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Abstract 

Although real-time transaction concurrency 
control has been extensively studied, the de- 
sign and evaluation of real-time in&l: concur- 
rency control algorithms has not yet been con- 
sidered. In this paper, we develop real-time 
variants of several classical B-tree concurrency 
control algorithms and compare their per- 
formance using a detailed simulation model 
of a firm-deadline real-time database system. 
The experimental results show that the per- 
formance characteristics of the real-time ver- 
sion of an index concurrency control algo- 
rithm could be significantly different from 
the performance of the same algorithm in a 
conventional (non-real-time) database system. 
In particular, B-link algorithms, which are 
reputed to provide the best overall perfor- 
mance in conventional database systems, per- 
form poorly under heavy real-time loads. We 
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present and evaluate a simple load-adaptive 
variant of the B-link algorithm called LAB- 
link, which provides the best performance over 
the entire loading range for a variety of real- 
time transaction workloads. 

1 Introduction 

A real-time database system (RTDBS) is a transaction 
processing system that is designed to handle work- 
loads where transactions have completion deadlines. 
The objective of the system is to meet these deadlines, 
that is, to process transactions before their deadlines 
expire. Research on real-time database systems has 
focused mainly on identifying the appropriate choice, 
with respect to meeting the real-time goals, for the var- 
ious database system policies such as priority assign- 
ment, concurrency control, memory management, etc. 
(e.g. [AG92, HCL92, AEJ92, PCL94, HJC931). How- 
ever, the design and evaluation of concurrency control 
algorithms for indexes, which are an integral part of 
database systems, has not yet been considered for the 
real-time environment (to the best of our knowledge). 
While index concurrency control is an important issue 
in a conventional (non-real-time) DBMS, it is espe- 
cially important in the RTDBS environment since the 
system will rely heavily on indexes to help transactions 
meet their time constraints. In this situation, a poor 
index concurrency control algorithm may lead to many 
transactions missing their deadlines. We address this 
issue in this paper. 
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Database systems implement specialized access 
methods, such as indexing and hashing, in order to 
efficiently locate data items on disk. While a large va- 
riety of access methods have been proposed in the lit- 
erature, commercial database systems typically use B- 
tree indexing [Corn791 as the preferred access method. 
In particular, they implement the B+ variant in which 
all data key values are stored at the leaf nodes of the 
index. In the remainder of this paper, our usage of the 
term B-tree refers to this variant. 

For database systems supporting high transaction 
rates, the contention among transactions concurrently 
using the B-tree may itself form a performance bot- 
tleneck. To address this issue, a number of high- 
concurrency algorithms have been proposed for B-tree 
access (e.g. [BS77, Bi186, Sag85, KW82, LY81, LS86, 
SG88, ML92, Moh90, LS92]). The performance of 
a representative set of these algorithms has recently 
been profiled in [JS90, SC911 and their results indi- 
cate that B-link algorithms [LY81] provide the best 
performance over a wide range of workloads and sys- 
tem operating conditions. 

The above-mentioned performance studies were 
done in the context of a conventional DBMS where 
transaction throughput or response time is the primary 
performance metric. In a real-time database system, 
however, performance is usually measured in terms of 
the number of transactions that complete before their 
deadlines. That is, a transaction that completes just 
before its deadline is no different, from a performance 
perspective, to one that finishes much earlier. Due to 
the difference in objectives, the performance of index 
concurrency control algorithms has to be reevaluated 
for the real-time domain. 

Another important difference between our study 
and those of [JS90, SC911 is that transactions consist 
of multiple index actions in our model. In contrast, 
the earlier studies modeled “tree” transactions wherein 
each transaction performs only a single B-tree opera- 
tion (search or update). The tree model is not appro- 
priate for the real-time environment since the metric 
of missed deadlines is meaningful only when applied 
to complete transactions. In our model of an RTDBS, 
therefore, transactions are capable of performing mul- 
tiple index operations and mechanisms for ensuring 
transaction serializability are implemented. 

There are two major issues that need to be ex- 
plored with regard to real-time index concurrency con- 
trol: First, how do we adapt the concurrency con- 
trol protocols to the real-time domain? Second, how 
do these real-time variants compare in their perfor- 
mance? In this paper, we address these questions for 
the “firm-deadline” [HCL92] application framework, 
wherein transactions that miss their deadlines are con- 
sidered to be worthless and are immediately discarded 

from the system without being executed to comple- 
tion. We develop real-time variants of several classi- 
cal B-tree concurrency control algorithms and compare 
their performance using a detailed simulation model of 
a real-time database system. The performance metric 
is the steady-state percentage of transaction deadlines 
that are missed. 

The results of our study show that, in moving from 
the conventional DBMS domain to the RTDBS do- 
main, there are new performance-related forces that 
come into effect and that these factors can cause in- 
dex performance behaviors that were valid in a con- 
ventional DBMS setting to be significantly altered in 
the corresponding RTDBS setting’. For example, our 
experimental results indicate that B-link algorithms 
provide the best real-time performance for light and 
moderate loads but perform poorly under heavy loads. 
Analysis of the results shows that the heavy-load dete- 
rioration is due to the B-link algorithms unique ability 
to fully utilize the physical resources of the DBMS. 
This feature led to their good performance in con- 
ventional DBMS [SC91], but in the real-time domain, 
resource saturation results in more missed deadlines. 
To address this problem, we have developed a load- 
adaptive variant of the B-link algorithm called LAB- 
link, which ensures that the bottleneck resource of 
the RTDBS does not become saturated. Simulation 
of the LAB-link algorithm shows that it provides the 
best performance over the entire loading range for a 
variety of real-time transaction workloads. 

The remainder of this paper is organized as follows: 
The B-tree concurrency control algorithms evaluated 
in this study are outlined in Section 2, and the real- 
time aspects of index concurrency control are discussed 
in Section 3. The performance model is described in 
Section 4, and the results of the simulation experi- 
ments are highlighted in Section 5. In Section 6, we 
present the conclusions of our study and identify fu- 
ture research avenues. 

2 B-tree CC Algorithms 

In this section, we describe the set of B-tree concur- 
rency control algorithms considered in our study. We 
assume, in the following discussion, that the reader 
is familiar with the basic features and operations of 
B-tree index structures [Com79, SC91]. 

The transaction operations associated with B-trees 
are search, insert, delete and append of key values. 
Search corresponds to transaction reads while insert, 
delete and append correspond to transaction updates. 
The basic maintenance operations on a B-tree are split 
and merge of index nodes. In practical systems, splits 

1 A similar, though unrelated, phenomenon has been observed 
for transaction concurrency control [HCL92]. 
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are initiated when a node overflows while merges are 
initiated when a node becomes empty. An index no& 

is considered to be safe for an insert if it is not, full and 
safe for a delete if it, has more than one entry. A split, 
or merge of a leaf node propagates up the tree to the 
lowest safe node in the path from the root to this leaf, 
If all nodes from the root to the leaf are unsafe, the 
tree increases or decreases in height. The set of nodes 
that are modified in an insert or delete operation is 
called the scope of the update. 

B-tree concurrency control (CC) algorithms main- 
tain index consistency in the face of concurrent trans- 
action accesses. This is achieved through the use of 
locks’ on index nodes. The index lock modes discussed 
in this paper and their compatibility relationships are 
given in Table 1. In this table, IS, IX, SIX and X are 
the standard “intention share”, “intention exclusive”, 
“share and intention exclusive” and “exclusive” locks, 
respectively [Gra79J3. 

Table 1: Index Node Lock Compatibility Table 

Some B-tree CC algorithms use a technique called 
lock-coupling in their descent from the root to the 
leaf. An operation is said to lock-couple when it re- 
quests a lock on an index node while already holding 
a lock on the node’s parent, releasing the parent lock 
if the new node is found to be safe. 

There are three well-known classes of B-tree CC 
algorithms: Bayer-Schkolnick, Top-Down and B-link. 
These classes primarily differ in the granularity of their 
scope update operations, as explained below. Each 
class has several flavors and we discuss only a repre- 
sentative set here, similar to [SC91]. 

2.1 Bayer-Schkolnick Algorithms 

We consider three algorithms in the Bayer-Schkolnick 
class [BS77] called B-X, B-SIX and B-OPT, respec- 
tively. In all these algorithms, readers descend from 
the root to the leaf using lock-coupling with IS locks. 
They differ, however, in their update protocols: In 
B-X, updaters lock-couple from the root to the leaf 

IIn commercial DBMSs, index node locks are usually imple- 
mented using latches, which are “fast locks”. This optimization 
is taken into account in our performance study, as discussed 
later in Section 3. 

3The lock modes and lock compatibility matrix used here are 
identical to those of [SC91], except for terminology - they used 
S to denote IS lock mode. 

using X locks. In B-SIX, updaters lock-couple using 
SIX locks in their descent to the leaf. On reaching 
the leaf, the SIX locks in their scope are converted 
to X locks. In B-OPT, updaters make an optimistic 
lock-coupling descent to the leaf using IX locks. The 
descent is called called optimistic since regardless of 
safety, the lock at each level of the tree is released as 
soon as the appropriate child has been locked. After 
the descent, updaters obtain a X lock at the leaf level 
and complete the update if the leaf is safe. Otherwise, 
the update operation is restarted, this time using SIX 
locks. 

2.2 Top-Down Algorithms 

In the Top-Down class of algorithms (e.g. [MR85, 
LSSS]), readers use the same locking strategy as that of 
the Bayer-Schkolnick algorithms. Updaters, however, 
perform preparatory splits and merges during their in- 
dex descent: If an inserter encounters a full node it per- 
forms a preparatory node split while a deleter merges 
nodes that have only a single entry. This means that 
unlike updaters in the Bayer-Schkolnick algorithms 
who essentially update the entire scope at one time, 
the scope update in Top-Down algorithms is split, into 
several smaller, atomic operations. 

We consider three algorithms in the Top-Down class 
called TD-X, TD-SIX and TD-OPT, respectively: In 
TD-X, updaters lock-couple from the root to the leaf 
using X locks. In TD-SIX, updaters lock-couple using 
SIX locks. These locks are converted to X-locks if a 
split or merge is made. In TD-OPT, updaters lock- 
couple using IX locks4 in their descent to the leaf and 
then get an X lock on the leaf. If the leaf is unsafe, 
the update operation is restarted from the index root, 
using SIX locks for the descent. 

2.3 B-link Algorithms 

A B-link tree [LY81, Sag85, LS86] is a modification of 
the B-tree that uses links to chain together all nodes 
at each level of the B-tree. Specifically, each node in a 
B-link tree contains a high key (the highest key of the 
subtree rooted at this node) and a link to the right sib- 
ling. These links are used to split nodes in two phases: 
a half-split, followed by the insertion of an index entry 
into the appropriate parent. Operations arriving at a 
newly split node with a search key greater than the 
high key use the right, link to get to the appropriate 
node. Such a sideways traversal is called a link-chase. 
Merges are also done in two steps [LS86], via a half- 
merge followed by the appropriate entry deletion at 

4In [SC91], updatersin the TD-OPT algorithmuse IS locks in 
the first pass, not IX locks. This strategy could cause deadlocks 
between first pass updaters and second pass updaters. We have 
therefore used IX locks to avoid such deadlocks. 
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the next higher level. 

In the B-link concurrency control algorithms, read- 
ers and updaters do not lock-couple during their tree 
descent. Instead, readers descend the tree using IS 
locks, releasing each lock before getting a lock on the 
next node. Updaters also behave like readers until 
they reach the appropriate leaf node. On reaching the 
leaf, updaters release their IS lock and then try to 
get an X lock on the same leaf. After the X lock is 
granted, they may either find that the leaf is the cor- 
rect one to update or they have to perform link-chases 
to get to the correct leaf. Updaters use X locks while 
performing all further link chases, releasing the X lock 
on a node before asking for the next. If a node split 
or merge is necessary, updaters perform a half-split 
or half-merge. They then release the X lock on the 
leaf and propagate the updates, using X locks, to the 
higher levels of the tree. 

The Top-Down algorithms break down scope up- 
dating into sub-operations that involve nodes at two 
adjacent levels of the tree. The B-link algorithms, on 
the other hand, limit each sub-operation to nodes at a 
single level. They also differ from the Top-Down algo- 
rithms in that they do their updates in a bottom-up 
manner. We consider only one B-link algorithm here, 
which exactly implements the above description. This 
algorithm is referred to as the LY algorithm in [SC91], 
and was found to have the best performance of all the 
above-mentioned algorithms with respect to transac- 
tion throughput. 

2.4 ARIES/IM Algorithm 

An algorithm for high-concurrency index manage- 
ment called ARIES/IM was described in [ML92]. 
ARIES/IM has both left and right pointers linking 
nodes at the leaf level, but unlike the B-link algorithm, 
the nodes at higher levels do not have right links. Up- 
daters in ARIES/IM make an initial descent to the leaf 
using IS locks, and at the leaf level they may perform 
link-chases just as in the B-link algorithms. However, 
while the B-link algorithms perform link-chases at all 
levels, updaters in ARIES/IM instead use a complex 
protocol based on recursive restarts. These restarts 
do not have the disadvantage of creating any bottle- 
necks, however, as the operations use extra informa- 
tion stored in the B+-tree nodes to ensure consistency 
rather than using exclusive locks. The performance 
study in [SC911 explains why the ARIES/IM algorithm 
will perform close to the LY algorithm for most work- 
loads. We expect the same to happen here and do not 
explicitly simulate the ARIES/IM algorithm in our ex- 
periments. 

3 Real-Time Index CC 

Satisfaction of transaction timing constraints is the 
primary goal in real-time database systems (rather 
than other considerations, such as fairness). There- 
fore, the scheduling policies at the various resources 
(both physical and logical) in the system can be rea- 
sonably expected to be priority-driven with the pri- 
ority assignment scheme being tuned to minimize the 
number of missed deadlines. The index concurrency 
control algorithms described above do not take trans- 
action priorities into account. This may result in 
high priority transactions being blocked by low pri- 
ority transactions, a phenomenon known as priority 
inversion in the real-time literature [SRL87]. Priority 
inversion can cause the affected high-priority transac- 
tions to miss their deadlines and is clearly undesirable. 
We therefore need to design preemption schemes for in- 
dex concurrency control algorithms in order to adapt 
them to the real-time environment. 

3.1 Index Node Locks 

We have incorporated priority into the index CC algo- 
rithms in the following manner: When a transaction 
requests a lock on an index node that is held by higher 
priority transactions in a conflicting lock mode, the re- 
questing transaction waits for the node to be released 
(the wait queue for an index node is maintained in 
priority order). On the other hand, if the index node 
is currently held by only lower priority transactions 
in a conflicting lock mode, the lower priority transac- 
tions are preempted and the requesting transaction is 
awarded the lock. The lower priority transactions then 
restart, from the beginning, their current index opera- 
tions (not the entire transaction). The only exception 
to this procedure is when a low priority transaction is 
in the midst of physically making updates to a node 
which is currently locked by it. In this situation, the 
low priority transaction is not preempted until it has 
completed these updates and released the lock on the 
updated node. Since these operations are typically 
very fast, we expect that the effect of having these ex- 
tremely short priority inversion periods is negligible. 

Locks on index nodes are typically held for very 
short durations, and commercial database systems 
tend to implement such short duration locks as op- 
timized “fast-locks” or latches [ML92]. In our simu- 
lation model also, index node locks are implemented 
as latches. Since latches are held only for very short 
durations, it may be questioned as to whether adding 
preemption to latches is really necessary. Our experi- 
ments (Section 5) show that adding preemption does 
have an appreciable performance effect. 
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3.2 Locking for Transaction Serializability 

As mentioned in the introduction, the performance 
metric of missed deadlines applies only to complete 
transactions. We therefore need to consider transac- 
tions which consist of mulGple index actions and en- 
sure that transaction serializability is maintained. In 
our study, we use a real-time variant of a simplified 
form of the key-value locking (KVL) mechanism de- 
scribed in [MohSO] to provide transaction concurrency 
control. In formulating this simplified algorithm, we 
assume, as in [SC91, JS90], that all indexes are unique 
and that all index operations are point (single key) 
operations. 

The KVL-based concurrency control algorithm that 
we use is as follows: A transaction that wishes to make 
an index access has to first obtain, from the database 
concurrency control manager, the appropriate lock on 
the associated key. An S (shared) lock is required for 
searches, while an X (exclusive) lock is required for up- 
dates. After this lock is obtained, the index operation 
is executed under the supervision of the index con- 
currency control algorithm. In KVL, the well-known 
(strict) two-phase locking algorithm (2PL) is used to 
maintain serializability by regulating access to the key- 
value locks. For our study, we use a real-time version of 
2PL called SPL-HP [AG92] which incorporates a prior- 
ity mechanism similar to that described above for the 
index concurrency control algorithms5. Note, however, 
that transactions restarted due to key-value-lock pre- 
emptions have to commence the complete transaction 
once again. 

4 Simulation Model and Methodology 

In the previous section, we discussed various index 
concurrency control algorithms and their real time 
versions. To evaluate the performance of these algo- 
rithms, we developed a detailed simulation model of a 
firm-deadline real-time database system. The organi- 
zation of our model is based on a loose combination of 
the database model of [HCL92] and the B-tree system 
model of [SC91]. A summary of the parameters used 
in the model are given in Table 2. The following sub- 
sections describe the workload generation process, the 
B-tree model and the hardware resource configuration. 

4.1 Transaction Workload Model 

Transactions arrive in a Poisson stream and each trans- 
action has an associated deadline. A transaction con- 

‘Earlier studies have shown optimistic algorithms to perform 
better than locking protocols in Srm RTDBS (e.g. [HCL92]). 
However, since our experiments here consider only low data 
contention (but high index contention) situations, the choice of 
transaction CC mechanism has negligible effect on performance 
and therefore, for simplicity, a locking protocol has been used. 

Parameter 
ArrRate 
TransSize 
SlackFactor 
SearchProb 
InsertProb 
DeleteProb 
AppendProb 
InitKeys 
MaxFanout 
NumCPUs 
SpeedCPU 
LockCPU 
LatchCPU 
BufCPU 
SearchCPU 
ModifyCPU 
CopyCPU 
NumDisks 
PageDisk 
NumBufs 

Table 2: Model Parameters 

Meaning 
Transaction arrival rate 
Average transaction size 
Deadline Slack Factor 
Proportion of searches 
Proportion of inserts 
Proportion of deletes 
Proportion of appends 
No. of keys in initial tree 
Key entries per node 
Number of processors 
Processor MIPS 
Cost for lock/unlock 
Cost for latch/unlatch 
Cost for buffer caII 
Cost for page search 
Cost for key insert/delete 
Cost for page copy 
Number of disks 
Disk page access time 
Size of buffer pool 

Value 
o-w 
8 
4 
0.0 - 1.0 
0.0 - 1.0 
0.0 - 1.0 
0.0 - 1.0 
100,000 
300 
l-00 
20 
1000 inst. 
100 inst. 
1000 inst. 
500 inst. 
500 inst. 
1000 inst. 
l-00 
20 ms 
l-w 

sists of a sequence of index access operations such as 
search, insert, delete or append of a key value. After 
each index operation, the corresponding data access is 
made. The data access itself is not explicitly modeled 
but is assumed to take a period of time equal to one 
disk I/O. A transaction that is restarted due to a data 
conflict makes the same index accesses as its original 
incarnation. If a transaction has not completed by its 
deadline, it is immediately aborted and discarded. 

The ArrRate parameter specifies the mean rate of 
transaction arrivals. The number of index accesses 
made by each transaction varies uniformly between 
half and one-and-a-half times the value of TransSize. 
The overall proportion of searches, inserts, deletes and 
appends in the workload is given by the SearchProb, 
InsertProb, DeleteProb and AppendProb parameters, 
respectively. As mentioned earlier, all index search and 
update operations are point (single key) operations, as 
in [JS90, SC91]. 

Transactions are assigned deadlines with the for- 
mula DT = AT + SF * RT, where DT, AT and RT are 
the deadline, arrival time and resource time, respec- 
tively, of transaction T, while SF is a slack factor. The 
resource time is the total service time at the resources 
that the transaction requires for its data processing. 

The slack factor is a constant that provides control 
over the tightness/slackness of deadlines6. 

6 Although the workload generator uses transaction resource 
requirements in assigning deadlines, we assume that the RTDBS 
itself lacks any knowledge of these requirements. This implies 
that a transactionis detected as being late only when it actually 

150 



4.2 B-Tree Model 

For simplicity, only a single B-tree is modeled and all 
transaction index accesses are made to this tree. The 
initial number of keys in the index is determined by the 
Ini2Keys parameter. Each index node corresponds 
to a single disk block and the MacFanovt parame- 
ter gives the node key capacity, that is, the maximum 
number of < key,pointer > entries in a node. We as- 
sume that all keys are of the same size, and that the 
indexed attribute is a key of the source relation. If an 
update transaction is aborted, any index modifications 
that it may have made have to be undone to maintain 
index consistency. For simplicity, however, we do not 
include this in our model - the impact of this choice 
is discussed at the end of Section 5. 

4.3 Resource Model 

The physical resources in our model consist of pro- 
cessors, memory and disks. There is a single queue 
for the CPUs and the service discipline is preemptive- 
resume, with preemptions being based on transaction 
priorities. Each of the disks has its own queue and is 
scheduled with a priority Head-of-Line policy. 

Buffer management is implemented using a two- 
level priority LRU mechanism: Higher priority trans- 
actions steal buffers from the lowest priority transac- 
tion that currently owns one or more buffers in the 
memory pool. The least-recently used clean buffer of 
this transaction is the one chosen for reallocation. If 
all its buffers are dirty, the least-recently used dirty 
buffer is flushed to disk and then transferred to the 
high priority transactions. The lowest priority trans- 
action itself uses a similar LRU mechanism within the 
set of buffers currently allocated to it7. 

The NumCPlJs, NumDisks and NumBufs param- 
eters quantitatively determine the resource configura- 
tion. The processing cost parameters for each type of 
index operation are also given in Table 2. 

5 Experiments 

In this section, we present the performance results 
from our simulation experiments comparing the var- 
ious index concurrency control algorithms in a firm- 
deadline real-time database system environment (the 
simulator is written in C++ [Str86]). The transac- 
tion priority assignment scheme used in all the experi- 
ments reported here is the widely-used Earliest Dead- 
line: transactions with earlier deadlines have higher 
priority than transactions with later deadlines’. 

misses its deadline. 
‘Pinned buffers, are, of course, not eligible to be replaced. 
a Earliest Deadline has been found to perform poorly in over- 

load situations and modifications have been proposed in the 
literature to address this problem (e.g. [HCLSI]. We intend to 

The index key generation process is implemented in 
the following manner: The keys for the search, insert 
and delete operations are chosen from a key space that 
consists of integer values between 1 and 300,000. The 
inserts can use all key values in the key space that 
are not exact multiples of 3, whereas the deletes can 
use the remaining keys (i.e. exact multiples of 3). In 
contrast to updaters, searches can use all key values in 
the key space. Finally, the keys for appends are chosen 
sequentially from 300,001 onwards. 

The above key generation scheme is designed to en- 
sure that inserts and deletes do not interfere at the 
level of key values. Further, to ensure that deletes are 
always successful, an initial tree is built using a ran- 
dom permutation of all of the keys which are multiples 
of 3 in the key space, that is, the initial number of keys 
in the B-tree is 100,000. 

5.1 Performance Metric 

The performance metric of our experiments is Miss 
Percent, which is the percentage of input transactions 
that the system is unable to complete before their 
deadlines. A long-term operating region where the 
miss percentage is high is obviously unrealistic for a 
viable RTDBS. Exercising the system to high miss lev- 
els (as in our experiments), however, provides valuable 
information on the response of the algorithms to brief 
periods of stress loading. All the MissPercent graphs 
of this paper show mean values that have relative half- 
widths about the mean of less than 10 percent at the 
90 percent confidence level, with each experiment hav- 
ing been run until at least 10000 transactions were 
processed by the system. Only statistically significant 
differences are discussed here. 

The simulator was instrumented to generate a host 
of other statistical information, including resource 
utilizations, number of link-chases for B-link algo- 
rithms, number of restarts for optimistic algorithms, 
etc. These secondary measures help to explain the 
MissPercent behavior of the index concurrency con- 
trol algorithms under various workloads and system 
conditions. 

5.2 Parameter Settings 

As mentioned earlier, the initial tree for each experi- 
ment consists of 100,000 keys. The fanout (key capac- 
ity) of each node of the B-tree is set to 300. With this 
fanout, the resultant initial tree is 3 levels deep, con- 
sisting of 3 internal nodes and 506 leaf nodes. The tree 
nodes are assumed to be uniformly distributed across 
all the disks. The other constant simulation parame- 
ters are set to the values shown in Table 2. 

experiment with these priority schemes in our future research. 
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We performed several experiments by varying the 
variable simulation parameters (Table 2). We mainly 
focus on three representative experiments here which 
correspond to system conditions of low contention, 
moderate contention and high contention for the in- 
dex, respectively. In addition, we also present results 
on the contribution of index contention to the miss 
percentage, and the performance in the absence of 
resource contention. These experiments cover trans- 
action workloads that are similar to those considered 
in [SC91]. For all the experiments described here, un- 
less explicitly mentioned otherwise, the resource pa- 
rameter settings are: NumCPVs = 1, NumDisks = 
8, and NumBufs = 250. 

In all our experiments, no appreciable difference was 
observed between the performance of the correspond- 
ing algorithms from the Bayer-Schkolnick and Top- 
Down classes (i.e. between B-OPT and TD-OPT, B-X 
and TD-X, B-SIX and TD-SIX). This is to be expected 
since the B-tree used in our experiments, as described 
above, has only 3 levels due to the large fanout. Con- 
sequently, the number of exclusive locks held at one 
time on the scope of an update is hardly different in 
the two cases. We will therefore simply use OPT, SIX 
and X to denote these algorithms in the following dis- 
cussions. 

5.3 Expt. 1: Low Index Contention 

In our first experiment set, a workload that consisted 
of 80% searches, 10% inserts and 10% deletes was used. 
The high percentage of reads as compared to updates 
results in a low contention environment. Moreover, the 
balance of insert and delete index operations limits the 
number of index node splits and merges. For this ex- 
periment, Figure 1 shows the miss percent behavior as 
a function of transaction arrival rate. These results 
clearly show that the X algorithms perform poorly 
with respect to the other algorithms. At low arrival 
rates, the performance of the B-link algorithms is the 
best, but at high arrival rates the SIX algorithms per- 
form noticeably better. Predictably, the performance 
of the OPT algorithms is almost identical to that of B- 
link algorithms, since the number of splits and merges 
is very low. 

The poor behavior of the X algorithms is explained 
by considering the average amount of time a trans- 
action has to wait for an index lock in each of the 
algorithms - this statistic is shown as a function of ar- 
rival rate in Table 3. The table clearly shows that 
the average lock wait time for X algorithms is the 
highestg. The reason for this is that the root of the 

g The reason that the average lock wait times for B-link show 
a non-monotonic behavior is that the number of samples used 
in computing each average are very few ,(since lock waits are 
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Figure 1: Low Index Contention 

B-tree becomes a severe bottleneck, as also observed 
in [JS90, SC91]. 

In the corresponding (non-real-time) experiment 
in [SC91], the B-link algorithms performed much bet- 
ter than the SIX algorithms. However, in our case, 
though B-link performs the best for low arrival rates, 
the situation is reversed at high arrival rates where the 
SIX algorithms are found to outperform the B-link al- 
gorithms. The explanation for this counter-intuitive 
performance is as follows: The SIX algorithms give 
preferential treatment to read index operations over 
update index operations (by allowing readers to over- 
take updaters during tree traversal) [SC91]. This leads 
to SIX providing commensurately better performance 
for transactions that have either no updates or only 
a few updates. In order to confirm this, we measured 
the miss percent considering only the read-only trans- 
actions. On an average, for the transaction workload 
considered here, close to 21% of the transactions that 
were generated were read only transactions. At an 
arrival rate of 140 transactions per second, for ex- 
ample, the SIX algorithms missed only 0.04% of the 
read only transactions whereas the B-link algorithms 
missed about 73% of the read only transactions. No- 
tice that the overall miss percent of B-link algorithm at 
the same arrival rate is close to 79% (Figure 1) which 
demonstrates that the B-link algorithm does not dis- 
criminate between read-only and update transactions. 
In [SCSl], for the SIX algorithms, the slower updaters 
used to clog up the system, resulting in much higher 
contention levels and poor performance - in the firm 
real-time environment, however, that does not hap- 
pen because transactions are discarded as soon as their 
deadlines expire. Therefore, this type of clogging is in- 
herently prevented. 

extremely rare for B-link). 
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Table 3: Average Lock Wait Time (in micro seconds) 

ArrRate 
60 
70 
80 
90 
100 

s 

110 
120 
130 
140 
150 
160 

B-link OPT SIX X 
0 22 1454 58314 
0 43 5756 69365 
1 549 27228 79252 
1 1207 35525 89101 
7 1602 42420 97366 
3 2092 49356 109902 
5 2435 52587 120131 
7 3138 56105 128209 
18 3392 60511 135311 
7 3574 61702 148064 
8 3874 63990 158935 

If we view the above result from a different angle, we 
observe that the SIX algorithms, by giving preferen- 
tial treatment to read only transactions, are applying 
a form of loud control. On the other hand, the B-link 
algorithms tend to saturate the disk due to treating all 
transactions uniformly and therefore miss significantly 
more deadlines than SIX. This naturally suggests that 
the performance of the B-link algorithms could be im- 
proved by adding a load-control component without 
sacrificing their desirable fairness feature. 

To evaluate the potential of the above idea, we de- 
veloped a variant of the B-link algorithm called LAB- 
link (Load Adaptive B-link) which ensures that the 
utilization of the bottleneck resource is not allowed 
to exceed acceptable levels. This is achieved through 
a simple feedback mechanism that monitors the uti- 
lization at all the system resources and prevents new 
transactions from entering the system whenever the 
utilization of the bottleneck resource exceeds a pre- 
scribed amount, MaxUtil. Transactions which are de- 
nied entry are eventually discarded when their dead- 
lines expire and, for the miss percent computation, are 
considered to be transactions that have missed their 
deadlines. 

The choice of MaxUtil in the LAB-link algorithm 
is dictated by two factors: If MaxUtil is set too high, 
then the effect of the load control comes into play too 
late, resulting in more missed deadlines. On the other 
hand, if MaxUtil is set too low, then again the miss 
percentage is increased, since transactions that could 
probably have made their deadlines are unnecessarily 
shut out from the system. 

Our solution to the above problem is based on the 
following observation, similar to that of [HCLSl]: Load 
control should kick in only when the system has actu- 
ally started missing the deadlines of at least a small 
fraction of the transactions in the system. Therefore, a 
miss percent limit, MinMiss, is included in the LAB- 

link algorithm - at miss percents below this limit, the 
load control mechanism is inoperative. We conducted 
several experiments for a variety of transaction work- 
loads and system configurations and empirically found 
that MinMiss settings in the range of 8 to 10 percent 
and MaxUtil settings in the range of 97 to 99 percent 
resulted in satisfactory load control behavior. For the 
LAB-link performance results described in this paper, 
MinMiss is 9 percent and MaxUtil is 98 percent. 

The performance of the LAB-link algorithm is also 
shown in Figure 1. It is clear from this graph that the 
overload performance of LAB-link improves dramati- 
cally over B-link. As explained above, this is due to its 
admission control policy which ensures that the bottle- 
neck resource (in this case, the disk) does not become 
saturated, thereby comfortably completing the admit- 
ted transactions. 

5.4 Expt. 2: Moderate Index Contention 

In our next set of experiments, the workload consisted 
of 100% inserts, resulting in a moderate contention 
environment. For this experiment, Figure 2 shows the 
graph of miss percent as a function of transaction ar- 
rival rate. We observe here that the SIX and X algo- 
rithms behave identically - this is only to be expected 
since, in the absence of readers, SIX locks do not per- 
mit any concurrent access, just like X locks. Note also 
that the performance of these algorithms is consider- 
ably below that of OPT and B-link. 

In the corresponding (non-real-time) experiment 
in [SC91], the B-link algorithms performed noticeably 
better than the OPT algorithms. This was because 
the OPT algorithms suffered from a large number of 
restarts caused by high contention, thereby resulting 
in the root becoming a bottleneck due to the large 
number of second-pass updaters. In our experiment, 
however, we observe that the performance of the OPT 
and the B-link algorithms is very close. The reason 
for this surprising result is that the number of restarts 
for OPT in the real-time environment is, in contrast, 
quite small. This reduction in restarts arises from the 
priority feature incorporated in the CC algorithms. To 
verify this, we ran the same experiment without pre- 
emption for index node locks and found that the num- 
ber of restarts for OPT was significantly higher than 
in the prioritized case. This shows that adding pre- 
emption to index latches can result in tangible perfor- 
mance benefits (the other index CC algorithms also 
exhibited similar improvement due to incorporating 
preemption). 

The explanation for priority resulting in fewer 
restarts is as follows: In the no priority case, several 
first pass transactions see the same unsafe leaf node 
before the first transaction which saw it as unsafe has 
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completed its second pass and made the leaf safe (by 
splitting or merging). This is the source of the large 
number of restarts. In the prioritized environment, 
however, the second pass updater typically completes 
its second pass very quickly, thereby allowing only rel- 
atively few of the other transactions to see the node 
while it is unsafe. In essence, the time period for which 
a node is unsafe is much smaller in the prioritized en- 
vironment as compared to the non-real-time environ- 
ment . 

Finally, we observe that the performance of LAB- 
link is again better than that of all the other algo- 
rithms. In fact, at an arrival rate of 100 transactions 
per second, the performance gain of LAB-link over B- 
link is almost 25%. 

5.5 Expt. 3: High Index Contention 

In the final set of experiments, the workload consisted 
of 25% searches and 75% appends. The appends create 
extremely high contention for the few right-most nodes 
in the tree, and as a side-effect, ensure that these nodes 
are permanently in the buffer pool. The keys for the 
searches are randomly generated and they therefore 
interfere only minimally with the appends. For this 
experiment, Figure 3 shows the graph of miss percent 
as a function of transaction arrival rate. 

We do not explicitly plot the performance of the 
X algorithms, since, at an arrival rate of 300 transac- 
tions/sec, their miss percent was already close to 50%. 
Moving on to the SIX algorithms, we observe that they 
perform much worse than the OPT and B-link algo- 
rithms. This is again due to the root becoming a bot- 
tleneck, resulting in much higher average lock waiting 
times as compared to the OPT and B-link algorithms. 

The gap between the miss percentage curves of OPT 
and B-link in Figure 3 is slightly wider than in the 

M LAB-Link 
S--H B-Link 

Arrival Rate 

moderate data contention experiment discussed previ- 
ously. The reason for the wider gap is that the proba- 
bility of multiple transactions restarting here is higher 
than in the moderate contention case since 75% of the 
index actions are directed towards the right end of the 
tree. Once again, just as in the moderate contention 
case, we experimented with having no preemption for 
index node locks and found that OPT without preemp- 
tion had many more restarts than the prioritized OPT 
algorithm. The reduction in the number of restarts for 
the prioritized OPT algorithm makes the performance 
differences between the OPT and B-link algorithms to 
be less significant here than they would otherwise be. 

Finally, notice that, in this experiment too, LAB- 
link performed the best (in this case, the bottleneck 
resource is the CPU, not the disk). 

5.6 Expt. 4: Conflict Analysis 

In our experiments, transactions which miss their 
deadlines do so due to the cumulative effect of three 
factors: The conflict for the data, the conflict for the 
index, and the conflict for the physical resources (pro- 
cessors, disks, memory). The relative extent to which 
each of these factors contributes to the miss percent 
is a function of the transaction workload and system 
configuration. We analyze below the effects of these 
factors with respect to the miss percent performance 
of B-link and LAB-link in Experiment 1 (Low Index 
Contention). 

In all our experiments, the data conflict due to key 
value locking was negligible since the maximum num- 
ber of transaction restarts never exceeded twelve out 
of the 10,000 transactions that were processed. In or- 
der to study the relative extent to which index con- 
flict and (physical) resource conflict contributed to the 
miss percentage, we conducted an experiment where 
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Figure 4: No Index Contention 

there were no index conflicts. For this experiment, the 
workload and system configuration were identical to 
Experiment 1 (Low Index Contention) except that all 
the index operations were searches. Figure 4 shows the 
performance of B-link and LAB-link for this full-search 
workload and the corresponding figures for the mixed 
workload of Experiment 1. Note that the performance 
of B-link for the full-search workload is significantly 
better than its performance with the mixed workload. 
The difference corresponds to the performance drop 
due to data conflicts at index nodes. This difference 
is quite substantial (about 20%) even at very high ar- 
rival rates and demonstrates that data conflict at the 
index nodes is significant even for B-link algorithms. 
A similar performance difference is observed for the 
LAB-link algorithm as well. 

5.7 Expt. 5: Performance Limits 

In the previous experiment, we observed that both in- 
dex contention and resource contention had a signifi- 
cant role to play in determining the miss percentage. 
Index contention is primarily determined by the trans- 
action workload characteristics and since the workload 
is typically decided by the users, the only unilateral 
performance improvement option available for the RT- 
DBS designer is to reduce resource contention. One 
method of reducing resource contention is to purchase 
more and/or faster resources. In the experiment de- 
scribed below, the miss percent performance is evalu- 
ated for an “infinite resource” system, that is, a system 
where there is no queueing for resources. While abun- 
dant resources are usually not to be expected in con- 
ventional database systems, they may be more com- 
mon in RTDBS environments since many real-time 
systems are sized to handle transient heavy loading. 
This directly relates to the application domain of RT- 

Table 4: Miss Percent with Infinite Resources 

ArrRate B-link OPT SIX 
1000 0.01 0.01 0.01 
5000 0.04 0.04 65.90 
10000 0.05 0.07 77.33 
15000 0.08 0.09 77.72 
20000 0.18 0.14 77.74 

DBSs, where functionality, rather than cost, is often 
the driving consideration. 

We conducted an experiment to evaluate the miss 
percent performance that could be achieved for the 
transaction workload of Experiment 1 (Low Index 
Contention) in the absence of resource contention. For 
this experiment, the entire index tree was resident in 
memory and the number of CPUs was infinite, and the 
miss percent was therefore determined solely by index 
contention. Note that this means that the performance 
numbers observed in this experiment capture the best 
performance that each index concurrency control alge 
rithm can deliver for the chosen transaction workload. 

The performance in this experiment is shown in Ta- 
ble 4 for the B-link, OPT and SIX algorithms (LAB- 
link is identical to B-link here since the resource uti- 
lization is very low). Note that the OPT and B-link 
algorithms manage to complete almost all the submit- 
ted transactions, even at an arrival rate of 20,000. In 
contrast, SIX algorithms miss close to 77% of their 
transactions at higher arrival rates. However, the miss 
percent of SIX algorithms does not degrade beyond 
77%. This is yet another indication of the fact that 
SIX algorithms preferentially complete all the read 
only transactions (recall that the percentage of read 
only transactions is close to 21%). 

5.8 Modeling Undos 

While discussing the B-tree model in Section 4, we 
mentioned that undos of index updates made by dis- 
carded (aborted) transactions was not included in our 
model. It seems reasonable to assume that the number 
of undos to be done is directly related to the transac- 
tion miss percent, that is, a higher miss percent leads 
to more undos. Given this, we expect that if we im- 
plemented undos in our model, the difference in per- 
formance of the algorithms seen in the above experi- 
ments would increase even further. This is because the 
poorly performing algorithms would have more clean- 
up work to do than the better algorithms and therefore 
miss even more transaction deadlines. In summary, 
there is a positive feedback between the undo over- 
head and the miss percentage. 
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In this paper, we investigated the problem of index 
concurrency control for real-time database systems 
supporting transactions with firm deadlines. Using 
a detailed simulation model of an RTDBS, we stud- 
ied the deadline miss percent performance of real-time 
variants of three different classes of index CC algo- 
rithms: Bayer-Schkolnick, Top-Down and B-link, un- 
der a range of workloads and operating conditions. 

The experimental results showed that two factors 
characteristic of the (firm) real-time domain: addition 
of priority and discarding of late transactions, signif- 
icantly affected the performance of the index concur- 
rency control algorithms. In particular, B-link algo- 
rithms missed many more deadlines at high loads as 
compared to lock-coupling algorithms. This was in 
contrast to conventional DBMS where they (B-link) 
always exhibited the best throughput performance. In 
fact, the very reason for their good performance in 
conventional DBMS (full resource utilization) turned 
out to be a liability here. Secondly, the optimistic 
algorithms performed almost as well as the B-link al- 
gorithms even under high index contention conditions 
(in contrast to conventional DBMS). This was because 
prioritization of transactions caused a marked decrease 
in the number of index operation restarts. In short, 
these experiments show that the performance behav- 
iors exhibited by index CC algorithms in conventional 
DBMS cannot be blindly assumed to be valid in the 
corresponding real-time situation also. 

We introduced the LAB-link algorithm, which aug- 
mented the basic B-link algorithm with a simple load- 
control system to ensure that the bottleneck resource 
was not saturated. The LAB-link algorithm signifi- 
cantly reduced the miss percentage of B-link in the 
overload region and thereby provided the best per- 
formance over the entire loading range. This clearly 
demonstrates the need for load control in index man- 
agement in real-time database systems. Interest- 
ingly, such need for load control has also been iden- 
tified in other modules of real-time database systems 
(e.g. [HCLSl, PCL941). 

Our current study was limited to point (single key) 
index operations. In our future work, we plan to ex- 
tend our study to include range (multiple key) oper- 
ations. In its current implementation, LAB-link uses 
a utilization-based load control. We also plan to eval- 
uate the performance that would be obtained by im- 
plementing load-control through priority assignments 
(as done, for example, in Adaptive Earliest Dead- 
line [HCLS I]). 
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