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Abstract 

In this paper we present a solution to the problem of concurrent op- 
erations in the R-tree, a dynamic access structure capable of storing 
multidimensional and spatial data. We describe the R-link tree, a 
variant of the R-tree that adds sibling pointers to nodes, a technique 
first deployed in B-link trees, to compensatefor concurrent structure 
modifications. The main obstacle to the use of sibling pointers is the 
lack of linear ordering among the keys in an R-tree; we overcome 
this by assigning sequence numbers to nodes that let us reconstruct 
the “lineage” of a node at any point in time. The search, insert and 
delete algorithms for R-link trees are designed to completely avoid 
holding locks during I/O operations and to allow concurrent modifi- 
cations of the tree structure. In addition, we further describe how to 
achieve degree 3 consistency with an inexpensive predicate locking 
mechanism and demonstrate how to make R-link trees recoverable 
in a write-ahead logging environment. Experiments verify the per- 
formance advantage of R-link trees over simpler locking protocols. 

1 Introduction 

One of the future requirements for databases is the ability 
to support multidimensional and spatial data. This support 
is crucial for non-traditional database applications such as 
CAD, Geographical Information Systems (GIS) or temporal 
databases, to name a few. A fundamental aspect of support 
for spatial data is efficient handling of range queries along 
multiple dimensions; one example is the retrieval of points 
that intersect a given query rectangle. The most widespread 
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access method, the B-tree [BaMc72], does not handle multi- 
dimensional data very well. 

[Gutt84] proposed a spatial access method designed to 
handle multidimensional point and spatial data. Unlike other 
spatial access methods [Bent75, Niev84, Robi81, LoSa90], 
R-trees are not restricted to storing multidimensional points, 
but can directly store multidimensional spatial objects, which 
are represented by their minimal bounding box. R-trees have 
not benefited greatly from the many refinements and opti- 
mizations of concurrency mechanisms that have been de- 
signed for B-trees. A particular modification of B-trees, the 
B-link tree [LeYa81], connects the siblings on each level 
via rightward-pointing links and compensates for unfinished 
splits by moving across these links. This technique avoids 
holding locks during I/O operations and has recently been 
shown to offer the highest degree of concurrency among 
locking protocols for B-trees [SrCa91, JoSh93]. Unfortu- 
nately, the B-link tree technique expects the underlying key 
space to have a linear order and therefore cannot be directly 
applied to R-trees. 

In this paper we present R-link trees [BKS94], an exten- 
sion of R-trees motivated by Lehman and Yao’s work that 
shows similiar locking behavior and therefore offers the same 
high degree of concurrency as B-link trees. We circumvent 
the requirement for linearly ordered keys by introducing a 
system of sequence numbers that are assigned to each page 
and are used to determine when and how to traverse sibling 
links. Our deletion algorithm removes nodes as soon as they 
become empty without the need for a separate reorganization 
phase, a novel feature for link-style trees. 

The remainder of this paper is organized as follows. Sec- 
tion 2 provides background on R-trees and B-link trees. Sec- 
tion 3 goes into detail on the difficulties in applying the struc- 
tural modification of B-link trees to R-trees, presents the for- 
mal definition of an R-link tree and describes the search and 
insert algorithms. It also sketches the deletion algorithm. 
Section 4 shows how to make scan results serializable. Next, 
section 5 presents a way to make R-link trees recoverable in a 
write-ahead logging environment. Section 6 presents perfor- 
mance results and section 7 provides a discussion of related 
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work. Finally, section 8 gives a brief summary. 

2 Background and Motivation 

2.1 R-Trees 

An R-tree is a hierarchical, height-balanced indexing struc- 
ture similar to a B-tree. Like B-trees, R-trees have leaf nodes 
and internal nodes with entries in leaf node pointing to disk 
records and entries in internal nodes pointing to other internal 
nodes or leaf nodes. A node corresponds to a disk page and 
has between m and M entries (1 < m 2 AI>. The only ex- 
ception is the root, which may hold between 1 and M entries. 
Unlike in B-trees, the keys in R-trees are multi-dimensional 
objects that have no linear order defined on them. 

An entry in a leaf node of an R-tree contains a disk tu- 
ple identifier and the key, which is either a multidimensional 
point or a rectangular outline of the spatial object it repre- 
sents. An entry in an internal node summarizes the node it 
points to by storing as the key the minimum bounding rect- 
angle that tightly encloses all the keys in the child node. 

The information contained in an R-tree is thus hierarchi- 
cally organized and every level in the tree provides more 
detail than its ancestor level. A pointer to an indexed ob- 
ject is stored in the tree only once, but keys at all levels are 
allowed to overlap, possibly making it necessary even for 
point queries to descend multiple subtrees. Since multidi- 
mensional keys cannot be linearly ordered there is no single 
“correct” place for a particular key; consequently, it can con- 
ceivably be stored on any leaf. 

The search process in an R-tree is very different from that 
in a B-tree due to the lack of ordering and the possible overlap 
among keys. For example, to find all rectangles intersecting 
a given range the search process has to descend all subtrees 
that intersect or fully contain the range specification. Further- 
more, since an entry in an internal node summarizes the child 
node with a boundingrectangle, there is no guarantee that the 
child contains any keys of interest, even if its bounding rect- 
angle intersects the search range. 

The strategy for placing entries on leaf nodes should there- 
fore create an efficient index structure that optimizes retrieval 
performance. The literature has identified a variety of pa- 
rameters for the layout of keys on nodes that affect retrieval 
performance [BKSS90, SRF87]. These parameters are: min- 
imal node area, minimal overlap between nodes, minimal 
node margins or maximized node utilization. It is impossible 
to optimize all of these parameters simultaneously. For in- 
stance, the original R-tree proposal [Gutt84] minimizes over- 
lap between nodes; the R*-tree variation [BKSS90] mini- 
mizes overlap for internal nodes and minimizes the covered 
area for leaf nodes. 

When a new key has to be inserted in an R-tree, we attempt 
to descend to the geometrically optimal leaf by picking at 
each level the subtree with the optimal bounding rectangle. 
In contrast to B-trees, R-trees have to recursively update 

the ancestor keys if a leaf’s bounding rectangle changes. 
Splitting a node also deviates noticeably from the B-tree 
pattern. Whereas the B-tree simply “cuts” the sequence of 
keys stored in the overflowing node in half, the R-tree will 
partition the key sequence according to its layout strategy. 
Figure 1 illustrates the scenario of a split where the layout 
strategy is minimal overlap. Note in this example that it is 
impossible to completely avoid any overlap. 

2.2 Concurrency in B-Trees 

When multiple search and insertion processes are carried out 
on a B-Tree in parallel, their interactions may be interleaved 
in a way that leads to incorrect results. Simple solutions to 
this problem have the insertion process lock the entire tree 
or the subtree that needs to be modified due to anticipated 
splits. Variations thereof lock the upper levels of the subtree 
so that only readers can still access it [BaSc77]. In essence 
all of these methods employ top-down lock-coupling: when 
descending the tree a lock on a parent node can only be re- 
leased after the lock on the child node is granted. When doing 
lock-coupling, locks are held during I/O operations, which 
should be particularly detrimental to high concurrency of in- 
sert and delete operations in R-trees. When descending the 
tree via lock-coupling, locks can be acquired in shared mode, 
allowing many search and update operations to descend the 
tree concurrently. But update operations can block on cou- 
pled read locks during tree ascent. For B-trees, tree ascent 
only takes place as a result of a node split or deletion. For 
R-trees, it also takes place in order to propagate a changed 
bounding rectangle. The latter can be expected to occur far 
more frequently and unpredictably than node splits or dele- 
tions. 

A radically different approach was proposed in [LeYa8 11. 
Instead of avoiding possible conflicts by lock-coupling, the 
tree structure is modified so that the search process has the 
opportunity to compensate for a missed split. The crucial 
addition is the rightlink, a pointer going from every node to 
its right sibling on the same level (excluding the rightmost 
nodes). When a node is split and a new right sibling is cre- 
ated, it is inserted into the rightlinkchain directly to the right 
of the old one. The effect is that all nodes at the same level 
are chained together through the rightlinks. Furthermore, the 
sequence of the nodes in the rightlink chain reflects the se- 
quence of their corresponding entries in the ancestor level; 
in short, the rightlink chain orders the nodes by their keys. 
This is true for every level of the B-Tree and is a result of the 
splitting strategy in B-Trees, where the upper half of the key 
sequence is moved to the new right sibling. 

Searching in a B-link tree can therefore be done without 
lock-coupling. When descending to a node that was split 
after examining the parent, the search process discovers that 
the highest key on that node is lower than the key it is looking 
for and correctly concludes that a split must have taken place. 
It compensates for this split, or multiple splits, by moving 

135 



+ 

Figure 1: Overlap can be unavoidable after a split. 

right until it comes to a node where the highest key exceeds 
the search key. Likewise, an insertion process does not have 
to employ lock-coupling when descending the tree to the 
correct leaf. If the leaf has to be split, it is also possible 
to avoid lock-coupling when installing a new entry in the 
parent, as is shown in [Lash861 and [Sagi86]. As soon as 
the page has been split and the new right sibling inserted 
into the rightlink chain, the insertion process can drop the 
lock on the leaf that was overflowing and then acquire a 
lock on the parent, possibly moving right to compensate 
for concurrent splits and possibly splitting the parent itself, 
leading to recursive splits up the tree. This locking strategy 
is deadlock-free and offers very high concurrency because 
search and insertion processes only need to hold one node 
locked at a time. 

3 R-Link Trees 
We would like to achieve high concurrency for operations on 
R-trees, and given the similarities in structure and function- 
ality between B-trees and R-trees, it would seem natural to 
try to apply the ideas and algorithms of [LeYa81] to create an 
“R-link tree.” This is not a trivial matter, however, because 
R-trees differ from B-trees on a number of important points 
and the B-link tree strategy itself is insufficient. 

The source of this problem is the lack of ordering on R- 
tree keys. The core of the link-tree strategy is to account for 
splits that have not updated the parent by moving to the right. 
To implement that strategy we must answer two questions: 
how do we detect that the child has split and how do we 
limit the extent to which we move right. For R-trees, the 
latter question is not only relevant for efficiency, it is relevant 
because we descend multiple subtrees and may therefore end 
up visiting the same node twice if we move too far to the right. 

For B-link trees, the answer to those questions lies in 
the linear ordering that is defined on the key space and the 
fact that the nodes on a single level are ordered through the 
rightlink chain by their keys. This allows us to detect a split 
and to determine when to stop moving right based on key 
comparisons. It is impossible to apply the same strategy to 
R-trees. First of all, keys cannot conclusively tell us when 
a node has split. It is possible that the key of an entry in 
the parent intersects the search range, even if the keys in the 
child do not. In this case, it would be wrong to conclude that 
the child has split and move right. Using a notion analogous 

to the high key in a B-tree, we could also recompute the 
bounding rectangle of the child node and compare that to the 
key seen in the parent in order to detect a split. Doing so 
might cause us to miss a split because taking entries out of 
a node does not necessarily change its bounding rectangle 
(see figure 1). But even if we are sure that a node has split, 
it is impossible to limit the extent to which we move right 
by doing key comparisons. Adjacent nodes in the rightlink 
chain might have a bounding rectangle that intersects our 
search range, even though they did not take part in the split 
we detected. As mentioned before, we must not visit these 
nodes via rightlink traversal because we will visit them later 
on while searching a different path in the tree. 

We need to provide each operation on an R-tree with a way 
of determining whether it has accurate information about the 
current state of any node it might examine, and how it should 
proceed if it finds that its information is obsolete. 

3.1 Structure of an R-Link Tree 

Clearly, if we are to provide high concurrency operations on 
R-trees through a rightlink-style approach, we need to add 
some additional information to the standard R-tree that can 
be used to correctly traverse a constantly-changing tree struc- 
ture. We propose fulfilling this requirement by assigning log- 
ical sequence numbers (LSNs) to each node. These numbers 
are similar to timestamps in that they monotonically increase 
over time but are not synchronous with any real-time clock. 
The node entries and the search and insert algorithms are de- 
signed so that these LSNs can be used to make correct deci- 
sions about how to move through the tree. 

An R-link tree is basically a standard R-tree, as described 
in section 2.1, with two key differences. First, like a B-link 
tree, all of the nodes on any given level are chained together 
in a singly-linked list via rightlinks. It is very important to 
note that, unlike the B-link tree, the chain of nodes on a given 
level does not represent an ordering of the keys from smallest 
to greatest, and, in general, it will not reflect the ordering of 
their corresponding entries in the nodes on the parent level. 
This is illustrated in figure 2. In the rightlink chain of the 
parent level, pi precedes ps. However, ~4, which is a child of 
pl, does not precede cs. This situation can arise if pi splits 
and moves the entry for c:! over to the new right sibling, p2. 

Second, the main structural addition is an LSN in each 
node that is unique within the tree. These LSNs give US a 
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Figure 2: A subsection of an R-link tree (circled numbers are LSNs). 

mechanism for determining when an operation’s understand- 
ing of a given node is obsolete. Each entry in a node con- 
sists of a key rectangle, a pointer to the child node and the 
LSN that it expects the child node to have. If a node has to 
be split, the new right sibling is assigned the old node’s LSN 
and the old node receives a new LSN. A process traversing 
the tree can detect the split even if it has not been installed 
in the parent by comparing the expected LSN, as taken from 
the entry in the parent node, with the actual LSN. If the lat- 
ter is higher than the former, there was a split and the process 
moves right. When the process finally meets a node with the 
expected LSN, it knows that this is the rightmost node split 
off the old node. 

R-link trees can be formally defined as a balanced tree in 
which index nodes consist of a set of entries and a rightlink 
T. On each level of the tree the rightlinks form the nodes on 
that level into a singly-linked list. Entries on internal nodes 
consist of a key rectangle k, a pointerp, and an expected LSN 
1 so that either: 

1. (normal case - child-level structure fully rejlected in par- 
ent) 
p points to a child node N, where 1 is the LSN of N, and 
the rightlink of N points to NULL or to some node R 
which is also pointed to by some entry in the level above. 
In figure 2, entry 2 points to node cl; both z’s LSN and 
cl’s LSN are matching and cl’s rightlink points to cz, 
which is also pointed to by entry w in ps. 

2. (uninstalledsplit in child level compensated by rightlink) 
p points to a child node N, where the LSN of N is greater 
than 1, and there exists a node N’ whose LSN is 1, which 
can be reached by following rightlinks from N through 
nodes with LSNs higher than 1 which are not pointed to 
by any entry in the level above. N’ also has no entry in 
the level above, but its right sibling, if N’ is not the end of 
the chain, does. An example from figure 2 is the entry w 
in p2. The LSN in w is smaller than that of ca and equal 
to the LSN of cs, which in turn can be reached from cs 
by following one rightlink. Node c3 does not yet have an 
entry in the level above, but its right sibling, node Q, is 

pointed to by entry y in pl. This situation was caused by 
a split of node ~2, which has not yet been installed in the 
parent node. 

Note that in either case, the right sibling R of the node 
whose LSN matches the entry’s expected LSN has an entry 
in some node on the parent level. This entry can generally 
be anywhere in the parent level. Node c4 in figure 2 is an 
example where this entry is in a node to the left of the parent 
node of cs. 

3.2 The Search Algorithm 

A search process has to find all the entries on leaf nodes that 
fall in the query range, and since keys can overlap, it will 
generally have to descend multiple subtrees within the index. 
The underlying data structure to support this is a stack, which 
is used to remember which nodes still have to be visited. 
The process starts by initially pushing the root on the stack. 
A node that has not yet been examined is popped off the 
stack and all entries in the node that qualify for the search 
condition are in turn pushed onto the stack and the whole 
process is repeated. If a leaf node is popped off the stack, we 
can return the qualifying entries that we find on it. The search 
is terminated when the stack is empty. 

In order to remember a yet-to-be visited node on the stack, 
we push the pointer and the LSN we found in the correspond- 
ing entry. If we examine a node p and find that the LSN is 
higher than the one on the stack, we know that this node has 
been split in the meantime. To compensate for the split we 
must examine all of the nodes that have been split off from 
this node since we first pushed its entry. Therefore we push 
nodes to the right of p, up to and including the node with the 
LSN equal to the expected LSN for p. 

The search process, as shown in figure 3 is implemented 
with an iterator-like interface. The first call to search will 
return the first record and subsequent calls to ContinueSearch 
will return all other matching items until the stack is empty. 

3.3 The Insertion Algorithm 

An insertion proceeds in two stages: first we must locate the 
leaf to insert the key on, remembering the path we take as 
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search(Rect r): 
pnsh(stack, [root, root-lsn]) 
return reduceStack 

continueSearch(Rect r): 
return reduceStack 

reduceStack(Rect r): 
while not empty(stack) 

[p, p-lsn] = pop(stack) 
if (p is pointer to indexed tuple) 

return p 
else 

r-lock(p) 
if p-lsn < LSN(p) 

traverse the rightlink chain 
starting at rightlink 
to the node with 
LSN = p-lsn; 

for each node n along the 
rightlink chain: 

r-lock(n) 
push(stack, [n, LSN(n)]) 
r-unlock(n) 

end 
for all entries e of p 
intersecting r: 

push(stack, 
[node-pointer(e), LSN(e)]) 

r-unlock(p) 
end 

end 

Figure 3: The search algorithm 

we descend the tree; next, then the new key is inserted and 
the leaf possibly split. If the leaf’s bounding rectangle has 
changed, we must propagate the change to its ancestor node. 
This is accomplished by backing up the tree until we arrive 
at a parent node that does not need to be changed. If the leaf 
was split we must also install a new entry in the parent node. 
If it is full, we recursively split nodes up the tree until we 
arrive at a node with enough free space or alternatively split 
the root. Note that in contrast to a B-tree insertion, we must 
back up the tree for two reasons: splitting a node requires 
the installation of a new entry and changing the bounding 
rectangle requires the adjustment of the keys in the ancestor 
nodes.’ The latter step is missing in B-trees. 

When descending the tree to a leaf, we choose the geomet- 
rically optimal subtree at each level. However, if we detect 
that a node has been split, we must take into consideration all 
the nodes to the right of the original node that were split off it. 
As in the search algorithm, this chain is delimited to the right 
by the node carrying the original LSN. When we are updat- 

‘These twe changes have to be applied atomically in order to guarantee 
the R-link tree properties of section 3. I Atomic changes are further dealt 
with in section 5. 

ing parent keys during ascent, we also must move right if the 
parent node has split. Notice in this case that no LSN is nec- 
essary to recognize the split or delimit the rightlinkchain. An 
entry in a node can be uniquely identified by the node pointer2 
it contains; for that reason, we move right until we find the 
node with that particular entry. 

When backing up the tree one level, we employ lock- 
coupling; that is, we hold the child node write-locked until 
we obtain a write-lock on the parent. If we do not couple 
the locks, another inserter causing a split can overtake us and 
install the changes before us. When it is finally our turn, 
we would update the key, unaware of the previous changes 
to the child node. The key would not reflect the bounding 
rectangle of the child anymore and the tree structure would 
be incorrect.’ This is a deviation from the locking behavior 
in B-link trees, where lock-coupling during ascent is not 
necessary. In practice, this should make little difference to 
the achievable degree of concurrency, because parent nodes 
can be expected to still reside in main memory and therefore 
no locks are held during I/O operations. 

The implementation of the insert algorithm is shown in fig- 
ure 4. The individual procedures do the following: findLeaf 
descends to the geometrically optimal leaf, recording the path 
along the way and finally write-locks the leaf; extendparent 
is called after a leaf split to recursively install an entry for the 
new leaf in the parent and to propagate the changed bounding 
rectangle of the old leaf; updateParent is called only after a 
leaf’s boundingrectangle has changed in order to recursively 
propagate the new bounding rectangle of that leaf. 

To keep the algorithm as short as possible, we do not 
consider the case where multiple insertions are carried out 
at the same time and a splitting of the root by one inserter 
goes unnoticed by the others. This is problematic when the 
remaining inserters have to change the bounding rectangle 
of what they believe is the root or if the “root” has to be 
split a second time. A solution can be found in [Lash861 
and [Sagi86]; both suggest using an anchor page to make 
root splits visible to other insertion processes and allow for 
compensating actions. 

There is one restriction to consider when installing a new 
child entry in a parent node, which might not be immediately 
obvious. If the parent node was split, we would like to insert 
the new entry on the geometrically optimal node in the chain. 
Unfortunately, this is not possible and the new entry has to be 
installed on the same page that contained the old entry (or its 
new right sibling if the insertion causes a split). The reason 
for this can be seen in figure 5. Suppose a search process 
is looking for item CC contained in leaf node c (situation a). 

*Node pointers do not change after a split because the original node is 
kept in place. 

3tr is not necessary to do lock-coupling when moving right. If another 
inserter overtakes us while we are moving right and splits the nodes we are 
examining, it is impossible for us to miss the entry for the child node since 
a split can move entries only right. 
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insert(Rect r): 
stack = lindLeaf(root, r, root-lsn) 
leaf = pop(stack) 
insert r on leaf 
if leaf was split 

extendParent(leaf, 
bounding-rect(leaf), 
LSN(leaf), right sibling, 
bounding-rect(right sibling), 
LSN(right sibling), stack) 

else 
if bounding-rect of leaf changed 

updateParent(leaf, 
bounding-rect(leaf), stack) 

else 
w-unlock(leaf) 

end 
end 

Stack findLeaf(RTreeNode p, Rect r, LSN p&n): 
if p is leaf 

w-lock(p) 
else 

r-lock(p) 
end 
if p-lsn < LSN(p) 

p = geometrically optimal node to take 
r in rightlink chain starting at p 
and ending at node with 
LSN = p-lsn 

end 
if p is leaf 

push(stack, p) 
return stack 

else 
e = entry on p leading to 

geometrically optimal subtree 
for r 

push(stack, p) 
r-unlock(p) 
return findLeaf(e, r, LSN(e)) 

end 

extendParent(RTreeNode p, Rect p-rect, 
LSN p-lsn, RTreeNode cl, Rect q-rect, 
LSN q-lsn, Stack stack): 

if empty(stack) 
create new root (w-locked) with 2 
entries: 

parent = pop(stack) 
w-lock(parent) 
find the entry for node p in parent or 

one of its right siblings; let 
parent = that node and 
entry = that entry 

w-unlock(p) 
update key in entry with p-rect 
if bounding-rect(parent) changed 

updateParent(parent, 
bounding-rect(parent), stack)) 

else 
- for child, key: p-rect w-unlock(parent) 
- for sibling, key: q-rect end 
w-unlock(q) end 

w-unlock(p) 
w-unlock(new root) 
return 

else 
parent = pop(stack) 
w-lock(parent) 
find the entry for node p in parent 

or one of its right siblings; 
let parent = that node and 
entry = that entry 

w-unlock(q) 
w-unlock(p) 
update entry with p-rect and p-lsn 
insert q on parent 
if parent split 

extendParent(parent, 
bounding-rect(parent), 
LSN(parent), 
right sibling, 
boundingRect(right sibling), 
LSN(right sibling), stack) 

else 
if bounding-rect(parent) changed 

updateParent(parent, 
bounding-rect(parent), 
stack) 

else 
w-unlock(parent) 

end 
end 

end 

updateParent(RTreeNode p, Rect p-rect, Stack stack): 
if empty(stack) 

w-unlock(p) 
return 

else 

Figure 4: The insertion algorithm 

Node f and c are split independently and item 2 is moved to 
the new leaf c’ (situation b). If the splitting off is already 
reflected in the parent level, the search process will navigate 

directly to f’. In situation c, the entry for c’ has been installed 
in f, because thisresults in a geometrically better node layout 
than a placement on f’, and the entry in f’ for c has also been 
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(b) 

Figure 5: An incorrect structure modification. 

updated (key and LSN). In this case, the search process will pointer to the original child node was read (at the time the 
be unable to find leaf c’ because it never considers going to parent, not the original child, was examined). The R-link tree 
f. On the other hand, if the entry for c’ had been installed in structure as postulated in section 3.1 has to be slightly relaxed 
f’, the search would have been successful. to accomodate the case where a node pointer is invalid. 

In principle, this requirement could deteriorate the tree 
structure by forcing its keys to have more overlap than nec- 
essary. We expect this potential drawback to have little effect 
in practice because only in rare cases will the geometrically 
optimal node differ from the node containing the entry for the 
old child. 

3.4 Deletion 

A key deletion from a leaf node is a combination of the 
search and insert algorithms. First, we have to find the leaf 
holding the key we are interested in. After the key is removed 
from the leaf, we have to propagate the changed bounding 
rectangle up the tree, in the same manner as updateparent 
does for an insertion. The locking behavior is the same as for 
the search and insert algorithms and therefore key deletion is 
also deadlock-free. 

The removal of the node and its corresponding entry in the 
parent are carried out recursively, also removing the parent 
if it becomes empty and so forth. Note that it is impossible 
for us to cheaply access the left sibling of the deleted node 
in order to reset its rightlink. But because a rightlink in 
the R-link tree is only needed to compensate for splits as 
long as these are not fully reflected in the parent level, we 
need not fix the rightlink chain when removing a node. An 
operation that crosses an invalid rightlink detects this and 
restarts itself; all subsequent operations will see a parent that 
fully reflects the child level and will not have to traverse the 
rightlinkanymore. We can therefore safely ignore the invalid 
rightlink and as a consequence do not have to access the 
left sibling at all. Contrast this with B-link trees, where the 
rightlinkchain at the leaf level is also used by range scans and 
a node deletion would therefore have to reset the rightlinks of 
neighboring nodes. 

If we want to maintain a high storage utilization, we have 
to remove nodes as soon as they become empty, so that they 
can be reused for subsequent splits in the tree. Since we do 
not employ lock-coupling when descending the tree, we have 
to deal with the problem of invalid pointers when removing 
nodes. In order to let descending operations detect that they 
followed an invalid pointer and reached a deleted node, we 
introduce a tree-global generation counter, which is a logical 
timestamp similar to an LSN. Each node in the tree stores its 
generation value in its header. On node removal, the global 
counter is incremented and the new value assigned to the 
deleted node, so that removed nodes have chronologically 
increasing generation values. A descending operation can 
now detect an invalid pointer by remembering the value of 
the global generation counter when reading the pointer and 
comparing this value to the one stored in the node header 
when finally visiting the node. A higher counter in the node 
indicates that it must have been removed after the pointer was 
read. In this case, a descending operation has to be restarted 
from the lowest valid ancestor node. The same compensating 
measure is necessary when the operation follows an invalid 
rightlink. This is detected if the generation value of the 
right sibling is higher than the global counter at the time the 

During the entire node deletion process, we only have to 
keep two nodes locked at a time: the node to be deleted and 
its parent node. 

4 Consistency 

A common requirement for concurrent access in database 
systems is degree 3 consistency, or repeatable read (RR) 
[Gray78]. A simple solution employed for B-trees is to keep 
all leaf pages that were read by an index scan locked until the 
end of the transaction. This strategy depends on the linear 
order of the keys and leaves and the fact that index scans 
always visit a contiguous sequence of leaves. 

In R-trees, keys can be inserted on arbitrary leaves and an 
insertion into the key range of a previous scan can succeed 
even though the scan locked all of the leaves it read. If the 
insertion commits, the new key will be visible to a re-scan, 
giving rise to a phantom. An example for a two-dimensional 
key space is shown in figure 6. Boxes 1 and 2 are the 
bounding rectangles of internal nodes, boxes 3 to 6 are the 
bounding rectangles of leaves and the dashed box is the query 
rectangle. If the scan is looking for overlapping keys, only 
leaf 4 qualifies and consequently it is the only leaf that is 
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Figure 6: An example where 2-phase locking of leaves can- 
not guarantee RR. 

visited and locked. The insertion of a new key into leaf 5 
extends its bounding box into the query rectangle, so that a 
re-scan will be able to see the new key, violating degree 3 
consistency. 

One way to avoid the phantom problem is for scans to keep 
every node they traversed locked until the end of the trans- 
action, including internal nodes. This way, even a success- 
ful insertion into a leaf cannot propagate the new key so far 
up the tree that a scan with a conflicting key range can see 
it. The major disadvantages are that by setting locks on in- 
ternal nodes it reduces concurrency more than necessary and 
also introduces deadlocks. A searcher descending the tree 
can now collide with an inserter propagating changes up the 
tree. 

A more effective solution to the phantom problem is to use 
a simplified form of predicate locks [EGLT76], where exclu- 
sive predicates consist of a single key value and shared pred- 
icates consist of a query rectangle and scan operation such 
as inclusion or overlap. A new scan request would check the 
still-active insertions and suspend itself if its query rectangle 
collides with any of the uncommitted new keys. A new in- 
sertion would in turn check the active scans and also suspend 
itself on a collision with a query rectangle. If a scan commits 
and leaves the system, the waiting inserters are rechecked to 
see if some can be activated; the case of an inserter com- 
mitting is handled symmetrically. The advantages of this 
over the former page-locking scheme are that no deadlocks 
are possible and concurrency is not unnecessarily restricted, 
since an insertion can still propagate changes up to the root 
as long as it does not fall in the specified ranges of active 
scans. The disadvantages attributed to general-purpose pred- 
icate locks for tables, exponential runtime and overly pes- 
simistic behaviour, do not apply here. To evaluate a predicate 
we simply check a key value against a query rectangle and a 
lock request is only rejected if there is a guaranteed collision 
with another active lock. Key values and query rectangles 
can be organized into an in-memory spatial data structure to 
speed up checking for lock conflicts. 

The main ideas of the recovery method we present for R- 
link trees are drawn from [MoLe89] and [LoSa92]. Like 
these two papers, we also split an update operation into its 
contents-changing and its structure-modifying part. A con- 
tents change is an insert or delete of a key on a leaf; a struc- 
ture modification can be a node split or deletion, an up- 
date of an index entry on an inner node or the insertion or 
deletion of an index entry on an inner node. By separat- 
ing these two, the semantic effects of an index operation 
are attributed to the initiating transaction whereas the struc- 
ture modification is handled independently of any transac- 
tion. This is necessary so that structure modifications can 
be made visible immediately after their completion and do 
not have to be locked until the initiating transaction commits. 
Like [MoLe89] and [LoSa92], we assume that write-ahead 
logging (WAL) is used for recovery purposes. In addition, 
we also assume that logical undo is supported. This is a ne- 
cessity for the R-link tree, which is explained shortly. 

When changing the contents of a leaf through an insert or 
delete of a single key, we log this operation within the context 
of the executing transaction, obeying the WAL protocol. This 
ensures that these leaf changes can always be undone if the 
transaction aborts and redone if it commits. Structural mod- 
ifications, on the other hand, are treated as separate recover- 
able units (“atomic actions” in [LoSa92] and “nested top ac- 
tions” in [MoLe89]). For example, a node split is an atomic 
action, which is caused by a transaction trying to insert a key 
on a full leaf node. The atomic action is logged and recov- 
ered separately from the surrounding transaction. Also, the 
atomic action is “committed” as soon as it finishes4and not 
rolled back even if the transaction that caused it fails. 

The obvious advantage is that the effects of structure mod- 
ifications can be made visible to other transactions although 
the initiating transation has not committed, without creat- 
ing an abort dependency between the transactions. In other 
words, we do not have to keep the pages involved in a split 
locked until the end of transaction. A prerequisite of this 
strict separation is the ability to support logical undo as op- 
posed to a purely page-oriented undo. As an example, con- 
sider the case where a transaction inserts a key on a page and 
the page is subsequently split, with the new key moved to the 
right sibling. If later on the transaction aborts, the inserted 
key cannot be found on its original leaf and the tree has to be 
traversed, undoing the insert with a delete operation. Logical 
undo is important in R-link trees for another reason, which 
the following example illustrates. When deleting a key, we 
also adjust the ancestors’ bounding rectangles to reflect the 
missing key. Like all structure modifications, these updates 
are committed immediately. When rolling back the delete op- 

4Note that the atomic action’s log records need not be flushed when the 
atomic action finishes. It is sufficient that they be flushed with the log records 
of the next committing transaction, because no previously committed trans- 
action could possibly have seen the effects of the atomic action. 
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eration, it is seldomly sufficient to do a page-oriented undo 
and just re-insert the key on the leaf page. We might also 
have to adjust the bounding rectangles and therefore perform 
a complete insertion operation. 

Like [LoSa92], we break up entire structure modifications 
such as node split or delete propagation into several atomic 
actions that operate on at most two levels of the tree and are 
executed serially. These atomic actions are: 

splitting a leaf node 

changing an existing entry in an individual invocation of 
updateparent 

changing an existing entry and adding a new entry in an 
individual invocation of extendparent (this might include 
a split) 

incrementing the global generation counter by 1 and re- 
moving a node and its entry in the parent (the node is 
marked as “removed’ by assigning it the new generation 
counter value) 

The boundaries of atomic actions are chosen to coincide with 
the visibility boundaries induced by the lockingprotocol. Put 
differently, an atomic action “commits” before it releases the 
locks it holds. Only for node removal does an atomic action 
span more than a single level of the tree. The reason is that we 
might otherwise be left with an invalid pointer after having 
incremented the generation counter and marked the node as 
deleted. If the system crashed before removing the entry 
from the parent, a descending operation would later on not 
be able to detect that the pointer is invalid. 

Since the structural modifications are carried out level by 
level, it is possible that they are interrupted by a system crash, 
possibly leaving behind index entries in inner nodes with 
“wide” bounding rectangles or nodes without a correspond- 
ing parent entry. This does not render the tree inconsistent, 
but it deteriorates the structure because subsequent search 
operations might be misled into unnecessarily following a 
pointer or forced to do rightlink traversals for lack of a par- 
ent entry. We can repair these structural deficiencies on the 
fly. Wide bounding rectangles are implicitly repaired by a 
subsequent insert or delete operation that adjusts bounding 
rectangles along the same path. When an ascending structure 
modification notices that a node on its path, which it reached 
by following a rightlink , does still not have a parent entry, 
it has detected an unfinished split. This has to be explicitly 
repaired by supplying the missing entry to the parent. When 
doing this, one has to be careful about obeying the required 
locking order and possibly release and reacquire some locks 
already held. 

When combining this recovery mechanism with our pro- 
posed predicate locks, a rolling-back transaction is guaran- 
teed never to be involved in a deadlock. This characteris- 
tic stems from a) the deadlock-free locking protocol inside 

the tree and b) the fact that predicate locks can be fully ac- 
quired before the tree operation is started and any node locks 
are acquired. The consequence of the latter is that there 
cannot be a deadlock between a predicate lock and a node 
lock. Because of this freedom from deadlock we can also 
use cheap latches [MoLe89] instead of locks when locking 
the tree nodes for physical consistency. 

6 Performance Measurements 

To asses the performance of R-link trees relative to non-link 
style R-tree concurrency mechanisms, we implemented 
R-link trees as a new access method for the Illustra database 
engine [Illu941 and compared it to the existing R-tree 
implementation. The performance numbers were obtained 
from concurrent client processes accessing a fully-functional 
database system, as opposed to simulation results or calls to 
a stand-alone access method implementation. 

The existing R-tree implementation employs a variation of 
Bayer-Schkolnick-style lock-coupling for concurrent inser- 
tions. An insert operation obtains update locks on all nodes 
from the root to the leaf, holding on to them until the oper- 
ation is finished. An update lock is incompatible with write 
locks and other update locks. This prevents two insert oper- 
ations from getting a lock on the same node, thereby allow- 
ing a lock holder to escalate the update lock to a write lock 
without running the risk of a deadlock. This locking strategy 
allows multiple readers to be active in an index but serializes 
insertions, because the update lock on the root can only be 
help by one transaction at a time. Both R-link and R-trees 
employed the same page splitting strategy, a simplified ver- 
sion of Guttman’s original quadratic split algorithm. We did 
not implement all of the recovery strategy outlined in sec- 
tion 5, because the no-overwrite storage manager [Ston87] 
of the Illustra database server does not undo the changes of 
aborted transactions. Also the deletion algorithm was not im- 
plemented as described in section 3.4, because index reorga- 
nization is performed off-line. 

We investigated the throughput and response time of 
search and insert operations on the index. Analogous 
to [SrCBl], we defined three different workloads: the 
low-contention workload consists of a varying number of 
searchers and a single inserter, the moderate-contention 
workload of inserters only and the high-contention workload 
of an equal number of searchers and inserters. The effect 
of multiple users is obtained by concurrently running client 
processes which continuously send requests to a database 
server. The Illustra database engine has a process-per-user 
architecture, so that every process had its own server. 
Both insert and search operations were executed as SQL 
statements inserting or retrieving a single rectangle. The 
statements were executed within the context of a transaction, 
requiring the writing of a log record. 

Prior to each run at a particular multiprogramming level, 
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the table was preloaded with 30,600 2-dimensional, non- 
overlapping rectangles, each measuring 10x10. Together, the 
rectangles imposed a grid pattern on the area 1700x1800. 
Rectangles inserted during the benchmark measure 8x8 and 
were placed within a randomly chosen rectangle from the 
pre-loaded data set. The intention was to avoid propagating 
bounding box changes up the tree, so that we did not have to 
investigate the effects of locking for consistency. The search 
transactions also returned a singlerandom rectangle from the 
pre-loaded data set. 

stays about constant, the R-tree throughput deteriorates 
considerably after that point. A likely explanation is that 
the process holding the root lock gets descheduled, thereby 
adding to the wait time of all of the blocked processes. The 
system then thrashes trying to find another process to run. 
The same effects can be seen in figure 8, where the response 
time for R-trees increases at a much higher rate than for 
R-link trees. 

The benchmarks were run on a dual-processor SPARCsta- 
tion 10 equipped with three DEC RZ28 disks attached to a 
single controller. Both the table and the index used for the 
benchmark were striped across all 3 disks in a simple round- 
robin fashion. In order to compensate for the relatively small 
data set we limited the number of page buffers to 64. The 
page size was 8K, which resulted in a page capacity of 70 tu- 
ples for the relation, 155 index entries for R-link trees and 
18 1 index entries for R-trees. 

7 Related Work 

So far there has not been much work published on the con- 
currency control problem in R-trees. None of the algorithms 
known to us attempt to adapt the B-link tree strategy to R- 
trees in order to achieve higher concurrency. 

The results we obtained for search transactions were es- 
sentially identical for both R-link and R-trees, under both 
the low-contention and the high-contention workload. This 
is not surprising, considering that neither R-link trees nor 
“Bayer-Schkolnick” R-trees lock out search operations when 
insertions are active in the tree. Also, the high-contention 
workload showed similar results for insert transactions as the 
medium-contention workload, only the numbers were scaled 
back due to the presence of resource-consuming searchers. 
For those reasons and space considerations, we decided to 
omit the results obtained from the low- and high-contention 
workloads altogether and focus on the all-inserters scenario. 

Ng and Kameda [NgKa93] present three algorithms vary- 
ing in complexity and possible concurrency. The simplest 
of the three algorithms locks the entire tree so that an inser- 
tion would exclude all searchers. The second algorithm post- 
pones page splits by adding buffer space to each node to ac- 
commodate overflows. When overflows or underflows take 
place, a separate maintenance process exclusively locks the 
entire tree and reorganizes it, splitting and merging several 
nodes in the same run. Because an insertion never performs 
a split itself, there is no need for concurrent search processes 
to do lock-coupling. The highest-concurrency algorithm is 
modeled after one presented in [BaSc77] for B-trees. Read- 
ers do top-down lock-coupling when descending the tree in 
order to avoid having to deal with splitting pages. Insertions 
lock the entire subtree that needs modification on their way 
to the leaf. 

The effects of the different locking strategies on through- [Moha89, MoLe89] and [LoSa92] discuss recoverable ac- 
put and response time can be seen in figure 7 and 8, cess structures in a write-ahead logging environment; the for- 
respectively. Both R-link and R-trees reach their maxi- mer paper also present a solution for guaranteeing degree 3 
mum throughput with three concurrent insertion processes. consistency with row-level locking. 
Whereas the R-link tree throughput is generally higher and ARIES/KVL and ARIESJIM both use a conventional, 
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non-link tree structure, yet they are able to propagate splits 
bottom-up without locking subtrees and to let top-down 
traversing processes recover from them. Instead of fol- 
lowing rightlinks, pages that are involved in a split are 
marked so that a search that runs into an ongoing split is 
able to notice it and retraverse the tree starting from the 
lowest unmodified parent node. Unlike in a B-link tree, a 
partially executed structure modification may leave parts of 
the tree temporarily invisible. Taking into account that some 
operations might require logical undo, which in turn requires 
tree traversal, it is necessary to serialize complete splits, 
including propagation, so that no two splits can take place at 
the same time. Moreover, there are situations in which insert 
or delete requests also have to be serialized with structure 
modifications. The tree must be consistent whenever logical 
undo could be necessary; this is achieved by waiting for 
ongoing structure modifications to finish. To avoid the 
phantom problem when doing record-level locking, a scan 
also sets a shared lock on the next-highest key past its scan 
range. Again, this is not applicable in R-trees because the 
notion of a next-highest key does not exist. 

The H-tree presented in [LoSa90] is a generalization of 
a B-link tree where nodes can have multiple parents, which 
turns the tree structure into a DAG. The nodes of a II-tree par- 
tition the key space, thus making it possible for descending 
operations to detect splits solely by key comparisons. Node 
consolidation requires lock-coupling during descent to avoid 
invalid pointers. As a consequence, lock-coupling cannot be 
employed during ascent without risking deadlocks. As men- 
tioned in section 5, the II-tree solution for recovery forms the 
basis of recovery in the R-link tree. The two approaches dif- 
fer in how unfinished splits are detected and repaired. A de- 
scending operation in a H-tree takes a rightlink traversal as 
an indication of a possibly unfinished split and then checks 
the parent for the entry suspected missing. In an R-link tree, 
an unfinished split is unambiguously detected during ascent. 

8 Summary 

In this paper, we have presented R-link trees, an extension on 
R-trees designed to support high concurrency. R-link trees 
look and work very similar to B-link trees, with each opera- 
tion holding only a few locks at one time and handling unex- 
pected splits by moving across link pointers to sibling nodes 
on the same level. The key differences in the design of B- 
link trees and R-link trees are a result of the fact that spatial 
keys cannot be ordered linearly. Where B-link trees rely on 
the actual keys involved in the search to resolve unexpected 
splits, R-link trees have to use a system of sequence numbers 
assigned to each node. The degree of concurrency obtainable 
with R-link trees should be as good as the best B-tree algo- 
rithm, the B-link tree. Descending an R-link tree to a leaf 
requires no lock-coupling; consequently, only a single node 
needs to be locked at any time. To cope with invalid point- 

ers resulting from node deletions, we keep track of when a 
node was deleted by assigning it a generation number. This 
allows US to do online node deletion without employing lock- 
coupling during tree descent. An insert or delete process as- 
cending the tree only needs to hold a maximum of two nodes 
locked, allowing many updates of the index to take place con- 
currently. For this to be possible, it is crucial that the recov- 
ery strategy support logical undo. A comparison with a lock- 
coupling concurrency mechanism for R-trees shows that R- 
link trees are capable of sustaining high throughput and low 
response times as the load increases. 

An area for further research is the problem of enforcing de- 
gree 3 consistency of index scans. We outlined an inexpen- 
sive variant of predicate locking that we intend to investigate 
in more detail. The question remains whether popular tech- 
niques for B-trees such as key-range locking can be made to 
work for spatial data structures such as R-trees. 
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