
Procedures in Object-Oriented Query Languages

Kazimierz Subieta Yahiko Kambayashi Jacek Leszczylowski
Integrated Media Environment Experimental Lab. Institute of Computer Science

Faculty of Engineering Polish Academy of Sciences
Kyoto University, Sakyo, Kyoto 606-01, Japan Ordona 21, 01-237 Warszawa, Poland

{subieta,yahiko}@kuis.kyoto-u.ac.jp jacek@ipipan.waw.pl

Abstract

We follow the stack-baaed approach to query
languages which is a new formal and intel-
lectual paradigm for integrating querying and
programming for object-oriented databases.
Queries are considered generalized program-
ing expressions which may be used within
macroscopic imperative statements, such as
creating, updating, inserting, and deleting
data objects. Queries may be also used as pro-
cedures’ parameters, as well as determine the
output from functional procedures (SQL-like
views). The semantics, including generalized
query operators (selection, projection, naviga-
tion, join, quantifiers, etc.), is defined in terms
of operations on two stacks. The environment
stack deals with the scope control and bind-
ing names. The result stack stores intermedi-
ate and final query results. We discuss defini-
tions of object-oriented concepts and present
variants of parameter passing methods. Fi-
nally, we indicate a potential of the approach
for query optimization based on rewriting.

1 Introduction

In the stack-baaed approach to object-oriented query
languages (QLs) [SBMS93, SBMS94] we reconstruct

Permission to copy without fee all OT part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the VLDB copyTight notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

QLs’ concepts from the point of view of program-
ming languages (PLs) .The most fundamental property
of QLs integrated with PLs concerns the presence of
conceptualoperators that encapsulate iterations. Con-
ceptual operators have the intuitive meaning for the
programmer, allowing her/him to write, read and un-
derstand programs fluently. On the other hand, the
operators should have formal and simple semantics.
Projection, selection, join, quantifiers are examples of
relational query operators that encapsulate iterations
and are at the same time conceptual, formal and sim-
ple. For more sophisticated data models, in particular,
for object-oriented models, sufficiently general and se-
mantically clean definitions of such operators cause dif-
ficulties. These are due to the complexity and variety
of data structures that have to be queried, and the ne-
cessity to integrate queries with various data/PL func-
tionalities, such as macroscopic imperative statements,
views, integrity constraints, (database) procedures, ac-
tive rules, modules, methods, classes, and types.

In this paper we present a new conceptual frame-
work (a formal ideological platform) aiming the men-
tioned above issues. The model that we propose is
abstract and universal, but simultaneously, precise
enough to deal with vital semantic aspects of practical
object-oriented QLs/PLs. As one can expect, it sub-
sumes corresponding features of less sophisticated data
models, in particular, of relational, nested-relational
and functional ones.

The main syntactic decision of our approach is the
unification of PL expressions and queries; queries re-
main as the only kind of PL expressions. Concerning
semantics, we focus on the naming-scoping-binding is-
sues. Each name occuring in a query is bound to run-
time program entities (persistent data, procedures, ac-
tual parameters of procedures, local procedure objects,
etc.) according to the actual scope for the name. The
common approach which we follow here is that the
scopes are organized in an environment stack with the
“search from the top” rule. Some extensions to the

182

structure of stacks used in PLs are necessary to ac-
commodate (in particular) the fact that in a database
we have persistent and bulk data structures. Hence
the stack contains data identifiers rather than data
themselves (i.e., we separate the stack from a store of
objects), and possibly multiple objects can be simul-
taneously bound to a name, which makes the macro-
scopic processing possible. The operational semantics
of queries and procedures is defined in terms of oper-
ations on two stacks: the environment stack and the
staik of query results.

Basic assumptions of our approach to the integra-
tion of queries and procedures are the following:

D Queries, as generalized programming expressions,
are used as parameters of procedures.

D The body of a procedure is a sequence of imperative
statements that use queries in the many-data-at-a-
time manner (c.f. the SQL update statement).

D The output from a functional procedure is deter-
mined by a query. The output may be accessed
through auxiliary names, as in SQL views.

D Procedures may call procedures, in particular, can
be recursive.

D Procedures may declare/create local objects that
are unvisible from outside of the procedure body.
To enable recursion, local objects are assigned to
a run-time procedure invocation rather than to a
procedure code.

D We allow three methods of updating data objects
in the many-data-at-a-time manner with the use of
a procedure: (1) updating via parameters, (2) up-
dating via side effects, and (3) updating via objects’
references returned by a functional procedure (the
method corresponds to view updating).

D We deal with scoping rules that take into ac-
count modularization, encapsulation, inheritance,
and procedures local to a class, i.e. methods.

Majority of constructs described in this paper
are implemented in the experimental system LOQIS
[SMASO], but we discuss here principles that are in-
dependent of the implementation. We dedicate this
work to the developers of industrial standards, such
as ODMG-93 [Catt94] and SQL-3 [ANSI94]. In our
opinion, some drawbacks of these proposals could be
eliminated by following principles that stem from the
PL state-of-the-art. We present consequences of these
principles for a general and disciplined semantic model
which is relevant to these proposals.

Why the stack-based approach?

The ideas presented in this paper contribute to a
very hot research and technological area, thus have to
compete with a tremendous amount of proposals: for-

mal and informal, implemented and speculated’. The
comparison of our approach with informal ones is a
bit difficult, as the discussion has to involve a taste,
belief and backgrounds of competing parties, which
are incompatible as a rule. We can only indicate lack
of some kinds of queries and/or data structures in a
particular approach, which are available in ours2 (for
example, “For each department having more than 50
programmers return the name and the dispersion of
salaries”, assuming the aggregate function dispersion
is not available, and the request should be formulated
as a single query addressing a relational or an object
database). Besides the universality, our approach is
regular, minimal and semantically clean, which is not
the case of informal proposals as a rule. Concern-
ing formal approaches, we argue that currently known
ideas (nested relational algebras, object algebras, rela-
tional calculi, predicate logic, F-logic, comprehensions,
etc.) must lead to semantic difficulties at least for one
of the following reasons:

D Lack of uniform, orthogonal treatment of transient,
persistent, individual and bulk data;

D Lack of consistent and universal approach to updat-
ing, and in general, to the integration with impera-
tive statements;

D Absence of scoping rules for names used in
queries/programs. The control over scopes for
names is necessary to deal with (recursive) proce-
dures, modules, program blocks, classes, methods,
procedure parameters, etc.;

D Inability to deal with object sharing, encapsulation,
class hierarchy and inheritance;

D No clean semantics of auxiliary names used in
queries, such as tuple variables (SQL “synonyms”),
domain variables, variables bound by quantifiers,
cursors in for each statements, and new names used
in (SQL-like) views;

D Lack of object identifiers as a QL primitive, which
makes impossible to deal with important practical
functionalities (for instance, call-by-reference);

D Absence of views and view updating;
D Absence of null values and variants in data struc-

tures and handling them in queries;
D Absence of ordering and queries based on the order-

ing (“Get 2’0 best-paid employees”);
D Lack of compositionality - big syntactic/semantic

patterns of QLs’ constructs, making minimality,
orthogonality and universality of a language very
problematic (c.f. the famous “query” 2 + 2).

The comprehension syntax, for example, falls into

lThey are too numerous to cite even the most important.
2The reverse statement is the task of our opponents. So far

we didn’t discover a case showing that our approach has some
inherent limitations in comparison to anothel: approach.

183

all of the mentioned problems, F-logic is not dealing
with updates, views, scopes, null values, and ordering;
etc. Our approach allows us to deal with all these is-
sues in a consistent framework, which can be explained
on few pages of this paper. With respect to other ap-
proaches, the level of universality of our approach is
incomparably higher; this concerns both data struc-
tures and QL/PL functionalities. We also argue that
our approach contributes a lot to the understanding
the true nature and consequences of semantic deci-
sions in practical query/programming languages that
are actually used, implemented or designed.

For the reader competent in the PLs’ state-of-the-
art it should be evident that a serious approach to
the integration of queries and procedures cannot avoid
the concept of an environment stack (or an equivalent
concept). Our original contribution is that we use the
same stack as a part of an abstract, universal mecha-
nism for defining all query operators, such as selection,
projection, join and quantifiers.

The rest of the paper is organized as follows. In
Section 2 we present an abstract store model. In Sec-
tion 3 we describe the environment stack. In Section
4 we outline the operational semantics of the query
language SBQL; it is a formalized variant of many
SQL-like QLs. In Section 5 we present imperative con-
structs based on queries. In Section 6 we present our
view on object-oriented concepts. In Section 7 we in-
troduce procedures and discuss parameter passing. In
Section 8 we present an example of optimization based
on rewriting. Section 9 contains the conclusion.

2 An Abstract Store Model

Currently implemented or proposed data models in-
clude a large variety of features: data types such as
records and arrays; bulk data types such as sets, bags,
lists, maps and trees; object features such as identity,
is-a relationships, methods and encapsulation. Instead
of addressing all this diversity we have chosen the op-
posite approach, developing a very simple model, pow-
erful and general enough to express various models.

Our store consists of store objects (objects for short)
which can be volatile or persistent. There are three
components of an object:

b its unique internal identifier; it cannot be directly
written in queries and is not printable;

b the external name invented by the programmmer
or database designer that can be used to access the
object from a program;

D the content of the object which can be a value, a
pointer, or a set of objects.

Formally, let I be a set of identijers, N be a set of
names, and V be a set of atomic values. Atomicity

of the elements of V means that they are considered
to have no components. We assume I rl (V U N) = 0;
N and V are not required to be disjoint. A store object
is a triple <i,n, v>, or <i,n, ir>, or <i,n,T> where
i, ii E I, n E N, and T is a set of store objects. i is an
internal identifier of the objects, n is an external name,
and v, ii and T are contents of the objects. We say
that identifier i identifies an object. We refer to these
three types of objects as value objects, pointer objects,
and complex objects. A store is a set S of store objects,
and set R of identifiers of designated root objects.’

Note that complex objects can represent arbitrary
hierarchical data structures, and pointer objects can
be used to represent object sharing. To deal with en-
capsulation, classes and inheritance some extensions
are necessary; we present them later. Types are (al-
most) orthogonal to the topics considered in this pa-
per thus we do not deal with them. Note that to deal
with bulk data we do not impose uniqueness of exter-
nal names of objects at any level of data hierarchy.
We have shown in [SBMS93, SBMS94] that this sim-
ple model allows one to represent a variety of data
structures and concepts, including tuples, (nested) re-
lations, arrays, sets, bags, null values, variants, in-
stances of recursive types, etc.

The following is an example store. The root objects
of the store are identified by {ii, is, is, irs, irr}.

TinyDatabase:

< il, EMP, 1 <iz, NAME, Brown>,
<is, SAL, 2500>,
<ir, WORKSJN, i13> } >

< ha, EMP, 1 <is, NAME, Smith>,
<i7, SAL, 2000>,
<is, WORKSJN, i17> I>

-c i9, EMP, { <ilo, NAME, Jones>,
<ill, SAL, 1500>,
<ilz, WORKS-IN, i17> } >

-c i13, DEPT, { <&a, DNAME, Toys>,
<iIs, LOC, Paris>,
<&, LOC, London> I>

-c i17, DEPT, { <iIs, DNAME, Sales>,
<irg, LOG’, Berlin> I>

In examples we also use the schema presented in
Fig.1. Objects are represented by ovals, labelled by
objects’ external names. Relationships are represented
by pointer objects stored inside higher level objects, as
in ODMG-93, or by value objects (attributes), as in the
relational model. This creates redundancy allowing us
to demonstrate different styles of querying, e.g., rela-
tional and navigational. The relationship expressed by
EMPLOYS pointers is opposite to the one expressed
by WORKSJN pointers. The atribute MGR stores
the same string as the EN0 attribute identified by the
content of the pointer DMGR. Similarly, the attribute

184

Figure 1: A database schema used in examples

EDNO contains the same value as the attribute DNO
of the object identified by the pointer WORKS-IN.
Note that a DEPT object contains many pointer sub-
objects EMPLOYS, and LOC and PREV-JOB are
multi-valued attributes; the latter is a complex one.

3 The Environment Stack

The evaluation of names occuring in queries means
binding them to run-time data or program units. As
usual, we assume that locality of binding scopes is
controlled via the environment stack (ES). Bulk and
persistent data, and some features of queries require
changing the construction of the stack used in classi-
cal PLs. Our environment stack consists of sections,
where each section consists of pairs n(i) and n(v),
where n E N,i E I, w E V; such pairs are called
binders. Note that in the binder n(i) name n may
be different from the external name of the object iden-
tified by i. As will be shown, this feature also allows us
to explain parameter passing methods and renaming
data objects in views. The same binder may be present
in several stack sections and the same object may be
accessed through different names (possibly from the
same section). We allow many binders in one section
to contain the same name; this corresponds to the fact
that the external names of objects in a store are not
unique. As a consequence, binding a name occuring in
a program can be multi-valued.

We assume that at the beginning of the evaluation
of a query/program the environment stack consists of
one section containing binders of all root database ob-
jects’determined by R, such as the EMP and DEPT
objects in the TinyDatabase.

Binding a name n is performed by a search in the
environment stack for one or more binders n(29). The
search follows scoping rules. The simplest rule is to
follow strictly the structure of the stack, from the
top down towards the bottom. The search terminates
when it finds a section that contains one or more such
binders. In that case, the bag of all such elements
is taken as a temporary result of the search. The
final binding result is received by removing name n

Binding
of names

DEPTfi,,) DEPTfi,J

The environment stack b%zGf
Figure 2: A snapshot of ES and of the store

from each binder that belongs to the temporary result:
only elements 6 are left. For example (c.f. Fig.2), if
the stack contains the section { EMP(il), EMP(is),
EMP(&), DEPT(i13), DEPT(il7) } and we want to
bind EMP, then the result of the binding is {ir , is, is}.
Similarly, the result of binding SAL is {is}. If no sec-
tion with binders for a given name exists, the empty
bag is returned. This simple binding strategy is modi-
fied for procedures to accommodate skipping irrelevant
stack sections.

Changes to the environment have to update the
stack by adding or removing sections at its top, us-
ing the standard operations push and pop.

In PLs, adding a new section (so-called, an activa-
tion record) corresponds to an activation of a block or
a procedure. In a QL, as will be shown, it corresponds
also to the evaluation of a query component in a con-
text determined by another component. To formalize
opening a new scope in the context of query operators
we introduce a function nested. Given an identifier i of
a complex object, nested(i) returns binders to objects
at the lower data hierarchy level than the object identi-
fied by i. The function has store S as an implicit argu-
ment. We generalize the function for elements v E V,
binders n(8), and sequences of identifiers, values and
binders. The definitions follow.

D Let <i,n, {<il,nl,4>, .-., <ik,nk, 6,>}> be a
complex object with identifier i. In this case

nested(i) = { nl(il), nk(ik) };
D For a binder the function returns a one-element set

with the binder: nested(n(d)) = { n(d) };
D If S contains a pointer object <il,n,iz> and an

arbitrary object <in, m, d> then
nested = {m(iz)};

185

D For a value o E V and for a value object <i, n, V>
the function returns the empty set:

nested(v) = nested(i) = 0;
D For a sequence of identifiers, binders and values the

function returns the union of the function results
for components.

Below we present example applications of the function
(c.f. TinyDalabase):

nested = {NAME(iz), SAL(&), WORKSJV(i4));
nested(E(il)) = { E(il) };
nested(&) = { DEPT(il3) };
nested(i3) = nested(1800) = 0;
nested(<1800, ir, irs, A(5)>) =

{ NAME(&), SAL(&), WORKSJN(i4),
DNAME(&), LOC(&), LOC(ils), A(5) }.

Consider the simple query EMP.SAL. If the binding
of the name EMP returns (among others) an identifier
ii, then the scope in which it makes sense to bind the
name SAL is nested(If this set is pushed as a new
scope onto the stack then the search for bindings for
SAL will find the object representing the salary of the
given employee, as required. This approach is a core
of the definiton of query operators, including selection,
projection/navigation, join, and quantifiers.

In PLs bindings are mostly performed during com-
pilation; this technique is referred to as static binding.
Static binding is desirable because of performance,
but it requires some program features (types, decla-
rations, variable names, etc.) to be second-class citi-
zens in a PL (i.e., they cannot be manipulated during
run-time). In database PLs some bindings must be
dynamic because of the dynamic nature of database
operations. For uniformity, in this paper we assume
that all program features are first-class and all bind-
ings are dynamic. This assumption does not exclude
static binding if some program features are supposed
to be second-class.

4 The Language SBQL

We sketch the definition of an untyped language called
SBQL (Stack-Based Query Language); more compre-
hensive description can be found in [SBMS93]. SBQL
described in this section is a purely retrieval language.
The syntax of SBQL is very simple. Any literal or
name is an atomic query. From simpler queries we
form compound ones using unary or binary operators
and parentheses. For example, 2, EMP, SAL and 1800
are atomic queries, from which we can build queries
2 + 2 and EMP where (SAL > 1800). Note a very un-
typical property: in the latter compound query SAL as
well as (SAL > 1800) are sub-queries in their own se-
mantic rights, because they are evaluated relatively to
the state of ES. This makes our approach very differ-

ent from other approaches (for example, from SQL),
based on big syntactic and semantic constructs. We
argue that this relativity and compositionality much
increases the level of orthogonality, minimality and
universality. With the exception of typing constraints
(e.g., one cannot multiply two strings), we assume full
orthogonality of operators. Sometimes we omit paren-
theses assuming some obvious precedence rules.

4.1 Assumptions Concerning Semantics

Intermediate and final query results are kept at a
stack, called the query result stuck (QRES). The
stack is a generalization of the well-known arithmetic
stack necessary to perform parenthesized arithmetic
expressions3. In this paper we assume that an element
of QRES is a table, where a table is a bag of rows, all
of the same width; sometimes we assume that a ta-
ble is a sequence of rows. Rows may contain atomic
values, identifiers and binders. For uniformity, we rep-
resent single values or identifiers as tables having one
row and one column (1 x 1 tables), and do not make
distinction between such a table and an element inside
it (thus we apply to some 1 x 1 tables operators such
as +, *, <, A, etc.). An example table, referring to the
TinyDatabase, is presented below; it may represent the
result of the query “Get identifiers of employee names,
identifiers of their department names giving them aux-
iliary name N, and 10% of their salary”.

I:::,1

When formulating queries in English, we will usu-
ally omit the phrase “...identifier(s) of...“, assuming
that queries return identifiers of the mentioned objects
rather than values being their content.

To define the operational semantics of the language,
we introduce a recursive procedure eval that maps a
syntactically correct query and a machine state to a
result. The state consists of a store and an environ-
ment stack. The procedure is defined by cases, one for
each operator. It may change ES; however, the state
of the stack after evaluation is always the same as be-
fore evaluation. The result of a query is left as a new
cell at the top of QRES.

For the query 1, where 1 is a literal denoting value
7 E V, eval(1) pushes the 1 x 1 table {&} onto the top
of QRES. For the query n, where n is a name, eval(n)
inspects ES, and pushes the result of the binding onto
the top of QRES as a single-column table of identifiers
and values. The results of such simple queries (as well

31n the denotational setting QRES can be easily hidden in
recursive semantic clauses. This observation does nol concern
ES: any formal approach must deal with it explicitly.

186

as the results of complex queries) can be combined
by application of operators, which we subdivide into
algebraic and non-algebraic.

4.2 Algebraic Operators

An operator is called algebraic if its semantics is de-
fined purely in terms of operations on QRES and does
not involve ES. That is, if A is a symbol denoting a
binary algebraic operator E and yes(q) is the result of
evaluation of q, then res(qlAqz) = res(ql) a res(q2).
A corresponding part of the eval procedure may look
as follows:

procedure eval(query)
begin

case query is qlAqz: (* A is algebraic *)

begin
qlresult, qtresult: table;

(* Push the results of ql, q2 onto QRES *)

eval(ql); eval(q2);

(* Apply x to both results *)

q2result := top(QRES); pop(QRES);
qlresult := top(QRES); pop(QRES);
push(QRES, qlresult x q2result);

end

end eval;

Both component queries are evaluated in the same
environment (assuming no side effects of func-
tional procedures called in ql), and the result of
qlresult a q2result is defined without any use of ES.
Semantics of unary, ternary, etc. operators can be de-
fined similarly.

Typical classes of the algebraic operators include:
numerical comparisons, operators and functions: <, 5
, =, f, >, 1, +, -,*, /, *, sin, log, sqrt, etc.; string
comparisons, operators and functions; boolean and,
or, not (denoted here A,V and 1, respectively); com-
parison of identifiers for equality/non-equality; coer-
cion operators, e.g. changing a string into an inte-
ger; derefeiencing operator (mostly implicit); aggre-
gate arithmetic functions sum, min, mat, avg, etc.;
a function removing duplicate rows (c.f. SQL); func-
tion exists mapping a non-empty table to TRUE and
empty one to FALSE; function count mapping a table
into the number of rows; set, bag and sequences op-
erators and comparisons: Cartesian product (denoted
here by x), union (denoted here by U), intersection,
difference, is-equal-set, c, E, etc. In this paper we
do not deal with (usually obvious) definitions of these
operators nor with their pragmatic meaning in QLs.

An important (unary) algebraic operator is the one
introducing an auxiliary name. The syntax is n + q,

where n E N is an auxiliary name, and q is a query
returning a single-column table containing values or
identifiers. Let q return the table

{ <dl>, <d2>, <dk> }, where 29i E VU I.
Then n + q returns the table of binders

{ <n(&)>, <n(&)> ,..., <n(6k)> }.
Together with our scoping and binding rules this sim-
ple operator constitutes a surprisingly powerful facil-
ity, which covers many QLs’ features, such as tuple and
domain calculus variables, variables bound by quan-
tifiers, cursors in for each statements, and renaming
data objects in views.

4.3 Non-Algebraic Operators

Non-algebraic operators are where, dot, join, quanti-
fiers, ordering, etc. We emphasize that the operators
we describe are more general than the standard ones.
Their semantics cannot be expressed in the spirit of
the relational algebra. The syntax for application of
a non-algebraic operator is qlOq2, where q1 and q2
are (arbitrarily complex) queries, and 0 is an opera-
tor (the syntax for quantifiers has a prefix form). The
general pattern that defines a part of the eval proce-
dure is as follows.

procedure evul(query)
.

case query is ql@q2: (* 0 is non-algebraic *)

begin
partial-results: array of table;
final-result: table; i: integer; i := 1;
eVal(ql); (* Push the result of q1 onto QRES *)

for each row T in top(QRES) do
push(ES, nested(r)); (* open a new scope *)
evul(q2); (* Push the result of q2 onto QRES *)

partial-results[i] := combinee(r, top(QRES));
pop(ES); pop(QRES); i := i + 1;

end for each;
f inul-result := mergea(purtiul-results);
pop(QRES); (* Remove the table created by ‘I~ *)

push(QRES, f inul-result);
end

For each row r of the table returned by q1 the proce-
dure opens a new scope nested(r) on ES, then evalu-
ates 92. A partial result returned for this r is a com-
bination of r and of the result returned by q2. Finally,
partial results are merged into the final result, which
is pushed onto QRES. (This pattern should be a bit
modified for ordering and transitive closure).

According to the above pattern we can define clas-
sical and new operators that may be useful in QLs, in
particular, the following:

Selection: the syntax is q1 where qz, where ql is

187

any query, and q2 is a boolean-valued query. If for a
particular r returned by q1 the query q2 returns TRUE
then r is an element of the final result table; otherwise
it is skipped.

Projection, navigation, path expressions: the
syntax is ql.q2. The final result table is the union
of tables returned by q2 for every row T returned by
91. Path expressions are recently extensively discussed
in the literature; we emphasize that in our approach
path expressions are a “side effect” obtained by nest-
ing queries containing the binary dot operator, e.g.,
ql.q2.q3.q4 is understood as ((ql.q2).qs).q4. Note that
after a dot we allow not only a name (as in typical
path expressions), but an arbitrary query. As will be
shown in examples, such an assumption is practical
and general.

Navigational join: the syntax is q1 w 92. A partial
result for a particular T returned by q1 is a table ob-
tained by a concatenation of the row r with each row
returned by q2 for this r. The final result is the union
of partial results.

Quantifiers: the syntax is Vql(q2) and 3ql (qz), where
q2 is a boolean-valued query. For V the final result is
FALSE iff q2 returns FALSE for at least one row r
returned by 91; otherwise the final result is TRUE.
For 3 we apply a dual definition.

Ordering: the syntax is q1 order-by 92. First, q1 w q2
is calculated; then the result is coerced to a sequence
of rows and sorted according to the columns returned
by 92. Then, these columns are removed from the final
result.

Transitive closure: the syntax is q1 closed-by 42.
First q1 is evaluated and the result is stored at a
dynamic table T. Then, for each row r in the ta-
ble T the query q2 is evaluated, and the result of
the evaluation augments the table T. In this way,
rows returned by q2 will be again processed by 92.
The result can be represented as the least fixed-point
of the equation T = q1 U T.q2 which, if exists, is
T = q1 U q1.92 U ql.q2.q2 U ql.q2.q2.q2 U For space
limit we do not present examples which use this oper-
ator; see [SMASO, SBMS93].

4.4 Examples of Queries

We can show in examples (see [SMASO, SBMS93,
SBMS94]) that the retrieval power of SBQL is con-
siderably higher than the retrieval power of all QLs
that we are aware of. Below we present some queries
in SBQL (C.f. Fig.1); all are operational in LOQIS.

1. Return an identifier of the WORKS-IN pointer
within the Smith’s object:

(EMP where NAME = “Smith”). WORKS-IN

2. Name of the Smith’s department:
(EMP where NAME = “Smith”).

WORKS-IN.DEPT.DNAME

3. Employees of the Toys department earning more
than 1800:

EMP where SAL > 1800 A
(WORKS-IN.DEPT.DNAME) = “Toys”

4. Employees earning more than Smith:
EMP where SAL >

((EMP where NAME = “Smith”).SAL)

5. Join EMP and DEPT, the relational style:
EMP w (DEPT where EDNO = DNO)

or
(EMP x DEPT) where (DNO = EDNO)

6. As above, the navigational style:
EMP w (WORKS-lN.DEPT)

7. For each employee, return name and location(s) of
her/his department:

EMP w (WORKS-lN.DEPT.(DNAME x LOC))

8. For each department return the average salary of
its employees (see Fig.3 and the discussion below):

DEPT w avg(EMPLOYS.EMP.SAL)

9. For each DEPT having more than 50 programmers
return name and the dispersion of salaries, the nav-
igational style (to receive the relational style change
EMPLOYS.EMP into (EMP where EDNO = DNO)):

((DEPT where count(EMPLOYS.EMP
where JOB = “programmer”) > 50)

w (a + avg(EMPLOYS.EMP.SAL))).
(DNAME x sqrt(sum(EMPLOYS.EMP.

((SAL - a)*(SAL - a)))/
(count(EMPLOYS. EMP) - 1)))

10. Departments where all programmers used to work
for IBM:

DEPT where V (EMPLOYS.EMP
where JOB = “progmmmer”)

(3 PREV-JOB (COMPANY = “IBM”))

11. (Integrity constraint) No department has an em-
ployee earning more than his manager.

Vx cDEPT (7 3 y c (x.EMPLOYS.EMP)
(x.DMGR.EMP.SAL < y.SAL))

12. Names of clerks earning more than their managers,
the SQL style:

(((x + EMP) x (Y c EMP) x (z c DEPT))
where (x.JOB = “clerk” A x.SAL > y.SAL A
x.EDNO = z.DNO A z.MGR = y.ENO)).
x.NAME

13. As above, the domain calculus style:

188

(EMP.((zn c NAME) x (zs + SAL) x
(xj + JOB) x (xd + EDNO))) x

(EMP.((ys c SAL) x (ye c ENO))) x
(DEPT.((zd t DNO) x (zm t MGR)))
where (zj = “clerk” A xs > ys A

xd = zd A tm = ye)). xn

14. As above, the navigational style:
(EMP where JOB = “clerk” A SAL >

(WORKSmIN.DEPT.DMGR.EMP.SAL)).NAME

15. Departments ordered by the number of employees,
in descending order:

DEPT order-by (100000 - count(EMPLOYS))

DEPT EMPWYS EMP SAL

a a a a

Figure 3: States of ES during binding names in
DEPT w avg((EMPLOYS.EMP).SAL)

We present some of the intuitions concerning seman-
tics on the query from example 8, Fig.3. At the
beginning ES contains one section with DEPT and
EMP binders. (In LOQIS we implemented simple op-
timizations to avoid storing and processing long lists of
binders.) Name DEPT returns all DEPT identifiers.
The operator w scans them, in each loop pushing onto
ES binders to all sub-objects of some DEPT object, in
particular, EMPLOYS binders. Name EMPLOYS re-
turns their identifiers. The dot after EMPLOYS scans
them, pushing onto ES in each loop a section with a
single binder EMP; thus name EMP returns a single
identifier of EMP. These identifiers are merged into
a table. The last dot scans it, in each loop pushing
onto ES binders to sub-objects of some EMP object,
in particular a SAL binder. Name SAL returns a sin-
gle identifier to a value object SAL. These identifiers
are merged into a table; it consists of identifiers of SAL
objects of all employees working in a particular depart-
ment. Function avg (after automatic dereferencing)
counts the average value of their content. According
to the semantics of w, the final result is a two-column
table, where the first column contains identifiers of all
departments, and the second one contains the average
salaries in these departments.

5 Imperative Statements

We introduce several constructs which make possible
to change a state. The statements are build from
queries. Presented definitions have illustrative pur-
poses only. Besides, we use some self-explanatory func-
tions and standard control statements.

We use here statements of the form q.p, where q
is a query, and p is a a sequence of imperative state-
ments. The construct is a natural overloading of the
dot operator. The program p is executed for each row
r returned by q with a new scope nested(r) pushed
onto ES. (The construct is frequently expressed as
for each q do p.)

5.1 Creating and Deleting Objects

We assume for uniformity that both database objects
and local procedure objects are dynamically created
and deleted. After creating a new root persistent ob-
ject (at the top object hierarchy level) its binder is
inserted into a bottom stack section. Local procedure
objects are created in a store outside the stack, and
for root objects their binders are inserted in an ES
section that is created for this procedure invocation.
They are automatically removed when the procedure
is terminated and the stack is popped. Any object can
be removed by an explicit delete command, which for
root objects has also the effect of removing the corre-
sponding binder from an appropriate stack section.

The syntax for creating and deleting objects is
create persistent <object description>, create lo-
cal <object description>, and delete q, where q is
a query returning a single-column table of identifiers;
all objects with these identifiers are deleted. The
<object description> is recursively defined as: n(ql),
n(t 92) and n(<object description>,...), where n E N,
q1 returns a single-column table of values (dereferenc-
ing is automatically applied) and q2 returns a single-
column table of identifiers. In the first case, if q1 re-
turns a table {<vi>,<vs>,<vk>} then k new value
objects <inetuj, n, vj> are created. In the second case,
if q2 returns a table {<ii>,<is>,<ik>} then knew
pointer objects <ine,,,j, n, ij> are created. In the third
case a new complex object with name n is created, to-
gether with its sub-objects, all with new identifiers.
In LOQIS we also implemented a case when q1 returns
identifiers of complex objects.

create persistent EMP(
NAME(“Clark”) SAL(avg(EMP.SAL))
WORKSJN(tDEPT where DNAME=“Toys”));

Delete the London location of the department Toys:
delete (DEPT where DNAME = “Toys”).

((x t LOC) where t = “London”).x;

189

5.2 Assignments (Updates)

For assignments we use the typical syntax q1 := q3,
where query q1 has to return an identifier (l-value) and
query q2 has to return a value (r-value). The value is
assigned as a new value of the object identified by the
identifier. As usual in PLs, r-value can be a pointer.
We distinguish syntactically the assignment of a con-
tent of an object and the assignment of a pointer by
using the syntax q1 := r q2 for the latter case. As for
create, in LOQIS we implemented an assignment of a
complex object, with applied recursively copy seman-
tics.

In combination with the construct q.p these assign-
ments make possible updates similarly to SQL.

(EMP where JOB = “clerk”).
(SAL := SAL+lOO; JOB := “oficer”);

(EMP where SAL > 1800). (WORKS-IN :=
t (DEPT where DNAME = “Toys”));

Let each employee earn at least the actual average
salary in her/his department:

DEPT.((a c avg(EMPLOYS.EMP.SAL)).
((EMPLOYS.EMP where SAL<a).(SAL := a)));

5.3 Insertions

For insertions we use the syntax q1 a= 42, where q1 re-
turns an identifier of a complex object, and q2 returns a
single-column table of identifiers of arbitrary objects.
The statement causes that the objects identified by
q2 become a sub-objects of the first one; the move is
without copying and without changing the identifiers
of the objects being moved. In some cases a binder
of the second object should be removed from an ES
section, as in the following fragment:

create local LOC(“Tokyo”);
(DEPT where DNAME = “Toys”) a= LOC;

After insertion the second object may change its per-
sistence status, depending on the status of the first
object.

6 Object Orientation

We introduce a simple extension of the model which
will allow us to jdefine all features of query languages
necessary to eal with object-oriented databases. In

d
the definitions we follow Smalltalk in the way classes
are used, a$ Modula-2 as far as encapsulation is con-
cerned. phe proposed extensions to the object store
presenteA in Section 2 include the following features.

6.1 i&capsulation

Similarly to modern polymorphic PLs we assume that
an object may contain not only passive sub-objects,

but also procedures, functional procedures, rules, con-
straints, etc. As in Modula-2, we assume that any kind
of sub-objects can be exported outside the object, as
NAME, WORKS-IN, Age, ChangeSal and SalNet in
Fig.4, or can be private, as BIRTH-DATE, SAL and
Tax in Fig.4. The idea could be called as orthogonal-
ity of encapsulation to a kind of objects. Encapsulation
in the above sense means that an object is associated
with an export list which specifies its private and pub-
lic sub-objects.

Internal object structure

External object structure

Figure 4: Internal and external object structure

Let o be an object containing a procedure (method)
p as a sub-object. A name occuring inside the body of
the procedure can be bound to any direct sub-object
of o, including private sub-objects. For example, in
Fig.4 inside the procedure Age the private sub-object
BIRTH-DATE can be bound, thus the query

CurrentYear() - BIRTH-DATE
is valid; however, it is invalid outside the object, be-
cause BIRTH-DATE is not exported. Thus encapsu-
lation can be handled by scoping rules. According to
them the following query and statement are correct:

(EMP where Age0 > 4O).(NAME x SalNet()
x (WORKS-IN. DEPT. DNA ME))

(EMP where NAME=“Brown”). ChangeSal(3500);

6.2 Classes and Inheritance

Fig.4 presents procedures (methods) such as Age and
ChangeSal within an EMP object. Usually, the same
procedures should be stored within all EMP objects.
We may avoid the redundacy by introducing an ad-
ditional “master” object, storing all common compo-
nents for a collection of (similar) objects; we assume
that each object in the collection treats the compo-
nents as its own (“imports” them), Fig.5. In other

190

words, we assume that each object o of the collection
has a special link to the master object. Thus if i iden-
tifies o then nested(i) is the set of binders of exported
sub-objects of o, and of the master object. Such a
master object we call a class. This idea of the class
concept is presented in [SMSRW93] and implemented
in LOQIS.

Figure 5: Objects, classes and inheritance

In Fig.5 we show inheritance of invariant properties
by dashed arrows. As seen, classes form a hierarchy
and inheritance of invariants is transitive: an EMP
object inherits invariant properties from CLASS-EMP
and from the super-class CLASS-PERSON. Overrid-
ing appears naturally as a side effect of the assumed
binding and scoping rules. Multi-inheritance can be
easily modelled if we assume that each object can have
more such links to class objects (name conflicts can
be resolved by scoping rules). Besides procedures (i.e.
methods), the class may also store object types, export
lists for objects, default values, active rules, integrity
constraints, etc.*; that is, all properties that are in-
variant for the class members.

A class may also store some features common to
the whole class, for example, a method for creat-
ing new objects. Such common features can also be
exported outside the class, but they should be dis-
tinguished from features which can be inherited by
class members. As shown in Fig.5, classes are ob-
jects too and can be queried and processed by stan-
dard query/programming functionalities. For exam-
ple, assuming NewEmp is an (exported) procedure
stored inside the class CLASS-EMP, the construct
CLASS-EMP.NewEmp() is a correct statement. Ac-
cess and encapsulation rules, and other dependencies,

*Note that if class objects inherit from a class only proce-
dures (methods, operators), and all own properties of the class
members are private, then the class is abstmct data type.

can be easily introduced into the function nested and
scoping/binding rules. The method can also be used
to implement independent object roles, [SMSRW93].

7 Procedures and Views

Procedures that we deal with can call arbitrary pro-
cedures, can be recursive, may have parameters being
queries, and encapsulate their local objects so no bind-
ing to them can be performed from outside. The local
objects of a procedure are associated with a proce-
dure invocation rather than.with the procedure code.
These assumptions lead to an environment stack con-
cept, and we use for this new role our stack ES. An
invocation of a procedure means opening a new sec-
tion on the environment stack for local data objects:
In our case we push onto ES a section of binders of
local objects, which will be stored elsewhere. Scoping
rules should provide skipping irrelevant stack sections:
if pi calls p2 then after the call the local environment of
pi should be unvisible. A functional procedure before
termination pushes its output onto the QRES stack.
An invocation of a functional procedure is considered a
query and may be used in all contexts in which queries
can be used.

We use a typical syntax, with a header containing
the formal parameter list. The syntax of functional
procedures (views) is the same; the only difference con-
cerns return statements.

(C.f. Fig.1) A f unctional procedure Poor has one col-
umn table of strings as a parameter; the table denotes
a list of jobs. It returns identifiers of names, salaries,
and department names of employees (giving them aux-
iliary names N, S, D, respectively), who do one of the
specified jobs and earn less than the average. The
procedure may be considered as an updatable, param-
eterized, SQL-like view Poor(N, S, 0).

procedure Poor(Jobs)
begin

create local AVERAGE(avg(EMP.SAL));
create local POOR(t EMP where

(JOB E Jobs A SAL < AVERAGE));
return POOR.EMP.(

(N + NAME) x (S c SAL) x
(D + (WORKS-IN. DEPT. DNAME)))

end Poor;

First, a local value object AVERAGE is created, with
a value of the average salary. Then, zero, one or more
local pointer objects POOR are created, depending
on the number of employees doing the specified jobs
and earning less than the average. The last state-
ment returns as the procedure output a table hav-
ing rows <N(ii), S(iz), D(is)> (containing binders),
where il, ia, is are identifiers of NAME, SAL and

191

DNAME atributes (respectively) for each of the poor
employees; Iv, S, D are virtual names for these at-
tributes.

Increase salaries of poor clerks and tailors from the
department “Toys” by 100:

(Poor(“clerk” U “tailor”) where D = “Toys”).
(S := S+100);

(C.f. Fig.1) A p rocedure ‘ChangeDept’ has a param-
eter E which is a table of identifiers of EMP objects,
and a parameter D which is an identifier of a depart-
ment (both called by reference). It causes moving the
specified employees to the specified department.

procedure ChangeDept(var E, var D)
begin

delete (DEPT.EMPLOYS) where EMP E E;

(e + w
create local EMPLOYS(t e);
D a= EMPLOYS; e. WORKS-IN := 1 D;
e.EDNO := D.DNO,)

end ChangeDept;

Let Kim become the manager of all designers working
so far for Lee:

ChangeDept(EMP where JOB = “designer” h
WORKSJN.DEPT.DMGR.EMP.NAME = “Lee”;
DEPT where DMGR.EMP.NAME = “Kim”);

Define a method (a virtual attribute) Boss for the
EMP class, to navigate from an employee directly to
her/his manager. Note that the navigation starts from
WORKS-IN, as this procedure is executed after open-
ing a local scope for an EMP object.

procedure Boss0
begin

return WORKS-lN.DEPT.DMGR.EMP
end Boss;

Get employees earning more that their managers:
EMP where SAL > Boss().SAL

We present two classical parameter passing methods,
call-by-value and cull-by-reference, modified in order
to make query processing possible. Besides, we de-
veloped and implemented other methods (strict call-
by-value and call-by-union); they will be described in
forthcoming papers.

7.1 Call-By-Value

The syntax
procedure p(..; Fpar; ..) begin . . end p;

means that Fpar is a name a formal parameter for

which we designate the call-by-value method. An in-
vocation of the procedure has the form p(..; q; ..) where
Q is a query which has to return a single-column table

of values {<vi>,<v2> ,<wk>}. automatic derefer-
encing is assumed. Then we have two possibilities (se-
mantically not equivalent):

(1) Create Ic new value objects
<ipI, Fpar,vl>,<$,a, FpUr,Vn> ,..., <ipk, FpUr,vk>

in the volatile pool; all identifiers iPi, ipk are dis-
tinct. All the objects have the same name Fpar. Then,
create ,4 binders

FpaT($l>, Fwr(ip2), FPaT(i,k)
and insert them into the stack section created for this
procedure invocation. The method does the same as
the statement create local Fpar(q) executed after the
procedure invocation (providing q is evaluated in the
environment of a caller).

(2) Insert binders
Fpaf-(VI), Fw(%), .-., FPaT(Q)

into the stack section. In this case we can refer to the
parameters inside the procedure body, but we cannot
update them (i.e., the parameters are local constants).

The method is illustrated by the procedure Poor. In
the first case the invocation Poor(“clerk”U”tailor”)
means the creation of local objects

<apl, Jobs, “clerk”>, ~2~2, . Jobs, “tailor”>
and the insertion of two binders

Jobs(ipl), Jobs(ip2)
into the stack section created for this procedure invo-
cation. In this way name Jobs inside the procedure
body can be bound, as usual, to identifiers $1, $2. In
the second case no local objects are created but binders

Jobs(“clerk”), Jobs(“tailor”)
thus binding name Jobs returns an one-column table

{<“clerk”>, <“tailor”>}.
We can also deal with the case when a value of a pa-

rameter is an identifier of a complex object, assuming
copy semantics or reference semantics, or introducing
some concept of a complex value.

7.2 Call-By-Reference

The syntax
procedure p(..; var Fpar; ..) begin . . end p;

means that Fpar is a name of a formal parameter for
which we designate the call-by-reference method. An
invocation of the procedure has the form p(...; q; . ..)
where q is a query which has to return a single-column
table of identifiers {<iI>, <ii>, . . . <ik>}. Af-
ter the invocation the binders Fpar(il), Fpar(in),
Fpar(ik) are inserted into the stack section created for
this invocation. This method we used in the proce-
dure ChangeDept above; in this case the stack section
contains zero, one or more binders E(~EMP) and one
binder D(iDEPT).

192

8 Optimization by Rewriting 9 Conclusion

If a functional procedure does not introduce local ob-
jects, its stack-based semantics is equivalent to macro-
substitution semantics, what makes possible optimiza-
tions based on rewriting. We present it by example.

Let the view DptMgrAv() return a table contain-
ing triples <d, m, a> with identifiers of departments,
identifiers of their managers, and the average salary of
their employees, respectively:

We have presented an approach to integration of
queries and procedures based on a modification of
classical PL concepts. Being a kind of theory, the
approach decisively departs from the traditional and
some new formal approaches to QLs, such as nested
relational algebras, object algebras, relational cal-
culi, predicate logic, F-logic, comprehensions, etc.
We argue that these frameworks are too abstract
and limited in power, thus not precise enough to
deal with semantic issues which occur in real-life
database query/programming languages such as OQL
of ODMG-93 and SQL-3. In comparison, our approach
supports consistent and universal semantics, follows
modern software engineering principles, and avoids ar-
tificial problems, for instance, how to define updating.
The approach makes it possible to define very power-
ful QLs, integrated with macroscopic imperative state-
ments, procedures, views, and object-oriented notions,
for a variety of data models. It also contributes a lot
to the understanding of the true nature of semantic
decisions in the languages that are actually used, im-
plemented or designed for these models. Because of
regularity, orthogonality and universality of the con-
cepts it should be well perceived by programmers and
is promising for query/program optimization.

procedure DptMgrAv()
begin

return (d + DEPT) w (m c (d.DMGR.EMP)) w
(a c avg(d.EMPLOYS.EMP.SAL))

end DptMgrAv;

Consider the query “Give name of the manager of the
Toys department”:

(DptMgrAv() where d.DNAME=“Toys”).m.NAME

After the textual substitution of the procedure invoca-
tion by the procedure body (note our extremely simple
“algorithm” of query modification):

((d c DEPT) w (m c d.DMGR.EMP) w
(a c uvg(d.EMPLOYS.EMP.SAL)))

where d.DNAME = “Tois”).m.NAME

Since auxilary name a is not used, the part
(u c avg(d.EMPLOYS.EMP.SAL)) can be dropped:

((d c DEPT) w (m c (d.DMGR.EMP)))
where d.DNAME = “Toys”).m.NAME

After shifting the selection,before the join:
(((d c DEPT) where d.DNAME = “Toys”) w

(m + (d.DMGR.EMP)))).m.NAME

After changing the join into navigation (because the
final projection does not refer to the first join argu-
ment):

((d t DEPT) where d.DNAME= “Toys”).
(m c (d.DMGR.EMP)).m.NAME

After reducing name m:
((d c DEPT) where d.DNAME = “Toys”).

(d.DMGR.EMP.NAME)

After reducing name d:
I (DEPT where DNAME = “Toys”).

DMGR.EMP.NAME
1

1 As shown, some optimization techniques developed for

I relational QLs can be adopted and generalized for
1
I stack-based QLs, for instance, performing selections

and projections before joins. Because of regularity and
formality our model makes it possible to develop many
formal axioms and theorems concerning such transfor-
mation steps. New techniques are also possible: in
[SBMS93] we presented a general optimization method
based on observations concerning bindings.

References

[ANSI941 American National Standards Institute
(ANSI) Database Committee (X3H2). Database
Language SQL3. J.Melton, Editor. August 1994.

[Catt94] R.G.G. Cattel (Ed.) The Object Database
Standard ODMG-93. Morgan Kaufman 1994.

[SMASO] K. Subieta, M. Missala, and K. Anacki. The
LOQIS System. Institute of Computer Science Pol-
ish Acad. Sci., Report 695, Warszawa, Nov. 1990.

[SMSRW93] K. Subieta, F. Matthes, J.W. Schmidt,
A. Rudloff, I. Wetzel. Viewers: A Data-World Ana-
logue of Procedure Calls. Proc. 19th VLDB Conf.,
Dublin, Ireland, pp.269-277, 1993.

[SBMS93] K. Subieta, C. Beeri, F. Matthes,
J.W. Schmidt. A Stack-Based Approach to Query
Languages. Institute of Computer Science Polish
Acad. Sci., Report 738, Warszawa, Dec. 1993.
http://banjo.imell.kuis.kyoto-u.ac.jp/wsubieta

[SBMS94] K. Subieta, C. Beeri, F. Matthes,
J.W. Schmidt. A Stack-Based Approach to Query
Languages. Proc. of 2nd Intl. East-West Database
Workshop, Klagenfurt, Austria, September 1994,
Springer Workshops in Computing, 1995.

193

