
Towards a Cooperative Transaction Model
- The Cooperative Activity Model -

M. Rusinkiewicz W. Klas T. Tesch J. W&ch
University of Houston GMD-IPSI Integrated Publication and

Dept. of Computer Science Information Systems Institute
Houston, TX 77204 D-64293 Darmstadt

USA Germany
marekOcs.uh.edu {kIas,tesch,waesch}Qdarmstadt.gmd.de

P. Muth
University of the Saarland
Dept. of Computer Science

D-66041 Saarbriicken
Germany

muthOcs.uni-sb.de

Abstract

With the emergence of cooperative applications
it turned out that traditional transaction con-
cepts are not suitable for these scenarios. Isola-
tion of transactions, as guaranteed by the ACID
transaction properties, contradicts the need of
cooperation between users. In this paper, we
propose a cooperative activity model that pro-
vides transactional properties suitable for coop-
erative scenarios. Each user participating in a co-
operative activity has his own private workspace
that is isolated from other users. Cooperation
is achieved by controlled exchange and synchro-
nization of the contents of workspaces among the
users and by installing results of their activities
in the common activity database. Our model
ensures that the joint execution of a cooperative
activity is equivalent to one that could have been
carried out by a single user. We discuss our co-
operative activity model in different scenarios,
one requiring a close cooperation in an author-
ing environment, and the second implementing a
workflow-like scenario.

1 Introduction
With the emergence of new application areas, the
basic concept of transaction is being re-examined and
new extended transaction models are being proposed.
The traditional transaction model was based on the
assumption that a large number of relatively short-
lived transactions are accessing a shared database.
This led to the emergence of the, ACID model [HR83]

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given that
copying is by permission of the Very LaTge Data Base Endow-
ment. To copy otherwise, OT to republish, requires a fee and/or
special permission from the Endowment.

Proceedings of the 21th VLDB Conference
Zurich, Switzerland, 1995

that is based on isolation among transactions and uses
serializability as a natural correctness criterion for the
concurrent execution of transactions.

The new application areas in which the transaction
concepts are being applied, such as CAD, CASE,
automated office workflows, or cooperative authoring,
have quite different characteristics. The transactions
in such environments need to support long-running
activities, in which competition for resources (on which
the locking protocols were based) is replaced by the
need to cooperate. The emphasis, therefore, is not
on preventing access to resources, but rather on the
semantically correct exchange of information among
concurrent activities of cooperating users.

At the same time, we are interested in preserving
some transactional properties of activities performed
in these cooperative environments. With the tradi-
tional transactions, the user (transaction programmer
and the end-user) is freed from concerns about partial
(and therefore incorrect) results of transactions being
left in the database in the case of a failure, or being
observed by other users, concurrently accessing the sys-
tem. These concerns are addressed by the transaction
processing system that enforces commitment protocols
ensuring transaction failure atomicity and concurrency
control ensuring that the effect of concurrent execution
of transactions is equivalent to that of running these
transactions one at a time, without any interference
from each other.

We argued that in a cooperative environment these
properties may be not useful. Failure atomicity may
be too strict and isolation among concurrent users
may be undesirable. However, we need to replace
them by new criteria, more suitable for cooperative
,activities. In this paper, we present a proposal of the
Cooperative Activity Model (COACT) we developed in
the context of TRANSCOOPI. Instead of atomicity,

‘This work is partially done in the ESPRIT LTR project
TRANSCOOP (EP8012) which is funded by the Commission of the
European Communities. The partners in the TRANSCOOP project
are GMD (Germany), University of Twente (The Nethe+&),
and VTT (Finland).

194

our model guarantees that cooperative activities are
executed in accordance with execution rules defined
by the designer of a given activity and terminate
(commit) only in legal termination states. Instead of
isolation, we guarantee that although the information is
exchanged between the users concurrently participating
in a cooperative activity, the result of such concurrent
execution is equivalent to that of executing this activity
by a single fictitious user having all the knowledge and
authorizations of the cooperating users.

The paper is organized a follows. In section 2, we
discuss the basic components of a cooperative activity
type specification. In section 3, the implementation of
a cooperative activity by participating user activities
is explained. In section 4, we review the related work
in the area of cooperative transactions and workflows
and compare it to our approach. Finally, we present
conclusions and further work.

2 Specification of Cooperative
Activities

2.1 A Framework for Cooperative Activities

In the COACT model cooperative activities are specified
by means of parameterized cooperative activity types. A
cooperative activity type describes identical activities
occuring in a particular organization. Each cooperative
activity is described by a single cooperative activity
type (CAT). A concrete cooperative activity (CA) is
an instantiation of a cooperative activity type.

Usually, more than one user participates in a coop-
erative activity. Wet assign a user activity to each user
participating in a cooperative activity. A user activity
(UA) belongs to exactly one cooperative activity. The
user activities are executed interactively by the respon-
sible users in accordance with the pre-defined execution
constraints of the cooperative activity type. Therefore,
the exact sequence of operations performed within user
activities cannot be determined beforehand.

Each user executing a user activity has his own
private workspace that is isolated from the workspaces
of the other users. Additionally, there exists a common
activity database, shared by all users, that stores
common data.

Similar to types of cooperative activities, users are de-
scribed and classified by specific user types depending
on the role they play in the organization and the coop-
erative activity, respectively. The allowed interactions
between the users participating in a cooperative activity
may depend on this classification. We will not discuss
this issue further, because user modelling is beyond the
scope of this paper.

Cooperation between user activities belonging to the
same cooperative activity is achieved by controlled ex-
change of (parts of) the contents of private workspaces.

195

This mechanism can also be interpreted as synchroniza-
tion of (parts of) user activities. Another way users can
collaborate is by installing possibly partial, but consis-
tent results of their user activities in the common activ-
ity database. Other users can access the current state of
the cooperative activity kept in the common database
and import (parts of) this cooperative activity into their
private workspaces.-

The model guarantees that, although information is
exchanged between user activities concurrently execut-
ing a cooperative activity, the result of a concurrent
execution is equivalent to executing the cooperative ac-
tivity in a single thread of control. Traditional concur-
rency control assumes that transactions are correct and
guarantees that no errors will be introduced by their
interleaved execution.

In our model, we assume that user activities are
correct (obey all execution rules) and we guarantee
that no errors will be introduced by the merging
of concurrently executed threads. Although various
(partial) versions of the activity may exist in private
workspaces at different times, there is a single final
result of a cooperative activity. This is achieved by
merging the results of individual user activities of a
cooperative activity in a semantically consistent way.
Merging of user activities is described in section 3.2 in
more detail.

To support the exchange of data and the merging
process and to ensure that users participating in the
same cooperative activity are aware of each other and
of the progress of the cooperative activity, additional
coordination facilities are provided. For example, a
user can be notified if another user joins or leaves the
cooperative activity or if someone wants to exchange
information with a co-worker.

Given this framework the concepts of the COACT
model can be summarized as follows:

l cooperative activity types describing cooperative ac-
tivities,

l cooperative activities as concrete instantiations of
cooperative activity types and as a composition of
individual user activities,

l user activities as activities of individual participat-
ing users collaborating in a cooperative activity,

l a common activity database for a cooperative activ-
ity,

l private workspaces for individual user activities,

l a merger supporting the correct exchange of infor-
mation between collaborating users, and

l coordination facilities providing awareness and coor-
dination of users.

Figure 1 gives a simple illustration of the concepts
discussed so far. The cooperative activity types X and

0 common activity database 0 user activity l call of activity

Figure 1: Concepts of COACT

Y are instantiated in the execution environment. Each
cooperative activity (Xl and Yr) consists of individual
user activities and a common activity database. The
call of another cooperative activity is presented within
user activity UA-2. The arrows illustrate the different
options for the exchange of information (import / save /
delegate) within the scope of a cooperative activity.

2.2 Cooperative Activity Types
A cooperative activity type consists of the following five
components:

1. Activity declaration
The declaration of a cooperative activity type starts
with the keyword CAT, followed by a unique name N
of the cooperative activity type, a definition of activity
parameters P and a compensation activity C.

The definition of activity parameters includes the
formal input parameters 11,. . . ,I, and the output
parameter list Or, . . . , 0,. The input and output
parameters allow for a parameterized instantiation
of a cooperative activity type. A declaration of a
compensation activity C specifies the way the results
of a cooperative activity can be semantically undone
after its commitment.

2. Constituent subactivities
Constituent subactivities are specified as a set A of
activities. A constituent subactivity may be another
cooperative activity specified by a cooperative activity
type or it may be an elementary activity. An elementary
activity, described by an elementary activity type EAT,
is a regular transaction program in the host OODBMS
which consists of a (sequence of) method invocation(s)
or a call to an external program. The ability to
incorporate external applications via declaration as
elementary activity types is particularly important if a
cooperative activity is used to model the execution of a
workflow - a multi-step activity involving coordinated
execution of tasks running on different systems [RB94].

Each subactivity is assigned to a unique identifier Ai
with i identifying a particular subactivity. A subactivity
can be associated (explicitly or implicitly through
its type definition) with a user type to restrict the
execution permission to responsible users. Furthermore,
we specify for each subactivity how many times it can
occur in the final history of the cooperative activity. We
write

{Ai}n :: ACTIVITYTYPE(~n : . . . , Out : . . .)by USERTYPE

to denote that subactivity Ai can occur n times while
simply one occurrence is denoted by “Ai :: . . .“. It
should be noted, that the used input and output
parameters may introduce an implicit order between the
constituent subactivities (data-flow).

3. States and state transitions of the activity
States of the cooperative activity and their state
transitions are described as a set of observable states
S and possible transitions ST : S - S. Transitions
between the states of the cooperative activity can
be represented by a finite state automaton and its
transition graph [ARSS93].

When composing a cooperative activity type and
defining its execution constraints, we are only interested
in those states of constituent subactivities that can be
externally observed and only those transitions that can
be externally controlled. These characteristics must be
provided as a part of the definition of a cooperative
activity.

Observable states are described in terms of predefined
states defined for each activity which include at least
the states: not executed (NE), executing (E), done
(D), and undone (UD). Additional observable states
can be defined as compositions of observable states
and output values of constituent subactivities, or
external events in terms of restricted first-order logic.
For example, a “successful termination” state could
only be reached if some constituent subactivities were
completed successfully and before, e.g., Dee 31, 1995.
The transitions defined on predefined states are shown
in figure 2. In the following, we write s(A) to denote
that activity A is in state s.

A set of breakpoints t? c S defines states where the
execution of a cooperative activity can be interrupted.
Once a breakpoint is reached, the internal consistency
constraints are satisfied, which corresponds to reaching
an intermediate, but semantically consistent state in
the execution of the activity. The work accomplished
so far can be suspended, so that the activity can be
resumed later (thus achieving the forward-recoverability
postulate of ConTracts [WR92]). Alternatively, the
results can be either exchanged with another user
concurrently executing the same cooperative activity,
or saved in the common activity database.

196

not executina
_I

t

A executing

done undone

Figure 2: Transitions on predefined states

The set of breakpoints B contains at least one state
in which the cooperative activity can terminate. Ter-
mination states I c tLJ are observable. A termination
state of a cooperative activity corresponds to semanti-
cally successful or unsuccessful completion.

4. Execution rules
A set of execution rules & is specified to govern
the execution of the constituent subactivities. These
rules can be interpreted as integrity constraints on
the occurrence and temporal precedence of observable
states associated with the execution of the subactivities
[RS95]. If the rules are completely defined, they
correspond to a script for the execution of subactivities
implementing a cooperative activity. In a correct CAT
specification, we require the execution rules to be in line
with the data-flow between constituent subactivities.
The execution rules consist of two parts: forward
execution and backward execution rules.

Forward execution rules govern the regular execution
of a cooperative activity and, thus, of each involved user
activity. Backward execution rules govern the rollback
of the activity, if it is not finished yet and needs to be
aborted. For the sake of simplicity, we assume in this
paper that rollback is performed using compensation
activities in inverse order. In general, execution rules
can be defined in terms of:

l Observable states of constituent subactivities, e.g.,
“subactivity A1 cannot start until subactivity Aa
is finished”. For the sake of simplicity, we use
predefined states only.

l Output values of constituent subactivities, e.g.,
“subactivity Al can start if subactivity AZ returns
an output value greater than 25”.

l External variables, that are modified by external
events that are not part of the cooperative activity,
e.g., “subactivity A1 cannot be started before 9AM”.

Execution rules have been discussed among others in
[SANR92, ANRS92, CR91, GHKM94]. We use the well
known ordering dependency (<) and existence depen-
dency (+) as described in [Klegl] to express execution

rules such as those in [ANRS92], e.g., a dependency A
enables B is equivalent to the following set of depen-
dencies: {Done(A) < Executing(B), Executing(B) -+
Done(A)}.

The execution rules allow us to reason about the cor-
rectness of the specification of the activity, before it is
executed. Of course, unenforceable things can be spec-
ified. We are particularly interested in specifications
that are runtime enforceable [ARSS93]. To enforce the
execution rules within user activities at runtime, we use
an activity scheduler - a software module that governs
the execution of user activities. It receives requests from
users to perform actions, e.g., start a new subactivity,
and responds by allowing those requests that are in ac-
cordance with the specification.

5. Activity interleaving rules
Activity interleaving rules Z define a possible existence
of dependencies between constituent subactivities of an
activity in terms of data-flow. If two subactivities
depend on each other, e.g., editing a document based
on annotations previously made, this will later be
relevant for a merge of the according activity with other
activities. If subactivity B depends on subactivity A,
and B is desired to be part of a merge, A has to be
present in the merge, too. Note that such dependencies
are not always given by the execution rules. Assume,
for two subactivities A and B ,belonging to the same
activity, no execution rule is defined, i.e., they can be
executed any time. Even though, if A is executed before
B, B might become dependent on A. This case is
treated by activity interleaving rules.

In addition, for each pair of subactivities executed
concurrently within different user activities, activity
interleaving rules define if both of them are allowed to be
present in the merge, or one of them has to be discarded.
Basically, we have to consider three cases:

1. The subactivities are completely independent of each
other, and both can become part of the merge.

2. The subactivities are not independent, e.g., they
both update the same data in a different way. In
the merge, only one of these subactivities is allowed
to ,be present.

3. The subactivities are not independent, but because
of their specific semantics, it is allowed to have both
subactivities present in the merge.

Case (3) is in particular important for modelling
cooperation between users. Even if they execute
subactivities which are not independent, both can be
reflected in the merge as discussed in the above example.

Activity interleaving rules are defined in terms of a
compatibility predicate $: A x A * {True, Fdse}
between pairs of subactivities of a cooperative activity

197

type. The evaluation of the predicate might depend
on the system state and parameter values of the given
subactivities. In addition, it is sometimes useful to
dynamically change the compatibility predicate, e.g.,
two subactivities A and B are compatible until Dec.
31, 1995 only. For the sake of simplicity, we assume the
compatibility predicate to be symmetric.

If two subactivities are defined to be compatible their
execution order is not relevant. Usually, subactivities
are compatible if they commute. But dependent on
the application semantics, non-commuting subactivities
might also be compatible.

In our model, compatibility is used to determine
dependencies between subactivities executed by a single
user, and to decide whether two executions of the same
subactivity by different users can both be present in the
merge. This is allowed only if they are compatible.

In the following, we discuss a small scenario to illus-
trate the concept of activity interleaving rules. Assume,
two users are concurrently editing a document. Avail-
able subactivities are edit(chapter), annotate(chapter)
to add an annotation to chapter, and removeAnnota-
tion(chapter) for the removal of an annotation from
chapter. No execution rules are defined while the follow-
ing activity interleaving rules between edit and annotate
are specified:

@(edit(chl), edit(ch2)) = (chl # ch2)

@(annotate(chl), annotate(ch2)) = True

@(edit(chl), annotate(ch2)) = True

Assume, both users start with the same version of the
document and both execute edit(ch1). If these user
activities are merged, both subactivities are found to
be incompatible according to the activity interleaving
rules. One of them has to be discarded. As an
alternative, assume user 1 has performed edit(ch1) and
user 2 has performed edit(chZ). These subactivities are
compatible and can both be present in a merge. Assume
now, both users import the new versions of the chapters
in their user activities and start annotating. Each
user annotates both chapters chl and ch&. Although
these subactivities update the same data (at least there
is a counter representing the number of annotations),
they can all be incorporated in a merge as they are
compatible.

2.3 Example of a Specification of a
Cooperative Activity Type

As an example, let us consider a cooperative activity
of designing a telephone circuit between two points as
described in [ANRS92]. We specify the cooperative
activity ALLOCATECIRCUIT(CId, Start, End) where
Start and End are Ids of end points of the circuit and
CId represents the customer identifier. To design such a

Centioflk~l cenlralOfice~2

s-------“;-------\

Figure 3: Example scenario

circuit, we need to allocate lines between end points and
the nearest central offices and between the central offices
(trunk connection). The latter activity may require that
several hops forming a-path are allocated and therefore
the activity can become complex consisting of other
cooperative activities. Also, the connections between
the end points of the allocated lines and trunks have
to be allocated in the central offices’ switches to form a
circuit. The example scenario is illustrated in Figure 3.

A specification language can be developed based on
the VODAK Model Language [KAN94] or the language
in [RB94] or [KS94]. In the example demonstrated in
Table 1, we use an intuitive pseudo notation to illustrate
parts of the specification of cooperative activity types.
An execution scenario of this example is presented in
section 3.4.

3 Support for cooperative activities
3.1 Exchanging Results of Concurrent Work
As stated earlier, our emphasis is to allow users to
share and exchange the results of their concurrent
work, and to guarantee that the resulting activity will
be correct, i.e., obeys all constraints specified in the
cooperative activity type. Since each user participating
in a cooperative activity has his own private workspace,
cooperation is achieved by the controlled exchange and
synchronization of the contents of workspaces.

The exchange mechanisms described in the following
allow the cooperating users to communicate either
directly or by saving and retrieving the results of their
work in/from the common activity database.

1. Import(souPce-activity): Importing (parts of) a
user activity into the workspace of the current
user activity. The common activity database as
well as other user activities can be addressed as
source-activity.

2. Delegate(dest-activity): Delegating the user activity
from the current workspace to the workspace of
deskactivity.

3. Save: Saving the current user activity in the
common activity database.

198

CAT ALLOCATECIRCUIT(~: CId: CLIENT-ID, Start: POINT, End: POINT, Out: CircuitlD: CIRCUIT)

Compensating activity C:
DEALLOCATECIRCUIT(Circuit~D)

Constituent Subactivities A:
AO::UPDATECLIENTINFO(~X CId) by SERVICEREPRESENTATIVE
A~::SELECTCENTRALOFFICES(~~: Start,End, Out: COl,C02) by SERVICEREPRESENTATIVE
&::ALLOCATELINE

I
In: Start,CO1, Out: Linel) by ENGINEER

&::ALLOCATELINE 1% End,COz, Out: Linez) by ENGINEER
A~::ALLOCATESPAN(~~: COI,C02, Out: Span) by NETWORKENGINEER
A5 ::ALLOCATE~WITCH In: Linel,Span

I 1
by ENGINEER

A~::ALLOCATESWITCH In: Line2,Span by ENGINEER
&::PREPAREBILL (In: CId,Linel ,Linez,Span) by SERVICEREPRESENTATIVE

Observable States 0:
NotExecuted: VAiNotExecuted(Ai)
Executing: gAiExecuting(Ai)
DoneWithSemanticSuccess: /\I=, Done(A,))
DoneWithSemanticFailure: Done(Ao)
Undone

State transitions ST:
NotExecuted - Executing
Executing - DoneWithSemanticFailure
Executing - DoneWithSemanticSuccess

Termination states ‘T:
DoneWithSemanticSuccess
DoneWithSemanticFailure

Execution rules E:
Al enables {Az,A3,A4}
{Ag, A4) enables A5

1
AZ, A4) enables As
AZ, As, A4,A5, As} enables A7

Ao < A7

Activity interleaving rules Z:

@ II Ao AI A2 A3 A4 A5 As A7

EAT UPDATECLIENTINFO(ZW CId: CLIENT-ID)
. . .
EAT ALLOCATELINE(IK P: POINT, Co: CO, Out: Line: LINE)
. . .
CAT ALLOCATESPAN(~W Cal: CO, Co2: CO, Out: Span: SPAN)
. . .

Table 1: Example of cooperative activity type specification

In the case of Import, a user activity is merged in
accordance with the execution rules and the activity
interleaving rules with the user activity of the importer.
Parts of the workspace of the importing user or parts of
the imported activity may need to be discarded to create
a consistent “version”. This operation has no effect on
the workspace of the user from whom the work is being
imported.

In the Delegate operation, the user activity of the user
delegating his work is merged with the user activity of
the person to whom the work is delegated. Delegation
means that the user is passing work that is possibly
incomplete (i.e., the work has been interrupted at
one of the predefined breakpoints) to another user.
This operation has no effect on the workspace of the
delegatee.

The Save operation incorporates a user activity into
the common activity database. As in the previous cases,
incompatibilities between parts of the user activity and
the common activity database need to be resolved under
the control of the user, i.e., the responsible user has to
choose between incompatible subactivities during the
merge process.

All operations mentioned control the merging by
the same set of rules which will be discussed in
detail in section 3.2. The incorporation of aciivities
is similar to the join operation between transactions
described in [KP92] with the main difference that both
the joining activity ,and the resulting new activity
belong to the same cooperative activity. Essentially,
the merging can be viewed as incorporating a partial
ordered history of an activity into a partial ordered

199

history of a receiving activity. A partial ordered history
is generated from the execution order by considering
dependencies that are formed by the execution rules
or by the activity interleaving rules, e.g., due to data-
flow between subactivities. The merging of the histories
is controlled by the partial order of each history.
If the intersection of the histories that are merged
is non-empty or subactivities are incompatible, some
subactivities may need to be eliminated, by allowing
the controlling user to choose one of the replicated
subactivities.

It should also be noted, that, in principle, the
Import and Delegate operations between user activities
may be eliminated requiring all users to exchange
information only via the common activity database.
We decided to provide these operations, since their
existence allows subsets of users to cooperate, which
would be impossible, if these operations were not
available.

Besides the mentioned operations for the exchange of
information, the model provides some basic primitives
to manage the execution of cooperative activities. These
primitives include the instantiation of a cooperative
activity, the ability to suspend a user activity at
a breakpoint which can be resumed later on, and
operations to join (Join) or leave (Exit) an existing
cooperative activity. The Join operation creates a new
user activity for an already existing cooperative activity
while Exit discards the workspace of the corresponding
user activity which is no longer part of the cooperative
activity. Before such an operation is issued, users
usually will delegate their results to another user or save
them in the common activity database.

In addition, the model includes the operations Com-
mit, Abort and Compensate of cooperative activities
with almost usual semantics. The execution of a co-
operative activity can terminate when it has reached
a termination state in the common activity database.
The Commit operation is issued by the last participat-
ing user and passes all results of the activity to the in-
voking activity or installs them in a public database.

3.2 Merging of User Activities

In the following we give an informal description of the
basic concepts that are needed to describe a correct
merger.

Activity history. With activity history we refer
to the histories of user activities as well as to the
cooperative activity history reflected in the common
activity database.

An activity history is a tuple (R, 4%) where X is the
set of all subactivities executed within the activity and
4% is a partial order defined over ‘H. A history (31, +xH)
is correct, if it satisfies the following conditions:

1. The subactivities in 3t must be allowed by the
cooperative activity type and must not violate the
constraints on the number of occurrences of each
subactivity in the history.

2. 4’~ must satisfy the following properties:

(a) 4% must not violate the order of subactivities de-
termined by the execution rules of the cooperative
activity type.

(b) If two subactivities A, B E ‘7-L are executed in the
order A before B; and A is non-compatible with
D, i.e., @(A, B) = False, then A 4% B holds.

(c) If there exist subactivities A, B,C E ‘H with
A 4~ B A B 4% C then also A 431 C holds.

The partial order A 4’~ B can be interpreted as B
depends on A, either because there exists an execution
rule in the corresponding cooperative activity type
which determines the order of A and B (2a), or because
A and B are not compatible, which means that the
order of A and B is relevant (2b). We explicitly require
the transitivity of 4% because transitivity is neither
guaranteed by execution rules nor by the compatibility
predicate $ (SC).

A history (3-1,+x) is said to be complete if it satisfies
the termination predicate defined in its corresponding
cooperative activity type. In a correct specification
of a cooperative activity type a termination state can
only be reached if all execution rules are satisfied (e.g.,
existence dependencies).

Mergeable histories. We call two histories merge-
able if they belong to the same cooperative activity and
both histories have reached a breakpoint.

Belonging to the same cooperative activity implies
that the histories are executions of the same cooperative
activity type. The above condition also ensures that
such histories have seen the same initial database state
because they belong to the same cooperative activity.
This enables us to reduce the scope of history merging
to the scope of one particular cooperative activity.

Merged activity history. A merged activity history
is a tuple (M, 3~) that is constructed out of two
mergeable activity histories (‘HI, +w,) and (‘HZ, 4~~)
where M c ‘HI U ‘Hz, and 4~ is a binary relation
defined over M.

In the following, we use (‘H, <x) to refer to one
of the two histories (‘Hi, 4~~) or (7fz,+3ia) to avoid
symmetric conditions. If we use ‘I? and ‘H, we refer
to different histories. A and B denote arbitrary
subactivities which are included in some histories.
Furthermore, we assume A ‘# B.

The following conditions must hold for the merged
history (M, +M):

200

1. M does not violate the constraints on the number
of occurrences for each subactivity defined in the
cooperative activity type.

2. If A,BE’H A BEM A A+xB then AEM.
We postulate that a subactivity B which depends
on another subactivity A can only be included in
the merged history, if A is included in the merged
history.

3. If(AEXAA~tiAB~7?AB~~)A$(A,B)=
False then A 4 M V B $ M.
If there are two non-compatible subactivities A E 7-l
and B E 2 then at most one of these subactivities
can be contained in the merged history (M, 4~).
The reason is that A and B are not independent,
e.g., if A would be ordered before B in the merged
history, the initial state of B in (‘H, 4~) and
the initial state of B in (M, 4~) would not be
semantically equivalent. If B would be ordered
before A in the merged history, the execution of A
would be based on a non-equivalent state.

4. +M has to fulfill the following properties:

(a) If A, B E X A A 4% B A A, B E M then
A-~MB.
If there are two subactivities A and B from the
same history X and A 431 B holds then this
dependency has to be reflected in -iM if A and
B are imported in M.

(b) If there exist subactivities A, B, C E M with
A 4~ B A B 4~ C then also A +M C holds
(transitivity condition).

Example. In the following we illustrate the merge
of two histories. As stated before, two histories can
only be subject of a merge, if they belong to the same
cooperative activity. Therefore, they are baaed on
the same initial database state, e.g., the state passed
by an invoking activity or a public database state.
Figure 4(a) reflects the initial database state of two
histories (Xi, 4~~) and (7-12,-~~~). For the sake of
clarity, we consider a situation where the merge of the
histories is only determined by the activity interleaving
rules defined in the corresponding cooperative activity
type. The subactivities A and B of (‘HI, 4~~) are
to be imported into (‘Hz, +x2). Due to the fact that
@(C, B) = False, rule (3) of the merged activity history
states that we can include either B or C in the merged
history. Activity A is compatible with B and C and
thus can be easily incorporated.

Figure 4(b) continues the example. After the merge
shown in Figure 4(a), subactivity D is executed in
(X1, <x1), and subactivity E is executed in (X2,+xa).
We now import the subactivities of history (E~,~~a)

(a) Histcrv 1

@I

History 2

History I

‘m$ A B D

pjf$pxy
History 2

Figure 4: Merge example

into (Xi, +x1). In contrast to the previous example,
we choose A and B to be included in the merged
history and we discard C. Now ,consider subactivity
E. E is compatible with B, but not with A. But
A is also present in history (3-12,+wHa). Therefore, E
already depends on A, and can be incorporated into the
merged history (rule (3) for merged activity histories
does not apply). As E and C are compatible, E does not
depend on C. Otherwise, E could not be incorporated
because C is not present in the merged history. Similar
arguments hold for D, which is compatible with E,
but depends on A and B. As A and B are in the
merge, D can be incorporated. The correctness ,of
the activity histories (Zr ,4x,) and (Xs,4xHa) together
with the merger rules ensure the correctness of the
merged history shown in Figure 4.

In the following, we outline a few important proper-
ties of the proposed model:

1. Histories resulting from a merge contain only subac-
tivities that are allowed by the corresponding coop-
erative activity type.

Condition (2) of merged activity histories guarantees
that a merged history (M, +,&I) contains only
activities that are either in ‘X1 or X2. Due to the
fact that ‘Efi and X2 satisfy condition (1) of correct
activity histories they can only contain subactivities
that are in line with the specification.

2. A merged history (M, <M) does not violate the
order of subactivities determined by the execution
rules of the cooperative activity type.

In both histories (Xl, 4’~~) and (‘?LH~,+x~) the
execution dependencies are not violated by 4’~~ or
+wa, respectively.

If A and B are from the same history (A, B E 7-l)
and A, B E M and the execution dependencies
determine an order A before B, then A 4~ B and
therefore A +M B is satisfied by condition (4a) of
merged activity histories.

201

Assume A and B come from different user histories,
i.e., A E 3-1, B E ii. If there exists an execution
rule in the cooperative activity type which orders A
before B: then it holds by the properties of correct
activity histories that A is also included in 31, i.e.,
A E ?? and A 4~ B. Thus, by condition (4a) of
merged activity histories, A +M B follows.

3. Each subactivity A E M in a merged history
(M, 4~) is executed based on a state that is
equivalent to the state before its execution in the
original history.

The relation +M preserves the local partial orders
<R~, <n, of histories. As stated above, the execu-
tion rules defined in the cooperative activity type
are satisfied. According to rule (3) for merged activ-
ity histories, for non-compatible pairs of subactivi-
ties of different histories that are not ‘contained in
both histories, one of the subactivities is discarded
and is not included in the merged history. This en-
sures that the equivalence of the initial states of a
subactivity in its original history and in the merged
history is not affected by incorporating subactivities
of the other history.

The required properties for merged activity histories
can be interpreted as a test on the correctness of a his-
tory that contains subactivities from different histories,
i.e., the merged history. We have outlined above that
merged histories fulfill the properties required for cor-
rect activity histories. Due to the fact that a merged
history fulfils the properties of correct activity histo-
ries, the merged history could have been executed by a
single fictitious user.

In practice, we need a constructive algorithm for
different merge processes, e.g., import, delegation, or
save of work in the common activity database. These
algorithms will be based on the outlined properties of
merged activity histories.

The selected approach, i.e., to define the correctness
of a merged history by assuming two correct histories as
input, has the advantage that the scheduling of subac-
tivities within user activities (to ensure the correctness
of single activity histories) is independent of the merge
algorithm itself. Therefore, it is possible to use different
software modules for the enforcement of execution rules
and for merging of histories, i.e., exchanging informa-
tion between different user activities or a user activity
and the common activity database.

3.3 Coordination Facilities
Coordination facilities serve the purpose of coordinating
cooperating users by providing a set of functions
implementing predefined coordination protocols. Table
2 summarizes some functions useful to coordinate the
processing of cooperative activities.

Preempt
Request exclusive access
Request cooperation
Request observation

Table 2: COACT coordination functions

The functions are available at the user interface level
and are independent of a particular cooperative activity
type. They allow e.g., to join an ongoing cooperative
activity or to observe concurrent user activities. If one
of these functions is invoked, the system can (depending
on the user types) accept or refuse the execution.
For some cases approval of users working in the same
cooperative activity is necessary.

If for some reason the participation of a specific
user is no longer desired, he can be eliminated from
the cooperative activity and his work c,an be taken
over by another user. This is done by executing the
Preempt function. A user can only be forced to, leave
the cooperative activity, if the user types do not warrant
such an interaction. In this case the request is rejected
by the system.

The Request exclusive access function is executed by
a user who wants to take over a co-worker’s activity by
merging it with his own user activity. If this function
is invoked by a user who is not participating in the
cooperative activity, the workspace of the current user
is handed over to the requestor. The function gives the
affected user the ability to decide whether he grants the
exclusive access or not. Before the affected user grants
the exclusive access he can request who wants to take
over his activity.

To join an ongoing cooperative activity the Request
cooperation function is issued. This request can be
refused by the actual participants. Furthermore, this
function allows to invite a new person to contribute to
the cooperative activity.

Different notification policies can be selected with
the Request observation function. Once different user
activities are active, the notification policy determines
which particular events are subject to notification. In
particular, collaborating users are informed when the
state of a workspace of another user changes, e.g., a
breakpoint is reached within a concurrent user activity.
The collaborating users are also informed when the
state of the common activity database changes, i.e.,
one of the users performs the save operation. Hence,
this mutual awareness helps the users to coordinate
their current activities and helps to avoid loss of work
due to incompatibilities in a later merge process. For
monitoring reasons, it is useful to provide this operation
to persons, e.g., a division manager, who only observe
the progress of the cooperative activity.

202

3.4 Example of the Execution of a
Cooperative Activity

Let us consider the following scenario in which four dif-
ferent users participate in the execution of a cooperative
activity of type ALLOCATECIRCUIT described in table 1.
The scenario illustrates the basic concepts introduced in
this paper, namely breakpoints, execution rules, interac-
tion rules, the merge option, and coordination facilities.
We assume that a cooperative activity is uniquely iden-
tified. In our example all users cooperate by performing
various subactivities related to the execution of a single
service order.

1. Useri starts a cooperative activity of type ALLO-
CATECIRCUIT upon receiving a service order and he
gets a unique identifier for this cooperative activity,
e.g., Ci. He executes, as part of his user activity,
subactivity a0 of type UPDATECLIENTINFO and al
of type SELECTCENTRALOFFICES; after completion
of these subactivities, his user history looks like that:

Useq: [a0, al 1

The user then executes a save operation: the state
of his user activity corresponding to a breakpoint is
saved in the common activity database. No explicit
merge has to be performed because the common
activity database is empty. Afterwards, the user
exits the cooperative activity.

2. User2 comes and joins the cooperative activity Ci.
He is informed that Ci was being executed by
Useri and that Useri has saved his work in the
common activity database. User2 decides to import
the current state of work from the common activity
database. He then executes US, ALLOCATELINE and
ad, ALLOCATESPAN.

Userz: C a0, al, a2, a4 1

3. User3 comes and joins cooperative activity Ci. He is
informed that User2 is active in the cooperative ac-
tivity Ci, requests to import (which is approved) and
imports UserF’s history. Afterwards, he executes as,
ALLOCATELINE followed by ~5, ALLOCATESWITCH
for Liner and &3, ALLOCATESWITCH for Line2

Users: C a0, al, a2, a4, a3, a5, a6 1

4. In the meantime, User2 executes a/5, ALLOCATE-
SWITCH for Linei and decides to delegate his work
to UseQ. The history of User2 is shown below. After
the delegation is accepted by Usera, User2 performs
an exit.

User2: [a0, al, a2, a4, a5’ 1

5. User3 accepts the work being delegated and it is
merged into his user history. The histories are
mergeable. But there is a problem with the two

connections between Line1 and Span, which were
made independently (~5, a;). User3 chooses to
accept the subactivity uk originally executed by
User,, This means that “his version” of a5 is
discarded, i.e., compensated, and the subactivity a;
is redone in Userz’s private workspace.

Users: C a0, al, a2, a4, a3, a6, a5’ I

6. User4 (Manager) requests exclusive access to Ci
and imports Usera’s user activity workspace. User3
leaves the cooperation and his workspace is dis-
carded. User4 decides that a2 is not to his liking. He
re-executes aa, as a result the old a2 and ai are inval-
idated because a2 and ui are non-compatible and a;
depends on a2. User4 re-executes a&‘, prepares the
bill (or) which completes the execution of the co-
operative activity Ci and saves his user activity to
the common activity database. Since a termination
state of Ci has been reached (DoneWithSemantic-
Success), the user can issue a commit, making the
results of the cooperative activity visible outside.
The final cooperative activity history (Usera’s his-
tory respectively) is shown below.

Final Ci history:
C a0, al, a4, a3, a6, a2’, a5”, a7 1

We see that no execution rules have been violated
and the final result of the cooperative activity Ci is
equivalent to the execution by a single fictitious user
in the order [a~, al, a4, a3, as, aI,, at, or] without any
improper interferences form concurrent execution of
user activities and with a proper data-flow.

4 Related Work
There have been various approaches proposed to in-
crease the flexibility of the transaction concept to sup-
port cooperation.

The basic check-out model is a commonly accepted
approach to support long interactive computations
[BKK85, KKB87, KSUW85J. Users copy objects from a
shared database to private workspaces for manipulation
(check-out). Check-out objects are reserved for exclu-
sive access until a later check-in. Another drawback
is that all objects and subobjects needed to perform a
specific task have to be checked out explicitly. The ap-
proach is often combined with versioning mechanisms.
Concurrently derived versions have to be merged man-
ually.

For software engineering purposes, several extensions
of the check-out model have been developed taking
advantage of the opportunity of generic consistency
checking in those environments [KF87, KPS89, Hon88].
The Network Software Environment [Hon88] supports
an optimistic coordination scheme by forcing concur-
rently created versions of source code files to be merged

203

(copy/modify/merge cycle). The merge operation in-
cludes an automatic consistency checking for the af-
fected files. Due to the fact that such a generic con-
sistency checking is not applicable in all application do-
mains, this approach is not a general solution.

The split- and join-transaction approach [PKH88]
supports the restructuring of transactions. A split-
operation allows to split a running transaction into
two new (serial or independent) transactions while a
join-operations allows to incorporate two transactions
into a new transaction. These operations are based
on the consideration of the read- and write-sets of flat
transactions. Higher level operation semantics are not
taken into account.

Group-oriented transaction approaches describe the
overall working process as a transaction hierarchy con-
sisting of group transactions. Individual user transac-
tions form the leaves of the transaction hierarchy. Vis-
ibility between transactions is supported by extended
lock schemes [KSUWSS] or by following predefined ac-
cess patterns that define the application-specific correct-
ness criteria [FZSS]. The models pass objects along the
transaction group hierarchy.

ACTA [CR90, CR921 is a comprehensive transaction
framework that can be used to specify the types of
dependencies between transactions. One of the ACTA
building blocks is the delegation primitive [CR93].
A transaction t can delegate the responsibility for
committing or aborting an operation o to another
transaction t’. This primitive is useful to control the
(partial) visibility of results.

The area of transactional workflow approaches usu-
ally comprises task specification languages to express
various execution constraints for a set of tasks. This
can be done either by supporting a script language like
in the ConTract model [WR92], by a declarative spec-
ification of the execution structure in terms of exter-
nally visible execution states [ARSS93], or by ECA rules
[DHLSO]. Cooperation is characterized in these models
by passing results between workflow tasks in a prede-
fined manner. There is no opportunity for passing re-
sults back and forth between co-workers to achieve a
common goal. This is needed in non-workflow scenar-
ios, e.g., cooperative authoring environments.

Related work done in the field of Computer Supported
Cooperative Work [WL93, GS87] follow in most cases
a more or less ad-hoc approach in synchronizing work
of collaborating users, e.g., user-controlled locking of
objects without transactional support. The requirement
of supporting different modes of cooperation [HW92]
can be supported in the COACT model by defining
different sets of execution rules and activity interleaving
rules.

5 Conclusion and F’urther Work
In this paper, we proposed the COACT model as a
possible approach towards transactional support for
cooperative applications.

Cooperation in our model is achieved by controlled
exchange and synchronization of the contents of work-
spaces among the users and by installing results of their
activities in the common activity database. While the
traditional transaction model guarantees that no errors
occur due to the interleaved execution of transactions
(serializability), the outlined correctness criterion of our
model is based on two assumptions:

1. Histories of user activities as well as the history re-
flected in the common activity database are correct
in the sense that they satisfy all execution rules de-
fined in the cooperative activity type, and

2. there will be no inconsistencies introduced due to
the exchange of information between concurrently
executed activities. The exchange of information by
means of merging activities is based on the semantic
compatibility of activities described in the activity
interleaving rules.

Furthermore, we allow only a single result of a
cooperative activity although there may exist various
versions in the different user workspaces and the
common activity database, respectively. Thus, the
COACT model ensures that the joint execution of a
cooperative activity is equivalent to one that could have
been carried out by a single user.

The major contribution of the presented model is
the combination of modelling primitives as found in
the workflow area and primitives as needed in less
structured cooperative environments like cooperative
authoring. By utilizing application semantics, our
approach shows how the work of different cooperating
users following a common goal can be merged in
accordance with the given rules of a specific application
domain. With the merge option, co-workers can
delegate parts of their work as the need arises as well as
create their own realities of the given problem.

So far, we have worked out a framework of a coopera-
tive activity model. Our further research focuses on car-
rying out detailed algorithms and a theoretical frame-
work to prove the properties of the model. In addition,
we work on embedding the COACT modelling facilities
in the object-oriented database programming language
VML and extending the transactional services of the
OODBMS VODAK [GI95] with the COACT functional-
ity to support cooperation.

204

References
[ANRS92]

[ARSS93]

[BKK85]

[CR90]

[CR91]

[CR921

[CR931

[DHLSO]

[Elm921

FZ=Jl

M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth.
Using flexible transactions to support multi-system
telecommunication applications. In Proc. of Ihe f 8th
Int. Conference on Very Large Databases, pages 65-
76, Vancouver, Canada, August 1992.

P. C. Attie, M. Rusinkiewicz, A. Sheth, and M. P.
Singh. Specifying and enforcing intertask dependen-
cies. In Proc. of the 19th Int. Conference on Very
Large Databases, pages 134-145, Dublin, Ireland, Au-
gust 1993.

F. Bancilhon, W. Kim, and H. Korth. A model
of CAD transactions. In Proc. of Ihe 11 Ih Ink
Conference on Very Large Databases, pages 25-33,
Stockholm, Sweden, August 1985.

P. K. Chrysanthis and K. Ram-itham. ACTA:
A framework for specifying and reasoning about
transaction structure and behavior. In hoc. of the
ACM SIGMOD Conference on Management of Data,
pages 194-203, Atlantic City, NJ, USA, May 1990.

P. K. Chrysanthis and K. Ramamritham. A for-
malism for extended transaction model. In Proc. of
Ihe 17th Inl. Conference on Very Large Databases,
pages 103-112, Barcelona, Catalonia, Spain, Septem-
ber 1991.

P. K. Chrysanthis and K. Ramamritham. ACTA: The
saga continues. In Elmagarmid [Elm92], chapter 10,
pages 349-397.

P. K. Chrysanthis and K. Ramamritham. Delegation
in ACTA to control sharing in extended transactions.
IEEE Data Engineering Bullelin, 16(2):16-19, June
1993.

U. Dayal, M. Hsu, and R. Ladin. Organizing long-
running activities with triggers and transactions.
In Proc. of the ACM SIGMOD Confesence on
Management of Data, pages 204-214, Atlantic City,
NJ, USA, May 1990.

A. K. Ehnagarmid, editor. Database Transaction
Models fog Advanced Applications. ACM Press.
Morgan Kaufmann Publishers, Inc., 1992.

M. F. Fernandez and S. B. Zdonik. Transaction
groups: A model for controlling cooperative trans-
actions. In Proc. of the Int. Workshop on Persistent
Object Syatems, pages 341-350, January 1989. New-
castle, New South Wales.

[GHKM94] D. Georgakopolous, M. Hornick, P. Krychniak, and
F. Manola. SDecification and management of ex-
tended tram&ions in a programmatic transaction
environment. In PTOC. of the 10th IEEE I&. Confer-
ence on Data Engineering, pages 462-473, Houston,
Texas, February 1994.

[GI95]

[GS87]

[Hon88]

[HR83]

[HW92]

GMD-IPSI. VODAK V4.0 User Manual. Arbeitspa-
piere der GMD 910, Technical Report, GMD, April
1995.

I. Greif and S. Sarin. Data sharing in group work.
ACM Transactions on O&e Information Systems,
5(2):187-211, April 1987.

M. Honda. Support for parallel development in
the Sun network software environment. In Proc.
of the second Int. Workshop on Computer-Aided
Software Engineering, pages 5-5 - 5-7, Cambridge,
Massachusetts, USA, July 1988.

T. Hkder and A. Reuter. Principles of transaction-
oriented database recovery. ACM Computing SW-
veys, 15(4):287-317,1983.
J.M. Haake and B. Wilson. Supporting collaborative
writing of hyperdocuments in SEPIA. In PTOC.
of the ACM Conference on Compuler-Supported
Cooperalive Work, pages 138-146, Toronto, Canada,
October 1992.

[KAN94]

[KF87]

[Kim951

[KKB87]

[Klegl]

[KP92]

[KPS89]

[KS941

[KSUW85]

[PKH88]

[RB94]

[RS95]

[SANR92]

[WL93]

[WR92]

W. Klas, K. Aberer, and E. J. Neuhold. Object-
oriented modelling for hypermedia systems using the
VODAK modelling language (VML). In A. Dogac,
T. &zu, A. Biliris, and T. Sellis, editors, Advances
in Object-Oriented Database Systems, NATO AS1
Series, pages 389-443. Springer Verlag, June 1994.

G. B. Kaiser and P. H. Feiler. Intelligent assistance
without artificial intelligence. In PTOC. of the 32th
IEEE Computer Society InleTnational Conference,
pages 236-241, San Francisco, California, USA,
February 1987.

W. Kim, editor. Modern Database Syslems: The
Object Model, Inleroperabilily, and beyond. Addison-
Wesley Publishing Company, 1995.

H. F. Korth, W. Kim, and F. Bancilhon. On long-
duration CAD transactions. Informalion Systems,
13, 1987.

J. Klein. Advanced rule driven transaction manage-
ment. In PTOC. of the 36th IEEE Computer Society
International Conference, pages 562-567, San Fran-
cisco, California, USA, March 1991.

G. E. Kaiser and C. Pu. Dynamic restructuring
of transactions. In Ehnagarmid [Ehn92], chapter 8,
pages 265-295.

G. E. Kaiser, D. E. Perry, and W. M. Schell. Infuse:
Fusing integration test management with change
management. In PTOC. of Ihe 13th IEEE Computer
Software and Applications Conference, pages 552-
558, Orlando, Florida, USA, September 1989.

N. Krishnakumar and A. Sheth. Specifying multi-
system workfIow applications in METEOR. Bellcore,
Technical Memorandum, 1994.

P. Klahold, G. Schlageter, R. Unland, and W. Wilkes.
A transaction model supporting complex applications
in integrated information systems. In Proc. of the
ACM SIGMOD Conference on Management of Data,
pages 388-401, Austin, Texas, USA, May 1985.

C. Pu, G. E. Kaiser, and N. Hutchinson. split:
transactions for open-ended activities. In Proc. of
the 14th Int. Conference on Very Lal-ge Databases,
pages 26-37, Los Angeles, California, USA, August
1988.

M. Rusinkiewicz and M. Bregolin. Specification and
execution of transactional worktlows in distributed
systems. In Proceedings of Ihe Third Conference on
Intelligent Information Syslems. Polish Academy of
Sciences, June 1994.

M. Rusinkiewicz and A. Sheth. Specification and ex-
ecution of transactional workflows. In Kim [Kim95],
chapter 29, pages 592-620.

A. Sheth, M. Ansari, L. Ness, and M. Rusinkiewicz.
Using flexible transactions to support multidatabase
applications. In US We& - NSF - DARPA Workshop
on Heterogeneous Databases and Semantic Inlerop-
erabilily. Boulder, Colorado, USA, February 1992.

U. K. Wiil and J. J. Leggett. Concurrency control in
collaborative hypertext systems. In PTOC. of the fifth
ACM Conference on Hypertexl, pages 14-18, 1993.
Seattle, Washington, Nov 14-18.

H. Wiichter and A. Reuter. The ConTract model. In
Elmagarmid [Elm92], chapter 7, pages 219-264.

205

