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1 Introduction 

Abstract 

As large numbers of text databases have be- 
come available on the Internet, it is harder to 
locate the right sources for given queries. In 
this paper we present gGlOSS, a generalized 
Glossary-Of-Servers Server, that keeps statis- 
t,ics on the available databases to estimate 
which databases are the potentially most use- 
ful for a given query. gGlOSS extends our pre- 
vious work [l], which focused on databases us- 
ing the boolean model of document retrieval, 
to cover databases using the more sophisti- 
cated vector-space retrieval model. We evalu- 
ate our new techniques using real-user queries 
and 53 databases. Finally, we further gener- 
alize our approach by showing how to build 
a hierarchy of gGlOSS brokers. The top level 
of the hierarchy is so small it could be widely 
replicated, even at end-user workstations. 
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Government or CNRI. This work was supported by an equip- 
ment grant from IBM Corporation. 
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The dramatic growth of the Internet over the past few 
years has created a new problem: finding the right 
text databases to evaluate a given query. There are 
thousands of sources ava.ilable to the users on the In- 
ternet, and it is practically impossible to query all 
of them when searching for information on a given 
topic: not only would such an exhaustive search take a 
long time to complete, but it could also be expensive, 
since some of the text, databases on the Internet may 
charge for their use. Consequently, users need a way 
to narrow their searches to a few useful text databases. 
This problem is a specific instance of the more general 
resource-discovery problem [‘2, 31. 

Many tools have recently appeared on the Internet 
to help users select the (text) databases that might 
be more useful for their queries (see Section 2). How- 
ever, many of these tools essentially keep a global in- 
dex of the available documents. This approach clearly 
does not scale well with the growing number of sources 
and documents. Alternatively, many other tools in- 
dex only a small part of each available document (e.g., 
its title). This approach fails to identify many useful 
sources because a significant part of each document 
is simply discarded. Similarly, other tools just keep 
succinct summaries of the contents of each data,base. 
These summaries are sometimes manually written, are 
often out of date, and fail t,o capture the whole content 
of the databases. 

Our approach is to provide a. broker that ranks t,he 
potentially most useful databases for a given query. 
This broker keeps only partial information on the con- 
tents of each database, so it scales with the growing 
number of available databases. However. this informa- 
tion covers the full-text content of the documents, so 
that the useful sources are identified. In [l] and [4] we 
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described GlOSS (for Glossary- Of-Servers Server) I, a 
centralized broker that keeps meta-information about 
databases supporting the boolean model of document 
retrieval. GlOSS maintains statistics on the databases, 
a.nd uses these statistics to estimate the actual con- 
tents of the databases. When users query GlOSS. it 
uses these statistics to rank the databases according 
to their estimated usefulness for the given query. The 
users then access the databases themselves, following 
the order that GlOSS suggested. 

Although the boolean model of document retrieval 
is widely used, it is a rather primitive one. One of 
the most popular alternative models is the vector-space 
retrieval model [5, 61. This model represents both the 
documents in a database and the queries themselves 
as weight vectors. Given a query, the documents are 
ranked according to how “similar” their corresponding 
vectors are to the given query vector. 

In this paper we present, gGlOSS, a generalized and 
more powerful version of GlOSS that also deals well 
with vector-space databases and queries. Like GlOSS, 
gGlOSS periodically collects statistics on the underly- 
ing sources (this time including summary word-weight 
information). We first determine the goodness of a 
database for a query, and the ideal database rank for 
a query (i.e., the rank that gGlOSSshould try to pro- 
duce for the query). Then, given a query and a de- 
sired goodness metric, gGlOSS can rank the available 
sources. 

Since gGlOSS produces estimates of the ideal 
database ranks, we need to compare these estimates 
against the ideal ranks. For this, we evaluate the 
performance of gGlOSS using real-user queries and 
53 vector-space databases, in terms of how close the 
gGlOSS ranks are to the ideal ones. Although we 
can estimate the size of the gGlOSS information to 
be only around 2% of the size of a full index of the 
databases, its performance is good (Section 6), show- 
ing that gGlOSS can closely approximate the ideal 
database ranks for the given queries. 

We also present facilities for building hierarchies of 
gGlOSS servers. In this case, hGlOSS, a high-level 
server, summarizes the contents of lower-level gGlOSS 
brokers, in much the same way as the gGlOSS brokers 
summarize the contents of the underlying databases. 
Given a query, the hGlOSS server suggests gGlOSS 
servers that might index useful databases for the query. 
Because the storage requirements of the hG1OSSserver 
are much smaller than those of the gG1OSS brokers, we 
can easily replicate the hGlOSS server so that it does 
not become a performance bottleneck, thus distribut- 
ing the load for searching the system. 

1 We have implemented GlOSS and made it accessible at 
http://gloss.stanford.edu. 

In what follows, Section 3 defines one “ideal” 
database rank for a query. Section 4 shows how 
gGlOSS approximates the ideal database rank using 
partial information. Section 5 introduces the method- 
ology for the experimental results of Section 6. Sec- 
tion 7 discusses alternative definitions of the ideal 
database rank. Finally, in Section 8 we show how to 
build the higher-level hGlOSS servers. 

2 Related Work 

One approach to solving the text-database discovery 
problem (see [2, 3] for surveys) is t,o let users “browse” 
the databases. Well-known examples include the ProsT 
pero file system [7], Gopher [a], and the World-Wide 
Web [8]. 

A different approach is to let, users query a. databa.se 
of “meta-information” about the available dat,abases. 
For example, WAIS [9] provides a “direct#ory of 
servers.” Many search facilities have been created for 
the World-Wide Web, like the Lycos service. ’ To scale 
with the growing number of available databases, some 
of these systems index only document titles or, more 
generally, just a small fraction of each document (e.g., 
the World-Wide Web Worm “). Other systems keep 
succinct, sometimes human-generated, summaries of 
the contents of each da,tabase (e.g., the ALIWEB sys- 
tem “). 

Recently, [lo] h as applied inference networks (from 
information retrieval) t,o the text-database discovery 
problem. Their approach summarizes databases using 
document,-frequency information for each term (the 
same type of information that GlOSS keeps about, the 
databases), together with the “inverse collection fre- 
quency” of the different terms. An inference network 
then uses this information t,o rank the databases for 
a given query. The “content-based routing” system of 
[ll, 121 keeps a “content label” for each collection of 
objects, with attributes describing t,he contents of t#he 
collection. 

The Harvest system [13] provides a flexible architec- 
ture for accessing information on the Internet. “Gath- 
erers” collect information about the data sources, and 
pass it to “brokers.” The “Harvest Server Registry” is 
a special broker that keeps information about a.11 other 
brokers, among other things. For flexibility, Harvest’ 
leaves the broker specification open, and many alter- 
native designs are possible. 

2Lycosis accessibleathttp://lycos.cs.cmu.edu. 
3The World-Wide Web Worm is accessible at http://- 

awu.cs.colorado.edu/home/mcbryan/UUUU.html. 
4ALIWEB is accessible at http://neb.nexor.co.uk/ali- 

aeb/doc/aliaeb.html. 
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3 Ranking Databases 

Given a query, we would like to rank the avail- 
able vector-space databases according to their useful- 
ness. This ranking should capture the ideal order for 
searching the databases: we should first search the 
most useful database(s), then the second most use- 
ful database(s), and so on, until we either exhaust the 
rank, or become satisfied with whatever documents we 
got up to that point. This section presents one defi- 
nition for the ideal database rank. The next section 
explores how gGlOSS will try to rank the databases as 
closely as possible to this ideal rank. 

Determining the ideal database rank for a query 
is a hard problem. The definition of this section is 
based solely on the answers (i.e., the document ranks 
and their scores) that each database produces when 
presented with the query in question. This definition 
does not use the relevance [5] of the documents to the 
end user who submitted the query. Using relevance 
would be appropriate for evaluating the search engines 
at each database; instead, we are evaluating how well 
gGlOSS can predict the answers that t.he databases 
return. In Section 7 we discuss our choice further, a.nd 
analyze some of the possible alternatives that we could 
have used. 

To define the ideal database rank for a query q, we 
need to determine how good each database db is for 
q. In this paper we assume that all databases use the 
same algorithms to compute weights and similarities. 
We consider that the only documents in db that are 
useful for q are those with a similarity to q greater 
than a given threshold 1, as determined by db. Docu- 
ments with lower similarity are unlikely to be useful, 
and therefore we ignore them. Thus, we define: 

Goodness(1, q, db) = c sim(q, d) (1) 
d E Rank(l, q, db) 

where sim(q, d) is the similarity between query q and 
document d, and Rank(l,q,db) = {d E dblsim(q,d) > 
1}. The ideal rank of databases Ideal(l) is then de- 
termined by sorting the databases according to their 
goodness for the query q. 

Example 3.1 Consider two databases, dbl and dbz, a 
query q, and the answers that the two databases give 
when presented with query q: 

dbl : (d:, 0.9), (d;, 0.91, (d;, 0.1) 

dba : (d;,0.8), (d;, 0.4), (d&0.3), (d;,O.l) 

In the example, dbl returns documents di, da, and d; 
as its answer to q. Documents di and di are ranked 
the highest in the answer, because they are the “clos- 
est” to query q in database dbl (similarity 0.9). To 

determine how good each of these databases is for q, 
we use Equation 1. If the threshold 1 is 0.2 (i.e., the 
user is willing to examine every document with sim- 
ilarity to q higher than 0.2), the goodness of dbl is 
Goodness(0.2, q, dbl) = 0.9+0.9 = 1.8, because dbl has 
two documents, d: and di, with similarity higher than 
0.2. Similarly, Goodness(0.2, q, dbz) = 0.8+0.4+0.3 = 
1.5. Therefore, Ideal(0.2) is dbl, dba. 

The goodness of a database tries to quantify how 
useful the database is for the user that issued the 
query. It does so by examining the document-query 
similarities as computed by each local source. A prob- 
lem with this definition is that t,hese similarities can 
depend on the characteristics of the collection that 
contains the document. Therefore, these similarities 
are not “globally valid.” For example, if a database 
dbl specializes in computer science, the word databases 
might appear in many of its documents. Then, t,his 
word will tend to have a low associated weight in 
dbl (e.g., if dbl uses the tf.idf formula for computing 
weights [S]). Th e word databases, on the other hand, 
might have a high associated weight in a database 
db2 that is totally unrelated to computer science and 
contains very few document with that word. Conse- 
quently, dbl might assign its documents a low score 
for a query containing the word databases, while dbz 
assigns a, few documents a high score for that query. 
The Goodness definiteion of Equation 1 might then de- 
termine that dba is better than dbl, while dbl is the 
best database for the query. In Section 7 we further 
discuss this problem, together with alternative ways of 
defining Goodness. 

4 Choosing Databases 

gGlOSS helps users determine what databases might, 
be most helpful for a query. Users first query gG1OSS 
to obtain a rank of the databases according to their 
potential usefulness. To perform this task, gG1OSS 
keeps information on the available databases, to esti- 
mate their goodness for the query. One option would 
be for gGlOSS to keep complete information on each 
database: for each databa.se db and word t, gGlOSS 
would know what document,s in db contain t, what 
weight t has in each of them, and so on. Although 
gG1OSS’s answers would always be accurat,e (if this 
information is kept up to date), the storage require- 
ments of such an approach would be too high: gGlOSS 
needs to index many databases, and keeping so much 
information on each of them does not scale. 

More reasonable solutions keep incomplete yet use- 
ful information on the databases. In this paper we 
explore some options for gG1OS.S that require one or 
both of the following matrices: 
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l F = (fij ) : fij is the number of documents in 
database dbi that contain word tj 

l W = (wij): wij is the sum of the weight of word 
tj over all documents in database dbi 

In other words, for each word tj and each vector-space 
database dbi, gGlOSS needs (at most) two numbers. 
The second of these numbers is the sum of the weight 
of tj over all documents in dbi, as determined by the 
vector-space retrieval algorithm that dbi uses. Typ- 
ically, the weight of a word tj in a document d is 
a function of the number of times that tj appears 
in d and the number of documents in the database 
that contain tj [6]. Although the information that 
gGlOSS stores about each database is incomplete, it 
will prove useful to generate database ranks that re- 
semble the ideal database rank of Section 3, as we will 
see in Section 6.2. Furthermore, this information is 
orders of magnitude smaller than that required by a 
full-text index of the databases, for example. Adapt- 
ing the boolean-database estimates of [l], we can esti- 
mate that the size of the gGlOSS information about a 
vector-space database is only around 2% of the size of 
a full-text vector-space index of the database. 

To obtain the data that gGlOSS keeps about a 
database dbi, namely rows fi+ and wit of the F and 
W matrices above, database dbi will have to period- 
ically run a collector program that extracts this in- 
formation from the local indexes and sends it to the 
gGlOSS server. 

Example 4.1 Consider a datclbase db and the word 
computer. Suppose that the following are the docu- 
ments in db having the word computer in them, to- 
gether with the associated weights: 

computer : (d1,0.8), (dz, 0.7), (d3,0.9), (d8,O.g) 

That is, document dl contains the word computer 
with weight 0.8 (f or some weight-computation algo- 
rithm [5]), document d 2, with weight 0. ?‘, and so on. 
The gG1OSS collector will not send gGlOSS 011 this 
information: it will only tell gGlOSS that the word 
computer appears in four documents in database db, 
and that the sum of the weights with which the word 
appears in the documents is 0.8 + 0.7 + 0.9 + 0.9 = 3.3. 

In our definitions below, we assume that a 
query q is expressed as a weight vector Q = 
(ql, . . , qj, . . . , qt) [5], where qj is the weight of word 
tj in query q. For example, this weight can simply 
be the number of times that word tj appears in the 
query. We also assume throughout this pa.per that the 
vector-space databases compute the similarity between 
a document and a query by taking t,he inner product of 
the corresponding document and query weight vectors. 

Since gGlOSSrepresents both the databases and the 
queries as vectors, gGlOSS could compute similarities 
between these vectors analogously to how documents 
and queries are compared. gGlOSS could use these 
similarities to rank the databases for the given query. 
For example, gGlOSS could estimate the goodness of 
database db; for query q as the inner product wi, . Q, 
where w:+ = (wil,. . , wit) is the (normalized) row of 
W that corresponds to dbi. However, we are interested 
in finding the databases that contain useful documents 
for the queries, not those databases that are “similar” 
to the given queries. The definitions of the gGlOSS 
ranks below reflect this fact. Also, note that the vec- 
tors with which gG1OSS represents each database can 
be viewed as cluster centroids [6], where each database 
is considered as a single document cluster 5. 

Because the information that gGlOSS keeps about 
each database is incomplete, it has to make assump- 
tions regarding the distribution of query keywords 
and weights across the documents of each database. 
These assumptions allow gG1OSS to compute better 
estimates. The following sections present two sets 
of assumptions that gGlOSS will use to derive dif- 
ferent database ranks for a given query. These as- 
sumptions are artificial: very rarely would a set of 
databases and queries conform to them. However, we 
use them because these type of assumptions proved 
themselves useful in the boolean- GlOSS case for choos- 
ing the “right” databases for a query [l, 41. 

4.1 High-Correlation Scenario 

To derive Max(l), the first database rank with which 
gGlOSS tries to match the Ideal(l) database rank of 
Section 3, gG1OSS assumes that if two words appear 
together in a user query, then these words will appear 
in the database documents with the highest possible 
correlation: 

Assumption 4.1 If query keywords tl and tz appear 
in fil and fi2 documents in database dbi, respectively, 
and fil 5 fiz, then every db; document that contains 
tl also contains tz. 

Example 4.2 Consider a database db; and the query 
q=computer science department. For simplicity, let 
tl= computer, tz= science, and t3= department. Sup- 
pose that fil = 2, fiz = 9, and fi3 = 10: there are 2 
documents in dbi with the word computer, 9 with the 
word science, and 10 with the word department. 

gGlOSS assumes that the 2 documents with the word 
computer also contain the words science and depart- 
ment. Furthermore, all of the 9 - 2 = 7 documents 

5An interesting direction to explore is to represent each 
database db as a set of (very few) cluster centroids. Each of 
these centroids would summarize a set of closely related docu- 
ments of db. 
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with word science but not with word computer also 
contazn the word department. Finally, there is exactly 
10 - 9 = 1 document with just the word department. 

gGlOSS a.lso needs to make assumptions on the 
weight distribution of the words across the documents 
of a database: 

Assumption 4.2 The weight of a word is distributed 
uniformly over all documents that contain the word. 

Thus, word tj has weight 2 in every dbi docu- 
ment that contains ti. This assumption simplifies the 
computations that gGlOSS has to make to rank the 
databases. We will see in Section 6 that, this unrealis- 
tic assumption is surprisingly effective. 

Example 4.2 (cont.) Suppose that the total weights 
for the query words in database dbi are wil = 0.45, 
W;Z = 0.2, and wi3 = 0.9. According to Assump- 
tion 4.2, each of the two documents that contain word 
computer will do so with weight y = 0.225, each of 
the 9 documents that contain word science ,will do so 
with weight y = 0.022, and so on. 

gG1OSSuses the assumptions above to estimat,e how 
many documentjs in a dat#abase have similarity greater 
than some threshold 1 to a given query, and what the 
added similarity of these documents is. These esti- 
mates determine the Max(l) database rank. 

Consider database dbi with its two associated vec- 
tors fi* and loi+, and query q, with it#s associated vec- 
tor Q. Suppose that the words in q are tl, . , t,, with 
fia 2 fib for all 1 5 a 2 b < n. Assume that fil > 0. 
From Assumption 4.1, the fil document,s in dbi that 
contain word t 1 also contain all of the other n- 1 query 
words. From Assumption 4.2, the similarity of any of 
these fil documents tjo t,he query y is: 

siinl = c 
j=l, ..,n 

Qi x z 

Furthermore, these fil documents ha.ve the highest, 
similarit,y to q among the document,s in dbi. There- 
fore, if siml 5 1, then there are no documents in dbi 
with similarity greater than threshold 1. If, on the 
other hand, sirn,l > 1, then gGlOSS should explore 
the fir, - fil documents (Assumption 4.1) that cont,ain 
words t2,. . , t,,, but not, word tl. Thus, gG1OSSfinds 
p such that: 

sim, = c 
.1=p> ..,n 

qj x 2 > 1, but, 0) 

sim,+l = c 5 1 (3) 
j=p+l,...,n 

Then, the fip documents having (at least) query words 
t,, . . , t, have an estimated similarity to q greater 
than threshold 1 (Condition 2), whereas the documents 
having only query words tp+l, , t, do not. 

Using this definition of p and the assump- 
tions above, we give the first definition for 
Estimate(1, q, dbi), th e estimated goodness of database 
dbi for query q, that determines the Max(l) database 
rank: 

Estimate(1, q, dbi) = 

= C (fij - fi(j-1,) X simj 
j=l,...,p 

= ( C qj xwij)+fipXCQiX tuij (4) 
j=l,...,p j =p+1,...,n fij 

where we define fro = 0, and simj is the similarity 
between q and any document having words ti, , t,, 
but not words tl, . . , tj-1. There are fij - fici _ 1) such 
documents in dbi. This definition computes the added 
similarity of the fip documents estimated to have sim- 
ilarity to q greater than threshold 1. (See Conditions 2 
and 3, and Assumptions 4.1 and 4.2.) 

Example 4.2 (cont.) Assume that query q has 
weight 1 for each of its three words. According to As- 
sumption 4.1, the two documents with, the word corn- 
puter also havp the words science and department in 
them. The similarity of any of these two documents 
to q is, using Assumption 4.2, y + 7 + g = 
0.337. If our threshold 1 is 0.2, then all of these doc- 
uments are acceptable, because their similarity to q 
is higher than 0.2. Also, there are 9 - 2 = 7 doc- 
um,ents with the words science and department but 
not computer. The similarity of any of these 7 doc- 
uments to q is 7 + z = 0.112. Then these docu- 
ments are not acceptable for threshold 1 = 0.2. There 
is 10 - 9 = 1 document with only the word depart- 
ment, but this document’s similarity to q is even lower. 
Consequently, p = 1. (See Conditions 2 and 3.) 
Then, according to the Max(0.2) definition of Esti- 
mate, Estimate(0.2, q, dbi) = fil x (q1 x F+q2 x z+ 

q3 x 2) = 2 x (1 x y + 1 x $? + 1 x y) = 0.674. 

4.2 Disjoint Scenario 

To derive Sum(l), another rank that gGlOSS uses 
to approxima.te Ideal(l), gGlOSS assumes that if two 
words appear together in a user query, then these 
words do not appear together in any database doc- 
ument (if possible): 

Assumption 4.3 The set of dbi documents with mord 
tl is disjoint with the set of dbi documents with word 
t2, for all tl and t2, tl #tar that appear in query q. 
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Therefore, the words that appear in a user query are 
assumed to be negatively correlated in the database 
documents. gGlOSS also needs to make Assump- 
tion 4.2, that is, the assumption that weights are uni- 
formly distributed. 

Consider database dbi with its two associated vec- 
tors fi+ and wit, and query q, with its associated vec- 
tor Q. Suppose that the words in q are tl, . , t,. For 
any query word tj (1 5 j 5 n), then the fij docu- 
ments containing ti do not contain query word t,, for 
all 1 5 p 5, n2, p # j (A ssumption 4.3). Furthermore, 
the similarity of each of these fij documents to q is 
exactly qj x 2, if fij > 0 (from Assumption 4.2). 

For rank Sum(l) we then define Estimate(1, q, dbi), 
the estimated goodness of database dbi for query q, as: 

Estimate(1, q? dbi) = 

= c i=l,...,nl(f~l>O)A(q,x~>l) fij x (4Jj x Z’ 

c qj X Wij (5) 

Example 4.3 Consider the data of Example 4.2. Ac- 
cording to Assumption 4.3, there are 2 documents 
containing the word computer and none of the other 
query words, 9 documents containing the word sci- 
ence and none of the other query words, and 10 docu- 
ments containing the word department and none of 
the other query words. The documents in the first 
group have similarity y = 0.225 (from Assump- 
tion 4.2), and are thus acceptable, because our thresh- 
old 1 is 0.2. The documents in the second and third 
groups have similarity 7 = 0.022 and g = 0.09, re- 
spectively, and are thus not acceptable for our thresh- 
old. So, the only documents close enough to query q 
are the two documents that contain word computer. 
Then, according to the Sum(0.2) definition of Esti- 
mate, Estimate(0.2,q,dbi) = fil x z = 0.45. 

Notice the special case when the threshold 1 is zero. 
In this case, the Max(O) and Sum(O) definitions of 
Estimate (Equations 4 and 5) become: 

Estimate(O,q,dbi) = C qj x euii 
j=l,...,n 

assuming that if fii = 0, then wij = 0. Then, 
Estimate(0, q, dbi) b ecomes the inner product Q ‘1~;~. 
To compute the Alax and Sum(O) ranks, gGlOSS 
does not need the matrix F of document frequencies 
of the words; it only needs the matrix W of added 
weights. 6 Therefore, the storage requirements for 

6 We might need F, though, to compute the weight vector for 
the queries, depending on the algorithm used for this. 

gGlOSS to compute the database ranks may be much 
lower if 1 = 0. We pay special attention to these ranks 
in our experiments of Section 6.2. 

5 Comparing Database Ranks 

In this section we analyze how we can compare 
gG1OSS’s ranks (Section 4) to the ideal one (Sec- 
tion 3) ‘. In the following section we report experi- 
mental results using the comparison methodology of 
this section. 

Let q be a query, and DB = {dbl, , db,} be the 
set of available databases. Let G = (db,, , , dbgs,) be 
the database rank that gGlOSS generated for q, using 
one of the schemes of Section 4. We only include in G 
those databases with estimated goodness greater t,han 
zero: we assume that users ignore databases with zero 
estimated goodness. Thus, in general, s’ < s. Finally, 
let I = (db;, , , dbi,,,) be the ideal database rank. We 
only include in I those databases with actual goodness 
greater than zero. Our goal is to compare G against 
I, and quantify how close the two ranks are. 

One way to compare the G and I ranks is by us- 
ing the Goodness metric that we used to build I. We 
consider the top n databases in rank I, and compute 
i,, the accumulated goodness of these n databases for 
query q. Because rank 1 was generated using this 
metric, the top n databases in rank I have the max- 
imum accumulated goodness for q that. any subset of 
n databases of DB can have. We then consider the 
top n databases in rank G, and compute gn, t#he accu- 
mulated goodness of these n databases for q. Because 
gGlOSS generated rank G using only partial informa- 
tion about the databases, in general gn 5 i,. (If n > s’ 
(resp. n > s”), we compute gn (in) by just taking the 
s’ (s”) databases in G (I).) We then compute: 

R,= f 1 
if i, > 0 
otherwise 

This number gives us t,he fraction of the optimum 
goodness (in) that gGlOSS captured in the top n 
databases in G, and models what the user that, 
searches the top n databases that gGlOSS suggests 
would get, compared to what the user would have got- 
ten by searching the top n databases in the ideal rank. 

Example 5.1 Consider a query q, and jive databases 
dbi, 1 5 i 5 5. Table 1 shows I, the ideal database 
rank, and G and H, t,wo different gGlOSS database 
ranks for q, for some definition of these ranks. FOI 
example, dbl is the top database in the ideal rank, 
with Goodness(1, q, dbl) = 0.9. Database clbs does 
not appear in rank I, because Goodness(l,q, dbs) = 

‘Our definition of the ‘R, metric in this section is partially 
based on the normalized cumulative recall metric of [14]. 
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I G H I 
db Goodness db Estimate db Estimate 

dh 0.9 dba 0.8 dbz 0.9 
dbz 0.4 dh 0.6 dbl 0.8 
db3 0.3 dbs 0.3 db3 0.4 
db4 0.2 & 0.2 

Table 1: The ideal and gGlOSS database ranks for 
Example 5.1. 

0. gGlOSS correctly predicted this for rank G 
(Estimate(1, q, dbs) = 0 for G), and so db5 does not 
appear in G. However, db:, does appear in H, because 
Estimate(1, q, dbs) = 0.2 for H. 

Let us focus on the G rank: dba is the top database 
in G, with Estimate(l,q,dbn) = 0.8. The real good- 
ness of dba for q is Goodness(l,q,dbz) = 0.4. From 
the ranks of Table 1, RI = $$: if we access 
dba, the top database from the G rank, we obtain 
Goodness(l,q, db2) = 0.4, whereas the best database 
for q is dbl, with Goodness(l,q,dbl) = 0.9. Similarly, 
I& = o.4to.gto 3 = 1. In this case, by accessing the 0.9+0.4+0.3 
top three databases in the G rank we access exactly the 
top three databases in the ideal rank, and thus I& = 1. 

0.4to.9to.3 However, R4 = o,g+o,4+o,3+o~2 = 0.89, since the G 
rank does not include db4 (Estimate(1, q, db4) = 0), 
which is actually useful for q (Goodness(1, q, db4) = 
0.2). 

Now consider the H rank. H includes all the 
databases that have Goodness> 0 in exactly the same 
order as G. Therefore, the ‘R, metric for H coincides 
with that for G, for all n. However, rank G is in some 
sense better than rank H, since it predicted that dbs 
has zero goodness, as we mentioned above. H jailed 
to predict this. The R.,, metric does not distinguish 
between the two ranks. This is why we introduce our 
following metric. 

As the previous example mot,ivated, we need an- 
other metric, P,, to distinguish between gGlOSS ranks 
that include useless databases and those that do not. 
Given a gGlOSS rank G for query q, Pn is the fraction 
of Topn(G), the top n databases of G (which have a 
non-zero Estimate for being in G), that actually have 
non-zero goodness for query q: 

P, = 
I{db E Top,(G)1 Goodness(1, q, db) > O}l 

ITOP, (G) I 

(Actually, P, = 1 if for all db, Estimate(l,q,db) = 0.) 
Note that P, is independent of the ideal database rank 
I: it just depends on how many databases that gG1OSS 
estimated as potentially useful turned out to actually 
be useful for the query. From the point of view of the 
end users, a ranking with higher P, is better because 
it leads them to fewer fruitless database searches. 

Example 5.1 (cont.) In the previous example, P4 = 
3 - 1 for G, because all of the databases in G have 3- 
actual non-zero goodness. However, P4 = z = 0.75 
for H: of the four databases in H, only three have 
non-zero goodness. 

6 Evaluating gGlOSS 

In this section we evaluate different gGlOSS ranking 
algorithms experimentally. We first describe the real- 
user queries and databases that we used in the experi- 
ments. Then, we report results for Max(l) and Sum(l), 
the two gGlOSS ranks of Section 4. 

6.1 Queries and Databases 

To evaluate gGlOSS experimentally, we used real-user 
queries and databases. The queries that we used where 
profiles that real users submitted to the SIFT Net- 
news server developed at Stanford [15] ‘. Users send 
profiles in the form of boolean or vector-space queries 
to the SIFT server, which in turn filters Netnews ar- 
ticles every day and sends the articles matching the 
profiles to the corresponding users. We used the 6800 
vector-space profiles that were active on the server in 
December 1994. 

To evaluate the gGlOSS performance using these 
6800 queries, we used 53 newsgroups as 53 databases: 
we took a snapshot of the articles that were active 
at the Stanford Computer-Science-Department news 
host on one arbitrary day, and used these articles 
to populate the 53 databases. We selected all the 
newsgroups in the camp. databases, camp . graphics, 
comp.infosystems, camp. security, rec.arts.- 
books, rec. arts. cinema, rec. arts. comics, and 
rec. arts. theatre hierarchies that had active docu- 
ments in them when we took the snapshot. 

We indexed the 53 databases and evaluated the 
6800 queries on them using the SMART system (ver- 
sion 11.0) developed at Cornell University. To keep 
our experiments simple, we chose the same weighting 
algorithms for the queries and the documents across 
all of the databases. We indexed the documents using 
the SMART ntc formula, which generates document 
weight vectors using the cosine-normalized tf.idf prod- 
uct [6]. We indexed the queries using the SMART 
nnn formula, which generates query weight vectors us- 
ing the word frequencies in the queries. The similarity 
coefficient between a document vector and a query vec- 
tor is computed by taking the inner product of the two 
vectors. 

For each query and gGlOSS ranking algorithm we 
compared the ideal rank against the gGlOSS rank us- 
ing the methodology of Section 5. We evaluated each 

‘SIFT is accessible at http: //sift. Stanford. edu. 
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query at each of the 53 databases to generate its ideal 
database rank. For a fixed gGlOSS ranking definition 
and a query, we computed the rank of databases that 
gGlOSS would produce for that query: we extracted 
the (partial) information that gGlOSS needs from each 
of the 53 databases. For each query word, gGlOSS 
needs the number of documents in each database that 
include the word, and the sum of the weight of the 
word in each of these documents. To extract all this 
information, we queried the 53 databases using each 
query word individually, which totaled an extra 18,213 
queries. We should stress that this is just the way 
we performed the experiments, not the way a gGlOSS 
server will obtain the information it needs about each 
database: in a real system, each database will period- 
ically scan its indexes, generate the information that 
gGlOSS needs, and send it to the gGlOSS server. (See 
Section 4.) 

6.2 Experimental Results 

In this section we experimentally compare the gGlOSS 
database ranks against the ideal ranks in terms of the 
R, and P, metrics. We study which of the Max(l) 
and Sum(l) database ranks is better at predicting ideal 
rank Ideal(l), and what impact the threshold 1 has 
on t,he performance of gG1OSS. We also investigate 
whether keeping both the F and W matrices of Sec- 
tion 4 is really necessary, since gGlOSS needs only 
one of these matrices to compute ranks MUX(O) and 
Sum(O) (Section 4.2). 

Ideal database rank Ideal(O) considers any docu- 
ment with a non-zero similarity to the query as useful. 
Ranks MUX(O) and Sum(O) are identical to Ideal(O), 
and so they have R, = P, = 1 for all n. Consequently, 
if a user wishes to locate databases where the overall 
similarity between documents and the given query is 
highest and any document with non-zero similarity is 
interesting, gGlOSS should use the McxE(O) (or, iden- 
tically, Sum(O)) ranks and get perfect results. 

To study the impact of higher rank thresholds, Fig- 
ures 1 and 2 show results for the Zdeal(0.2) ideal 
rank. We show ‘R, and P, for values of n rang- 
ing from 1 to 15. We do not report data for higher 
n’s because most of the queries have fewer than 15 
useful databases according to Ideal(0.2) and hence, 
the results for high values of n are not that signif- 
icant. Figure 2 shows that rank Sum(0.2) has per- 
fect p, (Pn = 1) for all n, because if a database 
db has Estimate(0,2,q,db) > 0 according to the 
Sum(0.2) rank, then Goodness(0.2, q, db) > 0 accord- 
ing to Zdeal(0.2). I n other words, rank Sum(0.2) only 
includes databases that are guaranteed to be useful. 
Rank Mu~(0.2) may include databases not guaranteed 
to be useful, yielding higher R, values (Figure l), but 

lower P, values (Figure 2). 
To decide whether gGlOSS really needs to keep both 

matrices F and W (Section 4), we also use ranks 
MUX(O) and Sum(O) to approximate rank Zdeal(0.2). 
gGlOSS needs only one of the two matrices to com- 
pute these ranks (Section 4.2). Since ranks MEE(O) 
and Sum(O) are always identical, we just present their 
data once labeled Max(O)/Sum(O). Figure 1 shows 
that the Max(O) rank has the highest values of R,. 
This rank assumes a threshold 1 = 0, and thus it tends 
to include more databases than its counterparts with 
threshold 0.2. This is also why Mu%(O) has much lower 
P, values (Figure 2) than Mu~(0.2) and Sum(0.2): it, 
includes more databases that have zero goodness ac- 
cording to Zdeal(0.2). 

In summary, if the users are interested in not miss- 
ing any useful database, but are willing to search 
some useless ones, then Map is the best choice for 
gGlOSS, and gGlOSS can do without matrix F. If 
the users wish to avoid searching useless databases, 
then Sum(0.2) is the best choice. Unfortunately, 
Sum(0.2) 1 h 1 a so as ow R, values, which means it can 
also miss some useful sources. As a compromise, a 
user can have Mu~(0.2), which has much better P,, 
values than MUX(O) and generally better R, values 
than Sum(0.2). Al so, note that in the special case 
where users are interested in accessing only one or two 
databases (n = 1,2) t,hen Muz(O.2) is the best choice 
for the R, metric. In this case, it is worthwhile for 
gGlOSS to keep both matrices F and W. 

To show the impact of the rank thresholds, Fig- 
ures 3 and 4 show the R, and Pn values for the dif- 
ferent ranks and a fixed n = 3, and for values of 
the threshold 1 from 0 to 0.4. For larger values of 
1, most of the queries have no database with good- 
ness greater than zero. For example, for ideal rank 
Zdeal(0.6) each query has on average only 0.29 use- 
ful databases. Therefore, we only show the data for 
threshold 0.4 and lower. At first glance one might ex- 
pect the R, and P, performance of MUX(O) not to 
change as the threshold 1 varies, since the ranking it 
computes is independent of the desired 1. However, as 
1 increases, the ideal rank Ideal(l) changes, and the 
static estimate provided by Muz(0) performs worse 
and worse for P,. The Max(l) and Sum(l) ranks do 
take into account the target 1 values, and hence do 
substantially better. Our earlier conclusion still holds: 
strategy Sum(l) is best at avoiding useless databases, 
while MUX(O) provides the best ‘E,, values (at, t,he cost 
of low P, values). 

In summary, gGlOSS generally predicts fairly well 
the best databases for a given query. Actually, the 
more gGlOSS knows about the users’ expectat,ions, 
the better gGlOSS can rank the databases for the 
query. If high values of both R, and P, are of in- 
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Figure 1: Parameter R, as a function of n, the num- 
ber of databases examined from the ranks, for the 
Ideul(0.2) ideal database ranking and the different 
gGlOSS rankings. 
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Figure 2: Parameter P, as a function of n, the num- 
ber of databases examined from the ranks. for the 
Ideul(0.2) ideal database ranking and the different 
gGlOSS ra,nkings. 

terest, then gGlOSS should produce ranks based on 
the high-correlation assumption of Section 4.1: rank 
Muz(l) is the best candidate for rank Ideal(l) with 
1 > 0. If only high values of R, are of interest, then 
gG1OSS can do without matrix F, and produce ranks 
MUX(O) or Sum(O). If only high values of ‘P, are of 
interest, then gGlOSS should produce ranks based on 
the disjoint-scenario assumption of Section 4.2: rank 
Sum(l) is th b t e es candidate. For rank Ideal(O), ranks 
Max( 0) and Sum(O) give perfect answers. 

7 Alternative Ideal Ranks 

Section 3 presented a way of defining the goodness of a 
database for a query, and also showed a problem with 
its associated ideal database rank. In this section we 
explore alternative ideal database ranks for a query. 
(Even other possibilities are discussed in [16].) 

We can organize the different database ranks for a 
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Figure 3: Parameter ‘Rs as a function of the threshold 
1, for ideal rank Ideal(l). 

P, 0.6 

0.5 t 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
1 

Figure 4: Parameter Ps as a function of the threshold 
1, for ideal rank Ideal(l). 

query into two classes, according to whether the ranks 
depend on the number of relevant documents for the 
query in each databa.se or not [17]. The first two al- 
ternative ranks belong to the first class. 

The first rank, RelAll, simply orders the databases 
based on the number of relevant documents they con- 
tain for the given query. By relevant we mean tha.t 
the user who submits Q will judge these documents to 
be of interest. To see a problem with this rank, con- 
sider a database db that contains, say, three relevant 
documents for some query Q. Unfortunately, it turns 
out that the search engine at db does not include any 
of these documents in the answer to q. So, the user 
will not benefit from these three relevant documents. 
Thus, we believe it is best t,o evaluate the ideal good- 
ness of a database by what its search engine might 
retrieve, not by what potentially relevant documents 
it might contain. Notice that a user might eventually 
obtain these relevant documents by successively mod- 
ifying the query. Our model would treat each of these 
queries separately, and decide which databases are the 
best for each individual query. 
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Our second rank, Rel-Rank(l), improves on ReLAll 
by considering only the relevant documents in each 
database that have a similarity to q greater than a 
threshold 1, as computed by the individual databases. 
The underlying assumption is that users will not ex- 
amine documents with lower similarity in the answers 
to the queries, because these documents are unlikely 
to be useful. This definition does not suffer from the 
problem of the ReLAll rank: we simply ignore relevant 
documents that db does not include in the answer to 
q with sufficiently high similarity. However, in general 
we believe that ranks based on end-user relevance are 
not appropriate for evaluating schemes like gG1OSS. 
That is, the best we can hope for any tool like gGlOSS 
is that it predicts the answers that the databases will 
give when presented with a query. If the databases 
cannot rank the relevant documents high and the non- 
relevant ones low with complete index information, it 
is asking too much that gGlOSS derive relevance judg- 
ments with only partial information. Consequently, 
the database rankings that are not based on docu- 
ment relevance seem a more useful frame of reference 
to evaluate the effectiveness of gGlOSS. Hence, the 
remaining ranks that we consider do not use relevance 
information. 

The Global(l) rank is based on considering the con- 
tents of all the databases as a single collection. The 
documents are then ranked according to their “global” 
similarity to query q. We consider only those docu- 
ments having similarity to q greater than a threshold 
1. The Goodness metric associated with rank Global(l) 
would add the similarities of the acceptable docu- 
ments. The problem with this rank is relat,ed to the 
problem with the Rel-All rank: a database db may get 
high goodness values for documents that do not appear 
(high) in the answer that the database produces for q. 
Therefore, db is not as useful to q as the Goodness met- 
ric predicted. To avoid this problem, the goodness of a 
database for a query should be based on the document 
rank that the database generates for the given query. 

The definition of Goodness of Section 3 does not 
rely on relevance judgments, and is based on the docu- 
ment ranks that the databases produce for the queries. 
Therefore, that definition does not suffer from the 
problems of the alternative ranks that we considered 
so far in this section. However, as we mentioned in 
Section 3, a problem is that the similarities computed 
at the local databases can depend on the characteris- 
tics of the collections, and thus they might not be valid 
globally. The next definition attempts to compensate 
for this collection-dependent computations. 

The next rank, Local(l), considers only the set of 
documents in db having scaled similarity to q greater 
than a threshold 1. We scale the similarities coming 
from different databases differently, to compensate for 

the collection-dependent way in which these similari- 
ties are computed. Also, we should base the goodness 
of each database on its answer to the query, to avoid 
the anomalies we mentioned above for the Rel-All and 
the Global ranks. One way to achieve these two goals 
is to multiply the similarities computed by database 
db by a positive constant scale(q, db): 

Goodness(1, q, db) = scale(q, db) x c sim(q, d) 

d E Scaled-Rank(l, g, db) 

where scale(q, db) is the scaling factor associated with 
query q and database db, and Scaled-Rank(1, q, db) = 
{d E db@n(q, d) x scale(q, db) > 1). 

The problem of how to modify the locally computed 
similarities to compensate for collection-dependent 
factors in their computation has received attention re- 
cently in the context of the collection-fusion problem. 
The collection-fusion problem [18, 10, 191 studies how 
to merge document rankings for a query from different 
sources into a single document ranking. (See [lo] for 
a way to use Gloss-like information to scale t,he sim- 
ilarities computed at each source.) In general, deter- 
mining what scaling factor to use to define the Local(l) 
ideal database rank is an interesting problem that we 
will explore in the near future. Also, if we incorporate 
scaling into the Goodness definition, we should modify 
gGlOSS’s ranks to imitate this scaling. 

In summary, none of the database ranking schemes 
that we have discussed is perfect, including the ones we 
used for our experiments. Each scheme has its limita- 
tions, and hence, should be used with care. However, 
we believe that the ranking that we used (Section 3) 
is a good starting point for now, until more work on 
scaling is done. 

8 Decentralizing gGlOSS 

So far, we described gGlOSS as a centralized server 
that users query to select the most promising sources 
for their queries. In this section we show how we can 
build a more distributed version of gGlOSS using es- 
sentially the same methodology that we developed in 
the previous sections. 

Suppose that we have a number of gGlOSS servers 
G1, . . . , G,, indexing each a set of databases as we de- 
scribed in the previous sections. (Each of these servers 
can index the databases at one university or com- 
pany, for example.) We will now build a higher-level 
gGlOSS server, hGlOSS, that summarizes the contents 
of the gGlOSS servers in much the same way as the 
gGlOSS servers summarize the contents of the underly- 
ing databases. ’ The users will then query the hGlOSS 

gAlthough our discussion focuses on a 2-level hierarchy of 
servers, we can use the same principles to construct deeper 
hierarchies. 
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server first, and obtain a rank of the gGlOSS servers 
according to how likely they are to have indexed useful 
databases. Later, the gGlOSS servers will produce the 
final database ranks. Although the hGlOSS server is 
still a single entry point for users to search for docu- 
ments, the size of this server will be so small that it 
will be inexpensive to massively replicate it, distribut- 
ing the access load among the replicas. In this way, 
organizations will be able to manage their own “tradi- 
tional” gGlOSS servers, and will let replicas of a log- 
ically unique higher-level gGlOSS, hGlOSS, concisely 
summarize the contents of their gGlOSS servers. 

The key point is to notice that hGlOSS can treat the 
information about a database at a traditional gGlOSS 
server in the same way as the traditional gGlOSS 
servers treat the information about a document at the 
underlying databases. The “documents” for hGlOSS 
will be the database summaries at the gGlOSS servers. 

To keep the size of the hGlOSS server small, the 
information that the hGlOSS server keeps about a 
gGlOSS server G, is limited. For example, hGlOSS 
keeps one or both of the following matrices (see Sec- 
tion 4): 

l H= (h,.?): h,.j is the number of databases in 
gGlOSS G, that contain word ti 

l D= (d,j): d,j is the sum of the number of doc- 
uments that contain word tj in each database in 
gGlOSS G, 

In other words, for each word tj and each gGlOSS 
server G,, hGlOSS needs (at most) two numbers, in 
much the same way as the gGlOSS servers summarize 
the contents of the document databases (Section 4). 

Example 8.1 Consider a gG1OSS server G, and the 
word computer. Suppose that the following are the 
databases in G, having documents with the word 
computer in them, together with their corresponding 
gGlOSS weights and frequencies: 

computer : (db1,5,3.4), (dbz,2,1.8), (dbz, 1,0.3) 

That is, database dbl has five documents with the 
word computer in them, and their added weight is 
3.4 for that word, database db:! has two documents 
with the word computer in them., and so on. hGlOSS 
will only know that the word computer appears in 
three databases in G,, and that the sum of the num- 
ber of documents for the word and the databases is 
5 + 2 + 1 = 8. hGlOSS will not know the identities 
of these databases, or the individual document counts 
associated with the word and each database. 

We can now use the same methodology we used for 
gG1OSS in the previous sections: given a query q, we 

define the goodness of each gG1OSS server G, for the 
query: for example, we can take the database rank 
that G, produces for q, together with the goodness 
estimate for each of these databases according to G,, 
and define the goodness of G, for q as a function of 
this rank. This computation is analogous to how we 
computed the goodness of the databases in Section 3. 

After defining what the goodness of each gGlOSS 
server is for query q, we define how hGlOSS is going to 
estimate this goodness given only partial information 
about each gGlOSS server. hGlOSS will determine the 
Estimate for a gGlOSS server G, using the vectors h,, 
and d,, for G, in a way analogous to how the gGlOSS 
servers determine the Estimate for a database dbi using 
the fi* and wi+ vectors. After defining the Estimate for 
each gGlOSS server, hGlOSS ranks the gGlOSS servers 
so that the users can access the most promising servers 
first, i.e., those most likely to index useful databases. 

Due to space limitations, we are unable to present 
detailed results for hG1OSS. However, simply to illus- 
trate its potential, here we briefly describe one exper- 
iment. For this, we divide the 53 databases of Sec- 
tion 6 into five randomly-chosen groups of around ten 
databases each. Each of these groups corresponds to 
a different gGlOSS server. 

We assume that the gGlOSS servers approximate 
ideal rank Ideal(O) with the Max(O) database rank. 
Next, we define the goodness of a gGlOSS server G, 
for a query q as the number of databases indexed by 
G, having a goodness Estimate for q greater than zero. 
This definition determines the ideal rank of gGlOSS 
servers. To approximate this ideal rank, hGlOSS pe- 
riodically receives the H matrix defined above from 
the underlying gGlOSS servers. For query q with 
words tl,. . . , t, and gGlOSSserver G,, h,l, . . , h,, are 
the database counts for G,. associated with the query 
words. (Word tl appears in h,l databases in gGlOSS 
server G,, and so on.) Assume that h,.l < . . 5 h,,. 
Then, hGlOSS estimates the goodness of G, for q as 
h,,. In other words, hGlOSS estimates that there are 
h,, databases in G, that have a non-zero goodness 
estimate for q. 

Table 2 shows the different values of the (adapted) 
R, and P, metrics for the 6,800 queries of Section 6. 
Note that P, = 1 for all n, because every time hGlOSS 
chooses a gGlOSS server using the ranking described 
above, this server actually has databases with non-zero 
estimates. From the high values for R, it follows that 
hGlOSS is extremely good at ranking “useful” gGlOSS 
servers. 

Our single experiment used a particular ideal rank- 
ing and evaluation strategy. We can also use the other 
rankings and strategies we have presented adapted to 
the hGlOSS level, and tuned to the actual user require- 
ments. Also, the hGlOSS server will be very small in 
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Table 2: The R, and P, metrics for hGlOSS and our 
sample experiment. 

size and easily replicated, thus eliminating the poten- 
tial bottleneck that the centralized gGlOSS architec- 
ture can suffer. 

9 Conclusion 

We have shown how to construct an information broker 
for both vector-space text databases and hierarchies 
of brokers. Based on compact collected statistics, the 
broker can provide very good hints for finding the rele- 
vant databases, or finding relevant lower-level brokers 
with more information for a given query. An impor- 
tant feature of our approach is that the same machin- 
ery can be used for both types of brokers, either the 
lower-level or the higher-level ones. Our experimental 
results show that the gG1OSS and the hGlOSS brokers 
are quite promising and could provide useful services 
in large, distributed information systems. 
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