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Abstract 

With the emergence of cooperative applications 
it turned out that traditional transaction con- 
cepts are not suitable for these scenarios. Isola- 
tion of transactions, as guaranteed by the ACID 
transaction properties, contradicts the need of 
cooperation between users. In this paper, we 
propose a cooperative activity model that pro- 
vides transactional properties suitable for coop- 
erative scenarios. Each user participating in a co- 
operative activity has his own private workspace 
that is isolated from other users. Cooperation 
is achieved by controlled exchange and synchro- 
nization of the contents of workspaces among the 
users and by installing results of their activities 
in the common activity database. Our model 
ensures that the joint execution of a cooperative 
activity is equivalent to one that could have been 
carried out by a single user. We discuss our co- 
operative activity model in different scenarios, 
one requiring a close cooperation in an author- 
ing environment, and the second implementing a 
workflow-like scenario. 

1 Introduction 
With the emergence of new application areas, the 
basic concept of transaction is being re-examined and 
new extended transaction models are being proposed. 
The traditional transaction model was based on the 
assumption that a large number of relatively short- 
lived transactions are accessing a shared database. 
This led to the emergence of the, ACID model [HR83] 
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that is based on isolation among transactions and uses 
serializability as a natural correctness criterion for the 
concurrent execution of transactions. 

The new application areas in which the transaction 
concepts are being applied, such as CAD, CASE, 
automated office workflows, or cooperative authoring, 
have quite different characteristics. The transactions 
in such environments need to support long-running 
activities, in which competition for resources (on which 
the locking protocols were based) is replaced by the 
need to cooperate. The emphasis, therefore, is not 
on preventing access to resources, but rather on the 
semantically correct exchange of information among 
concurrent activities of cooperating users. 

At the same time, we are interested in preserving 
some transactional properties of activities performed 
in these cooperative environments. With the tradi- 
tional transactions, the user (transaction programmer 
and the end-user) is freed from concerns about partial 
(and therefore incorrect) results of transactions being 
left in the database in the case of a failure, or being 
observed by other users, concurrently accessing the sys- 
tem. These concerns are addressed by the transaction 
processing system that enforces commitment protocols 
ensuring transaction failure atomicity and concurrency 
control ensuring that the effect of concurrent execution 
of transactions is equivalent to that of running these 
transactions one at a time, without any interference 
from each other. 

We argued that in a cooperative environment these 
properties may be not useful. Failure atomicity may 
be too strict and isolation among concurrent users 
may be undesirable. However, we need to replace 
them by new criteria, more suitable for cooperative 
,activities. In this paper, we present a proposal of the 
Cooperative Activity Model (COACT) we developed in 
the context of TRANSCOOPI. Instead of atomicity, 
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our model guarantees that cooperative activities are 
executed in accordance with execution rules defined 
by the designer of a given activity and terminate 
(commit) only in legal termination states. Instead of 
isolation, we guarantee that although the information is 
exchanged between the users concurrently participating 
in a cooperative activity, the result of such concurrent 
execution is equivalent to that of executing this activity 
by a single fictitious user having all the knowledge and 
authorizations of the cooperating users. 

The paper is organized a follows. In section 2, we 
discuss the basic components of a cooperative activity 
type specification. In section 3, the implementation of 
a cooperative activity by participating user activities 
is explained. In section 4, we review the related work 
in the area of cooperative transactions and workflows 
and compare it to our approach. Finally, we present 
conclusions and further work. 

2 Specification of Cooperative 
Activities 

2.1 A Framework for Cooperative Activities 

In the COACT model cooperative activities are specified 
by means of parameterized cooperative activity types. A 
cooperative activity type describes identical activities 
occuring in a particular organization. Each cooperative 
activity is described by a single cooperative activity 
type (CAT). A concrete cooperative activity (CA) is 
an instantiation of a cooperative activity type. 

Usually, more than one user participates in a coop- 
erative activity. Wet assign a user activity to each user 
participating in a cooperative activity. A user activity 
(UA) belongs to exactly one cooperative activity. The 
user activities are executed interactively by the respon- 
sible users in accordance with the pre-defined execution 
constraints of the cooperative activity type. Therefore, 
the exact sequence of operations performed within user 
activities cannot be determined beforehand. 

Each user executing a user activity has his own 
private workspace that is isolated from the workspaces 
of the other users. Additionally, there exists a common 
activity database, shared by all users, that stores 
common data. 

Similar to types of cooperative activities, users are de- 
scribed and classified by specific user types depending 
on the role they play in the organization and the coop- 
erative activity, respectively. The allowed interactions 
between the users participating in a cooperative activity 
may depend on this classification. We will not discuss 
this issue further, because user modelling is beyond the 
scope of this paper. 

Cooperation between user activities belonging to the 
same cooperative activity is achieved by controlled ex- 
change of (parts of) the contents of private workspaces. 
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This mechanism can also be interpreted as synchroniza- 
tion of (parts of) user activities. Another way users can 
collaborate is by installing possibly partial, but consis- 
tent results of their user activities in the common activ- 
ity database. Other users can access the current state of 
the cooperative activity kept in the common database 
and import (parts of) this cooperative activity into their 
private workspaces.- 

The model guarantees that, although information is 
exchanged between user activities concurrently execut- 
ing a cooperative activity, the result of a concurrent 
execution is equivalent to executing the cooperative ac- 
tivity in a single thread of control. Traditional concur- 
rency control assumes that transactions are correct and 
guarantees that no errors will be introduced by their 
interleaved execution. 

In our model, we assume that user activities are 
correct (obey all execution rules) and we guarantee 
that no errors will be introduced by the merging 
of concurrently executed threads. Although various 
(partial) versions of the activity may exist in private 
workspaces at different times, there is a single final 
result of a cooperative activity. This is achieved by 
merging the results of individual user activities of a 
cooperative activity in a semantically consistent way. 
Merging of user activities is described in section 3.2 in 
more detail. 

To support the exchange of data and the merging 
process and to ensure that users participating in the 
same cooperative activity are aware of each other and 
of the progress of the cooperative activity, additional 
coordination facilities are provided. For example, a 
user can be notified if another user joins or leaves the 
cooperative activity or if someone wants to exchange 
information with a co-worker. 

Given this framework the concepts of the COACT 
model can be summarized as follows: 

l cooperative activity types describing cooperative ac- 
tivities, 

l cooperative activities as concrete instantiations of 
cooperative activity types and as a composition of 
individual user activities, 

l user activities as activities of individual participat- 
ing users collaborating in a cooperative activity, 

l a common activity database for a cooperative activ- 
ity, 

l private workspaces for individual user activities, 

l a merger supporting the correct exchange of infor- 
mation between collaborating users, and 

l coordination facilities providing awareness and coor- 
dination of users. 

Figure 1 gives a simple illustration of the concepts 
discussed so far. The cooperative activity types X and 



0 common activity database 0 user activity l call of activity 

Figure 1: Concepts of COACT 

Y are instantiated in the execution environment. Each 
cooperative activity (Xl and Yr) consists of individual 
user activities and a common activity database. The 
call of another cooperative activity is presented within 
user activity UA-2. The arrows illustrate the different 
options for the exchange of information (import / save / 
delegate) within the scope of a cooperative activity. 

2.2 Cooperative Activity Types 
A cooperative activity type consists of the following five 
components: 

1. Activity declaration 
The declaration of a cooperative activity type starts 
with the keyword CAT, followed by a unique name N 
of the cooperative activity type, a definition of activity 
parameters P and a compensation activity C. 

The definition of activity parameters includes the 
formal input parameters 11,. . . ,I, and the output 
parameter list Or, . . . , 0,. The input and output 
parameters allow for a parameterized instantiation 
of a cooperative activity type. A declaration of a 
compensation activity C specifies the way the results 
of a cooperative activity can be semantically undone 
after its commitment. 

2. Constituent subactivities 
Constituent subactivities are specified as a set A of 
activities. A constituent subactivity may be another 
cooperative activity specified by a cooperative activity 
type or it may be an elementary activity. An elementary 
activity, described by an elementary activity type EAT, 
is a regular transaction program in the host OODBMS 
which consists of a (sequence of) method invocation(s) 
or a call to an external program. The ability to 
incorporate external applications via declaration as 
elementary activity types is particularly important if a 
cooperative activity is used to model the execution of a 
workflow - a multi-step activity involving coordinated 
execution of tasks running on different systems [RB94]. 

Each subactivity is assigned to a unique identifier Ai 
with i identifying a particular subactivity. A subactivity 
can be associated (explicitly or implicitly through 
its type definition) with a user type to restrict the 
execution permission to responsible users. Furthermore, 
we specify for each subactivity how many times it can 
occur in the final history of the cooperative activity. We 
write 

{Ai}n :: ACTIVITYTYPE(~n : . . . , Out : . . .)by USERTYPE 

to denote that subactivity Ai can occur n times while 
simply one occurrence is denoted by “Ai :: . . .“. It 
should be noted, that the used input and output 
parameters may introduce an implicit order between the 
constituent subactivities (data-flow). 

3. States and state transitions of the activity 
States of the cooperative activity and their state 
transitions are described as a set of observable states 
S and possible transitions ST : S - S. Transitions 
between the states of the cooperative activity can 
be represented by a finite state automaton and its 
transition graph [ARSS93]. 

When composing a cooperative activity type and 
defining its execution constraints, we are only interested 
in those states of constituent subactivities that can be 
externally observed and only those transitions that can 
be externally controlled. These characteristics must be 
provided as a part of the definition of a cooperative 
activity. 

Observable states are described in terms of predefined 
states defined for each activity which include at least 
the states: not executed (NE), executing (E), done 
(D), and undone (UD). Additional observable states 
can be defined as compositions of observable states 
and output values of constituent subactivities, or 
external events in terms of restricted first-order logic. 
For example, a “successful termination” state could 
only be reached if some constituent subactivities were 
completed successfully and before, e.g., Dee 31, 1995. 
The transitions defined on predefined states are shown 
in figure 2. In the following, we write s(A) to denote 
that activity A is in state s. 

A set of breakpoints t? c S defines states where the 
execution of a cooperative activity can be interrupted. 
Once a breakpoint is reached, the internal consistency 
constraints are satisfied, which corresponds to reaching 
an intermediate, but semantically consistent state in 
the execution of the activity. The work accomplished 
so far can be suspended, so that the activity can be 
resumed later (thus achieving the forward-recoverability 
postulate of ConTracts [WR92]). Alternatively, the 
results can be either exchanged with another user 
concurrently executing the same cooperative activity, 
or saved in the common activity database. 
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Figure 2: Transitions on predefined states 

The set of breakpoints B contains at least one state 
in which the cooperative activity can terminate. Ter- 
mination states I c tLJ are observable. A termination 
state of a cooperative activity corresponds to semanti- 
cally successful or unsuccessful completion. 

4. Execution rules 
A set of execution rules & is specified to govern 
the execution of the constituent subactivities. These 
rules can be interpreted as integrity constraints on 
the occurrence and temporal precedence of observable 
states associated with the execution of the subactivities 
[RS95]. If the rules are completely defined, they 
correspond to a script for the execution of subactivities 
implementing a cooperative activity. In a correct CAT 
specification, we require the execution rules to be in line 
with the data-flow between constituent subactivities. 
The execution rules consist of two parts: forward 
execution and backward execution rules. 

Forward execution rules govern the regular execution 
of a cooperative activity and, thus, of each involved user 
activity. Backward execution rules govern the rollback 
of the activity, if it is not finished yet and needs to be 
aborted. For the sake of simplicity, we assume in this 
paper that rollback is performed using compensation 
activities in inverse order. In general, execution rules 
can be defined in terms of: 

l Observable states of constituent subactivities, e.g., 
“subactivity A1 cannot start until subactivity Aa 
is finished”. For the sake of simplicity, we use 
predefined states only. 

l Output values of constituent subactivities, e.g., 
“subactivity Al can start if subactivity AZ returns 
an output value greater than 25”. 

l External variables, that are modified by external 
events that are not part of the cooperative activity, 
e.g., “subactivity A1 cannot be started before 9AM”. 

Execution rules have been discussed among others in 
[SANR92, ANRS92, CR91, GHKM94]. We use the well 
known ordering dependency (<) and existence depen- 
dency (+) as described in [Klegl] to express execution 

rules such as those in [ANRS92], e.g., a dependency A 
enables B is equivalent to the following set of depen- 
dencies: {Done(A) < Executing(B), Executing(B) -+ 
Done(A)}. 

The execution rules allow us to reason about the cor- 
rectness of the specification of the activity, before it is 
executed. Of course, unenforceable things can be spec- 
ified. We are particularly interested in specifications 
that are runtime enforceable [ARSS93]. To enforce the 
execution rules within user activities at runtime, we use 
an activity scheduler - a software module that governs 
the execution of user activities. It receives requests from 
users to perform actions, e.g., start a new subactivity, 
and responds by allowing those requests that are in ac- 
cordance with the specification. 

5. Activity interleaving rules 
Activity interleaving rules Z define a possible existence 
of dependencies between constituent subactivities of an 
activity in terms of data-flow. If two subactivities 
depend on each other, e.g., editing a document based 
on annotations previously made, this will later be 
relevant for a merge of the according activity with other 
activities. If subactivity B depends on subactivity A, 
and B is desired to be part of a merge, A has to be 
present in the merge, too. Note that such dependencies 
are not always given by the execution rules. Assume, 
for two subactivities A and B ,belonging to the same 
activity, no execution rule is defined, i.e., they can be 
executed any time. Even though, if A is executed before 
B, B might become dependent on A. This case is 
treated by activity interleaving rules. 

In addition, for each pair of subactivities executed 
concurrently within different user activities, activity 
interleaving rules define if both of them are allowed to be 
present in the merge, or one of them has to be discarded. 
Basically, we have to consider three cases: 

1. The subactivities are completely independent of each 
other, and both can become part of the merge. 

2. The subactivities are not independent, e.g., they 
both update the same data in a different way. In 
the merge, only one of these subactivities is allowed 
to ,be present. 

3. The subactivities are not independent, but because 
of their specific semantics, it is allowed to have both 
subactivities present in the merge. 

Case (3) is in particular important for modelling 
cooperation between users. Even if they execute 
subactivities which are not independent, both can be 
reflected in the merge as discussed in the above example. 

Activity interleaving rules are defined in terms of a 
compatibility predicate $ : A x A * {True, Fdse} 
between pairs of subactivities of a cooperative activity 
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type. The evaluation of the predicate might depend 
on the system state and parameter values of the given 
subactivities. In addition, it is sometimes useful to 
dynamically change the compatibility predicate, e.g., 
two subactivities A and B are compatible until Dec. 
31, 1995 only. For the sake of simplicity, we assume the 
compatibility predicate to be symmetric. 

If two subactivities are defined to be compatible their 
execution order is not relevant. Usually, subactivities 
are compatible if they commute. But dependent on 
the application semantics, non-commuting subactivities 
might also be compatible. 

In our model, compatibility is used to determine 
dependencies between subactivities executed by a single 
user, and to decide whether two executions of the same 
subactivity by different users can both be present in the 
merge. This is allowed only if they are compatible. 

In the following, we discuss a small scenario to illus- 
trate the concept of activity interleaving rules. Assume, 
two users are concurrently editing a document. Avail- 
able subactivities are edit(chapter), annotate(chapter) 
to add an annotation to chapter, and removeAnnota- 
tion(chapter) for the removal of an annotation from 
chapter. No execution rules are defined while the follow- 
ing activity interleaving rules between edit and annotate 
are specified: 

@( edit( chl), edit( ch2)) = (chl # ch2) 

@( annotate( chl), annotate( ch2)) = True 

@( edit( chl), annotate( ch2)) = True 

Assume, both users start with the same version of the 
document and both execute edit(ch1). If these user 
activities are merged, both subactivities are found to 
be incompatible according to the activity interleaving 
rules. One of them has to be discarded. As an 
alternative, assume user 1 has performed edit(ch1) and 
user 2 has performed edit(chZ). These subactivities are 
compatible and can both be present in a merge. Assume 
now, both users import the new versions of the chapters 
in their user activities and start annotating. Each 
user annotates both chapters chl and ch&. Although 
these subactivities update the same data (at least there 
is a counter representing the number of annotations), 
they can all be incorporated in a merge as they are 
compatible. 

2.3 Example of a Specification of a 
Cooperative Activity Type 

As an example, let us consider a cooperative activity 
of designing a telephone circuit between two points as 
described in [ANRS92]. We specify the cooperative 
activity ALLOCATECIRCUIT(CId, Start, End) where 
Start and End are Ids of end points of the circuit and 
CId represents the customer identifier. To design such a 

Centioflk~l cenlralOfice~2 

s-------“;-------\ 

Figure 3: Example scenario 

circuit, we need to allocate lines between end points and 
the nearest central offices and between the central offices 
(trunk connection). The latter activity may require that 
several hops forming a-path are allocated and therefore 
the activity can become complex consisting of other 
cooperative activities. Also, the connections between 
the end points of the allocated lines and trunks have 
to be allocated in the central offices’ switches to form a 
circuit. The example scenario is illustrated in Figure 3. 

A specification language can be developed based on 
the VODAK Model Language [KAN94] or the language 
in [RB94] or [KS94]. In the example demonstrated in 
Table 1, we use an intuitive pseudo notation to illustrate 
parts of the specification of cooperative activity types. 
An execution scenario of this example is presented in 
section 3.4. 

3 Support for cooperative activities 
3.1 Exchanging Results of Concurrent Work 
As stated earlier, our emphasis is to allow users to 
share and exchange the results of their concurrent 
work, and to guarantee that the resulting activity will 
be correct, i.e., obeys all constraints specified in the 
cooperative activity type. Since each user participating 
in a cooperative activity has his own private workspace, 
cooperation is achieved by the controlled exchange and 
synchronization of the contents of workspaces. 

The exchange mechanisms described in the following 
allow the cooperating users to communicate either 
directly or by saving and retrieving the results of their 
work in/from the common activity database. 

1. Import(souPce-activity): Importing (parts of) a 
user activity into the workspace of the current 
user activity. The common activity database as 
well as other user activities can be addressed as 
source-activity. 

2. Delegate(dest-activity): Delegating the user activity 
from the current workspace to the workspace of 
deskactivity. 

3. Save: Saving the current user activity in the 
common activity database. 
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CAT ALLOCATECIRCUIT(~: CId: CLIENT-ID, Start: POINT, End: POINT, Out: CircuitlD: CIRCUIT) 

Compensating activity C: 
DEALLOCATECIRCUIT(Circuit~D) 

Constituent Subactivities A: 
AO::UPDATECLIENTINFO(~X CId) by SERVICEREPRESENTATIVE 
A~::SELECTCENTRALOFFICES(~~: Start,End, Out: COl,C02) by SERVICEREPRESENTATIVE 
&::ALLOCATELINE 

I 
In: Start,CO1, Out: Linel) by ENGINEER 

&::ALLOCATELINE 1% End,COz, Out: Linez) by ENGINEER 
A~::ALLOCATESPAN(~~: COI,C02, Out: Span) by NETWORKENGINEER 
A5 ::ALLOCATE~WITCH In: Linel,Span 

I 1 
by ENGINEER 

A~::ALLOCATESWITCH In: Line2,Span by ENGINEER 
&::PREPAREBILL (In: CId,Linel ,Linez,Span) by SERVICEREPRESENTATIVE 

Observable States 0: 
NotExecuted: VAiNotExecuted(Ai) 
Executing: gAiExecuting(Ai) 
DoneWithSemanticSuccess: /\I=, Done(A,)) 
DoneWithSemanticFailure: Done(Ao) 
Undone 

State transitions ST: 
NotExecuted - Executing 
Executing - DoneWithSemanticFailure 
Executing - DoneWithSemanticSuccess 

Termination states ‘T: 
DoneWithSemanticSuccess 
DoneWithSemanticFailure 

Execution rules E: 
Al enables {Az,A3,A4} 
{Ag, A4) enables A5 

1 
AZ, A4) enables As 
AZ, As, A4,A5, As} enables A7 

Ao < A7 

Activity interleaving rules Z: 

@ II Ao AI A2 A3 A4 A5 As A7 

EAT UPDATECLIENTINFO(ZW CId: CLIENT-ID) 
. . . 
EAT ALLOCATELINE(IK P: POINT, Co: CO, Out: Line: LINE) 
. . . 
CAT ALLOCATESPAN(~W Cal: CO, Co2: CO, Out: Span: SPAN) 
. . . 

Table 1: Example of cooperative activity type specification 

In the case of Import, a user activity is merged in 
accordance with the execution rules and the activity 
interleaving rules with the user activity of the importer. 
Parts of the workspace of the importing user or parts of 
the imported activity may need to be discarded to create 
a consistent “version”. This operation has no effect on 
the workspace of the user from whom the work is being 
imported. 

In the Delegate operation, the user activity of the user 
delegating his work is merged with the user activity of 
the person to whom the work is delegated. Delegation 
means that the user is passing work that is possibly 
incomplete (i.e., the work has been interrupted at 
one of the predefined breakpoints) to another user. 
This operation has no effect on the workspace of the 
delegatee. 

The Save operation incorporates a user activity into 
the common activity database. As in the previous cases, 
incompatibilities between parts of the user activity and 
the common activity database need to be resolved under 
the control of the user, i.e., the responsible user has to 
choose between incompatible subactivities during the 
merge process. 

All operations mentioned control the merging by 
the same set of rules which will be discussed in 
detail in section 3.2. The incorporation of aciivities 
is similar to the join operation between transactions 
described in [KP92] with the main difference that both 
the joining activity ,and the resulting new activity 
belong to the same cooperative activity. Essentially, 
the merging can be viewed as incorporating a partial 
ordered history of an activity into a partial ordered 
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history of a receiving activity. A partial ordered history 
is generated from the execution order by considering 
dependencies that are formed by the execution rules 
or by the activity interleaving rules, e.g., due to data- 
flow between subactivities. The merging of the histories 
is controlled by the partial order of each history. 
If the intersection of the histories that are merged 
is non-empty or subactivities are incompatible, some 
subactivities may need to be eliminated, by allowing 
the controlling user to choose one of the replicated 
subactivities. 

It should also be noted, that, in principle, the 
Import and Delegate operations between user activities 
may be eliminated requiring all users to exchange 
information only via the common activity database. 
We decided to provide these operations, since their 
existence allows subsets of users to cooperate, which 
would be impossible, if these operations were not 
available. 

Besides the mentioned operations for the exchange of 
information, the model provides some basic primitives 
to manage the execution of cooperative activities. These 
primitives include the instantiation of a cooperative 
activity, the ability to suspend a user activity at 
a breakpoint which can be resumed later on, and 
operations to join (Join) or leave (Exit) an existing 
cooperative activity. The Join operation creates a new 
user activity for an already existing cooperative activity 
while Exit discards the workspace of the corresponding 
user activity which is no longer part of the cooperative 
activity. Before such an operation is issued, users 
usually will delegate their results to another user or save 
them in the common activity database. 

In addition, the model includes the operations Com- 
mit, Abort and Compensate of cooperative activities 
with almost usual semantics. The execution of a co- 
operative activity can terminate when it has reached 
a termination state in the common activity database. 
The Commit operation is issued by the last participat- 
ing user and passes all results of the activity to the in- 
voking activity or installs them in a public database. 

3.2 Merging of User Activities 

In the following we give an informal description of the 
basic concepts that are needed to describe a correct 
merger. 

Activity history. With activity history we refer 
to the histories of user activities as well as to the 
cooperative activity history reflected in the common 
activity database. 

An activity history is a tuple (R, 4%) where X is the 
set of all subactivities executed within the activity and 
4% is a partial order defined over ‘H. A history (31, +xH) 
is correct, if it satisfies the following conditions: 

1. The subactivities in 3t must be allowed by the 
cooperative activity type and must not violate the 
constraints on the number of occurrences of each 
subactivity in the history. 

2. 4’~ must satisfy the following properties: 

(a) 4% must not violate the order of subactivities de- 
termined by the execution rules of the cooperative 
activity type. 

(b) If two subactivities A, B E ‘7-L are executed in the 
order A before B; and A is non-compatible with 
D, i.e., @(A, B) = False, then A 4% B holds. 

(c) If there exist subactivities A, B,C E ‘H with 
A 4~ B A B 4% C then also A 431 C holds. 

The partial order A 4’~ B can be interpreted as B 
depends on A, either because there exists an execution 
rule in the corresponding cooperative activity type 
which determines the order of A and B (2a), or because 
A and B are not compatible, which means that the 
order of A and B is relevant (2b). We explicitly require 
the transitivity of 4% because transitivity is neither 
guaranteed by execution rules nor by the compatibility 
predicate $ (SC). 

A history (3-1,+x) is said to be complete if it satisfies 
the termination predicate defined in its corresponding 
cooperative activity type. In a correct specification 
of a cooperative activity type a termination state can 
only be reached if all execution rules are satisfied (e.g., 
existence dependencies). 

Mergeable histories. We call two histories merge- 
able if they belong to the same cooperative activity and 
both histories have reached a breakpoint. 

Belonging to the same cooperative activity implies 
that the histories are executions of the same cooperative 
activity type. The above condition also ensures that 
such histories have seen the same initial database state 
because they belong to the same cooperative activity. 
This enables us to reduce the scope of history merging 
to the scope of one particular cooperative activity. 

Merged activity history. A merged activity history 
is a tuple (M, 3~) that is constructed out of two 
mergeable activity histories (‘HI, +w,) and (‘HZ, 4~~) 
where M c ‘HI U ‘Hz, and 4~ is a binary relation 
defined over M. 

In the following, we use (‘H, <x) to refer to one 
of the two histories (‘Hi, 4~~) or (7fz,+3ia) to avoid 
symmetric conditions. If we use ‘I? and ‘H, we refer 
to different histories. A and B denote arbitrary 
subactivities which are included in some histories. 
Furthermore, we assume A ‘# B. 

The following conditions must hold for the merged 
history (M, +M): 
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1. M does not violate the constraints on the number 
of occurrences for each subactivity defined in the 
cooperative activity type. 

2. If A,BE’H A BEM A A+xB then AEM. 
We postulate that a subactivity B which depends 
on another subactivity A can only be included in 
the merged history, if A is included in the merged 
history. 

3. If(AEXAA~tiAB~7?AB~~)A$(A,B)= 
False then A 4 M V B $ M. 
If there are two non-compatible subactivities A E 7-l 
and B E 2 then at most one of these subactivities 
can be contained in the merged history (M, 4~). 
The reason is that A and B are not independent, 
e.g., if A would be ordered before B in the merged 
history, the initial state of B in (‘H, 4~) and 
the initial state of B in (M, 4~) would not be 
semantically equivalent. If B would be ordered 
before A in the merged history, the execution of A 
would be based on a non-equivalent state. 

4. +M has to fulfill the following properties: 

(a) If A, B E X A A 4% B A A, B E M then 
A-~MB. 
If there are two subactivities A and B from the 
same history X and A 431 B holds then this 
dependency has to be reflected in -iM if A and 
B are imported in M. 

(b) If there exist subactivities A, B, C E M with 
A 4~ B A B 4~ C then also A +M C holds 
(transitivity condition). 

Example. In the following we illustrate the merge 
of two histories. As stated before, two histories can 
only be subject of a merge, if they belong to the same 
cooperative activity. Therefore, they are baaed on 
the same initial database state, e.g., the state passed 
by an invoking activity or a public database state. 
Figure 4(a) reflects the initial database state of two 
histories (Xi, 4~~) and (7-12,-~~~). For the sake of 
clarity, we consider a situation where the merge of the 
histories is only determined by the activity interleaving 
rules defined in the corresponding cooperative activity 
type. The subactivities A and B of (‘HI, 4~~) are 
to be imported into (‘Hz, +x2). Due to the fact that 
@(C, B) = False, rule (3) of the merged activity history 
states that we can include either B or C in the merged 
history. Activity A is compatible with B and C and 
thus can be easily incorporated. 

Figure 4(b) continues the example. After the merge 
shown in Figure 4(a), subactivity D is executed in 
(X1, <x1), and subactivity E is executed in (X2,+xa). 
We now import the subactivities of history (E~,~~a) 

(a) Histcrv 1 

@I 

History 2 

History I 

‘m$ A B D 

pjf$pxy 
History 2 

Figure 4: Merge example 

into (Xi, +x1). In contrast to the previous example, 
we choose A and B to be included in the merged 
history and we discard C. Now ,consider subactivity 
E. E is compatible with B, but not with A. But 
A is also present in history (3-12,+wHa). Therefore, E 
already depends on A, and can be incorporated into the 
merged history (rule (3) for merged activity histories 
does not apply). As E and C are compatible, E does not 
depend on C. Otherwise, E could not be incorporated 
because C is not present in the merged history. Similar 
arguments hold for D, which is compatible with E, 
but depends on A and B. As A and B are in the 
merge, D can be incorporated. The correctness ,of 
the activity histories (Zr ,4x,) and (Xs,4xHa) together 
with the merger rules ensure the correctness of the 
merged history shown in Figure 4. 

In the following, we outline a few important proper- 
ties of the proposed model: 

1. Histories resulting from a merge contain only subac- 
tivities that are allowed by the corresponding coop- 
erative activity type. 

Condition (2) of merged activity histories guarantees 
that a merged history (M, +,&I) contains only 
activities that are either in ‘X1 or X2. Due to the 
fact that ‘Efi and X2 satisfy condition (1) of correct 
activity histories they can only contain subactivities 
that are in line with the specification. 

2. A merged history (M, <M) does not violate the 
order of subactivities determined by the execution 
rules of the cooperative activity type. 

In both histories (Xl, 4’~~) and (‘?LH~,+x~) the 
execution dependencies are not violated by 4’~~ or 
+wa, respectively. 

If A and B are from the same history (A, B E 7-l) 
and A, B E M and the execution dependencies 
determine an order A before B, then A 4~ B and 
therefore A +M B is satisfied by condition (4a) of 
merged activity histories. 
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Assume A and B come from different user histories, 
i.e., A E 3-1, B E ii. If there exists an execution 
rule in the cooperative activity type which orders A 
before B: then it holds by the properties of correct 
activity histories that A is also included in 31, i.e., 
A E ?? and A 4~ B. Thus, by condition (4a) of 
merged activity histories, A +M B follows. 

3. Each subactivity A E M in a merged history 
(M, 4~) is executed based on a state that is 
equivalent to the state before its execution in the 
original history. 

The relation +M preserves the local partial orders 
<R~, <n, of histories. As stated above, the execu- 
tion rules defined in the cooperative activity type 
are satisfied. According to rule (3) for merged activ- 
ity histories, for non-compatible pairs of subactivi- 
ties of different histories that are not ‘contained in 
both histories, one of the subactivities is discarded 
and is not included in the merged history. This en- 
sures that the equivalence of the initial states of a 
subactivity in its original history and in the merged 
history is not affected by incorporating subactivities 
of the other history. 

The required properties for merged activity histories 
can be interpreted as a test on the correctness of a his- 
tory that contains subactivities from different histories, 
i.e., the merged history. We have outlined above that 
merged histories fulfill the properties required for cor- 
rect activity histories. Due to the fact that a merged 
history fulfils the properties of correct activity histo- 
ries, the merged history could have been executed by a 
single fictitious user. 

In practice, we need a constructive algorithm for 
different merge processes, e.g., import, delegation, or 
save of work in the common activity database. These 
algorithms will be based on the outlined properties of 
merged activity histories. 

The selected approach, i.e., to define the correctness 
of a merged history by assuming two correct histories as 
input, has the advantage that the scheduling of subac- 
tivities within user activities (to ensure the correctness 
of single activity histories) is independent of the merge 
algorithm itself. Therefore, it is possible to use different 
software modules for the enforcement of execution rules 
and for merging of histories, i.e., exchanging informa- 
tion between different user activities or a user activity 
and the common activity database. 

3.3 Coordination Facilities 
Coordination facilities serve the purpose of coordinating 
cooperating users by providing a set of functions 
implementing predefined coordination protocols. Table 
2 summarizes some functions useful to coordinate the 
processing of cooperative activities. 

Preempt 
Request exclusive access 
Request cooperation 
Request observation 

Table 2: COACT coordination functions 

The functions are available at the user interface level 
and are independent of a particular cooperative activity 
type. They allow e.g., to join an ongoing cooperative 
activity or to observe concurrent user activities. If one 
of these functions is invoked, the system can (depending 
on the user types) accept or refuse the execution. 
For some cases approval of users working in the same 
cooperative activity is necessary. 

If for some reason the participation of a specific 
user is no longer desired, he can be eliminated from 
the cooperative activity and his work c,an be taken 
over by another user. This is done by executing the 
Preempt function. A user can only be forced to, leave 
the cooperative activity, if the user types do not warrant 
such an interaction. In this case the request is rejected 
by the system. 

The Request exclusive access function is executed by 
a user who wants to take over a co-worker’s activity by 
merging it with his own user activity. If this function 
is invoked by a user who is not participating in the 
cooperative activity, the workspace of the current user 
is handed over to the requestor. The function gives the 
affected user the ability to decide whether he grants the 
exclusive access or not. Before the affected user grants 
the exclusive access he can request who wants to take 
over his activity. 

To join an ongoing cooperative activity the Request 
cooperation function is issued. This request can be 
refused by the actual participants. Furthermore, this 
function allows to invite a new person to contribute to 
the cooperative activity. 

Different notification policies can be selected with 
the Request observation function. Once different user 
activities are active, the notification policy determines 
which particular events are subject to notification. In 
particular, collaborating users are informed when the 
state of a workspace of another user changes, e.g., a 
breakpoint is reached within a concurrent user activity. 
The collaborating users are also informed when the 
state of the common activity database changes, i.e., 
one of the users performs the save operation. Hence, 
this mutual awareness helps the users to coordinate 
their current activities and helps to avoid loss of work 
due to incompatibilities in a later merge process. For 
monitoring reasons, it is useful to provide this operation 
to persons, e.g., a division manager, who only observe 
the progress of the cooperative activity. 
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3.4 Example of the Execution of a 
Cooperative Activity 

Let us consider the following scenario in which four dif- 
ferent users participate in the execution of a cooperative 
activity of type ALLOCATECIRCUIT described in table 1. 
The scenario illustrates the basic concepts introduced in 
this paper, namely breakpoints, execution rules, interac- 
tion rules, the merge option, and coordination facilities. 
We assume that a cooperative activity is uniquely iden- 
tified. In our example all users cooperate by performing 
various subactivities related to the execution of a single 
service order. 

1. Useri starts a cooperative activity of type ALLO- 
CATECIRCUIT upon receiving a service order and he 
gets a unique identifier for this cooperative activity, 
e.g., Ci. He executes, as part of his user activity, 
subactivity a0 of type UPDATECLIENTINFO and al 
of type SELECTCENTRALOFFICES; after completion 
of these subactivities, his user history looks like that: 

Useq: [ a0, al 1 

The user then executes a save operation: the state 
of his user activity corresponding to a breakpoint is 
saved in the common activity database. No explicit 
merge has to be performed because the common 
activity database is empty. Afterwards, the user 
exits the cooperative activity. 

2. User2 comes and joins the cooperative activity Ci. 
He is informed that Ci was being executed by 
Useri and that Useri has saved his work in the 
common activity database. User2 decides to import 
the current state of work from the common activity 
database. He then executes US, ALLOCATELINE and 
ad, ALLOCATESPAN. 

Userz: C a0, al, a2, a4 1 

3. User3 comes and joins cooperative activity Ci. He is 
informed that User2 is active in the cooperative ac- 
tivity Ci, requests to import (which is approved) and 
imports UserF’s history. Afterwards, he executes as, 
ALLOCATELINE followed by ~5, ALLOCATESWITCH 
for Liner and &3, ALLOCATESWITCH for Line2 

Users: C a0, al, a2, a4, a3, a5, a6 1 

4. In the meantime, User2 executes a/5, ALLOCATE- 
SWITCH for Linei and decides to delegate his work 
to UseQ. The history of User2 is shown below. After 
the delegation is accepted by Usera, User2 performs 
an exit. 

User2: [ a0, al, a2, a4, a5’ 1 

5. User3 accepts the work being delegated and it is 
merged into his user history. The histories are 
mergeable. But there is a problem with the two 

connections between Line1 and Span, which were 
made independently (~5, a;). User3 chooses to 
accept the subactivity uk originally executed by 
User,, This means that “his version” of a5 is 
discarded, i.e., compensated, and the subactivity a; 
is redone in Userz’s private workspace. 

Users: C a0, al, a2, a4, a3, a6, a5’ I 

6. User4 (Manager) requests exclusive access to Ci 
and imports Usera’s user activity workspace. User3 
leaves the cooperation and his workspace is dis- 
carded. User4 decides that a2 is not to his liking. He 
re-executes aa, as a result the old a2 and ai are inval- 
idated because a2 and ui are non-compatible and a; 
depends on a2. User4 re-executes a&‘, prepares the 
bill (or) which completes the execution of the co- 
operative activity Ci and saves his user activity to 
the common activity database. Since a termination 
state of Ci has been reached (DoneWithSemantic- 
Success), the user can issue a commit, making the 
results of the cooperative activity visible outside. 
The final cooperative activity history (Usera’s his- 
tory respectively) is shown below. 

Final Ci history: 
C a0, al, a4, a3, a6, a2’, a5”, a7 1 

We see that no execution rules have been violated 
and the final result of the cooperative activity Ci is 
equivalent to the execution by a single fictitious user 
in the order [a~, al, a4, a3, as, aI,, at, or] without any 
improper interferences form concurrent execution of 
user activities and with a proper data-flow. 

4 Related Work 
There have been various approaches proposed to in- 
crease the flexibility of the transaction concept to sup- 
port cooperation. 

The basic check-out model is a commonly accepted 
approach to support long interactive computations 
[BKK85, KKB87, KSUW85J. Users copy objects from a 
shared database to private workspaces for manipulation 
(check-out). Check-out objects are reserved for exclu- 
sive access until a later check-in. Another drawback 
is that all objects and subobjects needed to perform a 
specific task have to be checked out explicitly. The ap- 
proach is often combined with versioning mechanisms. 
Concurrently derived versions have to be merged man- 
ually. 

For software engineering purposes, several extensions 
of the check-out model have been developed taking 
advantage of the opportunity of generic consistency 
checking in those environments [KF87, KPS89, Hon88]. 
The Network Software Environment [Hon88] supports 
an optimistic coordination scheme by forcing concur- 
rently created versions of source code files to be merged 
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(copy/modify/merge cycle). The merge operation in- 
cludes an automatic consistency checking for the af- 
fected files. Due to the fact that such a generic con- 
sistency checking is not applicable in all application do- 
mains, this approach is not a general solution. 

The split- and join-transaction approach [PKH88] 
supports the restructuring of transactions. A split- 
operation allows to split a running transaction into 
two new (serial or independent) transactions while a 
join-operations allows to incorporate two transactions 
into a new transaction. These operations are based 
on the consideration of the read- and write-sets of flat 
transactions. Higher level operation semantics are not 
taken into account. 

Group-oriented transaction approaches describe the 
overall working process as a transaction hierarchy con- 
sisting of group transactions. Individual user transac- 
tions form the leaves of the transaction hierarchy. Vis- 
ibility between transactions is supported by extended 
lock schemes [KSUWSS] or by following predefined ac- 
cess patterns that define the application-specific correct- 
ness criteria [FZSS]. The models pass objects along the 
transaction group hierarchy. 

ACTA [CR90, CR921 is a comprehensive transaction 
framework that can be used to specify the types of 
dependencies between transactions. One of the ACTA 
building blocks is the delegation primitive [CR93]. 
A transaction t can delegate the responsibility for 
committing or aborting an operation o to another 
transaction t’. This primitive is useful to control the 
(partial) visibility of results. 

The area of transactional workflow approaches usu- 
ally comprises task specification languages to express 
various execution constraints for a set of tasks. This 
can be done either by supporting a script language like 
in the ConTract model [WR92], by a declarative spec- 
ification of the execution structure in terms of exter- 
nally visible execution states [ARSS93], or by ECA rules 
[DHLSO]. Cooperation is characterized in these models 
by passing results between workflow tasks in a prede- 
fined manner. There is no opportunity for passing re- 
sults back and forth between co-workers to achieve a 
common goal. This is needed in non-workflow scenar- 
ios, e.g., cooperative authoring environments. 

Related work done in the field of Computer Supported 
Cooperative Work [WL93, GS87] follow in most cases 
a more or less ad-hoc approach in synchronizing work 
of collaborating users, e.g., user-controlled locking of 
objects without transactional support. The requirement 
of supporting different modes of cooperation [HW92] 
can be supported in the COACT model by defining 
different sets of execution rules and activity interleaving 
rules. 

5 Conclusion and F’urther Work 
In this paper, we proposed the COACT model as a 
possible approach towards transactional support for 
cooperative applications. 

Cooperation in our model is achieved by controlled 
exchange and synchronization of the contents of work- 
spaces among the users and by installing results of their 
activities in the common activity database. While the 
traditional transaction model guarantees that no errors 
occur due to the interleaved execution of transactions 
(serializability), the outlined correctness criterion of our 
model is based on two assumptions: 

1. Histories of user activities as well as the history re- 
flected in the common activity database are correct 
in the sense that they satisfy all execution rules de- 
fined in the cooperative activity type, and 

2. there will be no inconsistencies introduced due to 
the exchange of information between concurrently 
executed activities. The exchange of information by 
means of merging activities is based on the semantic 
compatibility of activities described in the activity 
interleaving rules. 

Furthermore, we allow only a single result of a 
cooperative activity although there may exist various 
versions in the different user workspaces and the 
common activity database, respectively. Thus, the 
COACT model ensures that the joint execution of a 
cooperative activity is equivalent to one that could have 
been carried out by a single user. 

The major contribution of the presented model is 
the combination of modelling primitives as found in 
the workflow area and primitives as needed in less 
structured cooperative environments like cooperative 
authoring. By utilizing application semantics, our 
approach shows how the work of different cooperating 
users following a common goal can be merged in 
accordance with the given rules of a specific application 
domain. With the merge option, co-workers can 
delegate parts of their work as the need arises as well as 
create their own realities of the given problem. 

So far, we have worked out a framework of a coopera- 
tive activity model. Our further research focuses on car- 
rying out detailed algorithms and a theoretical frame- 
work to prove the properties of the model. In addition, 
we work on embedding the COACT modelling facilities 
in the object-oriented database programming language 
VML and extending the transactional services of the 
OODBMS VODAK [GI95] with the COACT functional- 
ity to support cooperation. 
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