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Abstract 

We follow the stack-baaed approach to query 
languages which is a new formal and intel- 
lectual paradigm for integrating querying and 
programming for object-oriented databases. 
Queries are considered generalized program- 
ing expressions which may be used within 
macroscopic imperative statements, such as 
creating, updating, inserting, and deleting 
data objects. Queries may be also used as pro- 
cedures’ parameters, as well as determine the 
output from functional procedures (SQL-like 
views). The semantics, including generalized 
query operators (selection, projection, naviga- 
tion, join, quantifiers, etc.), is defined in terms 
of operations on two stacks. The environment 
stack deals with the scope control and bind- 
ing names. The result stack stores intermedi- 
ate and final query results. We discuss defini- 
tions of object-oriented concepts and present 
variants of parameter passing methods. Fi- 
nally, we indicate a potential of the approach 
for query optimization based on rewriting. 

1 Introduction 

In the stack-baaed approach to object-oriented query 
languages (QLs) [SBMS93, SBMS94] we reconstruct 
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QLs’ concepts from the point of view of program- 
ming languages (PLs) .The most fundamental property 
of QLs integrated with PLs concerns the presence of 
conceptualoperators that encapsulate iterations. Con- 
ceptual operators have the intuitive meaning for the 
programmer, allowing her/him to write, read and un- 
derstand programs fluently. On the other hand, the 
operators should have formal and simple semantics. 
Projection, selection, join, quantifiers are examples of 
relational query operators that encapsulate iterations 
and are at the same time conceptual, formal and sim- 
ple. For more sophisticated data models, in particular, 
for object-oriented models, sufficiently general and se- 
mantically clean definitions of such operators cause dif- 
ficulties. These are due to the complexity and variety 
of data structures that have to be queried, and the ne- 
cessity to integrate queries with various data/PL func- 
tionalities, such as macroscopic imperative statements, 
views, integrity constraints, (database) procedures, ac- 
tive rules, modules, methods, classes, and types. 

In this paper we present a new conceptual frame- 
work (a formal ideological platform) aiming the men- 
tioned above issues. The model that we propose is 
abstract and universal, but simultaneously, precise 
enough to deal with vital semantic aspects of practical 
object-oriented QLs/PLs. As one can expect, it sub- 
sumes corresponding features of less sophisticated data 
models, in particular, of relational, nested-relational 
and functional ones. 

The main syntactic decision of our approach is the 
unification of PL expressions and queries; queries re- 
main as the only kind of PL expressions. Concerning 
semantics, we focus on the naming-scoping-binding is- 
sues. Each name occuring in a query is bound to run- 
time program entities (persistent data, procedures, ac- 
tual parameters of procedures, local procedure objects, 
etc.) according to the actual scope for the name. The 
common approach which we follow here is that the 
scopes are organized in an environment stack with the 
“search from the top” rule. Some extensions to the 
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structure of stacks used in PLs are necessary to ac- 
commodate (in particular) the fact that in a database 
we have persistent and bulk data structures. Hence 
the stack contains data identifiers rather than data 
themselves (i.e., we separate the stack from a store of 
objects), and possibly multiple objects can be simul- 
taneously bound to a name, which makes the macro- 
scopic processing possible. The operational semantics 
of queries and procedures is defined in terms of oper- 
ations on two stacks: the environment stack and the 
staik of query results. 

Basic assumptions of our approach to the integra- 
tion of queries and procedures are the following: 

D Queries, as generalized programming expressions, 
are used as parameters of procedures. 

D The body of a procedure is a sequence of imperative 
statements that use queries in the many-data-at-a- 
time manner (c.f. the SQL update statement). 

D The output from a functional procedure is deter- 
mined by a query. The output may be accessed 
through auxiliary names, as in SQL views. 

D Procedures may call procedures, in particular, can 
be recursive. 

D Procedures may declare/create local objects that 
are unvisible from outside of the procedure body. 
To enable recursion, local objects are assigned to 
a run-time procedure invocation rather than to a 
procedure code. 

D We allow three methods of updating data objects 
in the many-data-at-a-time manner with the use of 
a procedure: (1) updating via parameters, (2) up- 
dating via side effects, and (3) updating via objects’ 
references returned by a functional procedure (the 
method corresponds to view updating). 

D We deal with scoping rules that take into ac- 
count modularization, encapsulation, inheritance, 
and procedures local to a class, i.e. methods. 

Majority of constructs described in this paper 
are implemented in the experimental system LOQIS 
[SMASO], but we discuss here principles that are in- 
dependent of the implementation. We dedicate this 
work to the developers of industrial standards, such 
as ODMG-93 [Catt94] and SQL-3 [ANSI94]. In our 
opinion, some drawbacks of these proposals could be 
eliminated by following principles that stem from the 
PL state-of-the-art. We present consequences of these 
principles for a general and disciplined semantic model 
which is relevant to these proposals. 

Why the stack-based approach? 

The ideas presented in this paper contribute to a 
very hot research and technological area, thus have to 
compete with a tremendous amount of proposals: for- 

mal and informal, implemented and speculated’. The 
comparison of our approach with informal ones is a 
bit difficult, as the discussion has to involve a taste, 
belief and backgrounds of competing parties, which 
are incompatible as a rule. We can only indicate lack 
of some kinds of queries and/or data structures in a 
particular approach, which are available in ours2 (for 
example, “For each department having more than 50 
programmers return the name and the dispersion of 
salaries”, assuming the aggregate function dispersion 
is not available, and the request should be formulated 
as a single query addressing a relational or an object 
database). Besides the universality, our approach is 
regular, minimal and semantically clean, which is not 
the case of informal proposals as a rule. Concern- 
ing formal approaches, we argue that currently known 
ideas (nested relational algebras, object algebras, rela- 
tional calculi, predicate logic, F-logic, comprehensions, 
etc.) must lead to semantic difficulties at least for one 
of the following reasons: 

D Lack of uniform, orthogonal treatment of transient, 
persistent, individual and bulk data; 

D Lack of consistent and universal approach to updat- 
ing, and in general, to the integration with impera- 
tive statements; 

D Absence of scoping rules for names used in 
queries/programs. The control over scopes for 
names is necessary to deal with (recursive) proce- 
dures, modules, program blocks, classes, methods, 
procedure parameters, etc.; 

D Inability to deal with object sharing, encapsulation, 
class hierarchy and inheritance; 

D No clean semantics of auxiliary names used in 
queries, such as tuple variables (SQL “synonyms”), 
domain variables, variables bound by quantifiers, 
cursors in for each statements, and new names used 
in (SQL-like) views; 

D Lack of object identifiers as a QL primitive, which 
makes impossible to deal with important practical 
functionalities (for instance, call-by-reference); 

D Absence of views and view updating; 
D Absence of null values and variants in data struc- 

tures and handling them in queries; 
D Absence of ordering and queries based on the order- 

ing (“Get 2’0 best-paid employees”); 
D Lack of compositionality - big syntactic/semantic 

patterns of QLs’ constructs, making minimality, 
orthogonality and universality of a language very 
problematic (c.f. the famous “query” 2 + 2). 

The comprehension syntax, for example, falls into 

lThey are too numerous to cite even the most important. 
2The reverse statement is the task of our opponents. So far 

we didn’t discover a case showing that our approach has some 
inherent limitations in comparison to anothel: approach. 
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all of the mentioned problems, F-logic is not dealing 
with updates, views, scopes, null values, and ordering; 
etc. Our approach allows us to deal with all these is- 
sues in a consistent framework, which can be explained 
on few pages of this paper. With respect to other ap- 
proaches, the level of universality of our approach is 
incomparably higher; this concerns both data struc- 
tures and QL/PL functionalities. We also argue that 
our approach contributes a lot to the understanding 
the true nature and consequences of semantic deci- 
sions in practical query/programming languages that 
are actually used, implemented or designed. 

For the reader competent in the PLs’ state-of-the- 
art it should be evident that a serious approach to 
the integration of queries and procedures cannot avoid 
the concept of an environment stack (or an equivalent 
concept). Our original contribution is that we use the 
same stack as a part of an abstract, universal mecha- 
nism for defining all query operators, such as selection, 
projection, join and quantifiers. 

The rest of the paper is organized as follows. In 
Section 2 we present an abstract store model. In Sec- 
tion 3 we describe the environment stack. In Section 
4 we outline the operational semantics of the query 
language SBQL; it is a formalized variant of many 
SQL-like QLs. In Section 5 we present imperative con- 
structs based on queries. In Section 6 we present our 
view on object-oriented concepts. In Section 7 we in- 
troduce procedures and discuss parameter passing. In 
Section 8 we present an example of optimization based 
on rewriting. Section 9 contains the conclusion. 

2 An Abstract Store Model 

Currently implemented or proposed data models in- 
clude a large variety of features: data types such as 
records and arrays; bulk data types such as sets, bags, 
lists, maps and trees; object features such as identity, 
is-a relationships, methods and encapsulation. Instead 
of addressing all this diversity we have chosen the op- 
posite approach, developing a very simple model, pow- 
erful and general enough to express various models. 

Our store consists of store objects (objects for short) 
which can be volatile or persistent. There are three 
components of an object: 

b its unique internal identifier; it cannot be directly 
written in queries and is not printable; 

b the external name invented by the programmmer 
or database designer that can be used to access the 
object from a program; 

D the content of the object which can be a value, a 
pointer, or a set of objects. 

Formally, let I be a set of identijers, N be a set of 
names, and V be a set of atomic values. Atomicity 

of the elements of V means that they are considered 
to have no components. We assume I rl (V U N) = 0; 
N and V are not required to be disjoint. A store object 
is a triple <i,n, v>, or <i,n, ir>, or <i,n,T> where 
i, ii E I, n E N, and T is a set of store objects. i is an 
internal identifier of the objects, n is an external name, 
and v, ii and T are contents of the objects. We say 
that identifier i identifies an object. We refer to these 
three types of objects as value objects, pointer objects, 
and complex objects. A store is a set S of store objects, 
and set R of identifiers of designated root objects.’ 

Note that complex objects can represent arbitrary 
hierarchical data structures, and pointer objects can 
be used to represent object sharing. To deal with en- 
capsulation, classes and inheritance some extensions 
are necessary; we present them later. Types are (al- 
most) orthogonal to the topics considered in this pa- 
per thus we do not deal with them. Note that to deal 
with bulk data we do not impose uniqueness of exter- 
nal names of objects at any level of data hierarchy. 
We have shown in [SBMS93, SBMS94] that this sim- 
ple model allows one to represent a variety of data 
structures and concepts, including tuples, (nested) re- 
lations, arrays, sets, bags, null values, variants, in- 
stances of recursive types, etc. 

The following is an example store. The root objects 
of the store are identified by {ii, is, is, irs, irr}. 

TinyDatabase: 

< il, EMP, 1 <iz, NAME, Brown>, 
<is, SAL, 2500>, 
<ir, WORKSJN, i13> } > 

< ha, EMP, 1 <is, NAME, Smith>, 
<i7, SAL, 2000>, 
<is, WORKSJN, i17> I> 

-c i9, EMP, { <ilo, NAME, Jones>, 
<ill, SAL, 1500>, 
<ilz, WORKS-IN, i17> } > 

-c i13, DEPT, { <&a, DNAME, Toys>, 
<iIs, LOC, Paris>, 
<&, LOC, London> I> 

-c i17, DEPT, { <iIs, DNAME, Sales>, 
<irg, LOG’, Berlin> I> 

In examples we also use the schema presented in 
Fig.1. Objects are represented by ovals, labelled by 
objects’ external names. Relationships are represented 
by pointer objects stored inside higher level objects, as 
in ODMG-93, or by value objects (attributes), as in the 
relational model. This creates redundancy allowing us 
to demonstrate different styles of querying, e.g., rela- 
tional and navigational. The relationship expressed by 
EMPLOYS pointers is opposite to the one expressed 
by WORKSJN pointers. The atribute MGR stores 
the same string as the EN0 attribute identified by the 
content of the pointer DMGR. Similarly, the attribute 
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Figure 1: A database schema used in examples 

EDNO contains the same value as the attribute DNO 
of the object identified by the pointer WORKS-IN. 
Note that a DEPT object contains many pointer sub- 
objects EMPLOYS, and LOC and PREV-JOB are 
multi-valued attributes; the latter is a complex one. 

3 The Environment Stack 

The evaluation of names occuring in queries means 
binding them to run-time data or program units. As 
usual, we assume that locality of binding scopes is 
controlled via the environment stack (ES). Bulk and 
persistent data, and some features of queries require 
changing the construction of the stack used in classi- 
cal PLs. Our environment stack consists of sections, 
where each section consists of pairs n(i) and n(v), 
where n E N,i E I, w E V; such pairs are called 
binders. Note that in the binder n(i) name n may 
be different from the external name of the object iden- 
tified by i. As will be shown, this feature also allows us 
to explain parameter passing methods and renaming 
data objects in views. The same binder may be present 
in several stack sections and the same object may be 
accessed through different names (possibly from the 
same section). We allow many binders in one section 
to contain the same name; this corresponds to the fact 
that the external names of objects in a store are not 
unique. As a consequence, binding a name occuring in 
a program can be multi-valued. 

We assume that at the beginning of the evaluation 
of a query/program the environment stack consists of 
one section containing binders of all root database ob- 
jects’determined by R, such as the EMP and DEPT 
objects in the TinyDatabase. 

Binding a name n is performed by a search in the 
environment stack for one or more binders n(29). The 
search follows scoping rules. The simplest rule is to 
follow strictly the structure of the stack, from the 
top down towards the bottom. The search terminates 
when it finds a section that contains one or more such 
binders. In that case, the bag of all such elements 
is taken as a temporary result of the search. The 
final binding result is received by removing name n 

Binding 
of names 

DEPTfi,,) DEPTfi,J 

The environment stack b%zGf 
Figure 2: A snapshot of ES and of the store 

from each binder that belongs to the temporary result: 
only elements 6 are left. For example (c.f. Fig.2), if 
the stack contains the section { EMP(il), EMP(is), 
EMP(&), DEPT(i13), DEPT(il7) } and we want to 
bind EMP, then the result of the binding is {ir , is, is}. 
Similarly, the result of binding SAL is {is}. If no sec- 
tion with binders for a given name exists, the empty 
bag is returned. This simple binding strategy is modi- 
fied for procedures to accommodate skipping irrelevant 
stack sections. 

Changes to the environment have to update the 
stack by adding or removing sections at its top, us- 
ing the standard operations push and pop. 

In PLs, adding a new section (so-called, an activa- 
tion record) corresponds to an activation of a block or 
a procedure. In a QL, as will be shown, it corresponds 
also to the evaluation of a query component in a con- 
text determined by another component. To formalize 
opening a new scope in the context of query operators 
we introduce a function nested. Given an identifier i of 
a complex object, nested(i) returns binders to objects 
at the lower data hierarchy level than the object identi- 
fied by i. The function has store S as an implicit argu- 
ment. We generalize the function for elements v E V, 
binders n(8), and sequences of identifiers, values and 
binders. The definitions follow. 

D Let <i,n, {<il,nl,4>, .-., <ik,nk, 6,>}> be a 
complex object with identifier i. In this case 

nested(i) = { nl(il), . . . . nk(ik) }; 
D For a binder the function returns a one-element set 

with the binder: nested( n(d) ) = { n(d) }; 
D If S contains a pointer object <il,n,iz> and an 

arbitrary object <in, m, d> then 
nested = {m(iz)}; 
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D For a value o E V and for a value object <i, n, V> 
the function returns the empty set: 

nested(v) = nested(i) = 0; 
D For a sequence of identifiers, binders and values the 

function returns the union of the function results 
for components. 

Below we present example applications of the function 
(c.f. TinyDalabase): 

nested = {NAME(iz), SAL(&), WORKSJV(i4)); 
nested( E(il) ) = { E(il) }; 
nested(&) = { DEPT(il3) }; 
nested(i3) = nested(1800) = 0; 
nested(<1800, ir, irs, A(5)>) = 

{ NAME(&), SAL(&), WORKSJN(i4), 
DNAME(&), LOC(&), LOC(ils), A(5) }. 

Consider the simple query EMP.SAL. If the binding 
of the name EMP returns (among others) an identifier 
ii, then the scope in which it makes sense to bind the 
name SAL is nested( If this set is pushed as a new 
scope onto the stack then the search for bindings for 
SAL will find the object representing the salary of the 
given employee, as required. This approach is a core 
of the definiton of query operators, including selection, 
projection/navigation, join, and quantifiers. 

In PLs bindings are mostly performed during com- 
pilation; this technique is referred to as static binding. 
Static binding is desirable because of performance, 
but it requires some program features (types, decla- 
rations, variable names, etc.) to be second-class citi- 
zens in a PL (i.e., they cannot be manipulated during 
run-time). In database PLs some bindings must be 
dynamic because of the dynamic nature of database 
operations. For uniformity, in this paper we assume 
that all program features are first-class and all bind- 
ings are dynamic. This assumption does not exclude 
static binding if some program features are supposed 
to be second-class. 

4 The Language SBQL 

We sketch the definition of an untyped language called 
SBQL (Stack-Based Query Language); more compre- 
hensive description can be found in [SBMS93]. SBQL 
described in this section is a purely retrieval language. 
The syntax of SBQL is very simple. Any literal or 
name is an atomic query. From simpler queries we 
form compound ones using unary or binary operators 
and parentheses. For example, 2, EMP, SAL and 1800 
are atomic queries, from which we can build queries 
2 + 2 and EMP where (SAL > 1800). Note a very un- 
typical property: in the latter compound query SAL as 
well as (SAL > 1800) are sub-queries in their own se- 
mantic rights, because they are evaluated relatively to 
the state of ES. This makes our approach very differ- 

ent from other approaches (for example, from SQL), 
based on big syntactic and semantic constructs. We 
argue that this relativity and compositionality much 
increases the level of orthogonality, minimality and 
universality. With the exception of typing constraints 
(e.g., one cannot multiply two strings), we assume full 
orthogonality of operators. Sometimes we omit paren- 
theses assuming some obvious precedence rules. 

4.1 Assumptions Concerning Semantics 

Intermediate and final query results are kept at a 
stack, called the query result stuck (QRES). The 
stack is a generalization of the well-known arithmetic 
stack necessary to perform parenthesized arithmetic 
expressions3. In this paper we assume that an element 
of QRES is a table, where a table is a bag of rows, all 
of the same width; sometimes we assume that a ta- 
ble is a sequence of rows. Rows may contain atomic 
values, identifiers and binders. For uniformity, we rep- 
resent single values or identifiers as tables having one 
row and one column (1 x 1 tables), and do not make 
distinction between such a table and an element inside 
it (thus we apply to some 1 x 1 tables operators such 
as +, *, <, A, etc.). An example table, referring to the 
TinyDatabase, is presented below; it may represent the 
result of the query “Get identifiers of employee names, 
identifiers of their department names giving them aux- 
iliary name N, and 10% of their salary”. 

I:::,1 

When formulating queries in English, we will usu- 
ally omit the phrase “...identifier(s) of...“, assuming 
that queries return identifiers of the mentioned objects 
rather than values being their content. 

To define the operational semantics of the language, 
we introduce a recursive procedure eval that maps a 
syntactically correct query and a machine state to a 
result. The state consists of a store and an environ- 
ment stack. The procedure is defined by cases, one for 
each operator. It may change ES; however, the state 
of the stack after evaluation is always the same as be- 
fore evaluation. The result of a query is left as a new 
cell at the top of QRES. 

For the query 1, where 1 is a literal denoting value 
7 E V, eval(1) pushes the 1 x 1 table {&} onto the top 
of QRES. For the query n, where n is a name, eval(n) 
inspects ES, and pushes the result of the binding onto 
the top of QRES as a single-column table of identifiers 
and values. The results of such simple queries (as well 

31n the denotational setting QRES can be easily hidden in 
recursive semantic clauses. This observation does nol concern 
ES: any formal approach must deal with it explicitly. 
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as the results of complex queries) can be combined 
by application of operators, which we subdivide into 
algebraic and non-algebraic. 

4.2 Algebraic Operators 

An operator is called algebraic if its semantics is de- 
fined purely in terms of operations on QRES and does 
not involve ES. That is, if A is a symbol denoting a 
binary algebraic operator E and yes(q) is the result of 
evaluation of q, then res(qlAqz) = res(ql) a res(q2). 
A corresponding part of the eval procedure may look 
as follows: 

procedure eval(query) 
begin 

case query is qlAqz: (* A is algebraic *) 

begin 
qlresult, qtresult: table; 

(* Push the results of ql, q2 onto QRES *) 

eval(ql); eval(q2); 

(* Apply x to both results *) 

q2result := top(QRES); pop( QRES); 
qlresult := top(QRES); pop( QRES); 
push( QRES, qlresult x q2result ); 

end 

end eval; 

Both component queries are evaluated in the same 
environment (assuming no side effects of func- 
tional procedures called in ql), and the result of 
qlresult a q2result is defined without any use of ES. 
Semantics of unary, ternary, etc. operators can be de- 
fined similarly. 

Typical classes of the algebraic operators include: 
numerical comparisons, operators and functions: <, 5 
, =, f, >, 1, +, -,*, /, *, sin, log, sqrt, etc.; string 
comparisons, operators and functions; boolean and, 
or, not (denoted here A,V and 1, respectively); com- 
parison of identifiers for equality/non-equality; coer- 
cion operators, e.g. changing a string into an inte- 
ger; derefeiencing operator (mostly implicit); aggre- 
gate arithmetic functions sum, min, mat, avg, etc.; 
a function removing duplicate rows (c.f. SQL); func- 
tion exists mapping a non-empty table to TRUE and 
empty one to FALSE; function count mapping a table 
into the number of rows; set, bag and sequences op- 
erators and comparisons: Cartesian product (denoted 
here by x), union (denoted here by U), intersection, 
difference, is-equal-set, c, E, etc. In this paper we 
do not deal with (usually obvious) definitions of these 
operators nor with their pragmatic meaning in QLs. 

An important (unary) algebraic operator is the one 
introducing an auxiliary name. The syntax is n + q, 

where n E N is an auxiliary name, and q is a query 
returning a single-column table containing values or 
identifiers. Let q return the table 

{ <dl>, <d2>, . . . . <dk> }, where 29i E VU I. 
Then n + q returns the table of binders 

{ <n(&)>, <n(&)> ,..., <n(6k)> }. 
Together with our scoping and binding rules this sim- 
ple operator constitutes a surprisingly powerful facil- 
ity, which covers many QLs’ features, such as tuple and 
domain calculus variables, variables bound by quan- 
tifiers, cursors in for each statements, and renaming 
data objects in views. 

4.3 Non-Algebraic Operators 

Non-algebraic operators are where, dot, join, quanti- 
fiers, ordering, etc. We emphasize that the operators 
we describe are more general than the standard ones. 
Their semantics cannot be expressed in the spirit of 
the relational algebra. The syntax for application of 
a non-algebraic operator is qlOq2, where q1 and q2 
are (arbitrarily complex) queries, and 0 is an opera- 
tor (the syntax for quantifiers has a prefix form). The 
general pattern that defines a part of the eval proce- 
dure is as follows. 

procedure evul(query) 
. . . . . 

case query is ql@q2: (* 0 is non-algebraic *) 

begin 
partial-results: array of table; 
final-result: table; i: integer; i := 1; 
eVal(ql); (* Push the result of q1 onto QRES *) 

for each row T in top( QRES) do 
push(ES, nested(r)); (* open a new scope *) 
evul(q2); (* Push the result of q2 onto QRES *) 

partial-results[i] := combinee(r, top( QRES)); 
pop( ES); pop( QRES); i := i + 1; 

end for each; 
f inul-result := mergea(purtiul-results); 
pop( QRES); (* Remove the table created by ‘I~ *) 

push( QRES, f inul-result); 
end 

For each row r of the table returned by q1 the proce- 
dure opens a new scope nested(r) on ES, then evalu- 
ates 92. A partial result returned for this r is a com- 
bination of r and of the result returned by q2. Finally, 
partial results are merged into the final result, which 
is pushed onto QRES. (This pattern should be a bit 
modified for ordering and transitive closure). 

According to the above pattern we can define clas- 
sical and new operators that may be useful in QLs, in 
particular, the following: 

Selection: the syntax is q1 where qz, where ql is 
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any query, and q2 is a boolean-valued query. If for a 
particular r returned by q1 the query q2 returns TRUE 
then r is an element of the final result table; otherwise 
it is skipped. 

Projection, navigation, path expressions: the 
syntax is ql.q2. The final result table is the union 
of tables returned by q2 for every row T returned by 
91. Path expressions are recently extensively discussed 
in the literature; we emphasize that in our approach 
path expressions are a “side effect” obtained by nest- 
ing queries containing the binary dot operator, e.g., 
ql.q2.q3.q4 is understood as ((ql.q2).qs).q4. Note that 
after a dot we allow not only a name (as in typical 
path expressions), but an arbitrary query. As will be 
shown in examples, such an assumption is practical 
and general. 

Navigational join: the syntax is q1 w 92. A partial 
result for a particular T returned by q1 is a table ob- 
tained by a concatenation of the row r with each row 
returned by q2 for this r. The final result is the union 
of partial results. 

Quantifiers: the syntax is Vql(q2) and 3ql (qz), where 
q2 is a boolean-valued query. For V the final result is 
FALSE iff q2 returns FALSE for at least one row r 
returned by 91; otherwise the final result is TRUE. 
For 3 we apply a dual definition. 

Ordering: the syntax is q1 order-by 92. First, q1 w q2 
is calculated; then the result is coerced to a sequence 
of rows and sorted according to the columns returned 
by 92. Then, these columns are removed from the final 
result. 

Transitive closure: the syntax is q1 closed-by 42. 
First q1 is evaluated and the result is stored at a 
dynamic table T. Then, for each row r in the ta- 
ble T the query q2 is evaluated, and the result of 
the evaluation augments the table T. In this way, 
rows returned by q2 will be again processed by 92. 
The result can be represented as the least fixed-point 
of the equation T = q1 U T.q2 which, if exists, is 
T = q1 U q1.92 U ql.q2.q2 U ql.q2.q2.q2 U . . . . For space 
limit we do not present examples which use this oper- 
ator; see [SMASO, SBMS93]. 

4.4 Examples of Queries 

We can show in examples (see [SMASO, SBMS93, 
SBMS94]) that the retrieval power of SBQL is con- 
siderably higher than the retrieval power of all QLs 
that we are aware of. Below we present some queries 
in SBQL (C.f. Fig.1); all are operational in LOQIS. 

1. Return an identifier of the WORKS-IN pointer 
within the Smith’s object: 

(EMP where NAME = “Smith”). WORKS-IN 

2. Name of the Smith’s department: 
(EMP where NAME = “Smith”). 

WORKS-IN.DEPT.DNAME 

3. Employees of the Toys department earning more 
than 1800: 

EMP where SAL > 1800 A 
( WORKS-IN.DEPT.DNAME) = “Toys” 

4. Employees earning more than Smith: 
EMP where SAL > 

((EMP where NAME = “Smith”).SAL) 

5. Join EMP and DEPT, the relational style: 
EMP w (DEPT where EDNO = DNO) 

or 
(EMP x DEPT) where (DNO = EDNO) 

6. As above, the navigational style: 
EMP w (WORKS-lN.DEPT) 

7. For each employee, return name and location(s) of 
her/his department: 

EMP w (WORKS-lN.DEPT.(DNAME x LOC)) 

8. For each department return the average salary of 
its employees (see Fig.3 and the discussion below): 

DEPT w avg(EMPLOYS.EMP.SAL) 

9. For each DEPT having more than 50 programmers 
return name and the dispersion of salaries, the nav- 
igational style (to receive the relational style change 
EMPLOYS.EMP into (EMP where EDNO = DNO)): 

( (DEPT where count(EMPLOYS.EMP 
where JOB = “programmer”) > 50) 

w (a + avg(EMPLOYS.EMP.SAL))). 
(DNAME x sqrt( sum(EMPLOYS.EMP. 

((SAL - a)*(SAL - a)))/ 
(count( EMPLOYS. EMP) - 1))) 

10. Departments where all programmers used to work 
for IBM: 

DEPT where V (EMPLOYS.EMP 
where JOB = “progmmmer”) 

( 3 PREV-JOB (COMPANY = “IBM”)) 

11. (Integrity constraint) No department has an em- 
ployee earning more than his manager. 

Vx cDEPT (7 3 y c (x.EMPLOYS.EMP) 
(x.DMGR.EMP.SAL < y.SAL)) 

12. Names of clerks earning more than their managers, 
the SQL style: 

(((x + EMP) x (Y c EMP) x (z c DEPT)) 
where (x.JOB = “clerk” A x.SAL > y.SAL A 
x.EDNO = z.DNO A z.MGR = y.ENO)). 
x.NAME 

13. As above, the domain calculus style: 
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(EMP.((zn c NAME) x (zs + SAL) x 
(xj + JOB) x (xd + EDNO))) x 

(EMP.((ys c SAL) x (ye c ENO))) x 
(DEPT.((zd t DNO) x (zm t MGR))) 
where (zj = “clerk” A xs > ys A 

xd = zd A tm = ye)). xn 

14. As above, the navigational style: 
(EMP where JOB = “clerk” A SAL > 

(WORKSmIN.DEPT.DMGR.EMP.SAL)).NAME 

15. Departments ordered by the number of employees, 
in descending order: 

DEPT order-by (100000 - count( EMPLOYS)) 

DEPT EMPWYS EMP SAL 

a a a a 

Figure 3: States of ES during binding names in 
DEPT w avg((EMPLOYS.EMP).SAL) 

We present some of the intuitions concerning seman- 
tics on the query from example 8, Fig.3. At the 
beginning ES contains one section with DEPT and 
EMP binders. (In LOQIS we implemented simple op- 
timizations to avoid storing and processing long lists of 
binders.) Name DEPT returns all DEPT identifiers. 
The operator w scans them, in each loop pushing onto 
ES binders to all sub-objects of some DEPT object, in 
particular, EMPLOYS binders. Name EMPLOYS re- 
turns their identifiers. The dot after EMPLOYS scans 
them, pushing onto ES in each loop a section with a 
single binder EMP; thus name EMP returns a single 
identifier of EMP. These identifiers are merged into 
a table. The last dot scans it, in each loop pushing 
onto ES binders to sub-objects of some EMP object, 
in particular a SAL binder. Name SAL returns a sin- 
gle identifier to a value object SAL. These identifiers 
are merged into a table; it consists of identifiers of SAL 
objects of all employees working in a particular depart- 
ment. Function avg (after automatic dereferencing) 
counts the average value of their content. According 
to the semantics of w, the final result is a two-column 
table, where the first column contains identifiers of all 
departments, and the second one contains the average 
salaries in these departments. 

5 Imperative Statements 

We introduce several constructs which make possible 
to change a state. The statements are build from 
queries. Presented definitions have illustrative pur- 
poses only. Besides, we use some self-explanatory func- 
tions and standard control statements. 

We use here statements of the form q.p, where q 
is a query, and p is a a sequence of imperative state- 
ments. The construct is a natural overloading of the 
dot operator. The program p is executed for each row 
r returned by q with a new scope nested(r) pushed 
onto ES. (The construct is frequently expressed as 
for each q do p.) 

5.1 Creating and Deleting Objects 

We assume for uniformity that both database objects 
and local procedure objects are dynamically created 
and deleted. After creating a new root persistent ob- 
ject (at the top object hierarchy level) its binder is 
inserted into a bottom stack section. Local procedure 
objects are created in a store outside the stack, and 
for root objects their binders are inserted in an ES 
section that is created for this procedure invocation. 
They are automatically removed when the procedure 
is terminated and the stack is popped. Any object can 
be removed by an explicit delete command, which for 
root objects has also the effect of removing the corre- 
sponding binder from an appropriate stack section. 

The syntax for creating and deleting objects is 
create persistent <object description>, create lo- 
cal <object description>, and delete q, where q is 
a query returning a single-column table of identifiers; 
all objects with these identifiers are deleted. The 
<object description> is recursively defined as: n(ql), 
n(t 92) and n(<object description>,...), where n E N, 
q1 returns a single-column table of values (dereferenc- 
ing is automatically applied) and q2 returns a single- 
column table of identifiers. In the first case, if q1 re- 
turns a table {<vi>,<vs>, . . ..<vk>} then k new value 
objects <inetuj, n, vj> are created. In the second case, 
if q2 returns a table {<ii>,<is>, . . ..<ik>} then knew 
pointer objects <ine,,,j, n, ij> are created. In the third 
case a new complex object with name n is created, to- 
gether with its sub-objects, all with new identifiers. 
In LOQIS we also implemented a case when q1 returns 
identifiers of complex objects. 

create persistent EMP( 
NAME( “Clark”) SAL( avg(EMP.SAL) ) 
WORKSJN(tDEPT where DNAME=“Toys”)); 

Delete the London location of the department Toys: 
delete (DEPT where DNAME = “Toys”). 

((x t LOC) where t = “London” ).x; 
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5.2 Assignments (Updates) 

For assignments we use the typical syntax q1 := q3, 
where query q1 has to return an identifier (l-value) and 
query q2 has to return a value (r-value). The value is 
assigned as a new value of the object identified by the 
identifier. As usual in PLs, r-value can be a pointer. 
We distinguish syntactically the assignment of a con- 
tent of an object and the assignment of a pointer by 
using the syntax q1 := r q2 for the latter case. As for 
create, in LOQIS we implemented an assignment of a 
complex object, with applied recursively copy seman- 
tics. 

In combination with the construct q.p these assign- 
ments make possible updates similarly to SQL. 

(EMP where JOB = “clerk”). 
(SAL := SAL+lOO; JOB := “oficer” ); 

(EMP where SAL > 1800). (WORKS-IN := 
t (DEPT where DNAME = “Toys”)); 

Let each employee earn at least the actual average 
salary in her/his department: 

DEPT.((a c avg(EMPLOYS.EMP.SAL)). 
((EMPLOYS.EMP where SAL<a).(SAL := a))); 

5.3 Insertions 

For insertions we use the syntax q1 a= 42, where q1 re- 
turns an identifier of a complex object, and q2 returns a 
single-column table of identifiers of arbitrary objects. 
The statement causes that the objects identified by 
q2 become a sub-objects of the first one; the move is 
without copying and without changing the identifiers 
of the objects being moved. In some cases a binder 
of the second object should be removed from an ES 
section, as in the following fragment: 

create local LOC( “Tokyo”); 
(DEPT where DNAME = “Toys”) a= LOC; 

After insertion the second object may change its per- 
sistence status, depending on the status of the first 
object. 

6 Object Orientation 

We introduce a simple extension of the model which 
will allow us to jdefine all features of query languages 
necessary to eal with object-oriented databases. In 

d 
the definitions we follow Smalltalk in the way classes 
are used, a$ Modula-2 as far as encapsulation is con- 
cerned. phe proposed extensions to the object store 
presenteA in Section 2 include the following features. 

6.1 i&capsulation 

Similarly to modern polymorphic PLs we assume that 
an object may contain not only passive sub-objects, 

but also procedures, functional procedures, rules, con- 
straints, etc. As in Modula-2, we assume that any kind 
of sub-objects can be exported outside the object, as 
NAME, WORKS-IN, Age, ChangeSal and SalNet in 
Fig.4, or can be private, as BIRTH-DATE, SAL and 
Tax in Fig.4. The idea could be called as orthogonal- 
ity of encapsulation to a kind of objects. Encapsulation 
in the above sense means that an object is associated 
with an export list which specifies its private and pub- 
lic sub-objects. 

Internal object structure 

External object structure 

Figure 4: Internal and external object structure 

Let o be an object containing a procedure (method) 
p as a sub-object. A name occuring inside the body of 
the procedure can be bound to any direct sub-object 
of o, including private sub-objects. For example, in 
Fig.4 inside the procedure Age the private sub-object 
BIRTH-DATE can be bound, thus the query 

CurrentYear() - BIRTH-DATE 
is valid; however, it is invalid outside the object, be- 
cause BIRTH-DATE is not exported. Thus encapsu- 
lation can be handled by scoping rules. According to 
them the following query and statement are correct: 

(EMP where Age0 > 4O).(NAME x SalNet() 
x ( WORKS-IN. DEPT. DNA ME)) 

(EMP where NAME=“Brown”). ChangeSal(3500); 

6.2 Classes and Inheritance 

Fig.4 presents procedures (methods) such as Age and 
ChangeSal within an EMP object. Usually, the same 
procedures should be stored within all EMP objects. 
We may avoid the redundacy by introducing an ad- 
ditional “master” object, storing all common compo- 
nents for a collection of (similar) objects; we assume 
that each object in the collection treats the compo- 
nents as its own (“imports” them), Fig.5. In other 
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words, we assume that each object o of the collection 
has a special link to the master object. Thus if i iden- 
tifies o then nested(i) is the set of binders of exported 
sub-objects of o, and of the master object. Such a 
master object we call a class. This idea of the class 
concept is presented in [SMSRW93] and implemented 
in LOQIS. 

Figure 5: Objects, classes and inheritance 

In Fig.5 we show inheritance of invariant properties 
by dashed arrows. As seen, classes form a hierarchy 
and inheritance of invariants is transitive: an EMP 
object inherits invariant properties from CLASS-EMP 
and from the super-class CLASS-PERSON. Overrid- 
ing appears naturally as a side effect of the assumed 
binding and scoping rules. Multi-inheritance can be 
easily modelled if we assume that each object can have 
more such links to class objects (name conflicts can 
be resolved by scoping rules). Besides procedures (i.e. 
methods), the class may also store object types, export 
lists for objects, default values, active rules, integrity 
constraints, etc.*; that is, all properties that are in- 
variant for the class members. 

A class may also store some features common to 
the whole class, for example, a method for creat- 
ing new objects. Such common features can also be 
exported outside the class, but they should be dis- 
tinguished from features which can be inherited by 
class members. As shown in Fig.5, classes are ob- 
jects too and can be queried and processed by stan- 
dard query/programming functionalities. For exam- 
ple, assuming NewEmp is an (exported) procedure 
stored inside the class CLASS-EMP, the construct 
CLASS-EMP.NewEmp() is a correct statement. Ac- 
cess and encapsulation rules, and other dependencies, 

*Note that if class objects inherit from a class only proce- 
dures (methods, operators), and all own properties of the class 
members are private, then the class is abstmct data type. 

can be easily introduced into the function nested and 
scoping/binding rules. The method can also be used 
to implement independent object roles, [SMSRW93]. 

7 Procedures and Views 

Procedures that we deal with can call arbitrary pro- 
cedures, can be recursive, may have parameters being 
queries, and encapsulate their local objects so no bind- 
ing to them can be performed from outside. The local 
objects of a procedure are associated with a proce- 
dure invocation rather than.with the procedure code. 
These assumptions lead to an environment stack con- 
cept, and we use for this new role our stack ES. An 
invocation of a procedure means opening a new sec- 
tion on the environment stack for local data objects: 
In our case we push onto ES a section of binders of 
local objects, which will be stored elsewhere. Scoping 
rules should provide skipping irrelevant stack sections: 
if pi calls p2 then after the call the local environment of 
pi should be unvisible. A functional procedure before 
termination pushes its output onto the QRES stack. 
An invocation of a functional procedure is considered a 
query and may be used in all contexts in which queries 
can be used. 

We use a typical syntax, with a header containing 
the formal parameter list. The syntax of functional 
procedures (views) is the same; the only difference con- 
cerns return statements. 

(C.f. Fig.1) A f unctional procedure Poor has one col- 
umn table of strings as a parameter; the table denotes 
a list of jobs. It returns identifiers of names, salaries, 
and department names of employees (giving them aux- 
iliary names N, S, D, respectively), who do one of the 
specified jobs and earn less than the average. The 
procedure may be considered as an updatable, param- 
eterized, SQL-like view Poor(N, S, 0). 

procedure Poor( Jobs ) 
begin 

create local AVERAGE( avg(EMP.SAL) ); 
create local POOR( t EMP where 

(JOB E Jobs A SAL < AVERAGE )); 
return POOR.EMP.( 

(N + NAME) x (S c SAL) x 
(D + ( WORKS-IN. DEPT. DNAME))) 

end Poor; 

First, a local value object AVERAGE is created, with 
a value of the average salary. Then, zero, one or more 
local pointer objects POOR are created, depending 
on the number of employees doing the specified jobs 
and earning less than the average. The last state- 
ment returns as the procedure output a table hav- 
ing rows <N(ii), S(iz), D(is)> (containing binders), 
where il, ia, is are identifiers of NAME, SAL and 
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DNAME atributes (respectively) for each of the poor 
employees; Iv, S, D are virtual names for these at- 
tributes. 

Increase salaries of poor clerks and tailors from the 
department “Toys” by 100: 

(Poor(“clerk” U “tailor”) where D = “Toys”). 
(S := S+100); 

(C.f. Fig.1) A p rocedure ‘ChangeDept’ has a param- 
eter E which is a table of identifiers of EMP objects, 
and a parameter D which is an identifier of a depart- 
ment (both called by reference). It causes moving the 
specified employees to the specified department. 

procedure ChangeDept( var E, var D ) 
begin 

delete (DEPT.EMPLOYS) where EMP E E; 

(e + w 
create local EMPLOYS( t e); 
D a= EMPLOYS; e. WORKS-IN := 1 D; 
e.EDNO := D.DNO,) 

end ChangeDept; 

Let Kim become the manager of all designers working 
so far for Lee: 

ChangeDept( EMP where JOB = “designer” h 
WORKSJN.DEPT.DMGR.EMP.NAME = “Lee”; 
DEPT where DMGR.EMP.NAME = “Kim” ); 

Define a method (a virtual attribute) Boss for the 
EMP class, to navigate from an employee directly to 
her/his manager. Note that the navigation starts from 
WORKS-IN, as this procedure is executed after open- 
ing a local scope for an EMP object. 

procedure Boss0 
begin 

return WORKS-lN.DEPT.DMGR.EMP 
end Boss; 

Get employees earning more that their managers: 
EMP where SAL > Boss().SAL 

We present two classical parameter passing methods, 
call-by-value and cull-by-reference, modified in order 
to make query processing possible. Besides, we de- 
veloped and implemented other methods (strict call- 
by-value and call-by-union); they will be described in 
forthcoming papers. 

7.1 Call-By-Value 

The syntax 
procedure p( ..; Fpar; ..) begin . . end p; 

means that Fpar is a name a formal parameter for 

which we designate the call-by-value method. An in- 
vocation of the procedure has the form p( ..; q; ..) where 
Q is a query which has to return a single-column table 

of values {<vi>,<v2> , . . ..<wk>}. automatic derefer- 
encing is assumed. Then we have two possibilities (se- 
mantically not equivalent): 

(1) Create Ic new value objects 
<ipI, Fpar,vl>,<$,a, FpUr,Vn> ,..., <ipk, FpUr,vk> 

in the volatile pool; all identifiers iPi, . . . . ipk are dis- 
tinct. All the objects have the same name Fpar. Then, 
create ,4 binders 

FpaT($l>, Fwr(ip2), . . . . FPaT(i,k) 
and insert them into the stack section created for this 
procedure invocation. The method does the same as 
the statement create local Fpar(q) executed after the 
procedure invocation (providing q is evaluated in the 
environment of a caller). 

(2) Insert binders 
Fpaf-(VI), Fw(%), .-., FPaT(Q) 

into the stack section. In this case we can refer to the 
parameters inside the procedure body, but we cannot 
update them (i.e., the parameters are local constants). 

The method is illustrated by the procedure Poor. In 
the first case the invocation Poor( “clerk”U”tailor”) 
means the creation of local objects 

<apl, Jobs, “clerk”>, ~2~2, . Jobs, “tailor”> 
and the insertion of two binders 

Jobs(ipl), Jobs(ip2) 
into the stack section created for this procedure invo- 
cation. In this way name Jobs inside the procedure 
body can be bound, as usual, to identifiers $1, $2. In 
the second case no local objects are created but binders 

Jobs( “clerk”), Jobs( “tailor”) 
thus binding name Jobs returns an one-column table 

{<“clerk”>, <“tailor”>}. 
We can also deal with the case when a value of a pa- 

rameter is an identifier of a complex object, assuming 
copy semantics or reference semantics, or introducing 
some concept of a complex value. 

7.2 Call-By-Reference 

The syntax 
procedure p( ..; var Fpar; ..) begin . . end p; 

means that Fpar is a name of a formal parameter for 
which we designate the call-by-reference method. An 
invocation of the procedure has the form p(...; q; . ..) 
where q is a query which has to return a single-column 
table of identifiers {<iI>, <ii>, . . . <ik>}. Af- 
ter the invocation the binders Fpar(il), Fpar(in), . . . . 
Fpar(ik) are inserted into the stack section created for 
this invocation. This method we used in the proce- 
dure ChangeDept above; in this case the stack section 
contains zero, one or more binders E(~EMP) and one 
binder D(iDEPT). 
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8 Optimization by Rewriting 9 Conclusion 

If a functional procedure does not introduce local ob- 
jects, its stack-based semantics is equivalent to macro- 
substitution semantics, what makes possible optimiza- 
tions based on rewriting. We present it by example. 

Let the view DptMgrAv() return a table contain- 
ing triples <d, m, a> with identifiers of departments, 
identifiers of their managers, and the average salary of 
their employees, respectively: 

We have presented an approach to integration of 
queries and procedures based on a modification of 
classical PL concepts. Being a kind of theory, the 
approach decisively departs from the traditional and 
some new formal approaches to QLs, such as nested 
relational algebras, object algebras, relational cal- 
culi, predicate logic, F-logic, comprehensions, etc. 
We argue that these frameworks are too abstract 
and limited in power, thus not precise enough to 
deal with semantic issues which occur in real-life 
database query/programming languages such as OQL 
of ODMG-93 and SQL-3. In comparison, our approach 
supports consistent and universal semantics, follows 
modern software engineering principles, and avoids ar- 
tificial problems, for instance, how to define updating. 
The approach makes it possible to define very power- 
ful QLs, integrated with macroscopic imperative state- 
ments, procedures, views, and object-oriented notions, 
for a variety of data models. It also contributes a lot 
to the understanding of the true nature of semantic 
decisions in the languages that are actually used, im- 
plemented or designed for these models. Because of 
regularity, orthogonality and universality of the con- 
cepts it should be well perceived by programmers and 
is promising for query/program optimization. 

procedure DptMgrAv() 
begin 

return (d + DEPT) w (m c (d.DMGR.EMP)) w 
(a c avg(d.EMPLOYS.EMP.SAL)) 

end DptMgrAv; 

Consider the query “Give name of the manager of the 
Toys department”: 

(DptMgrAv() where d.DNAME=“Toys”).m.NAME 

After the textual substitution of the procedure invoca- 
tion by the procedure body (note our extremely simple 
“algorithm” of query modification): 

((d c DEPT) w (m c d.DMGR.EMP) w 
(a c uvg(d.EMPLOYS.EMP.SAL))) 

where d.DNAME = “Tois”).m.NAME 

Since auxilary name a is not used, the part 
(u c avg(d.EMPLOYS.EMP.SAL)) can be dropped: 

((d c DEPT) w (m c (d.DMGR.EMP))) 
where d.DNAME = “Toys”).m.NAME 

After shifting the selection,before the join: 
(((d c DEPT) where d.DNAME = “Toys”) w 

(m + (d.DMGR.EMP)))).m.NAME 

After changing the join into navigation (because the 
final projection does not refer to the first join argu- 
ment): 

((d t DEPT) where d.DNAME= “Toys”). 
(m c (d.DMGR.EMP)).m.NAME 

After reducing name m: 
((d c DEPT) where d.DNAME = “Toys”). 

(d.DMGR.EMP.NAME) 

After reducing name d: 
I (DEPT where DNAME = “Toys”). 

DMGR.EMP.NAME 
1 

1 As shown, some optimization techniques developed for 

I relational QLs can be adopted and generalized for 
1 
I stack-based QLs, for instance, performing selections 

and projections before joins. Because of regularity and 
formality our model makes it possible to develop many 
formal axioms and theorems concerning such transfor- 
mation steps. New techniques are also possible: in 
[SBMS93] we presented a general optimization method 
based on observations concerning bindings. 
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