
A Practical and Modular Method
to Implement Extended Transaction Models

Roger Barga and Calton Pu
email: { barga, calton} @cse. ogi. edu

Department of Computer Science and Engineering
Oregon Graduate Institute of Science & Technology

P.O. Box 91000 Portland, OR 97291-1000

Abstract
Although many extended transaction models have been pro-
posed [Elm93], few practical implementations exist and even
fewer can support more than one model. We present the
Reflective Transaction Framework, as a practical and mod-
ular method to implement extended transaction models.
We achieve modularity by applying the Open Implemen-
tation approach [Kic92] (also known as meta-object proto-
col [KdRBSl]) to the design of the reflective transaction
framework. We achieve practicality by implementing on
top of a commercial transaction processing monitor. For
our implementation of the reflective transaction framework,
we introduce transaction adapters, add-on modules built on
top of existing commercial TP components, such as Encina,
that extend their functionality to support extended trans-
action features and semantics. Since our framework de-
sign is based on the transaction processing monitor archi-
tecture [GR93], it is widely applicable to many modern TP
monitors. The reflective transaction framework enables us to
implement a wide range of independently proposed extended
transaction models, which we demonstrate by implementing
the split/join model [PKH88] and cooperative transaction
groups [MP92, RC92].

1 Introduction

Although the ACID properties(atomicity, consistency,
isolation, and durability) [Reu82] of traditional transac-
tions in Online Transaction Processing (OLTP) systems
have proven very useful in banking and airline reserva-
tions, they are stronger than necessary for many ap-
plications and in some cases prevent desirable sharing
of information. Numerous extended transaction models
have been proposed [Elm931 which relax the ACID prop

Permission to copy without fee all or part of this material

is granted provided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright notice
and the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Switzerland, 1995

erties provided by transactions, replacing them with
weaker guarantees. Despite their popularity, relatively
little has appeared in the literature on implementingex-
tended transaction models, and a key remaining ques-
tion is whether or not they are practical.

In this paper, we present the Reflective Transac-
tion Framework as a practical and modular method to
implement extended transaction models. We achieve
modularity by applying the Open Implementation ap-
proach [Kic92], also known as meta-object proto-
col [KdRBSl], to design the reflective transaction frame-
work. We achieve practicality by baaing the imple-
mentation of the reflective transaction framework on
the Transaction Processing (TP) Monitor Architec-
ture [GR93], which is widely applicable to many modern
commercial TP systems.

One goal of our research is to bring together research
advances in extended transaction models and commer-
cial TP monitors, an interaction from which both sides
may benefit. To this end, our implementation of the
reflective transaction framework introduces transaction
adapters, add-on modules built on top of existing com-
mercial TP components to extend their functionality
in support of extended transaction features and seman-
tics. Transaction adapters take advantage of existing
transaction services to the extent possible, eliminating
unnecessary infrastructure development and facilitating
technology transfer. Insight that a commercial TP mon-
itor could be used was derived, in part, from previous re-
search in which we extended Encina [Encina], a commer-
cial TP facility distributed and supported by Transarc,
to implement Epsilon Serializability [PC93]. In this pa-
per, we again take advantage of Encina’s modularity to
implement the reflective transaction framework.

The reflective transaction framework enables US to
implement a wide range of extended transaction models,
and we illustrate this with the implementation of two in-
dependently proposed extended transaction models for
collaborative work (split/join [PKH88] and cooperative
groups [MP92, RC92]). Tl le ability to describe different

206

extended transaction models in a common framework
has been demonstrated previously in theoretical frame-
works such as ACTA [CR90]. However, the practical im-
plementation of such independently proposed extended
transaction models in an industrial-grade transaction
management system is new and significant.

The rest of this paper is organized as follows. We
present the Reflective Transaction Framework in Sec-
tion 2. Section 3 illustrates the flexibility of the re-
flective transaction framework through the example im-
plementation of two extended transaction models. Sec-
tion 4 introduces transaction adapters, describes their
functionality, data structures, and their implementation
on top of Encina. In Section 5 we discuss our implemen-
tation and review previous work and compare it with
our approach. We conclude with a summary, and direc-
tions for future work.

2 Reflective Transaction Framework

Classic transactions are bracketed by the control
operations Begin-Transaction, Commit-Transaction
and Abort-Transaction, while extended transactions
can invoke additional operations to control their execu-
tion, such as Split-Transaction, Join-Transaction
or Join-Group. A particular transaction model
defines both the control operations available to
transactions that adhere to that model and the se-
mantics of these operations. For example, whereas
the Commit-Transaction operation of the standard
transaction model implies the transaction is terminat-
ing successfully and that its effects on data objects
should be made permanent in the database, the
Commit-Transact ion operation of a member transac-
tion in a cooperative transaction group implies only
that its effects on data objects be made persistent and
visible to other member transactions. To capture this
distinction, we first separate the programming interface
of the transaction facility in order to keep the basic
function of a transaction independent of the advanced
operations required for extended transactions, and to
control implementation level concerns.

2.1 A Separation of Interfaces

The Reflective Transaction Framework separates the
programming interface to transactions into distinct lev-
els, where each level presents a different view of trans-
action functionality. This separation follows the Open
Implementation approach [Kic92], in which the func-
tional interface is separated from the meta interface,
and the purpose of the meta interface is to modify the
behavior of the functional interface. In our separation
of interfaces, presented below, Level 1 and Level 2 are
functional, subdivided for clarity only. Level 3 is the

meta interface that modifies the semantics of the trans-
action functional interface (Levels 1 and 2).

Level 1 The transaction demarcation interface:
begin-E-transact ion, commit-E-transaction, and
abort-E-transaction. The addition of letter E in
front of transaction’ indicates that these operations
extend transaction semantics beyond ACID.

Level 2 The extended transaction interface (opera-
tions defined by each extended transaction model):

l For the split/join transaction model, it is
Split-Transactionand’Join-Transaction.

l For the cooperative group transaction model, it
is Begin-Group, Join-Group, Commit-Group, and
Abort-Group.

Level 3 The meta-transaction interface: extends
the implementation of the TP monitor to support
the extended transaction interface (Level 2). For the
extended transaction models considered in this paper,
the operations needed are: instant iate, reflect ,
delegateop, delegatelock, formDependency, and
noConf lict .

The transaction demarcation interface (Level 1) ex-
ports the basic transaction interface. When used alone
(Level 2 and Level 3 not involved) it provides classic
ACID transaction semantics. The extended transaction
interface (Level 2) exports a model-specific transaction
interface when extended transaction functionality and
semantics are required. Finally, the meta-tmnsaction
interface (Level 3) exports a modifiable interface to
the underlying transaction processing facility for imple:
menting extended transaction models.

This separation of the programming interface to
the transaction processing system defines an extensible
framework which can be used to develop applications
requiring extended transactions and to implement ex-
tended transaction models. That is, a TP system pro-
grammer can implement extended transaction models
by using the extended transaction interface to introduce
new transaction control operations, and specify their
implementation using the meta-transaction interface.
An application programmercan then use both the trans-
action demarcation interface and the extended trans-
action interface to develop transactional applications.
Reflection [Mae871 plays a crucial role in the reflective
transaction framework, making it possible to open up
the transaction processing system’s functionality with-
out revealing unnecessary implementation details. The
meta-transaction interface makes reflection practical to
use, by enabling the TP systems programmer to extend
the underlying transaction processing system’s behavior
and implementation incrementally.

207

2.2 Metatransactions

One example of how reflection is applied in the reflective
transaction framework is metatransactions. Metatrans-
actions provide an extensible implementation of trans-
actions that can be used to realize extended transac-
tions. For example, using a metatransaction, one can
redefine the general behavior of a transaction: how it
handles conflicts, what control operations are available
to the transaction, what happens at commit and abort
time, etc. In our framework, each extended transaction,
referred to as an E-transaction, is causally connected
with a metatransaction. Metatransactions can be ma-
nipulated in the same manner as “normal” transactions,
but more importantly, changes made to a metatransac-
tion through the meta-transaction interface will be au-
tomatically reflected to the E-transaction. This enables
the modification and extension of the behavior of the
associated E-transaction.

The association of an extended transaction and a
metatransaction is made when the E-transaction is in-
stantiated, and ACID properties are initially assigned to
the E-transaction by default. After instantiating an E-
transaction, the application can add extended transac-
tion control operations and semantics to its metatrans-
action at runtime using the reflect meta-transaction
operation. For example, an alternative definition of the
Commit-Transaction operation can be assigned to an
Etransaction through its metatransaction. This makes
it possible to adjust the computational behavior of an
Etransaction to meet the needs of a particular applica-
tion without modifying the underlying implementation
of the transaction facility, but rather by changing the
Etransaction’s metatransaction.

-l
I

BeginSplit

Metatmnsaction
Begin Atomic

Baselevel Me&level Implementation-level

Figure 1: Transaction/Metatransaction Separation

When an E-transaction invokes a control operation,
such as commit-Transaction, the call is trapped and
handled at the meta-level by the metatransaction(see
Figure 1). Thus, the operation implementation speci-
fied by the metatransaction, instead of the default im-
plementation embedded in the TP system, is used to

execute the invoked operation. Usually, the metatrans-
action will simply invoke the operation from the meta-
level, but it may perform some extra processing before
or after calling the implementation-level operation and
perhaps not even call the operation at all. At the end of
the operation execution, any results are returned to the
E-transaction exactly like a normal transaction control
operation call. As illustrated, an E-transaction’s exe-
cution semantics are cooperatively provided by the con-
trol operations assigned to its corresponding metatrans-
action, and by semantic properties of these operations
which have been fixed by the meta-transaction inter-
face. In this sense, a suitable grouping of Etransaction
control operations form an extended transaction model.

3 Realizing Extended Transaction
Models -

In this section, we demonstrate the use of the meta-
transaction interface and the flexibility of the reflective
transaction framework by describing the implementa-
tion of two independently proposed extended transac-
tion models. Our objective is to identify functional
components required to implement extended transac-
tion models, so that we can then proceed to extend the
underlying transaction processing facilities via transac-
tion adapters. As such, the many variations that ex-
ist on the split/join and cooperative group transaction
models were considered outside the scope of this paper.

3.1 Split/Join Transaction Model

In the split/join transaction model [PKH88] it is pos-
sible for an Etransaction to split into two serializ-
able E-transactions or join another Etransaction. E
transactions in the split/join model are associated with
five transaction management operations: Begin, Split,
Join, Abort, and Commit. The Begin, Abort, and
Commit operations have the same semantics as the corre-
sponding operations of the atomic transaction. We will
focus the remainder of our discussion of the split/join
model on the definition and implementation of the ex-
tended Split and Join operations.

When an E-transaction Ti splits, by executing the
transaction management operation split (Tz) , it must
first create a new Etransaction (T2) and then delegate
responsibility for executing some of its operations to this
new E-transaction. To be more precise, Tr transfers
to Tt responsibility for all uncommitted operations on
a particular set of data objects, referred to as the
DelegateSet. In practice, users define the Delegate&t
by selecting the objects to split from the re-structured
E-transaction. At the time of the split, a new .E
transaction is created, instantiated, and then operations
invoked on objects in the DelegateSet by Ti are

208

delegated to Tz. Etransactions Ti and Tz can then
commit or abort independently. Split E-transactions
can further split, creating new E-transactions. Here, it
is interesting to note, that the split operation provides
users with a mechanism to release data objects that
are no longer needed by an Etransaction and to
release intermediate results. The split operation is
synthesized as follows:

gsplitOperation{
' // instantiate new transaction.

insbntiate(T2);
// add transaction semantics through reflection.
reflect(T2, sj-model);
// delegate locks related to objects in DelegateSet.
delegateJock(T2, DelegateSet);
// delegate ops related to objects in DelegateSet.
delegate,bp(Tl, DelegateSet);
// begin execution of the nea transaction.
begin(T2);
// return control to invoking transaction
return; 1

The join transaction operation is the inverse of a split
transaction operation. When E-transaction Ti exe-
cutes the transaction management operation join(
it must delegate its uncommitted operations and asso-
ciated locks to T2 and then terminate its execution; E-
transaction Tz must already exist and be instantiated.
Etransaction .Tg is now responsible for committing or
aborting these operations, and the updates of T2 must
be committed together with the effects ‘of Ti. In joining
an E-transaction, the DelegateSet is simply all uncom-
mitted operations and associated locks. In this regard,
a joining transaction behaves similar to a child transac-
tion in the nested transaction model. We synthesize the
join operation as follows:

E-joinOperation{
// delegate locks related to objects in DelegateSet.
delegateJock(T2, DelegateSet);
// delegate ops related to objects in DelegateSet.
delegate-op(T2, DelegateSet);
// terminate execution of Tl.
commit(Tl);
// return control to invoking transaction.

,return;)

3.2 Cooperative Group Transaction Model

In the cooperative group transaction model [MPSS,
RC92], individual transactions may join a transaction
group designed to facilitate cooperative access to a
set of data objects. The cooperative group model
supports two types of transactions, namely, group
transactions and member transactions, each having its
own set of transaction management operations. Only a
group transaction can create a cooperative transaction
group and it is then responsible for committing or
aborting the results of transactions that are members

of the group. Member transactions can join a specific
cooperative group and share access to all data objects
held within that group, while executing atomically with
respect to the group. Member transactions can abort
independently without causing the abort of the whole
group, but only when the group transaction commits are
the effects of the member transactions made permanent.

A group transaction in the cooperative group trans-
action model is associated with the following three
unique transaction control operations: beginGroup,
commitGroup, and abortGroup. A member transaction
is associated with the following four transaction con-
trol operations: Begin, Commit, Abort, and joinGroup,
where only the Begin operation has the same semantics
as the corresponding operation of the atomic transac-
tion. When a member transaction commits, all locks on
data objects acquired by the transaction are delegated
to the group transaction, as is the responsibility to make
the effects on data objects permanent in the database
when the group transaction commits. In this sense, the
member transaction is commit-dependent on the group
transaction and it only pseudo-commits its results when
it commits. When a member transaction aborts, all
locks on data objects, acquired by the transaction are
delegated to the group transaction and the transac-
tion’s effects on data objects are discarded. Now, we
will synthesize the extended transaction management
operations for the transactions in the cooperative group
transaction model.

E-joinGroupOperation(GID)(
set group = GID
// Ti can not commit until the group commits.
create-dependency(Commit, Ti, GID);
// Ti is abort dependent on the group.
create-dependency(Abort, CID, Ti);
// Ti permits group access to the locks it holds.
no-conflict(Ti, GID);
// begin execution.
begin(
// return control to invoking transaction.
return; 1

E-commitgemberOperation(
// delegate locks to the cooperative group.
delegate-locks(group);
// group is responsible for committing operations.
delegate-ops(group);
// wait until group terminates.
commit(self);
// return control to invoking transaction.
return;)

E-abortNemberOperation{
// delegate locks to the cooperative group
delegateJocks(group);
// terminate execution
abort(self);
// return control to invoking transaction.
return;)

209

These examples served to demonstrate how the meta-
transaction interface can be used to implement two in-
dependently proposed extended transaction models. We
describe the implementation of other extended transac-
tion models in the full version of this conference pa-
per [BP95]. Through the introduction of metatrans-
actions we have enabled transactions to exhibit differ-
ent extended semantics simply by binding to different
extended transaction control operations. This binding
can be done dynamically at run time using the meta-
transaction interface. Metatransactions are realized by
tmnsaction adapters, and in the following section we
introduce transaction adapters and describe their im-
plementation in Encina.

4 Details of Implementation Method
In this section, we first present an overview of trans-
action adapters and then discuss the motivation and
design strategy behind our transaction adapters imple-
mentation. Next, we describe the structure of the reflec-
tive transaction framework in terms of layering transac-
tion adapters over the TP Monitor Architecture. Fi-
nally, we introduce the individual transaction adapters,
and for selected adapters we outline their implementa-
tion in Encina. For reasons of space, we must limit
our description of transaction adapters, however more
detailed descriptions of the reflective transaction frame-
work and transaction adapters can be found in our other
papers [BP95, BPZH95].

4.1 Overview of Transaction Adapters
Transaction adapters are add-on modules built on top
of existing commercial TP components to extend their
functionality in support of extended transaction fea-
tures and semantics. Each transaction adapter pro-
vides a representation (or model) of the underlying
transaction processing component for use by the meta-
transaction interface, mechanisms for reasoning about
and with such a representation, and a set of commands
for controlling both the representation and the underly-
ing transaction facility. This set of commands is referred
to as TRACS, for TRansaction Adapter Command
Set. TRACS expose features such as operation and
lock delegation, dependency tracking between transac-
tions, and relaxed definitions of conflict, as explicit com-
mands by which extended transaction models can be
implemented. Thus, instead of applying operations in
the meta-transaction interface directly to the underly-
ing transaction system, we base them on an abstract
and enhanced description of the underlying transaction
system provided by transaction adapters.

Our principal goal in designing transaction adapters
was to build on top of existing TP monitor software
to take advantage of existing transaction services to

the extent possible. Although in retrospect this would
seem to be the logical approach, it was not at all
obvious that this was feasible because, in general, TP
monitor components are tightly tuned for traditional
transactions with ACID properties.

To reveal the design of the transaction adapters, we
followed three simple design steps. The first step was
to analyze extended transaction models to identify the
required modular functional components. Part of this
first step was summarized in Section 2. The second
step, presented in Section 4.2, was to analyze the TP
Monitor Architecture to identify the main modules that
provide basic functionality required for extended trans-
action models. After mapping the required extended
transaction model components into the existing TP
monitor modules, the functionality identified as miss-
ing is exactly what needed to be provided by transac-
tion adapters. The third, and final step, was to expose
the new extended transaction functionality through a
small number of commands which constitute the trans-
action adapters. In many cases, the functionality re-
quired for extended transactions was provided directly
by the underlying TP facility or easily constructed, but
in certain cases new data structures and functions had
to be provided by the appropriate transaction adapter.
As such, transaction adapters expose not only new ex-
tended functionality but also certain aspects of the TP
monitor implementation, allowing users to adjust the
implementation to better suit their needs.

4.2 TP Monitor Architecture

In order to discuss the implementation of our transac-
tion adapters, we first need to establish a common ba-
sis for the transaction processing mechanisms involved.
For this purpose we have chosen the standard trans-
action processing monitor architecture, introduced in
Bernstein [BerSO] and detailed in Gray, [GR93], which
we abbreviate as the “TP Monitor Architecture”. The
TP Monitor Architecture is abstract enough to allow
observations on TP systems in general, and yet con-
crete enough to make implementation details obvious
in a modern TP monitor, such as Transarc’s Encina or
Novell’s Tuxedo. We share the same assumptions made
by the TP Monitor Architecture such as two-phase lock-
ing (2PL) concurrency control and write-ahead logging
recovery. These assumptions are prevalent in existing
TP monitors and many database systems.

The major functions of the TP Monitor Architecture,
with respect to the implementation of Etransactions,
are the execution of transaction management operations
that control the transaction and concurrency control.
Hence, we focus our description on the interaction
among four components: a Tmnsaction Manager, a
Lock Manager, a Log Manager and a Resource Manager

210

(e.g., DBMS). Th e relationships among a transactional
application and these four components are depicted in
Figure 2. In a commercial setting, we might find a
TP system such as Transarc Encina or Novell Tuxedo
providing access to various resource managers, such as
an Oracle or Informix relational DBMS.

I-
I
I
I
I
1

I a I
I
I
I
1
,

=I 1
,

I
I

4
I

Transmiond I
Application I

0
1
I

a
,

Transaction Processing System I
L.

Figure 2: Components of a TP System

In the TP Monitor Architecture, ACID transac-
tions are initiated by a Begin-Transaction call and
terminated by either a Commit-Transaction or an
Abort-Transaction call. When initiated, each trans-
action is assigned a unique identifier and entered into a
transaction table managed by the Transaction Manager.
Each entry in the transaction table contains the trans-
action identifier (TR.ID), the transaction status, and
other information. When a transaction calls a trans-
action control operation, such as Commit-Transaction,
the Transaction Manager is responsible for carrying out
the execution of the command and recording informa-
tion in the transaction table. However, the Transac-
tion Manager in the TP Monitor Architecture does not
allow a transaction to redefine the implementation of
transaction management operations, nor does it allow
the transaction to extend the set of transaction control
operations available to it. And, while information on
all active transactions is available to the Transaction
Manager, it does not allow transactions to dynamically
restructure their operations or locks, nor does it pro-
vide support for intertransaction dependency manage-
ment. Thus, we introduce a transaction management
adapter to extend the functionality of the Transaction
Manager and expose its underlying services to imple-
ment extended transactions.

The Lock Manager maintains a lock table which
contains an entry for every data item on which a
lock has been requested (each request corresponds to
an operation). Two functions, Lock and Unlock, are
supported as the interface to the Lock Manager. The
Lock Manager only detects basic conflicts between
operations and does not consult any other source of
information to determine if a potential conflict can be

relaxed. Thus, our work is to extend this functionality
to support the semantics of E-transactions and their
relaxed notions of conflict. In addition, E-transactions
often cooperate by sharing access to data objects,
allowing the effects of their operations to be visible
without producing conflicts, and by delegating locks
to one another. The Lock Manager does not directly
support this functionality, so we introduce a lock
adapter and a conflict adapter to expose and extend the
functionality of the Lock Manager.

4.3 Transaction Management Adapter

The Transaction Management Adapter is responsible for
directing the execution of extended transaction control
operations during the life of an Etransaction. The ex-
ecution of an Etransaction consists of four steps: in-
stantiation, reflection, execution, and termination. An
Etransaction is entered into the reflective transaction
framework through instantiation. After an instantiated
E-transaction has been assigned a set of extended trans-
action control operations (semantics) through reflection
it is said to be ready l. The Etransaction is now pre-
pared for execution by the TP facility. An Etransaction
is said to be active if it is executing operations but has
not yet completed. An E-transaction is said to have
completed if it has finished executing operations but is
waiting to commit or abort, and considered terminated
after it has been committed or aborted.

4.3.1 Design of the Transaction Management
Adapter

Transaction management control operations are orga-
nized in the metatransaction descriptor under named
categories, to enable the transaction management
adapter to recognize the role each operations plays in
the execution of an E-transaction. For example, the
following metadescriptor fragment describes the control
operations available to a split/join-transaction.

metatransaction Descriptor<
Ryid is TBID;
execblode is Active;
initiateoperations: {<Begin,atomicBegin>)
processOperations: (<Split,splitOperation))
terminateoperations: {~Commit,atomicCommit>,

<Abort,atomicAbort>,
<Join,joinOperation>))

Here, Descriptor describes the metatransaction
properties of an E-transaction in which the slots are
defined as follows. The initiateoperations slot lists
all control operations that can be called to initiate the
execution of the E-transaction, the processOperations
slot lists control operations that can be called during

'In contrast,when an ACID transactionisinitiated by the TP
system it enters the ready state

execution, and the terminateoperations slot lists
control operations that will result in the termination of
the E-transaction.

When an extended transaction control operation is
invoked by an E-transaction, the actual code executed
is determined by its metatransaction (see Figure 3).
Suppose that a split operation is invoked by an E-
transaction. Processing involves first verifying this E-
transaction control operation is permitted for the E-
transaction. This check is performed by simply checking
the metatransaction descriptor to verify that split is
listed in the extended transaction control operation set.
In addition, preTest and postTest invariants can be
defined for each extended transaction control operation.
These invariants represent predicates that have to hold
at the beginning and the end of the execution of the
operation, respectively. Thus, if the operation name
is found in the metatransaction descriptor and the
preTest invariant predicate is satisfied, then the function
is executed. Afterwards, the postTest invariant is
evaluated, and then any results from the transaction
control operation are returned to the E-transaction as
if for a normal operation call.

Figure 3: Etransaction control operation redirection

During the course of its execution, an E-transaction
may form a dependency with another E-transaction,
such as a commit or an abort dependency. The transac-
tion management adapter provides commands to record
and track transaction dependencies in support of ex-
tended transactions, such as the pseudo commit of coop-
erative group transactions. In addition, the transaction
management adapter provides commands for restructur-
ing an Etransaction through operation delegation. Be-
fore discussing the Encina implementation of the trans-
action management adapter, we summarize commands
in its TRACS.

l instantiate(TRID): Create a metatransaction descrip-
tor for the E-transaction whose transaction identifier
is TRID. If successful, instantiate returns a rejlec-
tiwe transaction identifier (RID); otherwise it returns
an error. The E-transaction does not start executing-
execution is started by calling exec.

l reflect(RID,semantics): Assigns a set of transaction
management operations to the metadescriptor of the E
transaction whose reflective identifier is RID. For the
purposes of this paper, the semantics field wiII be one of
SJ - split/join model, CG - cooperative group model, or
SJCG - split/join cooperative group model.

l exec(TRID): Start execution of the E-transaction
whose transaction identifier is TRID.

l delegate-ops(TRID,opSet): Delegate ail uncom-
mitted operations listed in the set opSet to the
E-transaction whose identifier is TRID.

l form-dependency(type,TRIDi,TRIDj,opName):
form a dependency of the specified type between TRIDi
and TRID,. Many types of dependencies can be
recorded but the only two required for the extended
transaction models examined in this paper are CD -
commit dependency and AD - abort dependency.

4.3.2 Encina Implementation of the
Transaction Management Adapter

The Encina transaction manager assigns a unique trans-
action identifier (TRID) to each Etransaction when it
is initiated, creating an entry in the transaction table
to record the TFUD with other pertinent information,
and tracks the E-transaction through its execution. For
Etransactions we augment the information stored in
the transaction table using a Reflective Transaction Ta-
ble (RT). An entry is created in the RT when the E
transaction is instantiated, and is used to store informa-
tion relevant to the management of the Etransaction.
While every transaction in Encina will have an entry
in the transaction table, only Etransactions have an
entry in the reflective transaction table. Data stored
in both the transaction table entry and the reflective
transaction table entry permit bidirectional access to
the information stored in these tables.

Though each E-transaction will define its own
function for processing commit or abort transaction
management operations, the Transaction Management
Adapter must provide commit and abort preprocessing
to manage transaction dependencies. Thus, we define
two functions, PreCommit and PreAbort, and register
each with the appropriate callback function [ETPR].
The definitions of these new functions are outlined
below:

PreCommit(Z) Function Execution Steps:

1. Scan the list of dependencies emanating from Ti &d
for each such dependency D between Ti and some E
transaction Tj do the following:
l Abort Dependency - if D is an abort dependency,

then Ti cannot commit because if Tj aborts then Ti
must abort as well. Ti blocks and retries later.

l Commit Dependency - if D is a commit dependency
Ti can only commit after Tj completes (either
commits or aborts). Ti blocks and retries later.

212

2. At this point, Ti does not depend on any other E-
transaction. Commit preprocessing is complete and
control can be returned to the associated commit
procedure. Change the status of Ti to terminatedin
the RT.

3. Scan the list, of dependencies pertaining to Ti and
remove each such edge from the dependency graph.
This will effectively remove all dependencies of other
E-transactions on Ti.

PreAbort(Ti) Function Execution Steps:

1. Scan the list of dependencies impinging on Ti and for
each such dependency D between some Etransaction
Tj and Ti do the following:

l Abort Dependency - if D is an abort dependency,
then Tj must also abort. Invoke the abort proce-
dure on T3.

l Commit Dependency - if D is a commit depen-
dency, then simply remove this dependency.

2. At this point Ti does not depend on any other E
transaction. Abort preprocessing is complete and
control can be returned to the associated commit
procedure. Change the status of Ti to terminatedin
the RT and return success.

3. Scan the list of dependencies pertaining to Ti and
remove each such edge from the dependency graph.
This will effectively remove all dependencies of other
E-transactions on Ti .

To summarize the Encina implementation of the
transaction management adapter, the data structures
and implementation of each command in the TRACS
are described below:

Reflective transaction table (RT): Each entry
in the RT is assigned a unique identifier, or reflective
transaction identifier (RID), and contains the following
information:

l TRID: transaction identifier of E-transaction T.

l Group: TRID of T’s parent or cooperative group, in any.

l Status: the operational status of the E-transaction,
which will be one of the following: instantiated, ready,
active, completed, and terminated.

l Transaction Management Operations: In the form of
a property list of (OperationName, function) pairs.
Property values are retrieved by using the operation
name, providing the address of the function that is to
be executed by the E-transaction.

The reflective transaction table is created by placing
the reflective descriptors in a chained hash table based
on the transaction’s TRID.

The transaction dependencies graph (TRAND):
This is a directed graph where the nodes in TRAND
represent E-transactions and an edge from node Ti to Tj
labeled with type represents a dependency of type between
E-transaction Ti and E-transaction T3. TRAND is composed
of node structures that contain the following information:

. TRIDf,,,

. RIDfrom
l dependency list of (type, TRIDt,, RIDto, opName)

Nodes in TRAND include pointers into both the
transaction table and the reflective transaction table for
both E-transactions involved in the dependency, as well
as information on the type of dependency. The node
and edge data structures composing TRAND are doubly
hashed on the TRID of the two Etransactions involved
so that dependencies emanating from or impinging on
an E-transaction can be located efficiently.

The Encina implementation of commands in the
Transaction Management TRACS are described below:

instant iate(TRID): Create a reflective transaction de-
scriptor (RD) for, the Etransaction and generate a reflective
identifier (RID), storing the RD in the reflective transaction
table (RT). Create an entry in the transaction table (TT) for
the new E-transaction and generate a transaction identifief
(TRID). Record the TRID in the RT entry corresponding
to the E-transaction, and create a property list for the E
transaction using the command tran-l?ropertyAdd (Re-
flectiveID, RID) to record the RID. Register preabort and
precommit callback functions for dependency management
using the functions callbackBeforeAbort(preAbort) and
callbackBeforePrepare(preCommit), and set the status
of the Etransaction in the RT to instantiated.

reflect(RID, conteet): The transaction management
operations associated with the named contezt, such as
Split-Join or Cooperative Group, are assigned to the E
transaction. This assignment takes the form of a property
list of (operatiotl-name, function) pairs. For each transaction
management operation associated with contezt a property
pair is created and the memory addresses of the function
associated with the operation is registered. The function
(address) associated with the transaction management op
eration will be executed by this Etransaction when the op
eration is called. Set the status of the Etransaction in the
RT to ready.

formdependency(type, Ti, Tj, opName) : Insert a
new edge in TRAND. Before this new edge is added to the
graph a check is performed to prevent a dependency cycle
from being created. If successful, that is, no cycles were
detected by the addition of this new edge in TRAND, the
function returns success; otherwise it returns fail.

removedependency(type, Ti, Tj ,opName) : Fk-
moves an edge from the dependency graph TRAND.

delegate_ops(Tj ,DelegateSet) : Transfer uncommit-
ted operations listed in DelegateSet from Ti to Tj, and ad-
just dependencies in the TRAND graph accordingly.

213

4.4 Conflict Adapter
Depending on the semantics of an E-transaction and
its relationship to other E-transactions, not all conflicts
between E-transactions need to produce dependencies
or serialization orderings. To capture this, the conflict
adapter can selectively present and change the definition
of conflict for one or more underlying data objects
or E-transactions. By adapting the definition of
conflict offered by the underlying TP system, the
conflict adapter is able to provide support for a variety
of extended transaction models and semantics-based
concurrency control protocols [BPZH95].

The conflict adapter relaxes conflicts between E-
transactions by two means: a compatibility table
defining conflict relationships between operations, and
a no-conflict table that records all conflicts explicitly
relaxed between Etransactions. Based on these two
sources of information, the conflict adapter uses the
following rule to determine whether there is a conflict
between two Etransactions:

Definition 1 (Relazed Conflict Rule): A conflict
detected by the basic conflict detection mechanism can
be relaxed if either of the following conditions hold
true:

1. the semantics of the data object indicate that the
operation for which the lock is being requested is
compatible with all uncommitted operations holding a
lock in an incompatible mode;

2. the Etransaction holding the lock on the data object has
explicitly indicated that the E-transaction requesting the
lock has permission to perform the operation, regardless
of the basic conflict;

Thus, the relaxed conflict rule used by the conflict
adapter states that an E-transaction may acquire a
lock if all other E-transactions owning the lock in
a mode incompatible with T are relaxed by either
operation semantics or explicit agreement between
the E-transactions. The generality of the relaxed
conflict rule allows the conflict adapter to capture
many semantics-based concurrency control protocols
discussed in the literature [BPZH95], and combine them
with extended transactions models.

If an incompatible lock request is granted to an E-
transaction Ti because of a relaxed conflict, a depen-
dency Ti + Tj may be created for each Etransaction
such that Tj owns a lock in a mode incompati-
ble with Ti. The type of dependency formed be-
tween E-transaction Ti and Tj will be provided by ei-
ther the operation compatibility table or the no con-
flict table, and recorded in the dependency graph
using the transaction management adapter command
formdependency(type,Ti,Tj,opName). These de-
pendency relationships will be tracked across both op-

eration and lock delegation by the transaction manage-
ment adapter. For example, if there is a commit de-
pendency Ti +CD Tj and Ti delegates its locks to Tk
through a join operation, then the dependency is up-
dated to Tk -#CD Tj.

For the extended transaction models considered in
this paper, we have utilized only one command in the
conflict adapter TRACS, namely noconflict:

noconflict(Tj, [dataobjects]): when issued by E
transaction Ti it indicates that even if Ti has a data object
in the set [dataabject &)I locked in a mode that normally
conflicts with TJ, Tj can still perform operations on the data
object as far as Ti is concerned. If the list of data objects
is empty, then Ti permits Tj access to any data object on
which it holds a lock.

A complete description of the conflict adapter
and its associated TRACS, along with a descrip-
tion of its Encina implementation is described
elsewhere [BPZH95].

4.5 Lock Adapter
Locks on data objects can restrict the ability of a trans-
action to see the effects of other transactions on data
objects while they are executing. The lock adapter al-
lows greater control over the visibility of data objects by
enabling an E-transaction to grant other E-transactions
access to data objects on which they hold locks. The
lock adapter enables an E-transaction to delegate own-
ership of its locks to another Etransaction prior to ter-
mination through the delegatelock command. The
delegatelock command allows the E-transaction to
specify whether it wishes to delegate all the locks it curl
rently holds or only those for specified data objects. The
conflict adapter records access rights granted between
E-transactions in the no-conflict table, while the lock
adapter provides the E-transactions access to the locked
data object(s). It is the responsibility of the transaction
programmer to guard against unwanted non-serializable
behavior when using this feature.

The Lock Adapter provides this enhanced access to
the lock table through commands which extend the
functionality of the underlying lock service. Specifically,
it provides E-transactions the ability to both delegate
locks and share access to locked data objects. The
principal command supported by the lock adapter
TRACS is delegatelock:

delegatelock(Tj, [dataobjects] > when issued by E
transaction Ti, it releases all locks that Ti owns on the
data objects listed in the set dataobjects and transfers
ownership to E-transaction Tj. If the field listing the data
objects is empty then this corresponds to all locks that
Ti holds. The lock adapter supports additional options
for specifying what locks are to be delegated, which are
described elsewhere [BPZH95].

214

5 Discussion

In this section, we first discuss aspects of layering our
implementation of the reflective transaction framework
on the Encina TP Monitor. We then attempt to place
the contribution of our work in perspective, and to
clarify its relationship to work similar in spirit to ours.

5.1 Extending the Encina TP Monitor

TP monitors provide a general framework for trans-
action processing, supplying the “glue” to bind the
many software components of a TP system through
services like multithreaded processes, interprocess com-
munication, queue management, and system man-
agement [BerSO]. While early TP monitors were
constructed from tightly integrated product-specific
services, modern TP monitors, such as Transarc’s
Encina [Encina], are layered on modular transaction
middleware services. These transaction middleware ser-
vices provide the basic building blocks for many of the
features that a TP monitor must provide, and have a
wide variety of uses. For example, IBM recently built
a new implementation of its CICS TP monitor layered
on transaction middleware developed by Tpansarc, the
same middleware used in the Encina TP monitor.

The transaction services for the Encina TPM are
provided by the Encina Toolkit, which is composed
of separate transaction middleware service modules.
Each module provides its transaction services through
a relatively simple and uniform application program-
ming interface (API). The core transaction services
of the Toolkit are provided by the following modules:
Tmnsaction Service Module(TRAN) provides transac-
tion demarcation (begin, commit, abort), distributed
two-phase commit management, and nested transac-
tions; Lock Service Module (LOCK) provides a logical
locking package that guarantees serializability; Log Ser-
vice Module (LOG) provides write-ahead log support
for transaction updates, archiving, and crash recovery;
Transactional RPC Module (TRPC) extends DCE re-
mote procedure call facility (RPC) to have exactly-once
transaction semantics. Together, these modules provide
the basic building blocks for the services of the standard
TP monitor architecture [GR93, pp. 211.

It was a basic tenet that our reflective transaction
framework should be built as a relatively thin layer over
the transaction middleware services provided by the
Transarc Toolkit. In our design, transaction adapters
are simply higher-level compositions of the transaction
middleware services in order to realize extended transac-
tion models. Specifically, the transaction management
adapter extends the TRA N module to manage extended
transactions, while the conflict and lock adapters ex-
tend the lock services provided by the LOCK module.
In some cases, the Toolkit module functionality is di-

rectly exposed by the adapters. For example, the lock
adapter uses the standard API to LOCK to release and
acquire locks in support of delegation. In other cases,
the Toolkit module functionality is essentially hidden
and the necessary functionality is provided by the trans-
action adapter. For instance, TRAN callbacks are used
to pass transaction specific information from Encina to
the reflective transaction table in the transaction man-
agement adapter, and to provide a convenient point for
performing transaction dependency checks.

In general, our experience with the Encina Toolkit
was that it is well designed and provided a good
foundation upon which to implement the reflective
transaction framework. To date, we have only used the
Toolkit as defined through the API and callback facility.
The modularity and extensibility of the Toolkit, along
with the functionality it provides have simplified our
development effort and made it possible for us to focus
on the design of the Reflective Transaction Framework.

5.2 Comparison With Related Research

Since the introduction, of extended transaction models,
research towards their realization has focused primarily
on proposing specialized execution facilities, or extend-
ing programming and database languages with primi-
tives for extended transactions. We refer the reader to
Elmagarmid [Elm931 for a collection of recent work.

In contrast, the reflective transaction framework rep
resents an evolutionary approach. Rather than at-
tempting to develop a specialized transaction execution
facility, the reflective transaction framework seeks to
build support for extended transactions from transac-
tion facilities which support classic transactions. From
a purely pragmatic standpoint, our research differs from
previous work in that we can use existing commercial
products that runs across different platforms to imple-
ment different extended transaction ,models. Our re-
search poses and answers the question “Is it possible to
extend the TP monitor architecture in a practical and
modular manner in order to realize extended transaction
models”. By doing so, it opens up the possibility of im-
plementing a wide range of extended transaction mod-
els on industrial-grade transaction management systems
where they can be applied in real-world applications.

The ability to specify different extended transaction
models using a small set of modeling primitives was first
demonstrated in the formal framework of ACTA [CR90].
In ACTA five simple building blocks are used to spec-
ify the essential components of extended transaction
models, namely history, inter-tmnsaction dependencies,
transaction conflict, transaction view, and delegation.
Even though ACTA was not intended to be executable,
it provided us with valuable insight into the design of
the reflective transaction framework. We distilled the

215

essence of selected ACTA building blocks into a func-
tional realization for implementing extended transac-
tion models. The result, in part, was the functionality
provided by transaction adapters: the transaction man-
agement adapter includes transaction dependency man-
agement and operation delegation functions, the con-
flict adapter includes transaction conflict and transac-
tion view funtions, while the lock adapter includes lock
delegation functions. It is this close alliance with ACTA
that enables the reflective transaction framework to im-
plement a wide range of extended transaction models.
On the design side, the meta-transaction interface and
functionality of transaction adapters are close enough
to ACTA to be applicable to many different extended
transaction models. And on the implementation side,
transaction adapters are close enough to the TP moni-
tor architecture to support a practical implementation
on top of commercial software.

An example of the language primitives approach is
ASSET [BDG+94], in which the ability to implement
extended transaction models is provided at a very low
level by embedding ACTA-based primitives in the host
language of an object-oriented database. Using AS-
SET, an application programmer can construct ex-
tended tranactions from scratch by properly compos-
ing the available languistic primitives. In contrast,
TSME [GHKM94] p re resents the specialized transac-
tion facility approach, in which the ability to imple-
ment extended transaction models is provided at a high
level through a transaction specification language and
mechanisms which configure the run-time transaction
facility to realize extended extended transactions. Us-
ing TSME, an application programmer can construct
certain extended transactions using certain expressions
in the specification language, which are then mapped to
certain pre-built configurations in the transaction man-
agement mechanism. In a sense, the reflective trans-
action framework represents a fusion of these two ap
proaches. The meta-transaction interface provides the
low-level flexibility of language primitives, enabling an
application programmer to construct extended transac-
tions from scratch, while the extended transaction inter-
face and transaction adapters provide the.high-level in-
terface and functionality of a specialized transaction fa-
cility, enabling an application programmer to construct
extended transaction from existing components.

Prototype implementations of special-purpose ex-
tended transaction models can be found in the liter-
ature. Some well known representatives include the
APRICOTS system [Sch93] (A PRototype Implemen-
tation of a COnTract System [WR93]), the multi-level
transaction model [WH93], and the Flex transaction
model used in the InterBase project [BEK93]. Also re-
lated, an approach to implement extended transaction

models using a commercial workflow manager has been
suggested in [MAG+95], though the generality of this
approach remains to be seen.

In a final note on related work, a feature which further
distinguishes our work is the application of the Open
Implementation approach. We found three tangible
benefits in taking the Open Implementation approach
in designing the reflective transaction framework. First,
the separation of the functional and meta interface to
the transaction processing facility allows programmers
to adjust and extend the design and implementation of
the system to suit their particular needs easily. Pro-
grammers can introduce new transaction control opera-
tions by simply defining new operations in the extended
transaction interface, or they can redefine the semantics
of an existing transaction control operation using the
meta-transaction interface. Second, using metatransac-
tions to deal with the wide range of different transaction
models enables us to rely on an underlying transaction
facility for the basic implementation. This not only sim-
plified our development effort, but also enables us to
evaluate extended transaction models on an industrial-
grade transaction management system in real, working
environments. Third, permitting each transaction to
have its own metatransaction makes it possible for an
application to assign different extended transaction se-
mantics to different transactions according to the needs
of their application.

6 Concluding Remarks
We have presented the reflective transaction framework
as a practical and modular method to implement ex-
tended transaction models. We achieved modularity by
applying the Open Implementation approach to design
the reflective transaction framework, and we achieved
practicality by extending commercial TP monitor soft-
ware to implement the reflective transaction framework.
Although the implementation details were product spe-
cific (Transarc’s Encina), our .framework was designed
in the context of the TP Monitor Architecture, so it is
applicable to many modern commercial TP monitors.
Our early experience shows that the reflective transac-
tion framework is general enough to implement a wide
range of extended transaction models [BP95].

While the importance of extended transaction mod-
els has been known for many years, their use in real-
world applications has been hampered by the lack of
practical implementations. Furthermore, since most ex-
tended transaction models have been merely theoretical
constructs, there are a number of important design is-
sues that have generally not been discussed in the liter-
ature [Moh94]. Our hope is that the reflective transac-
tion framework will remedy this situation, providing a
clear migration path to incorporate research advances in

216

extended transaction models into commercial TP moni-
tors. This will enable us to draw conclusions from direct
experience in applying extended models in real, working
environments.

We are proceeding with active research based on
the Reflective Transaction Framework and transaction
adapters. We plan to refine the reflective transaction
framework, evaluate the performance of our Encina im-
plementation for selected extended transaction models,
and study the broader issues of the concurrent execu-
tion of different extended transaction models to better
understand their interference and synchronization.

References
[BDG+94] A. BiIiris, et al. Asset: A system for supporting

extended transactions. In Proceedings of 1994
ACM SIGMOD, pages 44-53, May 1994.

[BerSO] Philip A. Bernstein. Transaction processing
monitors. CACM, 33(11):75-86, 1990.

[BP951 R. S. Barga and C. Pu. A practical and modular
implementation of extended transaction mod-
els. Technical Report OGI-CSE95-004, De-
partment of Computer Science and Engineering,
Oregon Graduate Institute, February 1995.

[BPZH95] R.S. Barga, C. Pu, T. Zhou, and W.W. Hseush.
A practical method for implementing semantics-
based concurrency control. Technical Report
OGI-CSE-95, Department of Computer Science
and Engineering, Oregon Graduate Institute,
May 1995.

[BEK93] 0. Bukhres, et al. Implementation of the Flex
Transaction Model. Bulletin of the IEEE Tech-
nical Committee on Data Engineering, 16(2):28-
32, June 1993.

[CR901 P.K. Chrysanthis and K. Ramamritham. ACTA:
A framework for specifying and reasoning about
transaction structure and behavior. In Proceed-
ings of 1990 ACM SIGMOD, pages 194-203,
June 1990.

[Elm931 Ahmed K. Elmagarmid, editor. Database Trans-
action Models for Advanced Applications. Mor-
gan Kaufmann, 1993.

[Encina] Transarc Corp. Encina Product Overview.
Transarc Corp, Pittsburgh, PA., 1991.

[ETPR] Transarc Corp. Encina Toolkit Server Core Pro-
grammer’s Reference. Transarc Corp, Pitts-
burgh, PA., 1991.

[GHKM94] D. Georgakopoulos, et al. Specification and
management of extended transactions in a pro-
grammable transaction environment. In Pro-
ceedings of the 1994 IEEE Conference on Data
Engineering, pages 462-473, Feb 1994.

[GR93] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, 1993.

[KdRBSl] G. Kiczales, et al. The Art of the Metaobject

[Kic92]

[Mae871

Protocol. MIT Press, 1991.

Gregor Kiczales. Towards a new model
of abstraction in software engineering. In
Proceedings of the IMSA Workshop on Rejlec-
tion and Meta-level Architectures, 1992. See
http://www.xerox.com/PARC/spl/eca/oi.html
for updates.

P. Maes. Concepts and experiments in compu-
tational reflection. In Proceedings of the Confer-
ence on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), Octo-
ber 1987.

tive on Workflow Management Systems. Bul-
[MAG+95] C. Mohan, et al. Exotica: A research Perspec-

letin of the IEEE Technical Committee on Data
Engineering, pages 19-26, June 1995.

[Moh94]

[MP92]

[PC931

[PKH88]

[RC92]

[Reu82]

[Sch93]

[WR93]

[WH93]

C. Mohan. Advanced transactio? models -
survey and critique. Tutorial Presented at
the ACM SIGMOD International Conference on
Management of Data, 1994.

B. Martin and C. Pederson. Long-lived concur-
rent activities. In Amar Gupta, editor, Dis-
tributed Object Management, pages 188-206.
Morgan Kaufmann, 1992.

C. Pu and S.W. Chen. ACID properties need
fast relief: Relaxing consistency using epsilon
serializability. In Proceedings of Fifth Znterna-
tional Workshop on High Performance Tmnsac-
tion Systems, Asilomar, California, Sept. 1993.

C. Pu, et al. Split-transactions for open-ended
activities. In Proceedings of the Fourteenth
International Conference on Very Large Data
Bases, pages 27-36, Los Angeles, August 1988.

K. Ramamritham and P.K. Chrysanthis. In
search of acceptability criteria: Database consis-
tency requirements and transaction correctness
propeyties. In Amar Gupta, editor, Distributed
Object Management, pages 212-230. Morgan
Kaufmann, 1992.

A. Reuter. Concurrency on high traffic data
elements. ACM Principles of Database Systems,
8(2):186-213, 1982.

F. Schwenkreis. APRICOTS - A prototype im-
plementation of a ConTract System. In Pro-
ceedings of the 12th Symposium on Reliable Dis-
tributed Systems, Princeton, NJ., IEEE Com-
puter Press, 1993.

H. Wlchter and A. Reuter. The ConTract
Model. In [Elm93].

G. Weikum and C. Hasse. Multi-level transac-
tion management for complex objects: Imple-
mentation, performance, parallelism. In VLDB
Journal, 2(4), 1993.

217

