
Hot Block Clustering for Disk Arrays
with Dynamic Striping

= exploitation of access locality and its performance analysis =

Kazuhiko Mogi Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo
7-22-1, Roppongi, Minato, Tokyo 106, Japan

{mogi, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

RAID5 disk arrays provide high performance and high
reliability for reasonable cost. However RAID5 suf-
fers a performance penalty during block updates. In
order to overcome this problem, the use of dynamic
striping was proposed. This method buffers a num-
ber of updates, generates a new stripe composed of
newly updated blocks, and then writes the new full
stripe back to disks. In this paper, we examine the ef-
fect of access locality on the dynamic striping method.
To further improve performance in such an environ-
ment, we introduce the dynamic clustering policy for
hot blocks. Performance analysis with various access
localities shows that this method has higher perfor-
mance than ordinary methods. Performance is also
examined for localities that change over time. The
dynamic clustering of hot blocks follows locality tran-
sitions, showing that under dynamic conditions per-
formance improves.

1 Introduction

R.ecently, due to the progress of semiconductor tech-
nologies, microprocessor performance has improved
dramatically while that of secondary storage systems
has not kept pace. For secondary storage, the main
efforts have been devoted towards increasing capac-
ity and reducing size, with only slight improvements
in performance. This has caused the access gap be-
tween main memory and secondary storage system to
become even larger. Disk array systems have attracted

Permission to copy without fee all or part of this material is
granted provided that the copies are not made OT distributed for
direct commercial advantage, the VLDB copyright notice and
the title of Ihe publication and its date appear, and nolice is
given that copying is by permission of Ihe Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

strong attention as high performance secondary stor-
age systems. A RAID5 disk array[8] utilizes a large
number of commodity inexpensive drives in parallel to
achieve higher performance as well as incorporating
parity drives to obtain higher reliability with low stor-
age cost. RAID5 which supports concurrent access of
small blocks is currently regarded as one of the most
promising approaches for providing highly reliable low
cost secondary storage systems.

RAID5 disk arrays employ parity encoding for re-
dundancy. So the new parity for a small write is de-
rived as follows:

P new = Pou &i Dou di Dnew (1)

Thus a single block update requires 4 disk accesses:
old block read(D,ld), old parity read(P,ld), new block
write(D,,,) d an new parity write(P,,,). This dete-
riorates the throughput of the write operations. In
order to overcome this problem and achieve higher
performance, several approaches have been proposed,
such as head scheduling[lO], optimizing the striping
unit [2, 31, floating parity/data[6], smart caching[5],
parity logging[ll], LRAID[l] and dynamic parity
grouping[131.

To improve the performance of block updates, we
studied storage management methods which use dy-
namic striping, where instead of updating each block
independently, this method buffers a number of up-
dates, generates a new stripe composed of the newly
updated blocks, then writes the full stripe onto the free
area. We considered two implementations of dynamic
striping. One is a LFS[S] based method and the other
is Virtual Striping[7]. Both methods which use dy-
namic striping achieve much higher performance than
conventional approaches on randomly issued accesses.

The dynamic striping method needs to make free
spaces for dynamic new stripe creations. We call this
action garbage collection’. To get, higher performance

‘III 191, this action is called segment cleaning. But in Virt,ual
Striping, we don’t call a control region a segment thus we use
this term.

90

from dynamic striping we have to reduce the cost of
garbage collection. Usually some blocks are frequently
accessed (hot blocks) and the others are non-frequently
accessed (cold blocks). In [9], the cost-benefit policy,
which uses this access locality to efficiently generate
free areas, was proposed however only the ratio of ex-
tra accesses for the write operations was discussed.
The effect of access requests caused by a access locality
has not been clarified. This paper examines the effect
of access locality for the dynamic striping method.

To make use of the access locality more effi-
ciently for garbage collection with the dynamic strip-
ing method, we consider the dynamic clustering of hot
blocks, which is an improvement of the cost-benefit
policy. We divide each disk into two continuous re-
gions, a hot area and a cold area. All updated blocks
are regarded as hot blocks and collected into the hot
area. In the hot region, more free space is assigned
than in the cold region so that the cost of garbage
collection becomes lower than in the case of no sepa-
ration between hot blocks and cold blocks. Moreover,
because frequently accessed blocks area gathered in a
limited area, this method decreases the average seek
distance, which improves read performance. We exam-
ine the feasibility of dynamic clustering of hot blocks
on various access localities.

It is possible that the heat of blocks changes ran-
domly. The mechanism of collecting hot blocks follows
this change. We also examine performance in the en-
vironment of hot spot transition.

In section 2 we survey the methods which have been
proposed for improving the performance of RAID5
disk arrays. In section 3 an outline of the storage
management schemes using dynamic striping are de-
scribed. We also show the effect of access locality for
these management schemes. In section 4 the details
on the method for dynamic clustering of hot blocks
are explained. Extensive simulation is done to iden-
tify the effect of access localities and the performance
characteristics of hot block clustering. Section 5 gives
t,he simulation experiments. Section 6 the results of
the analysis.

2 Related works

In this section we review the methods which have been
proposed for improving the performance of RAID5
disk arrays. The major problem with using the RAID5
disk arrays is low performance for small write accesses.

As shown in equation (l), traditional methods al-
ways perform two pairs of read modify write accesses
for each small write access, each requiring rotational
delays. To decrease these delays the method named
floating parity/data method[6] was proposed. In this
method a fixed number of free blocks are reserved in

each cylinder. On each update the data block moves
from its original location to an appropriate location
physically within the same cylinder in order to mini-
mize rotational delays.

Parity logging[ll] and LRAID[l] employ different
approaches. Both methods delay parity updating by
recording update information. When a block is up-
dated, XORed data of the old data and the new data
are recorded in the log area. The action of writing to
the log area is performed sequentially so that seek and
latency delays can be eliminated. In parity logging,
log disks and parity disks are distributed over the ar-
ray, whereas LRAID separates the log and parity disks
from the data disks. When the log area becomes full,
the controller reads the log and old parities, calculates
new parities and writes them out to the proper disks.
The accesses for updating the parities require mainly
sequential accesses. This type of parit,y updating re-
quires extra disk accesses, but access efficiency is much
higher than traditional update methods. In all, these
methods show higher performance than naive R.AID5
disk arrays.

Dynamic parity grouping[l3] overcomes the parity
update penalty by maintaining some parity informa-
tions in the controller. It is desirable that blocks which
are frequently updated be members of stripes which
have their parity values stored in the controller because
updating the parities in the controller requires no disk
access. But we cannot store all of the parities in the
controller, so we need to migrate hot blocks to stripes
whose parities are maintained in the controller. The
problem becomes how to select blocks which should
be allocated to those special stripes. In [13], a sort of
access heat is used to guess hot blocks.

To get further performance from RAID5 disk ar-
rays, we have to consider traditional issues such as ac-
cess scheduling[lO], optimizing the striping unit[2, 31,
and smart caching[5]. We can combine such methods
with the above techniques.

3 Dynamic striping

In naive RAID5 disk arrays, when a block is updated,
the new parity has to be recalculated in order to main-
tain parity consistency, which requires reading the old
data block and the old parity block. However if all
of the blocks in a stripe are to be updated, then the
old data blocks and the parity blocks would not need
to be referenced. The new parity can be derived di-
rectly from the new blocks. Thus we can avoid the par-
ity generation overhead by dynamic striping method,
which allocates a new stripe dynamically for every n

block updates, where n is the number of blocks in a
stripe excluding parity(figure 1).

This method creates dirty blocks, which have no

91

Active H Parity Diiy D Free

Figure 1: Dynamic striping

valid data because of data updating. Here we assume
that free stripes are guaranteed to exist, over which a
newly generated stripe can be stored. We cannot write
new stripes over dirty blocks because these blocks are
still required to maintain parity consistency. To carry
out dynamic striping, we must reorganize the parity
stripes to produce a free area into which the new par-
ity stripe can be recorded. This reorganization pro-
cess is called garbage collection. We examined two
approaches which employ dynamic striping, with each
method adopting a different storage management and
garbage collection scheme.

3.1 LFS based storage management
(LFS-SM)

The LFS(log-structured file system) was developed to
improve the write throughput of the file system. We
can apply this storage management scheme to RAID5
disk arrays. The storage management scheme based on
LFS is characterized as follows: 1) A set of small write
accesses is converted into a large write. 2) Garbage
collection is performed by a large management unit
(segment).

In LFS-SM, a set of small writes are kept in a non-
volatile cache for a while. Once the cache fills to the
capacity of a segment, the updated small blocks are
written into the free segment. This bulk update re-
duces write co&s. Updated blocks are not written back
to their original locations but into a dynamically allo-
cated free segment.

LFS-SM employs segment based garbage collection
(called segment, cleaning in the original paper[9]). The
controller reads all blocks which have valid data (active
blocks) in the segment and copies them to the new
segment (figure 2). Thus segments which include dirty
blocks are cleaned up during segment cleaning.

Cost-benefit policy

The method used to execute segment cleaning must
be carefully considered because the efficiency of this
action has significant impact on performance. If there
is access locality where 90% of the accesses are con-
centrated on 10% of the data blocks, then about 90%

Figure 2: Stripe management scheme based on LFS

of the written blocks are hot blocks. When segments
containing a lot of hot blocks are cleaned, the num-
ber of active blocks residing in the segment will be low
because the number of modified blocks is large. This
helps to make the process of segment cleaning quite
efficient.

In this scenario, determining the segment to be
cleaned is an important factor for the cost of segment
cleaning when this action is invoked. In [9], the cost-
benefit policy is proposed to get higher efficiency of
segment cleaning under access locality. In the cost-
benefit policy, the segment to be cleaned is selected by
t,he value of the benefit/cost metric which is calculat,ed
as follows.

benefit -= free space generated * age = (1 - PL) * age
cost cost 1+u

(2)
In this equation, u denotes the utilization of the seg-
ment and age denotes the age of the youngest block in
t,he segment. If age is small, it is guessed that there are
some hot blocks in the segment thus it would be bet-
ter to wait to clean the segment. In order to efficiently
determine which blocks are hot or cold, we need to be
careful about distinguishing between write accesses by
write requests and those by segment cleaning. Almost,
all blocks which are written by normal write accesses
are hot, and those written back during segment clean-
ing are considered to be cold.

3.2 Virtual Striping storage management
(VS-SM)

In Virtual Striping, parity stripes are virtualized
so that we can change the linkage of blocks in a par-
ity stripe dynamically(figure 3). The mapping of the
stripe and member blocks is not determined by their
physical position but by a table named the Virt,ual
Stripe Table(figure 4) stored in the controller. In t,he
Virtual Stripe Table, the stripe number, the identifiers
of blocks in the stripe, and the number of dirty blocks
in the stripe are recorded for each stripe. The stripe

92

Disk0 Disk1 Disk2 . a a Diskn Physical Bll cck S*pe Free Stripe

0 Active Block Dirty Block l Parity Block <y> Free Block

Figure 3: Stripe management scheme with Virtual
Striping

...... Free
M 1 * * *a- * n Stripe

Figure 4: Virtual Stripe Table

number and the block identifiers are used for normal
addressing. The dirty block count is used for garbage
collection.

In VS-SM, a set of small writes are kept in a non-
volatile cache for a while in the same way as in LFS-
SM. The threshold value for writing is the size of free
blocks in the cylinder which has the largest free area.

Garbage collection in VS-SM is quite different from
that of LFS-SM. The garbage collector collects n dirty
blocks and creates one free stripe by changing the link-
age of stripes as illustrated in figure 3. Garbage col-
lection is performed in the unit of a cylinder because
of the access efficiency. The garbage collection process
is performed as follows. 1) Determine the target cylin-
der. 2) Find the base stripe for making a free stripe.
We call this stripe the victim stripe. It is desirable
that the victim has few active blocks. 3) For each itc-
tive block in the victim, select a stripe that has a dirty
block on the same disk as the active block of the vic-
tim. We call this live stripe the partner stripe. 4) Re-
peat these steps while new victims can be found in
the target cylinder. 5) Exchange the active blocks on
the victim stripes with the corresponding dirty blocks
from the partner stripes. We reference the dirty block
count entries in the Virtual Stripe Table to find the
victim stripes, and use the Physical Block State Ta-
ble(figure 5) to determine the state of each block in
order to find the partner stripes.

The exchange process requires updating the parity
of the partner stripe. Because a new parity is cal-
culated by equation (l), we need 4 accesses to up-
date parity: victim data read(D,,,), partner data

(Cylindel#, Blocktl)

I

Figure 5: Physical Block State Table

‘;;2@3
.3 VS (no locality) +

LFS (no locality) +-
vs (90-10) ‘=..

Q 150- LFSCost-Benefit(90-10) -*”

0 200 400 600
Load IIOdsec)

Figure 6: Effect of access locality

read(D,ld), partner old parity read(P,ld) and partner
new parity write(P,,,). Parity update is unnecessary
for the victim stripe. The reason why the garbage col-
lector chooses the live stripe with few active blocks is
that this reduces the exchange cost.

3.3 The impact of access locality

In this section we examine the effect, of access lo-
cality on the performance of the dynamic striping
method. We assume that Z% of the requests are con-
centrated to y% of the valid data blocks. We call this
access locality “z-y” later. We measured t,he aver-
age read response time with 90-10 access locality and
without access locality under the conditions described
in section 5. Figure 6 shows the results. In LFS-SM,
the cost-benefit policy degrades performance if there
is no access locality. Thus we plot the performance
without the cost-benefit policy in LFS-SM if there is
no access locality.

We can get better performance with 90-10 access
locality, which is due to the efficiency of garbage col-
lection. In LFS-SM, the cost of segment cleaning
decreases because the cost-benefit policy selects the
proper segment for segment cleaning. In VS-SM, the
cost of garbage collection decreases because hot blocks
are concentrated in the written stripes, this leads to
the same effect as explained in the section on t,he cost-
benefit policy (section 3.1).

93

4 Dynamic clustering of hot blocks cold blocks moved in and move them from the hot area

4.1 Separation of the area for hot blocks and
the area for cold blocks

Reduction of the cost of garbage collection is the key
t,o high performance in dynamic striping. In general,
there are access localities which can be used to improve
t,he performance of RAID5 disk arrays with methods
such as caching and dynamic parity grouping. Dy-
namic st,riping is also able to use access locality to
improve performance with the cost-benefit policy. To
gather hot blocks onto a limited area and to increase
t,he amount of recycled free space during garbage col-
lection are the basic ideas for the cost-benefit policy.

Hot segments in LFS are not necessarily clustered
toget,her. In this paper, we part,it,ion the space physi-
cally into two areas, one for hot blocks and one for cold
blocks. If there are access localities, it, is desirable to
collect hot blocks int)o a continuous area, which con-
centrates the disk accesses onto a small area, thus de-
creasing the average head movement distance, which
is expected to improve the performance of disk arrays.
The dynamic striping method inherently moves the po-
sition of blocks when data are updat,ed. Thus the ac-
tion of collecting hot blocks is quite easily performed.

We manage the two regions independent,ly, that is,
writing new data and garbage collection are performed
independently on each area. For dynamic clustering of
hot blocks, the need to make free space in the hot area
is higher than in the cold area because the probability
of writing to the hot area is quite large compared to
the cold area. It is better to have a larger free space
ratio in the hot area than in the cold area, which leads
to low garbage collection costs in the hot area.

4.2 The method of clustering hot blocks

We have to be able to distinguish between hot blocks
and cold blocks. If the access locality is considered
stat,ic or predictable, we can use “heat”[12], which is
the measure of the number of accesses over a certain
period. However, hot blocks may change. In this case,
it is difficult to determine an effective method for heat
estimation. As described above, almost, all blocks writ-
t,en to by normal write accesses can be thought as hot
if there are access localities. So we assume that all
blocks of normal write accesses are hot in the same
way as the cost-benefit policy.

Writing all blocks to the hot area easily consumes
the free space of the hot area. When garbage collec-
tion is executed on the hot area, we have to move the
blocks which are determined to be cold to the cold
area. We count the number of blocks which are moved
from the cold area to the hot area between two suc-
cessive garbage collections of the hot area. Then we
select the same number of blocks from the hot area as

to the cold area. This block migration is extra work in
VS-SM. On the other hand, no extra work is required
in LFS-SM, since the garbage collection in LFS-SM
executes block migrations.

To determine the cold blocks in the hot area, we use
the elapsed time since the last access executed on the
block (which excludes the accesses performed by the
garbage collector). This method might cause misesti-
mation. Two kinds of incorrect estimation can occur.
A hot block is assumed to be cold and a cold block
is assumed to be hot. From the performance point of
view, the former has a stronger influence than the lat-
ter. In order to prevent, this phenomena, more space
should be allocated t,o the hot, area so t,hat it does not
spill out hot blocks.

5 Simulation Experiments

We examine the performance characteristics of hot
block clust)ering through simulation for each of the dif-
ferent storage management schemes (LFS-SM and VS-
SM). O.ptimal organization for each method depends
on the workload. Here we assume the loads consist of
small accesses, where the average access size is several
kilobytes.

Use of cache The use of a write cache is essential for
LFS-SM. VS-SM can use the writ,e cache to improve
write efficiency. Therefore, we assume t,he presence of
a write cache. In this simulation we employ a cache
wit,h a size of 1000 blocks, which corresponds to 1.5
times larger than the number of blocks in a cylinder
over 8 disks in the simulation. The cache is a part,
of the disk controller for both VS-SM and LFS-SM.
On the other hand, we don’t assume the presence of a
read cache because we want to examine t,he raw per-
formance of the disk array as clearly as possible. We
assume that half of the total requestas are read oper-
ations and the other half are write operations. While
the write ratio might look higher than found under
normal circumstances, most systems today employ a
read cache, thus reads would be absorbed by the cache
increasing the ratio of writes accordingly. Since sim-
ulation does not employ a read cache, the read/writ,e
ratio is set to 50%/50%.

Access scheduling It is very effective to adopt
access scheduling because accesses for writing and
garbage collection tend to be limited t,o a very small
area. The writing of the dynamic striping method
changes the location of updat,ed data to a location de-
termined by the cont,roller. The controller can deter-
mine the area for garbage collection in advance. So in
most cases there is sufficient time to schedule accesses.
This is the reason why we employ access scheduling for
the simulation. We use a SCAN based algorithm for

94

capacity 318MB
cylinders/disk 949
tracks/cylinder 14
sectors/track 6

sector size 4096 bytes
revolution time 13.9ms
seek time model seek(d) = 2.0 + 0.01 . d + 0.46. 4

track skew 1 sector

Table 1: Disk model parameters

inter-cylinder and a shortest time first algorithm for
intra-cylinder accesses[7].

Execution of garbage collection Garbage collec-
tion plays the most important role in dynamic striping.
In our experiments with LFS-SM, we invoke garbage
collection when the number of free segments becomes
less than 6 for the hot area, 4 for the cold area, and
6 if hot block clustering is not employed. For VS-SM,
when the number of cylinders which have free stripes
becomes less than 9 if hot block clustering is not em-
ployed. If it is employed, 6 for the hot area and 4
for the cold area. Successive execution of garbage col-
lection degrades performance. If every disk has some
access requests or some garbage collection read re-
quests, we stop making a new garbage collection re-
quest. Once such conditions are fulfilled, we determine
the target for garbage collection and put its requests
onto the proper access queue. Garbage collection is
unconditionally performed if there is only one free seg-
ment under LFS-SM or there are less than three cylin-
ders which have free stripes under VS-SM.

Other assumptions We make the following as-
sumptions during simulation. 85% of blocks assigned
to the data area hold valid data and 15% are used as
free space. Access requests are fixed at 4KB. Interval
between access request arrivals has a negative expo-
nential distribution. The load is controlled by chang-
ing the mean time between access requests. That is,
we assume that access requests have a random distri-
bution.

Table 1 shows the disk model parameter, which was
employed in [4]. The block size is 4KB. The striping
unit is set to the block size. The position of parities
is incremented by one track when rotated among the
disks. The disk array is composed of 8 data disks and
one parity disk (SD+P). In LFS-SM, the segment size
is set to half a cylinder. The disk array controller
is sufficiently fast so that the overhead of scheduling
and table manipulation is negligible. All the control
tables are maintained by the controller2. After initial

2Currently many commercial RAID5 products employ dual
controllers as discussed in [5]. Important tables are stored in
the NV-RAM of the controllers and consistency between the
two copies is maintained through appropriate implementation.

Naive RAID5 + VS Dynamic Clustering (hot 21%. f =6.0) *-
Floating +- LFS Dynamic Clustering (hot 20%, 7 =4.5)*-

vs -D- VS Ideal (‘I =6.0) e-
LFS Cost-Benefit + LFS Ideal (7 =4.5) +-

I

600 800
Load ~1Osk.c)

Figure 7: Read response time analysis (90-10 access
locality, 8D+P, 85% used)

4 million accesses, statistics collection begins. Thus
the active blocks, the dirty blocks, and free blocks are
properly distributed over the disks.

6 Evaluations for the dynamic cluster-
ing of hot blocks

6.1 Comparison to other methods

Figure 7 shows the average read response time for
100,000 access requests (50,000 read requests) for 90-
10 access locality. The horizontal axis shows the mean
arrival rates for I/O requests, the vertical axis shows
the average read response time. We change the pro-
portion of the hot area and the ratio of free blocks in
the hot area. The proportion of hot area is changed
by increments of 1% of the total capacity. The ratio
of free blocks in the hot area are normalized by the
ratio of free blocks in the cold area, because we think
that this value corresponds to the ratio of efficiency for
garbage collection between the hot area and the cold
area. We change the value of Q which is calculated
according to equation (3) in increments of the value of
0.5 for the variance of free block ratio.

number of free blocks in the hot area

v=
number of blocks in the hot area

number of free blocks in the cold area (3)
number of blocks in the cold area

In figure 7, we plot the performance lines which were
the best. The best performance occurs when the pro-
portion of the hot area is 20% and 7 = 4.5 in LFS-SM
and the proportion of the hot area is 21% and q = 6.0
in VS-SM.

In order to compare the performance with that of
the other methods, we also plot the performance of
naive RAID5 and RAID5 with floating parity/data &

95

0 50 100 150 200 250 300
Read Rewonse Time (ms)

Figure 8: Read response time distribution (90-10 ac-
cess locality, 400 IOs/sec, 8D+P, 85% used)

access scheduling in the same figure. We also plot the
performance of ideal separation of hot and cold blocks.
Here “ideal” means that the controller has the perfect
knowledge about the hotness of the blocks.

The storage management schemes which employ dy-
namic striping have a much larger range of low re-
sponse times than the other two methods. In the meth-
ods using dynamic striping, one with dynamic cluster-
ing of hot blocks shows a shorter response time for low
loads and can bear higher loads than one which does
not use clustering. Hot block clustering shows close to
but slightly worse performance than when blocks are
ideally separated. At low loads, LFS-SM with cluster-
ing shows better performance than VS-SM with clus-
tering. We examine the reason in the next section.

6.2 Read response time distribution analysis

Figure 8 illustrates the distribution for the read re-
sponse time. These lines are measured through simu-
lation at 400 IOs/sec with 90-10 access locality using
the same conditions used for read response time analy-
sis. The horizontal axis shows the read response time.
The vertical axis shows the cumulative ratio for the
read accesses which have a smaller response time than
the given value.

With clustering of hot blocks, the ratio of read ac-
cesses which have short response times is higher than
without it because a much larger free area is generated
by the garbage collection process with clustering than
without it and clustering reduces head movements. In
VS-SM, there are more accesses which have long re-
sponse times with clustering than without it. Some
,read accesses will have to wait for write and garbage
collection accesses to finish. The efficiency of garbage
collection in the hot area causes the garbage collection
and write to take a long time, which makes the read

VS (p =6.0,400 IOs/sec) +
VS (7 =6.0.600 IOdsec) +-
LFS (7 =4.5,400 IOs/sec)+

16 18 20
1

22 24 26 28
Prooortion of Hot Area f%)

(a) sensitivity of hot area proportion

VS (hot 2 I%, 400 IOs/sec) *
VS (hot 21%. 600 IOs/sec) +-

LFS (hot 20%, 400 1Osk.e~) ‘p--
LFS (hot 20%. 600 IOs/sec) ‘K..’

2 3 4 5 6 7 8 9
D

(b) sensitivity of Q

Figure 9: Sensitivity of parameters (90-10 access lo-
cality, 8D+P, 85% used)

response time worse. In LFS-SM, the waiting time for
some read accesses is mainly determined by the seg-
ment size. In this simulation, the segment size is set
to half a cylinder, which is smaller than VS-SM’s unit,.
This is the reason why LFS-SM with dynamic cluster-
ing has a shorter response time than VS-SM at low
loads.

6.3 Sensitivity of parameters

In this section, we examine the sensitivity of the
parameters when we adopt dynamic clustering of hot
blocks. We measured the read average access rates
at the mean request arrival rate of 400 IOs/sec and
600 IOs/sec with 90-10 access locality for various pa-

96

.2
B LFS Cost-Benefit +.
F VS Dynamic Clustering + -
9! 15(-J- (hot 14%, TJ =7.5)

8 LFS Dynamic Clustering ~~~~~
2 (hot 11%. rj =4.0)
d

600 800
Load flOs/sec)

(a) 90-5

Q200

.!z

2 LFS Cost-Benefit .I+.
.d
+
al 150
2 ““’
E

LFS Dynamic Clustering

B
(hot 1 l%, 7 =5.0)

SKI0
5
P

0'
0 200

I

400 600 800
Load ~IOs/sec)

(c) 95-5

LFS Cost-Benefit .w

0 200 400 600 800
Load (IOs/sec)

(b) 95-10

B LFS Dynamic Clustering +
& (hot 38%, ‘I =2.5)

I-

d
gb100-
E

OL
-1

0 2ocl 400 600
Load UOs/sec)

(d) 80-20

Figure 10: Read response time analysis on various localities (8D+P, 85% used)

rameters. Figure 9 shows the results. In figure 9 (a),
we change the proportion ratio of hot blocks leaving
Q fixed to the values used in figure 7. In figure 9 (b),
the value of 17 is changed at the fixed proportion ratio
of the hot area used in figure 7.

At low loads such as a mean arrival rate of 400
IOs/sec, the response time does not vary for either
method. But at a mean arrival rate of 600 IOs/sec
at which the best response time is about 100 msec for
both methods, the response time is sensitive to the
parameters. Under this high load many read accesses
must wait until garbage collection accesses or write ac-
cesses finish, thus the efficiency of garbage collection
significantly affects performance. At high loads, LFS-
SM is more sensitive than VS-SM. Although high ef-
ficiency has a positive effect, the frequency of garbage
collection is also a problem in LFS-SM because the
cost of each garbage collection is high. If the proper

parameters are set, clustering of hot blocks shows good
performance in LFS-SM.

6.4 Variance on the access locality

In this section, we examine the effect of different ac-
cess localities. We examine the average read response
time for various access localities, 90-5,95-10, 95-5, and
80-20. Figure 10 shows the results. In these figures,
we plot two lines for each storage management, scheme,
one showing the best performance and the other show-
ing the performance without hot block clustering, i.e.,
normal VS-SM or LFS-SM with cost-benefit policy.

The high access locality improves the performance
both with and without hot block clustering. A better
improvement is obtained with clustering than with-
out clustering. For low access localities such as 80-20,
VS-SM with clustering cannot have a shorter read re-

97

LFS s
2oor

LFS Cost-Benefit +.
VS Dynamic Clustering + -

(hot 19%. rj =3.5)
LFS Dynamic Clustering +

OL I
0 200 400 600

Load (IOs/sec)

(a) exchange ratio = l/10, 90-10

vs
LFS Cost-Benefit

VS Dynamic Clustering
(hot 20%. ‘I =4.5)

LFS Dynamic Clustering
(hot 19%. 7 =4.0)

+

.D..

+-

.x..

400 600
Load IIOs/sec)

200 400 600
Load IIOslsec)

(c) exchange ratio = l/20, 90-10 (d) exchange ratio = l/20, 95-5

LFS Cost-Benefit +.
VS Dynamic Clustering -C -

(hot 12%, ‘7 4.5)
LFS Dynamic Clustering ‘*..

(hot lo%, 7 =4.0)

n’
"0 200 400 600

Load (IOs/sec)

(b) exchange ratio = l/10, 95-5

vs vs
LFS Cost-Benefit LFS Cost-Benefit

VS Dynamic Clustering VS Dynamic Clustering
(hot 12%. ‘I =5.5) (hot 12%. v =5.5)

LFS Dynamic Clustering LG Dynamic bustekng
(hot 1 1%, 7 =5.0) (hot 1 1%, 7 =5.0)

y...

Figure 11: Read response time analysis on locality transitions (8D+P, 85% used)

sponse time at low loads than without clustering be-
cause the extra action of cold block migration is ex-
pensive in this situation. In LFS-SM, block migrations
is a part of garbage collection so we can improve per-
formance at low loads.

6.5 The effect of locality transitions

It is quite possible that the set of hot blocks will change
as time passes. In this section, we examine the read re-
sponse time in an environment of locality transitions.
We modeled the transition of locality as follows. The
data blocks are divided into two groups, the hot group
and the cold group. The number of blocks in the hot
group and the access ratio for the hot group is fixed,
but the exchange of blocks between the hot group and
the cold group are performed randomly. This exchange

is executed by one block each. We set the rate of
the exchange to l/10 or l/20 of the access ratio of
hot groups, that is to say, 10 and 20 are selected for
the average number of accesses in the hot group. Fig-
ure 11 shows the results. In these figures, we plot
two lines for each storage management scheme: the
best performance with hot block clustering and per-
formance without clustering. For locality transitions,
we can improve performance by using dynamic clus-
tering of hot blocks. But the high probability of tran-
sitions degrades performance because the transition of
hot blocks is equivalent to the cold block writes, i.e.,
the efficiency of garbage collection is degraded by the
transition. The same effect of block migration in VS-
SM as explained in section 6.4 is seen at 90-10 locality
and a high transition ratio of l/10.

98

7 Conclusion

In this paper we examine the impact of access localities
on the performance of the dynamic striping method.
As far as the authors know, no extensive research has
not been done on these issues. Since the access locality
is expected to be well exploited for dynamic striping
disk arrays, we have throughly performed simulation
studies to clarify its viability. It was shown that if the
access locality is 90-10, the dynamic striping methods
with hot block clustering has much better performance
than conventional methods such as naive RAID5 and
RAID5 with floating parity/data & access scheduling
and better performance than methods which do not
use clustering. The clustering of hot blocks decreases
the average distance of head movement. The higher
ratio of free blocks in the hot area improves the ef-
ficiency of garbage collection. These effects lead to
a shorter read response time at low loads and more
tolerance at high loads.

The higher the access locality becomes, the higher
performance becomes. At low locality such as 80-
20, VS-SM with clustering cannot improve the per-
formance at low loads because cold block migrations
cause high overhead. On the other hand, the clus-
tering of hot blocks improves the performance of LFS-
SM because the action of block migrations is combined
with garbage collection. We examine the sensitivity of
the operating parameters. There is less effect at low
loads. But the parameters affect the performance at
high loads because the parameters determine the effi-
ciency of garbage collection, which is the main factor
of performance at high loads. We can also improve
the performance with clustering of hot blocks when
the locality changes as time goes on. In this case, the
probability of transition affects performance. This be-
havior was examined.

In this paper, we intended to show the feasibility of
using dynamic clustering of hot blocks in various sit-
uations. If the access localities are known in advance,
we can use the pregiven knowledge to optimize the pa-
rameters such as the hot area ratio and the ratio of
free blocks in the hot area. The best parameters and
performance are somewhat sensitive to access locality,
thus the best performance may not be obtained when
the actual access locality differs from the predicted.
The means of optimizing these parameters for a real
environment remains to be investigated.

Acknowledgment

We would like to thank to Stephen Davis for his help to
proofreading this paper. This work was supported by a
Grant-in-Aid for Scientific Research on Priority Areas
#04235103, from the Ministry of Education, Science
and Culture, Japan.

References

[l] A. Bhide and D. Dias. RAID Architectures for
OLTP. IBM Computer Science Research Report
RC 17879 (78489), March 1992.

[2] P. M. Chen and D. A. Patterson. Maximizing
Performance in a Striped Disk Array. In Proc. of
17th Annual Int. Symp. on Computer Architec-
ture(ISCA), pp. 322-331, May 1990.

[3] J. Gray, B. Horst, and M. Walker. Parity Striping
of Disc Arrays: Low-Cost Reliable Storage with
Acceptable Throughput. In Proc. of 16th VLDB
Conf., pp. 148-161, August 1990.

[4] M. Holland and G. A. Gibson. Parity Decluster-
ing for Continuous Operation in Redundant Disk
Arrays. In Proc. of ASPLOS- V, pp. 23-34, Octo-
ber 1992.

[5] J. Menon and J. Cortney. The Architecture of a
Fault-Tolerant Cached RAID Controller. In Proc.
of 20th ISCA, pp. 76686, 1993.

[6] J. Menon and J. Kasson. Methods for Improved
Update Performance of Disk Arrays. In Proc. of
25th Hawaii Int. Conf. on System Science, vol. I,
pp. 74-83, January 1992.

[7] K. Mogi and M. Kitsuregawa. Dynamic Parity
Stripe Reorganizations for RAID5 Disk Arrays. In
Proc. of 3rd Int. Conf. on Parallel and Distributed
Information Systems, pp. 17-26, September 1994.

[8] D. A. Patterson, G. A. Gibson, and R. H. Katz. A
Case for Redundant Arrays of Inexpensive Disks
(RAID). In Proc. of ACM SIGMOD, pp. 109-116,
June 1988.

[9] M. Rosenblum and J. Ousterhout. The Design
and Implementation of a Log-Structured File Sys-
tem. In Proc. of 13th Symp. on Operating Systems
Principles, pp. 1-15, October 1991.

[lo] M. I. Seltzer, P. M. Chen, and J. K. Ousterhout.
Disk Scheduling Revisited. In Proc. of USENIX,
pp. 313-323, January 1990.

[ll] D. Stodolsky and G. A. Gibson. Parity Logging:
Overcoming the Small Write Problem in Redun-
dant Disk Arrays. In Proc. of 20th ISCA, pp.
64-75, May 1993.

[12] G. Weikum, P. Zabback, and P. Scheuermann.
Dynamic File Allocation in Disk Arrays. In Proc.
of ACM SIGMOD, pp. 406-415, May 1991.

[13] P. S. Yu, K.-L. Wu, and A. Dan. Dynamic Par-
ity Grouping for Efficient Parity Buffering to Im-
prove Write Performance of RAID-5 Disk Ar-
rays. IBM Computer Science Research Report
RC 19041 (83137), July 1993.

99

