Y. Sagiv.
Query optimization by predicate move-around.
In Proc. of the Conf. on Very Large Data
Bases (VLDB), pages 96-107, Santiago, Chile,
September 1994.

G. M. Lohman. Grammar-like functional rules
for representing query optimization alterna-
tives. In Proc. of the ACM SIGMOD Conf. on
Management of Data, pages 18-27, Chicago,
IL, USA, May 1988.

G. Mitchell, U. Dayal, and S. B. Zdonik.
Control of an extensible query optimizer: A
planning-based approach. In Proc. of the Conf.
on Very Large Data Bases (VLDB), pages 517-
528, Dublin, Ireland, 1993.

[MS791 C. Monma and J. Sidney. Sequencing with
series-parallel precedence constraints. Math.
Oper. Res., 4:215-224,1979.

[Mur88] M. Muralikrishna. Optimization of multiple-
disjunct queries in a relational database sys-
tem. Technical Report #750, University of
Wisconsin-Madison, February 1988.

[OS901 M. T. Ozsu and D. D. Straube. Queries
and query processing in object-oriented data-
base systems. ACM tins. Ofice If. Syst.,
8(4):387430, October 1990.

[SAC+791 P. G. Selinger, M. M. Astrahan, D. D. Cham-
berlin, R. A. Lorie, and T. G. Price. Access
path selection in a relational database manage-
ment system. In Proc. of the ACM SIGMOD
Conf. on Management of Data, pages 23-34,
Boston, USA, May 1979.

[SPMK94] M. Steinbrunn, K. Peithner, G. Moerkotte,
and A. Kemper. Bypassing joins in disjunc-
tive queries. Technical Report MIP-9412, Unll
versitit Passau, 94030 Passau, Germany, 1994.
WWW: ftp://dodgers.fmi.uni-passau.de/pub/
papers/techreports/MIP9412.ps.Z

238

