
Value-cognizant Speculative Concurrency Control

AZER BESTAVROS SPYRIDON BRAOUDAKIS
Computer Science Department Computer Science Department
Boston University, MA 02215 Boston University, MA 02215

bestGcs.bu.edu sbks.bu.edu

Abstract

We describe SCC-kS, a Speculative Concurrency
Control (SCC) algorithm that allows a DBMS to
use efficiently the extra computing resources avail-
able in the system to increase the likelihood of
timely commitment of transactions. Using SCC-kS,
up to k shadow transactions execute speculatively
in behalf of a given uncommitted transaction so
as to protect against the hazards of blockages and
resterts. SCC-kS allows the system to scale the
level of speculation that each transaction is allowed
to perform, thus providing a straightforward mech-
anism of trading resources for timeliness. Also, we
describe SCC-DC, a value-cognizant SCC protocol
that utilizes deadline and criticalness information
to improve timeliness through the controlled defer-
ment of transaction commitments. We present sim-
ulation results that quantify the performance gains
of our protocols compared to other widely used con-
currency control protocols for real-time databases.

1 Introduction

For DataBase Management Systems (DBMS) with
limited resources, performance studies of concur-
rency control methods (e.g. [ACL87]) have concluded
that Pessimistic Concurrency Control (PCC) protocols
[EGLT76, GLPT76] perform better than Optimistic
Concurrency Control (OCC) techniques [BCFF87,
KR81]. The main reason for this good performance is
that PCC’s blocking-based conflict resolution policies re-
sult in resource conservation. While abundant resources
are usually not to be expected in conventional DBMS,
they are more common in Real-Time DataBase Systems

Permission fo copy wifhouf fee all or parf of fhis naferial ia
granted by the VLDB Endowmenf for purposes other fhan direct
commercial advantage. To copy otherwise, or to republish, re-
quires a fee and/or special permission from the Endowment.

Broc. of the 21d’ VLDB Conference, Zurich, Swizerland, 1995

(RTDBS), h* h w IC are designed to cope with rare high-
load conditions, rather than normal average-load condi-
tions. RTDBS are engineered not to guarantee a par-
ticular throughput, but to ensure that in the rare event
of a highly-loaded system, transactions complete before
their set deadlines [BMHD89]. These design goals often
lead to a computing environment with far more resources
than what would be necessary to sustain average loads,
thus vanishing the advantage of PCC over OCC algo-
rithms. In particular, OCC algorithms become attrac-
tive since computing resources wasted due to restarts do
not adversely affect performance [HCLSOb, HCL90alj.

Real-time concurrency control schemes considered in
the literature could be viewed as extensions of either
PCC-based or OCC-based protocols, whereby transac-
tions are assigned priorities that reflect the urgency
of their timing constraints. These priorities are used
with PCC-based techniques [AGM88, ACL87, SZ88,
HSTR89, Sin88, SRL88, SRSCSl] to make it possible for
urgent transactions to abort conflicting, less urgent ones
(thus avoiding the hazards of blockages); and are used
with OCC-based techniques [KorSO, HCLSOb, HCLl)Oa,
HSRT91, KS91, LS90, SPL92] to favor urgent transac-
tions when conflicting, less urgent ones attempt to vali-
date and commit (thus avoiding the hazards of restarts).

In a recent study [Bes92], we proposed an approach
to concurrency control that combines the advantages of
both OCC and PCC protocols while avoiding their dis-
advantages. Our approach relies on the use of redun-
dant computations to start on alternative schedules, as
soon as conflicts that threaten the consistency of the
database are detected. These alternative schedules are
adopted only if the suspected inconsistencies material-
ize; otherwise, they are abandoned. Due to its nature,
this approach has been termed Speculative Concurrency
Control (SCC). SCC protocols are particularly suitable
for RTDBS because they reduce the negative impact
of blockages and rollbacks, which are characteristics of
PCC and OCC techniques. In our previous SCC stud-
ies, we did not make any use of transaction deadline
or criticalness information. Nevertheless, our perfor-
mance studies [BB94] demonstrated the superiority of

122

SCC-based protocols to real-time OCC-based and PCC-
based protocols, which use such information.

In this paper, we argue that SCC protocols provide for
a very natural (and elegant) way of incorporating trans-
action deadline and criticalness information into concur-
rency control for RTDBS. They introduce a new dimen-
sion (namely redundancy) that can be used for that pur-
pose: By allowing a transaction to use more (redundant)
resources, it can achieve better speculation and hence im-
prove its chances for a timely commitment. Thus, the
problem of incorporating transaction deadline and crit-
icalness information into concurrency control is reduced
to the problem of rationing system resources amongst
competing transactions, each with a different payoff to
the overall system. In section 2, we introduce the ba-
sic idea behind speculation. Next, the SCC-kS protocol,
a practical speculative technique that operates under a
limited speculation (resources) assumption, is presented.
In section 3, we present the SCC-DC protocol, which ex-
tends SCC-kS to allow the use of deadline and critical-
ness information to improve timeliness. Also, SCC-VW,
a simplified, efficient version of the SCC-DC protocol is
presented. In section 4, we present simulation results
that show the improvements achievable by SCC-based
algorithms over other widely used protocols.

2 Speculative Concurrency Control

A major disadvantage of basic OCC [KR81] when used in
RTDBS is that transaction conflicts are not detected un-
til the validation phase, at which time it may be too late
to restart. The Broadcast Commit (OCC-BC) variant
of classical OCC [MN82, Rob821 attempts to solve this
problem by a notification process, whereby a committing
transaction notifies all concurrently running, conflicting
transactions about its commitment. All such conflicting
transactions are immediately restarted. OCC-BC de-
tects conflicts earlier than the basic OCC algorithm re-
sulting in less wasted resources and earlier restarts. The
SCC approach proposed in [Bes92] goes one step further
in utilizing information about conflicts. Instead of wait-
ing for a potential consistency threat to materialize and
then taking a corrective measure, an SCC algorithm uses
additional (redundant) resources to start on speculative
corrective measures as soon as the conflict in question
develops. By starting on such measures as early as POE+

sible, the likelihood of meeting set timing constraints is
greatly enhanced.

To elucidate this point, consider two transactions Tr
and T2, which (among others) perform some conflicting
actions. In particular, Ts reads item z after Ti has up-
dated it. Adopting a SCC algorithm allows Tz to have
two shadows to account for the conflict with Tl, whereby
one of these is committed depending on the time needed
for transaction Tz to reach its validation phase. In figure
2, T2 reaches its validation phase before Tr, resulting in

the validation and commitment of Tz without any need
to disturb Ti. Obviously, once T2 commits, the shadow
transaction Ti has to be aborted. In figure 3, Ti reaches
its validation phase before TzO With OCC-BC, Tz is
restarted when TI validates and commits as illustrated
in figure 1. The SC@ protocol instead of restarting Tz,
simply aborts Tz and adopts its shadow transaction T!,
thus improving the chances of meeting TZ’S deadline.

a,

Figure 1: OCC-BC: Illustrative scenario

.
T, G .:.:.:.: 1 8 $;:~~y$g::~: . . . wr ~~:‘~

. [..:.:.:.:.:.:.:;.:.:.:.:~.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~.:.:.:.:~.:~~~.:.:.:.:.:.:~~.:.:.:.:.:.:.:~.:.:.:.:.:.~-....

_

T*

s ~~~~~~~~~ R1 z&gsg “,=

-5.. .A.............. -.- i. v

T,’
‘~’

Figure 2: SCC: Illustrative scenario #I

Figure 3: SCC: Illustrative scenario #2

The above notion of “speculation’ could be general-
ized, whereby we associate with each transaction T, as
many shadows as there are Speculated Bdeders ~+f Seaial-
ization (SOS). This leads to what we have termed the
Order-Based SCC (SCC-OB). A SCC-OB algorithm re-
quires a large amount of redundancy. If transaction T,
is one of n pairwise conflicting transactions, then SCC-
OB may require Tr to fork an exponential number of
shadows [Bra94], namely: Cy=‘=, w = 0 ((n - l)!).

The SCC-OB algorithm can be optimized so as to
reduce significantly the number of shadows that may
be required per transaction. In particular, if we allow
a shadow to account for multiple serialization orders
(i.e. the relationship between shadows and SOS is on-to-
many), then it can be shown that only a linear number
of shadows is sufficient to yield all the power of SCC-OR.
Such an optimized algorithm, called Conflict-Based SCC
(SCC-CB), is detailed in [Bra94]. At any point in time,
SCC-CB needs no more than n shadows per transaction,
and over the course of a transaction execution, no more
than Cy=‘=,(n - i), or 9 shadows are created.

123

2.X ‘Ehe K-Shadow SCC (SCC-kS) Algorithm

SCC-kS is a class of SCC algorithms that operate under
a limited resources assumption, allowing no more than k
shadows to execute on behalf of any given uncommitted
transaction in the system. A shadow can be in one of
two modes: optimistic or speculative. Each transaction
T, has, at any point in its execution, exactly one opti-
mistic shadow T,“. In addition, T, may have i speculative
shadowsa;‘,fori=Q ,..., k-l.

For a transaction T,, the optimistic shadow T,” exe-
cutes with the optimistic assumption that it will com-
mit before all the other uncommitted transactions in the
system with which it conflicts. T,” records any conflicts
found during its execution, and proceeds uninterrupted
until one of these conflicts materializes (due to the com-
mitment of a competing transaction), in which case T,”
is aborted - or else until its validation phase is reached,
in which case TF is committed.

Each speculative shadow T,” executes with the as-
sumption that it will finish before any conflicts with
other uncommitted transactions materialize, except for
one conflict which is speculated to materialize before the
commitment of T,.. Thus, T,f remains blocked on a
shared object (say X), on which this conflict has de-
veloped, waiting to read the value that the conflicting
transaction, T,, will assign to X when it commits. If
this speculated assumption becomes true, (i.e. T, com-
mits before T, enters its validation phase), T,” will be un-
blocked and promoted to become Tr’s optimistic shadow,
replacing the old optimistic shadow which will have to
be aborted, since it followed a wrong SOS.

The value of k (the upper limit on the number of
shadows allowed per transaction) does not have to be the
same for all transactions. Foe a particular transaction, k
reflects the amount of speculation that this transaction
is allowed to perform (and thus the amount of resources
it is allowed to consume). Thus, k is set to a value that
reflects the transaction’s urgency (how tight is the dead-
line) and criticalness. The value of k may change within
the course of a transaction execution to reflect changes
in the relative importance of that transaction compared
to all other transactions in the system. For simplicity of
presentation, and without loss of generality, we assume
that k is constant and identical for all transactions.

Let ? = E,Tz,%,..., T,,, be the set of uncommit-
ted transactions in the system. Let ‘To, and 7’ be
the sets of optimistic, and speculative shadows exe-
cuting on behalf of the transactions in the set I, re-
spectively. We use the notation Trs to denote the set
of speculative shadows executing on behalf of transac-
tion T,, and SpecNumber(T,) to denote the number of
these shadows. With each shadow c of a transaction
T, - whether optimistic, or speculative - we maintain
two sets: ReadSet and WriteSet(ReadSet
records pairs (X, tr), where X is an object read by G,

and t, represents the order in which this operation was
performed. We use the notation: (X,-) E ReadSet
to mean that shadow ;r;i read object X, WriteSet
contains a list of all objects X written by shadow e0

For each speculative shadow e, we maintain a set
WaitFor(which contains pairs of the form (Te, X)9
where T, is an uncommitted transaction and X is an
object of the shared database. (TU,X) E WaitFor(a;i)
implies that e must wait for T, before being allowed
to read object X. We use (T,,-) E WaitFor to
denote the existence of at least one tuple (TU, X) in
WaitFor(for some object X. The SCC-kS algorithm
is described by the following set of five rules.

Start Rule: When a transaction T, is started, an op-
timistic shadow T,” is created and the SpecNumber(T,),
ReadSet(and WriteSet(T,O) are initialized.

Read Rule: When a read-after-write conflict is de-
tected, if the maximum number of speculative shadows
for the transaction, T,, is not exhausted, a new spec-
ulative shadow T,” is started (by forking it off T:) to
account for this new conflict. Otherwise, this conflict is
ignored. The Commit Rule below insures that corrective
measures are taken, should this conflict materialize.

Write Rule: When a write-after-read conflict is de-
tected, speculative shadows cannot be forked off, as be-
fore, from the reader transaction’s optimistic shadow.
This is because the conflict is detected on another trans-
action’s write operation. Therefore, since its optimistic
shadow already read that database object, we must ei-
ther create a new copy of the reader transaction or choose
another point during its execution from which we can
fork. Figure 4 illustrates this point. When the new con-
flict (T2, X) is detected, the speculative shadow TF is
forked off Tt to accommodate it. Notice that if a copy
of Tl was instead created, all the operations before h$
(reading the database object Y) would have had to be
repeated. Tt is not an appropriate shadow to fork off
because, like the optimistic shadow, it already read X.

Figure 4: Tf is forked off Tt *

When a new conflict implicates transactions that al-
ready conflict with each other, some adjustments may
be necessary. In figure 5, the speculative shadow Tf of
transaction Tr , accounting for the conflict (Tz, Z), must
be aborted as soon as the new conflict, (Tz,X), involv-
ing the same two transactions is detected. Since Tl read

124

object X before object Z, (Tz, X) is the first conflict be-
tween those two transactions. Therefore, the speculative
shadow accounting for the possibility that transaction TZ
will commit before transaction TI must block before the
read operation on X is performed. Speculative shadow
TF is forked off Tl for that purpose.

Figure 5: Example of multiply conflicting transactions.

The limit of at most Ic - I speculative shadows per
transaction does not preclude a transaction T, from de-
veloping more than k - 1 conflicts at any point dur-
ing its lifetime. Rather, this limit is on the number
of conflicts that SCC-kS will be ready to deal with in
a timely manner. Choosing Which conflicts should be
accounted for by speculative shadows is an interesting
problem. In [BB94] we have adopted a Latest-Blocked-
First-Out (LBFO) h d s a ow replacement policy that re-
quires the speculative shadows of SCC-kS to account for
the first 1 2 k: - 1 conflicts (whether read-after-write or
write-after-read) encountered by a transaction. LBFO is
one of several policies that could be adopted. In [Bra941
some alternative policies that account for the most prob-
able serialization orders based on deadline and priority
information are described and evaluated.

Blocking Rule: This rule is used to control when a
speculative shadow rr;r’ must be blocked. This rule as-
sures that c is blocked the first time it wishes to read
an object X in conflict with any transaction that 5$ must
wait for according to its SOS.

Commit Rule: This rule is used when it is decided to
commit an optimistic shadow T,” on behalf of a trans-
action Tr. First, all shadows in 7,’ are aborted. Next,
each transaction T, that conflicts with T, is considered.
Two cases exists: either there is a speculative shadow,
T’,, waiting for T,‘s commitment, or not. The first case
is illustrated in figure 6, where Tf-having anticipated
the correct SOS-is promoted to become the new opti-
mistic shadow of Tl , replacing the old optimistic shadow
which had to be aborted. Speculative shadow Tf-which
like the optimistic shadow made an incorrect SOS-is
aborted as well. The second case is illustrated in figure
7, where the commitment of Tj’ on behalf of transaction
Tz was not accounted for by any speculative shadow of

T1.l In this case, the shadow with the latest possible
blocking point (before the (Tz, 2’) conflict) is chosen to
become the new optimistic shadow of transaction Tl.
This is the best we can do in the absence of a specula-
tive shadow accounting for the (Tzs 2) conflict.

Figure 6: Applying the Commit Rule (case 1).

nm
Figure 7: Applying the Commit Rule (case 2).

2.2 Two-Shadow SCC (SCC-2s)

SCC-PS allows a maximum of two shadows per amcom-
mitted transaction to exist at any point in time: an opti-
mistic shadow and a pessimistic shadow. The optimistic
shadow runs under the assumption that it will be the
first (among all other conflicting transactions) to com-
mit, thus executing without incurring any blocking&-
lays. The pessimistic shadow, on the contrary, is subject
to blocking and restarts. It is kept ready to replace the
optimistic shadow, should such a replacement be neces-
sary. The pessimistic shadow runs under the assumptz
that it will be the last (among all other conflicting trans-
actions) to commit.

SCC-2s resembles OCC-BC in that optimistic shad-
ows of transactions continue to execute either until they
validate and commit or until they are aborted (by a val-
idating transaction). The difference, however, is that
SCC-2s keeps a backup shadow for each executing trans-
action to be used if that transaction must abort. The
pessimistic shadow is basically a replica of the opti-
mistic shadow, except that it is blocked at the earliest
point where a Read-Write conflict is detected between
the transaction it represents and any other uncommit-
ted transaction in the system.

lFigure 7 makes the implicit assumption that transaction 2’1 is
limited to having at most two speculative shadows at any point
during its execution.

125

3 Value Cognizant SCC

SCC-kS incorporates deadline and criticalness informa-
tion into SCC by relating the relative worth of transac-
tions to the amount of speculation (and thus resources)
they are allotted. Nevertheless, SCC-kS is not value-
cognizanl because it does not make use of deadline and
priority information in resolving data conflicts, or in
making other scheduling decisions.

Previous concurrency control studies considered RT-
DBSs where all transactions are of equal worth. The ma
jor performance objectives were to minimize the number
of missed firm deadlines or to minimize tardiness--the
time by which late transactions miss their soft deadlines.
Under this approach all system transactions are assigned
the same value. However, there exist real-time applica-
tions where different transactions may be assigned differ-
ent values [SZSS, HSTR89] to reflect their relative worth
to the system upon successful completion. For such sys-
tems the attention shifts to maximizing the v&e-added
to the system by the transactions’ commitment; mini-
mizing tardiness or the number of missed deadlines be-
comes of secondary importance. Notice that a transac-
tion’s value and its deadline are two orthogonal proper-
ties [BSRSS, HSTR89]. The fact that a transaction has
a tight deadline does not in any way imply that it has a

high value, nor does the fact that it has a loose deadline
imply that it has a low value. Transactions with simi-
lar values may have different deadlines, while those with
similar deadlines may have different values.

3.1 Transaction Value

The relationship between a transaction’s value and the
value-added to the system can be captured by the no-
tion of value functions introduced by Jensen, Locke, and
Tokuda [JLT85, Loc86]. Each transaction T, is associ-
ated with a value function V”(t), which represents the
value of T, as a function of its completion (commit)
time. A real-time application cashes on the full value
of a transaction if it is committed on time. Otherwise,
a penalty is assessed. We define the penalty gradient, to
be the rate at which a transaction loses its value when
it commits past its deadline.

Definition 1 The penalty gradient of a transaction T,
with a value function of V,(t) and a deadline D, is:

$K(t), fort > D,.

The penalty gradient is an important factor in RT-
DBS performance studies because it indicates how soft
deadlines are relative to each other. In this paper, we
consider the case where the penalty gradients of trans-
actions follow the formula: Penalty Gradient of T, =
tan ffU, for t > D,. The penalty gradient of T, may
vary from infinity for a very critical transaction (a, =

x/2), to zerO for a non-critical transaction ((1~~ = 0).
Figure 8 depicts a typical value function. Transaction
T, has an arrival time of A, and a soft deadline of D,.
If T, completes its execution before its set deadline D,
its value-added to the system is v,, On the other hand,
if T,, misses its deadline the value-added to the system

diminishes according to its penalty gradient tan blyU I

I % D u \ z%m?

Figure 8: A typical value function for a transaction TU

Definition 2 The value function k;(t) of transaction
T, with arrival time A,, and soft deadline DU is:

ifAu <tlD,
v, - [(t - DU) tan a,,,] ijfs > D,

where v, is the value-added to system if T, completes its
execution before its set deadline D,, and tancar, is its
penalty gradient.

3.2 SCC with Deferred Commit (SCC-DC)

Committing a transaction as soon as it validates may
result in a value loss to the system. In figure 9, commit-
ting TI as soon as it is validated causes T2 to miss its
deadline and a value penalty to be assessed to the sy5
tern. In [HCLSOb], Haritsa showed that by delaying the
commitment of a lower priority transaction, the num-
ber of transactions meeting their deadlines is increased.
SCC-based protocols can benefit from the introduction
of such delays by giving optimistic shadows more time
to execute and commit instead of being aborted in favor
of other validating transactions of lesser worth. Figure
10 shows the increased value-added to the system that
results from delaying the commitment of TI) thus allow-
ing Tt to commit before its deadline and contribute a
higher value to the system.

Our approach for introducing delays is similar to those
proposed in [AAJ92, HCLSOa, SPL92]. Whenever a
shadow Tz finishes its execution, we evaluate if it ix
advantageous to defer Ti’s commitment. Finding the
best point in time to commit a finished shadow T,” is
a very hard optimization problem, since it requires the
consideration of all possible serialization orders of ac-
tive transactions. To avoid the exponential nature of
this problem, we propose a protocol, SCC with Deferred
Commit (SCC-DC), which estimates the value-added to
the system at discrete points in time (e.g. periodically).
SCC-DC compares the estimated value-added to the sys-
tem if the finished shadow T,” is committed at time t, to

126

Figure 9: Value-added to the system without deferment

Figure 10: Value-added to the system with deferment.

the estimated value-added to the system if T,” is com-
mitted at time t + 6, where 6 is some constant delay.
Because of its discrete nature, this algorithm does not
always provide us with the best point in time to com-
mit a shadow. This optimal point in time may well lie
anywhere inside those time intervals.

Basic Definitions and Assumptions

Each transaction in the system TU has an arrival time A,
and a deadline 0,. We classify transactions according
to their run-time characteristics. We denote with C,
the class of transaction T,. We assume that for each
such class the profile of the execution time-how long
it takes to finish a transaction of that class-is known.
Such a profile (figure 11) can be obtained from collected
statistics of the previous history of the system.

Definition 3 The finish probability density function
F,,(x) denotes the probability that the execution time for
a transaction in class C,, will not exceed x. We use EC,
to denote the expected execution time for class CU.

F$x:

1

Y

-

.-.-.._____.....____---......--.-----.-------..-.........-.-------..-......----- c---

x - dime

Figure If: Typical finish probability density for C,

3.3 Transaction Committment Protocol

We assume that a special clock exists to signal the points
in time, when transactions may be committed. At each
tick, we decide for each transaction shadow Tl that fin-
ished its execution whether to proceed and commit Tz,
or defer its commitment for an additional clock tick 6. If
the clock ticks at time t and T,” is a transaction shadow
which has finished its execution, then:

o If T,” does not conflict with any other uncommitted
transaction, then we commit it on behalf of TU.

l Otherwise, if T, conflicts with uncommitted trans-
actions Tl, . . . , T,, then we compute the expected
value-added, V,,,, , should we commit T,” at the
current clock tick t, and the expected value-added,
Vlater, should we defer Tz9s commitment to a later
clock tick t + t6, for h E p. If Vn,, 2 Kofer then
we commit Tl, otherwise we defer it.

Since more than one shadow may exist on behalf of
an uncommitted transaction, the computation of the ex-
pected value-added to the system by that transaction
depends on which shadow is committing and at what
time. We define two measures, the shadow finish proba-
bility and the shadow adoption probability, which we use
to assist in these computations.

Definition 4 The shadow finish probability function
F:(x) of shadow rr”, denotes the probability oj rr”, fin-
ishing its execution by time x.

F:(x) = Prob[e will finish by time x].

Assuming that shadow pi has already executed for r
time units, then using the probability density function
F”(x), the finish probability can be computed at time
t now by applying Baye’s Theorem as follows:

F;(x) =
Prob[c will finish before x and after r]

Prob[Ti will finish after r]

= Fu(x) - Fu CT))

1 - F,(T)

for x > 7
- *

In our model we favor transactions that have a high
value-added to the system by using the transaction value
functions in resolving data conflicts and making other
scheduling decisions. This implies that a transaction
shadow created to account for a conflict with a higher

127

valued transaction is more likely to be adopted in the
future than a shadow which is created to account for a
conflict with a lesser valued transaction

Definition 5 The shadow adoption probability function
P:(t) of shadow Pi of transaction TU denotes, at time
t, the probability that shadow Ti, will be adopted in the
future-i.e. the probability that the con/h% that called
for the creation of ?$ will materialize.

The shadow adoption probability functions capture the
relative importance of the shadows of a transaction as a
function of time. At time t, for a transaction T,,, they
are computed as follows:

a. If T, has no speculative shadows then P:(t) = 1.

b. If T, conflicts with T,, ,Tr,, . . . , Tr,,, then:

P,(t) = K(t) K(t) + Cj”=l Ki(t)P,Oi(t)

where Pi is the shadow of T, that accounts for the con-
flict between T, and Ti.

Description of the SCC-DC Algorithm

We add to the SCC-kS protocol an additional rule which
controls the commitment of transactions. The Termina-
tion Rule is invoked periodically by the system with a
period of S time units.

Let the Termination Rule be invoked at time t. For
each transaction shadow T,” that has finished its execu-
tion there are two cases to be examined. If T, does not

-conflict with any other uncommitted transaction, then
T,” is committed on behalf of transaction T,. Otherwise,
if T, conflicts with transactions Tl, T2, . . . , T,, then
Vno, (the expected value-added to the system should T,
be committed at time t) is compared to &ter (the ex-
pected value-added to the system should T, be commit-
ted at a later time t + h6, for k E w). If Vn,, > Koter
then T,” is committed on behalf of T,, otherwise its com-
mitment is deferred. We use two functions to compute
V now and tinier: the Expected Finish probability and the
Expected Value-added.

Definition 6 The Expected Finish probability function,
EF,(x), of transaction T, at time t, is defined as the
probability that some shadow of T, will be able to fin-
ish its execution by time x. EF,(x) is computed as the
summation below over all j shadows of T,.

EF,(z) = c F&)&t)

j ’

Definition 7 We denote by EV,(z) the Expected Value-
added to the system if transaction T, commits at time X.

E%,(x) = Vu(x)EF&)

V notu is the expected value-added from the commit-
ment of shadow T,” at time t plus the expected value
added from the commitment of TI, Tz, ~ . . , and Tm at
a later time t + k6, for k = 1 to infinity. Vtoter is the
expected value added from the commitment of TU) Tl p
T2, a..) and T, at some later time t + k6, for k = 1 to
infinity.

m 00
V now = VU(t) + Ty, EVj(t + k6)

i=lk=l

hater = ~EVU(t+k@+~~EVi(t+k~)
k=l i=l kc1

The infinite summations above can be bounded by
observing that for each transaction Ti there exist a time
t + kS, for some k = li, where the expected finish prob-
ability of Ti, EFi(li6) = 1 - c, where E is an arbitrarily
small number. We, therefore, bound these summations
with appropriate k = li values, introducing arbitrarily
small errors. We are now ready to augment SCC-kS with
a Termination Rule to be invoked periodically, every 6
units of time.

Termination Rule: For each shadow T,” that finished
executing:

o If T, conflicts with no other uncommitted transac-
tions, then invoke the Commit Rule to commit Ti.

o If T, conflicts with Tt, T2, . . . , T,, then:

V now = V.(t)+FkEVi(t+kJ)
i=l k=l

V later = LEV,(t+k6)+j=;tEVi(t+k5)
k=l i=l k=l

0 If Ko, >_ I&ter then invoke the Commit Rule for T,.

Two modifications to the rules of the SCC-kS algo-
rithm are necessary. The first affects the Commit Rule.
Under SCC-DC, transactions do not commit as soon as
they finish execution. Rather, they wait (at least) until
the next periodical invocation of the Termination Ikule.
Thus, the Commit Rule is invoked only when the Ter-
mination Rule decides to commit a shadow. The second
modification affects the Read and Write Rules. Under
SCC-DC, an optimistic shadow, T,O, can finish execut-
ing, yet its commitment may be deferred. While T,” is
awaiting commitment, a conflict may develop with an-
other shadow T,“. If T,“, also, finishes its execution, then
it is possible under SCC-DC (depending on their rela-
tive worth), that Ti be committed, thus resulting in the
abortion of the finished T,” shadow. To accomodate for
this possibility, the Read Rule (write Rule) is extended,
so as to be invoked when an optimistic shadow T,” wishes
to read (write) an object X, which is written (read) by
another shadow T,“, whether T,” is currently executing or
has already finished its execution and is awaiting com-
mitment .

128

3.4 SCC with Voted Waiting (SCC-VW)

XC-DC requires a substantial computing overhead to
determine whether or not to defer a transaction’s com-
mitment . SCC with Voted Waiting (SCC-VW) is an
approximation heuristic that reduces that overhead of
SCC-DC significantly. The main idea of the VW mech-
anism is to allow uncommitted transactions to vote for
or against the commitment of a finished transaction (say
Ti) based on the expected value-added to the system as
a result of such a commitment. The votes are weighed
based on the relative values of the participating transac-
tions. The resulting measure is called the commit indi-
cator, CI,, for T,“. If CI, > o (in this paper (Y = 0.5)
then T,” is committed, otherwise it waits.

Two measures are used in the computation of the
commit indicator for a finished transaction shadow: the
commit vote, cvy, of a transaction Ti regarding the com-
mitment of a finished conflicting transaction shadow T,O,
and the relative weight function, wi(t), of Ti at time t.

Definition 8 We define the commit vote, CV~, of an ex-
ecuting transaction Ti with respect to a finished conjlict-
ing transaction shadow T,” to be:

cvi -
1 if Ti votes to commit T,”

u-
1 0 if Ti votes not to commit T,”

Definition 9 The weight function, wi(t), of a transac-
tion Ti E T”, is a function of time given by the formula:

Wi(t) = vi@)
c TkC7U wt> ’

where T” is the set of transactions that conflict with T,O,
and Vk(t) is the value function of Tk.

Definition 10 The commit indicator, CI,, for a
shadow T,” at time t, is the weighed summation of the
commit votes of all conflicting transactions Ti E I”.

Cl”(t) = C Wi(t) X CVL.

TiE7” 4 Performance Evaluation
Description of the SCC-VW Algorithm

Let Ty be the shadow of Ti that accounts for the conflict
with T, and Eci be the average execution time of a
transaction from class Ci. Assuming that T” has already
executed for rj’ time units, the expected value-added to
the system if Ti votes to commit T,” at the current time
t is given by the addition of the expected value-added
from the commitment of Tl at time t plus the expected
value-added from the commitment of the Ti” shadow of
Ti at time t + (EC, - or).

V - Vi(t) + lqt + ECi - Ti”) noul -

For the computation of the expected value-added to
the system if TU’s commitment is to be delayed, we dis-
tinguish between two cases.

The first case occurs if T, has no read-after-write
conflict with Ti. In this case, the finished (optimistic)
shadow of TU can be committed as soon as the opti-
mistic shadow of Ti completes its execution. This event
is estimated to happen at time t + EC; - 7;. Assum-
ing that, at time t, Tie has already executed for 7: time
units, we get:

her = vi(t + ECi - Ti”) + qt -e ECi - Ti”),

The second case occurs if there exists a speculative
shadow ;r” of T, accounting for a read-after-write con-
flict with Ti. In this case, the commitment of T“ at
time t + Eci - 7-i” will result in the abortion of T,” and
its replacement by Fi. Assuming that I”, has already
executed for ri time units, we get:

Qater = K(t + EC; - I”) + V”(t + Eci - I” + EC- - T;)

Termination Rule: When an optimistic shadow T,” fin-
ishes its execution, evaluate whether it is advantageous,
to delay Ti’s commitment.

o If T, conflicts with no other uncommitted transac-
tions, then invoke the Commit Rule to commit T,“.

o If T,” conflicts with the set 7“) then:
1. For every transaction Ti E irU

a. Compute V,,, and Vlater, and
b. Determine the commit vote, cvi, of Ti:

cvi -
{

1 if how 2 Koter
u- 0 otherwise

2. Compute the commit indicator for T,“.

CIu(t) = C Wi(t) X CV~

TiEl’

3. If Cl,(t) 5 (Y, then delay Ti’s commitment,
otherwise invoke the Commit Rule on T,“.

In this section, we present a comparative evaluation of
the following protocols: 2PL with Priority Abort (2PL-
PA) [AGM88] as a representative of PCC-based proto
cols, OCC-BC [HCLSOb] and WAIT-50 [HCLgOa] as rep-
resentatives of OCC-based protocols, and SCC-2S and
SCC-VW as representatives of SCC-based protocols.

The RTDBS model that we used in our experiments
consists of a multiprocessor DBMS operating on disk res-
ident data. We assume an environment with abundant
resources. 2 We consider that the time spent on per-
forming concurrency control tasks is negligible and that
dedicated processors are assigned for these tasks. The
system model consists of five main modules as depicted

2This assumption allows us to phase out resource contention
and measure the most concurrency achievable by each algorithm.

129

in Figure 12. Transactions which are ready to execute
are maintained in a Transaction Pool. The Transac-
tion Manager (TM) is responsible for making resource
and concurrency control requests (e.g. read page, write
page, request cpu, , . . etc.) on behalf of active transac-
tions. The Resource Manager (RM) allocates and deallo-
cates system resources (e.g. CPU, disk, database pages)
to requesting transactions. The Concurrency Control
Manager (CCM) processes read and write requests from
the TM. Once a transaction has either committed or
aborted, it is removed from the system and sent at a
Transaction Sink.

Figure 12: The Logical System Model

The primary performance measures that we employ
are the percentage of transactions that miss their dead-
lines, Missed Ratio, and the average time by which late
transactions miss their deadlines, Average Tardiness. A
transaction that commits at or before its deadline has
a tardiness of zero. A transaction that completes after
its deadline has a tardiness of T - Deadline, where T is
the transaction’s completion time. The simulations also
generated a host of other statistical information, includ-
ing number of transaction restarts, average wasted com-
putation, . . . etc. These secondary measures were quite
helpful in explaining the behavior of the algorithms un-
der investigation.

4.1 Simulation Results

We consider a l,OOO-page database from which each
transaction accesses 16 randomly selected pages. The
probability of a page being updated is set at 25%. The
slack factor for the computation of transaction dead-
lines is set up at 2, and the EDF policy to assign trans-
action priorities (for 2PL-PA and Wait-50) is adopted.
These parameter settings are comparable to those used
in similar studies [HCL92]. Our experiments assumed
that transaction deadlines are soft. This entails that
late transactions (those missing their deadlines) must
complete-nevertheless-with the minimum possible de-
lay. Each simulation runs until at least 4,000 transac-
tions are committed. Enough runs were performed to
guarantee a 90% confidence interval. Unless otherwise
stated, our figures depict the average over all experi-
ments. Simulations were performed under a wide range

of workloads to enable us to characterize the behavior of
the protocols under the various conditions that may arise
in a real-world RTDBS. For a comprehensive analysis of
these simulations, we refer the reader to [Bra94].

Figures 13 and 14 depict the average number of trans-
actions that missed their deadlines, and the extra time
needed by late transactions to complete their operations,
respectively. All protocols perform well when the num-
ber of transactions in the system is small. However, as
the arrival rate of transactions in the system increases,
their performance degrades at different rates. SCC-2S
provides the most stable performance among the stud-
ied protocols. Its Missed Ratio is the lowest under all
system loads. On the other hand, although Wait-50 per-
forms well at low loads, its performance degrades fast,
becoming even worse than OCC-BC at the higher system
loads. It is remarkable that while at an arrival rate of 70
transactions per second, SCC-SS, Wait-50, and OCC-BC
miss l%, 1.5%, and 2.5% of their deadlines, respectively,
at 150 transactions per second their respective Missed
Ratios become 30%, 92%, and 78%. 2PL-PA showed con-
sistently the worst performance among the tested proto-
cols. Its performance degrades at much lower system
loads and with a much higher slope. This is to be ex-
pected because the environment at which we performed
our simulations (high data contention, tight deadlines)
was particularly unfriendly to locking-based protocols.

100 r A4i ssod Ratio
es- .&-’ * .-.m,-, * .-.-a- &s-.-*-f

I

P
o-o see-2s j .D
O---O OCC-BC !

:

60 -

66 -

$0 -

20 -

0 . . -0 Wait-50 !
A ---A 2PL-PA ;

!
!
!
!
!
!

i
.s ,

i

” 150 200%
AnfvolRalo

Figure 13: Missed Ratio under baseline Model

The superiority of SCC-2s becomes evident by ob-
serving that not only do transactions running under the
SCC-2S algorithm make more of their deadlines, but
also the amount of time by which late transactions miss
their deadlines is considerably smaller. It is worthwhile
to point out here that, although SCC-PS outperforms

130

46 r Avsqp Tardiness (in sec.)
.#I d

t t

42 42

38 38

o-o SCGPS o-o SCGPS
q - - -0 OCC-BC q - - -0 OCC-BC
0 . * -0 Wait-50 0 . * -0 Wait-50
A -I -A PPL-PA A -I -A PPL-PA

18

f2

6

0
0 50 100 150 200

Figure 14: Average tardiness under baseline Model

OCC-BC with respect to Average Tardiness under all
system loads (a figure 14 suggests), this is not the case
when we consider Wait-50. On the contrary, Wait-50
has a relatively better Average Tardiness performance
for the lower system loads, which it loses only when the
system load becomes considerably high (at arrival rates
above 125 transactions per second). This result can be
attributed to the fact that SCC-2s is not a deadline-
cognizant protocol, unlike Wait-50 which utilizes this
information to make better decisions regarding “when
to commit transactions”. However, at high loads Wait-
50-because of its higher Missed Ratio (relative to SCC-
2S)-loses this advantage.

4.2 SCC-VW and System Value

Our previous experiments considered a RTDBS which
was operating under the assumption that all transactions
in the system were equally important. The two major
performance objectives were to minimize the Missed Ra-
tio and minimize the Average Tardiness of the system.
In this section, we lift this assumption, allowing trans-
actions to have different walues, to reflect their relative
worth to the system upon commitment. The major per-
formance objective for such a system is to maximize the
expected value-added to the system by the completed
transactions. Minimizing tardiness and the number of
missed deadlines becomes of secondary importance. We
call the new performance measure the System Value.

In the following experiments, we report on the per-
formance of SCC-VW (as an SCC-based protocol which
incorporates transaction values in its decision making).
Our results suggest only minor improvement over the
original SCC-PS protocol. In particular, figure 15 depicts

the System Value for the protocols in question, where
all transactions are assigned the same value function.3
The insignificance of the improvement can be explained
by noticing that, thanks to speculation, the penalty in-
curred by a transaction as result of another transaction’s
commit is smaller. This results in a smaller payoff if de-
layed commitment (like the one employed by SCC-VW)
is adopted. An interesting observation of our experi-
ments is that although SCC-VW improved the value-
added to the system, it misses more deadlines relative to
SCC-2s as figure 16 suggests. This is because, as we ex-
plained above, SCC-VW’s objective is to maximize the
expected System Value, and not necessarily the number
of satisfied timing constraints. This observation is rein-
forced by viewing the Average Tardiness results shown
in figure 17. There, SCC-VW provides a smaller Average
Tardiness result compared with SCC-2s. In other words,
although SCC-VW misses more deadlines than SCC-SS,
it misses them by a smaller margin.

2.5

0

-25

-50

-75

e

.

.

.

.

s

.

.

.
.a

.

.--
0 50 100 150 200

Anivai Rats

Figure 15: System Value under baseline model (1 class)

We have performed more experiments to evaluate
the relative performance of the algorithms in a RTDBS
where transactions belong to different classes, each with
different value functions and different execution profiles.
Our results show that SCC-VW performs better under
such conditions. Figure 18 shows a sample simulation for
a RTDBS with two classes of transactions. The first class
is characterized by long execution times, tight deadlines,
high value-added (when committed on time), and large
penalty gradients. Alternately, the second class is char-
acterized by short execution times, lower value-added,

3The value added is constant if the deadline is met, otherwise
a penalty gradient of -1 is assessed. All other parameters are set
to those of the baseline model.

131

A-A

0 -9-o

o---o

0 - - -0

see-VW
SCC-2s
occ-SC
Wait-50

t

t

I

I

0
0 50 100 150 200

A?liVOiRil~

Figure 16: SCC-VW: Missed ratio under baseline model

< <
: :

14 14 A-A A-A see-w see-w : :
0 --0 0 --0 see-2s see-2s : : . .
q - - -0 q - - -0 occ-SC occ-SC 0’ 0’ 12 12 0 - Q -0 0 - Q -0 Wait-50 Wait-50 . .

: :
: :

: :
10 10

8 8

6 6

4 4

2 2

0 0
0 0 60 60 100 100 150 150 200 200

AnivolRota

Figure 17: SCC-VW: Tardiness under baseline model

and smaller penalty gradients. The transaction mix was
such that only 10% of the transactions in the system
were from the first class. This transaction mix, along
with the value functions chosen for the two classes were
set so as to make the average value function identical to
the value function when only one class was simulated (see
figure 15). The results in figure 18 highlight the superi-
ority of SCC-VW, which can be attributed to its novel
incorporation of deadline and criticalness information in
concurrency control decisions.

106

73

66

25

6

-23

-60

-75

-100 _

sysrcun Valuo sysrcun Valuo

A-A SCGW A-A SCGW

0 -.-0 SCG2S 0 -.-0 SCG2S
0. - -0 OCGSC 0. - -0 OCGSC
0 . . no Wait-50 0 . . no Wait-50

. . I I
I I i i . .

. . s s a a

w 50 100 850 2oQ
AnfvolRa#a

Figure 18: System Value for baseline model (2 classes)

5 Conclusion

SCC protocols introduce a new dimension (namely re-
dundancy) that can be used to improve the timeliness of
transaction processing in RTDBS. In particular, by al-
lowing a transaction to use extra resources, it can achieve
better speculation and hence improve its chances for a

timely commitment. In addition, SCC protocols offer a
straightforward mechanism for rationing available redun-
dancy amongst competing transactions based on trans-
action deadline and criticalness information. Thus, the
problem of incorporating transaction deadline and crit-
icalness information into concurrency control is reduced
to the problem of rationing the available redundant re-
sources amongst competing transactions. Those with
higher payoff are allotted more resources so as to achieve
better speculation, and hence better timeliness,

Acknowledgments

Benjamin Mandler and Sue Nagy developed the simu-
lation testbed for our experiments. This work has been
partially supported by NSF (grant # CCR-9308344) and
by GTE.

References

[AAJ92] D. Agrawal, A. El Abbadi, and R. Jeffers. Using
delayed commitment in locking protocols for real-
time databases. In Proceedings of the 1992 ACM
SIGMOD International Conference on Manage-
ment of Data, San Diego, Ca, 1992.

[ACL87] R. Agrawal, M. Carey, and M. Linvy. Concurency
control performance modeling: Alternatives and

132

[AGM88]

[BB94]

[BCFF87]

[Bes92]

implications. ACM Transaction on Database Sya- [HSRTSI]
terns, 12(4), December 1987.

Robert Abbott and Hector Garcia-Molina.
Scheduling real-time transactions: A perfor-
mance evaluation. In Prooceedings of the l&h
International Conference on Very Large Data
Bases, Los Angeles, Ca, 1988. [HSTR89]

Azer Bestavros and Spyridon Braoudakis. Time-
liness via speculation for real-time databases. In
Proceedings of RTSS’94: The ldth IEEE Real-
Time System Symposium, San Juan, Puerto Rico,
December 1994. [JLT85]

C. Boksenbaum, M. Cart, J. Ferrik, and J. Fran-
cois. Concurrent certifications by intervals
of timestamps in distributed database systems.
IEEE Transactions on Software Engineering, [KorSO]

pages 409-419, April 1987.

Azer Bestavros. Speculative Concurrency Con-
trol: A position statement. Technical Report TR-
92-016, Computer Science Department, Boston

[KR81]

University, Boston, MA, July 1992.

[BMHD89] A. P. Buchmann, D. C. McCarthy, M. Hsu, and [KS911

[Bra941

[BSRSS]

U. Dayal. Time-critical database scheduling: A ’ a
framework for integrating real-time scheduling
and concurrency controls. In Proceedings of the
5th International Conference on Data Engineer-
ing, Los Angeles, California, February 1989. [Loc86]
Spyridon Braoudakis. Concurrency Control Pro-
tocols for Real-Time Databases. PhD thesis,
Computer Science Department, Boston Univer-
sity, Boston, MA 02215, expected June 1994. [LS90]
Sara Biyabani, John Stankovic, and Krithi Ra-
mamritham. The integration of deadline and crit-
icalness in hard real-time scheduling. In Prooceed-
ings of the 9th Real-Time Systems Symposium, [MN821
December 1988.

[EGLT76]

[GLPT76]

[HCLgOa]

[HCLSOb]

[HCL92]

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predicate
locks in a database system. Communications of [Rob821
the ACM, 19(11):624-633, November 1976.

J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L.
Traiger. Granularity of locks and degrees of con-
sistensy in a shared data base. In G. M. Ni- [Sin881

jssen, editor, Modeling in Data Base Management
Systems, pages 365-395. North-Holland, Amster-
dam, The Netherlands, 1976. [SPL92]

Jayant R. Haritsa, Michael J. Carey, and Miron
Linvy. Dynamic real-time optimistic concurrency
control. In Prooceedings of the 11 th Real- Time
Systems Symposium, December 1990. [SRL88]

Jayant R. Haritsa, Michael J. Carey, and Miron
Linvy. On being optimistic about real-time con-
straints. In Prooceedings of the 1990 ACM PODS [SRSCSl]

Symposium, April 1990.

Jayant R. Haritsa, Michael J. Carey, and Miron
Linvy. Data access scehduling in firm real-time

[SZ88]

database systems. The Journal of Real-Time Sys-
tems, 4:203-241, 1992.

133

Jiandong Huang, John A. Stankovic, Krithi Ra-
mamritham, and Don Towslwy. ExperimentaI
evaluation of real-time optimistic concurrency
control schemes. In Prooceedings of the 17th
International Conference on Very Large Data
Bases, Barcelona, Spain, September 1991.
J. Huang, J. A. Stankovic, D. Towsley, and K. Ra-
mamritham. Experimental evaluation of real-
time transaction processing. In Proceedings of the
10th Real-Time Systems Symposium, December
1989.
E. Jensen, C. Locke, and H. Tokuda. A time-
driven scheduling model for real-time operating
systems. In Proceedings of the 6th Real- Time Sys-
tems Symbosium, December 1985.
Henry Korth. Triggered real-time databases
with consistency constraints. In Proceedings of
the 16th International Conference on Very Large
Data Bases, Brisbane, Australia, 1990.
H. Kung and John Robinson. On optimistic
methods for concurrency control. ACM Trons-
actions on Database Systems, 6(2), June 1981.

Woosaeng Kim and Jaideep Srivastava. Enhanc-
ing real-time dbms performance with multiver-
sion data and priority based disk scheduling. In
Prooceedings of the 12th Real- Time Systems Sym-
posium, December 1991.

C. Locke. Best Effort Decision Making for Real-
Time Scheduling. PhD thesis, Carnegie-Mellon
University, Department of Computer Science,
May 1986.
Yi Lin and Sang Son. Concurrency control in
real-time databases by dynamic adjustment of se-
rialization order. In Proceedings of the 11th Reab
Time Systems Symposium, December 1990.

D. Menasce and T. Nakanishi. Optimistic ver-
sus pessimistic concurrency control mechanisms
in database management systems. Information
Systems, 7(l), 1982.
John Robinson. Design of Concurrency Controls
for Transaction Processing Systems. PhD the-
sis, Carnegie Mellon University, Pittsburgh, PA,
1982.
Mukesh Singhal. Issues and approaches to de-
sign real-time database systems. ACM, SIGMOD
Record, 17(1):19-33, 1988.
S. Son, S. Park, and Y. Lin. An integrated real-
time locking protocol. In Prooceedings of the
IEEE International Conference on Data Engi-
neering, Tempe, AZ, February 1992.
Lui Sha, R. Rajkumar, and J. Lehoczky. Concur-
rency control for distributed real-time databases.
ACM, SIGMOD Record, 17(1):82-98, 1988.
Lui Sha, R. Rajkumar, Sang Son, and Chun-
Hyon Chang. A real-time locking protocol. IEEE
Transactions on Computers, 40(7):793-800, 1991.

John Stankovic and Wei Zhao. On real-time
transactions. ACM, SIGMOD Record, 17(1):4-
18, 1988.

