
Generalizing GIOSS to Vector-Space Databases and
Broker Hierarchies *

Luis Gravano Hkctor Garcia-Molina

Computer Science Department
Stanford University

Stanford, CA 94305-2140
{gravano,hector}Qcs.stanford.edu

1 Introduction

Abstract

As large numbers of text databases have be-
come available on the Internet, it is harder to
locate the right sources for given queries. In
this paper we present gGlOSS, a generalized
Glossary-Of-Servers Server, that keeps statis-
t,ics on the available databases to estimate
which databases are the potentially most use-
ful for a given query. gGlOSS extends our pre-
vious work [l], which focused on databases us-
ing the boolean model of document retrieval,
to cover databases using the more sophisti-
cated vector-space retrieval model. We evalu-
ate our new techniques using real-user queries
and 53 databases. Finally, we further gener-
alize our approach by showing how to build
a hierarchy of gGlOSS brokers. The top level
of the hierarchy is so small it could be widely
replicated, even at end-user workstations.

*This research was sponsored by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under
Grant No. MDA972-92-J-1029 with the Corporation for Na-
tional Research Initiatives (CNRI). The views and conclusions
contained in this document are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsement, either expressed or implied, of ARPA, the U.S.
Government or CNRI. This work was supported by an equip-
ment grant from IBM Corporation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 21st VLDB Conference
Ziirich, Switzerland, 1995

The dramatic growth of the Internet over the past few
years has created a new problem: finding the right
text databases to evaluate a given query. There are
thousands of sources ava.ilable to the users on the In-
ternet, and it is practically impossible to query all
of them when searching for information on a given
topic: not only would such an exhaustive search take a
long time to complete, but it could also be expensive,
since some of the text, databases on the Internet may
charge for their use. Consequently, users need a way
to narrow their searches to a few useful text databases.
This problem is a specific instance of the more general
resource-discovery problem [‘2, 31.

Many tools have recently appeared on the Internet
to help users select the (text) databases that might
be more useful for their queries (see Section 2). How-
ever, many of these tools essentially keep a global in-
dex of the available documents. This approach clearly
does not scale well with the growing number of sources
and documents. Alternatively, many other tools in-
dex only a small part of each available document (e.g.,
its title). This approach fails to identify many useful
sources because a significant part of each document
is simply discarded. Similarly, other tools just keep
succinct summaries of the contents of each data,base.
These summaries are sometimes manually written, are
often out of date, and fail t,o capture the whole content
of the databases.

Our approach is to provide a. broker that ranks t,he
potentially most useful databases for a given query.
This broker keeps only partial information on the con-
tents of each database, so it scales with the growing
number of available databases. However. this informa-
tion covers the full-text content of the documents, so
that the useful sources are identified. In [l] and [4] we

‘8

described GlOSS (for Glossary- Of-Servers Server) I, a
centralized broker that keeps meta-information about
databases supporting the boolean model of document
retrieval. GlOSS maintains statistics on the databases,
a.nd uses these statistics to estimate the actual con-
tents of the databases. When users query GlOSS. it
uses these statistics to rank the databases according
to their estimated usefulness for the given query. The
users then access the databases themselves, following
the order that GlOSS suggested.

Although the boolean model of document retrieval
is widely used, it is a rather primitive one. One of
the most popular alternative models is the vector-space
retrieval model [5, 61. This model represents both the
documents in a database and the queries themselves
as weight vectors. Given a query, the documents are
ranked according to how “similar” their corresponding
vectors are to the given query vector.

In this paper we present, gGlOSS, a generalized and
more powerful version of GlOSS that also deals well
with vector-space databases and queries. Like GlOSS,
gGlOSS periodically collects statistics on the underly-
ing sources (this time including summary word-weight
information). We first determine the goodness of a
database for a query, and the ideal database rank for
a query (i.e., the rank that gGlOSSshould try to pro-
duce for the query). Then, given a query and a de-
sired goodness metric, gGlOSS can rank the available
sources.

Since gGlOSS produces estimates of the ideal
database ranks, we need to compare these estimates
against the ideal ranks. For this, we evaluate the
performance of gGlOSS using real-user queries and
53 vector-space databases, in terms of how close the
gGlOSS ranks are to the ideal ones. Although we
can estimate the size of the gGlOSS information to
be only around 2% of the size of a full index of the
databases, its performance is good (Section 6), show-
ing that gGlOSS can closely approximate the ideal
database ranks for the given queries.

We also present facilities for building hierarchies of
gGlOSS servers. In this case, hGlOSS, a high-level
server, summarizes the contents of lower-level gGlOSS
brokers, in much the same way as the gGlOSS brokers
summarize the contents of the underlying databases.
Given a query, the hGlOSS server suggests gGlOSS
servers that might index useful databases for the query.
Because the storage requirements of the hG1OSSserver
are much smaller than those of the gG1OSS brokers, we
can easily replicate the hGlOSS server so that it does
not become a performance bottleneck, thus distribut-
ing the load for searching the system.

1 We have implemented GlOSS and made it accessible at
http://gloss.stanford.edu.

In what follows, Section 3 defines one “ideal”
database rank for a query. Section 4 shows how
gGlOSS approximates the ideal database rank using
partial information. Section 5 introduces the method-
ology for the experimental results of Section 6. Sec-
tion 7 discusses alternative definitions of the ideal
database rank. Finally, in Section 8 we show how to
build the higher-level hGlOSS servers.

2 Related Work

One approach to solving the text-database discovery
problem (see [2, 3] for surveys) is t,o let users “browse”
the databases. Well-known examples include the ProsT
pero file system [7], Gopher [a], and the World-Wide
Web [8].

A different approach is to let, users query a. databa.se
of “meta-information” about the available dat,abases.
For example, WAIS [9] provides a “direct#ory of
servers.” Many search facilities have been created for
the World-Wide Web, like the Lycos service. ’ To scale
with the growing number of available databases, some
of these systems index only document titles or, more
generally, just a small fraction of each document (e.g.,
the World-Wide Web Worm “). Other systems keep
succinct, sometimes human-generated, summaries of
the contents of each da,tabase (e.g., the ALIWEB sys-
tem “).

Recently, [lo] h as applied inference networks (from
information retrieval) t,o the text-database discovery
problem. Their approach summarizes databases using
document,-frequency information for each term (the
same type of information that GlOSS keeps about, the
databases), together with the “inverse collection fre-
quency” of the different terms. An inference network
then uses this information t,o rank the databases for
a given query. The “content-based routing” system of
[ll, 121 keeps a “content label” for each collection of
objects, with attributes describing t,he contents of t#he
collection.

The Harvest system [13] provides a flexible architec-
ture for accessing information on the Internet. “Gath-
erers” collect information about the data sources, and
pass it to “brokers.” The “Harvest Server Registry” is
a special broker that keeps information about a.11 other
brokers, among other things. For flexibility, Harvest’
leaves the broker specification open, and many alter-
native designs are possible.

2Lycosis accessibleathttp://lycos.cs.cmu.edu.
3The World-Wide Web Worm is accessible at http://-

awu.cs.colorado.edu/home/mcbryan/UUUU.html.
4ALIWEB is accessible at http://neb.nexor.co.uk/ali-

aeb/doc/aliaeb.html.

79

3 Ranking Databases

Given a query, we would like to rank the avail-
able vector-space databases according to their useful-
ness. This ranking should capture the ideal order for
searching the databases: we should first search the
most useful database(s), then the second most use-
ful database(s), and so on, until we either exhaust the
rank, or become satisfied with whatever documents we
got up to that point. This section presents one defi-
nition for the ideal database rank. The next section
explores how gGlOSS will try to rank the databases as
closely as possible to this ideal rank.

Determining the ideal database rank for a query
is a hard problem. The definition of this section is
based solely on the answers (i.e., the document ranks
and their scores) that each database produces when
presented with the query in question. This definition
does not use the relevance [5] of the documents to the
end user who submitted the query. Using relevance
would be appropriate for evaluating the search engines
at each database; instead, we are evaluating how well
gGlOSS can predict the answers that t.he databases
return. In Section 7 we discuss our choice further, a.nd
analyze some of the possible alternatives that we could
have used.

To define the ideal database rank for a query q, we
need to determine how good each database db is for
q. In this paper we assume that all databases use the
same algorithms to compute weights and similarities.
We consider that the only documents in db that are
useful for q are those with a similarity to q greater
than a given threshold 1, as determined by db. Docu-
ments with lower similarity are unlikely to be useful,
and therefore we ignore them. Thus, we define:

Goodness(1, q, db) = c sim(q, d) (1)
d E Rank(l, q, db)

where sim(q, d) is the similarity between query q and
document d, and Rank(l,q,db) = {d E dblsim(q,d) >
1}. The ideal rank of databases Ideal(l) is then de-
termined by sorting the databases according to their
goodness for the query q.

Example 3.1 Consider two databases, dbl and dbz, a
query q, and the answers that the two databases give
when presented with query q:

dbl : (d:, 0.9), (d;, 0.91, (d;, 0.1)

dba : (d;,0.8), (d;, 0.4), (d&0.3), (d;,O.l)

In the example, dbl returns documents di, da, and d;
as its answer to q. Documents di and di are ranked
the highest in the answer, because they are the “clos-
est” to query q in database dbl (similarity 0.9). To

determine how good each of these databases is for q,
we use Equation 1. If the threshold 1 is 0.2 (i.e., the
user is willing to examine every document with sim-
ilarity to q higher than 0.2), the goodness of dbl is
Goodness(0.2, q, dbl) = 0.9+0.9 = 1.8, because dbl has
two documents, d: and di, with similarity higher than
0.2. Similarly, Goodness(0.2, q, dbz) = 0.8+0.4+0.3 =
1.5. Therefore, Ideal(0.2) is dbl, dba.

The goodness of a database tries to quantify how
useful the database is for the user that issued the
query. It does so by examining the document-query
similarities as computed by each local source. A prob-
lem with this definition is that t,hese similarities can
depend on the characteristics of the collection that
contains the document. Therefore, these similarities
are not “globally valid.” For example, if a database
dbl specializes in computer science, the word databases
might appear in many of its documents. Then, t,his
word will tend to have a low associated weight in
dbl (e.g., if dbl uses the tf.idf formula for computing
weights [S]). Th e word databases, on the other hand,
might have a high associated weight in a database
db2 that is totally unrelated to computer science and
contains very few document with that word. Conse-
quently, dbl might assign its documents a low score
for a query containing the word databases, while dbz
assigns a, few documents a high score for that query.
The Goodness definiteion of Equation 1 might then de-
termine that dba is better than dbl, while dbl is the
best database for the query. In Section 7 we further
discuss this problem, together with alternative ways of
defining Goodness.

4 Choosing Databases

gGlOSS helps users determine what databases might,
be most helpful for a query. Users first query gG1OSS
to obtain a rank of the databases according to their
potential usefulness. To perform this task, gG1OSS
keeps information on the available databases, to esti-
mate their goodness for the query. One option would
be for gGlOSS to keep complete information on each
database: for each databa.se db and word t, gGlOSS
would know what document,s in db contain t, what
weight t has in each of them, and so on. Although
gG1OSS’s answers would always be accurat,e (if this
information is kept up to date), the storage require-
ments of such an approach would be too high: gGlOSS
needs to index many databases, and keeping so much
information on each of them does not scale.

More reasonable solutions keep incomplete yet use-
ful information on the databases. In this paper we
explore some options for gG1OS.S that require one or
both of the following matrices:

80

l F = (fij) : fij is the number of documents in
database dbi that contain word tj

l W = (wij): wij is the sum of the weight of word
tj over all documents in database dbi

In other words, for each word tj and each vector-space
database dbi, gGlOSS needs (at most) two numbers.
The second of these numbers is the sum of the weight
of tj over all documents in dbi, as determined by the
vector-space retrieval algorithm that dbi uses. Typ-
ically, the weight of a word tj in a document d is
a function of the number of times that tj appears
in d and the number of documents in the database
that contain tj [6]. Although the information that
gGlOSS stores about each database is incomplete, it
will prove useful to generate database ranks that re-
semble the ideal database rank of Section 3, as we will
see in Section 6.2. Furthermore, this information is
orders of magnitude smaller than that required by a
full-text index of the databases, for example. Adapt-
ing the boolean-database estimates of [l], we can esti-
mate that the size of the gGlOSS information about a
vector-space database is only around 2% of the size of
a full-text vector-space index of the database.

To obtain the data that gGlOSS keeps about a
database dbi, namely rows fi+ and wit of the F and
W matrices above, database dbi will have to period-
ically run a collector program that extracts this in-
formation from the local indexes and sends it to the
gGlOSS server.

Example 4.1 Consider a datclbase db and the word
computer. Suppose that the following are the docu-
ments in db having the word computer in them, to-
gether with the associated weights:

computer : (d1,0.8), (dz, 0.7), (d3,0.9), (d8,O.g)

That is, document dl contains the word computer
with weight 0.8 (f or some weight-computation algo-
rithm [5]), document d 2, with weight 0. ?‘, and so on.
The gG1OSS collector will not send gGlOSS 011 this
information: it will only tell gGlOSS that the word
computer appears in four documents in database db,
and that the sum of the weights with which the word
appears in the documents is 0.8 + 0.7 + 0.9 + 0.9 = 3.3.

In our definitions below, we assume that a
query q is expressed as a weight vector Q =
(ql, . . , qj, . . . , qt) [5], where qj is the weight of word
tj in query q. For example, this weight can simply
be the number of times that word tj appears in the
query. We also assume throughout this pa.per that the
vector-space databases compute the similarity between
a document and a query by taking t,he inner product of
the corresponding document and query weight vectors.

Since gGlOSSrepresents both the databases and the
queries as vectors, gGlOSS could compute similarities
between these vectors analogously to how documents
and queries are compared. gGlOSS could use these
similarities to rank the databases for the given query.
For example, gGlOSS could estimate the goodness of
database db; for query q as the inner product wi, . Q,
where w:+ = (wil,. . , wit) is the (normalized) row of
W that corresponds to dbi. However, we are interested
in finding the databases that contain useful documents
for the queries, not those databases that are “similar”
to the given queries. The definitions of the gGlOSS
ranks below reflect this fact. Also, note that the vec-
tors with which gG1OSS represents each database can
be viewed as cluster centroids [6], where each database
is considered as a single document cluster 5.

Because the information that gGlOSS keeps about
each database is incomplete, it has to make assump-
tions regarding the distribution of query keywords
and weights across the documents of each database.
These assumptions allow gG1OSS to compute better
estimates. The following sections present two sets
of assumptions that gGlOSS will use to derive dif-
ferent database ranks for a given query. These as-
sumptions are artificial: very rarely would a set of
databases and queries conform to them. However, we
use them because these type of assumptions proved
themselves useful in the boolean- GlOSS case for choos-
ing the “right” databases for a query [l, 41.

4.1 High-Correlation Scenario

To derive Max(l), the first database rank with which
gGlOSS tries to match the Ideal(l) database rank of
Section 3, gG1OSS assumes that if two words appear
together in a user query, then these words will appear
in the database documents with the highest possible
correlation:

Assumption 4.1 If query keywords tl and tz appear
in fil and fi2 documents in database dbi, respectively,
and fil 5 fiz, then every db; document that contains
tl also contains tz.

Example 4.2 Consider a database db; and the query
q=computer science department. For simplicity, let
tl= computer, tz= science, and t3= department. Sup-
pose that fil = 2, fiz = 9, and fi3 = 10: there are 2
documents in dbi with the word computer, 9 with the
word science, and 10 with the word department.

gGlOSS assumes that the 2 documents with the word
computer also contain the words science and depart-
ment. Furthermore, all of the 9 - 2 = 7 documents

5An interesting direction to explore is to represent each
database db as a set of (very few) cluster centroids. Each of
these centroids would summarize a set of closely related docu-
ments of db.

81

with word science but not with word computer also
contazn the word department. Finally, there is exactly
10 - 9 = 1 document with just the word department.

gGlOSS a.lso needs to make assumptions on the
weight distribution of the words across the documents
of a database:

Assumption 4.2 The weight of a word is distributed
uniformly over all documents that contain the word.

Thus, word tj has weight 2 in every dbi docu-
ment that contains ti. This assumption simplifies the
computations that gGlOSS has to make to rank the
databases. We will see in Section 6 that, this unrealis-
tic assumption is surprisingly effective.

Example 4.2 (cont.) Suppose that the total weights
for the query words in database dbi are wil = 0.45,
W;Z = 0.2, and wi3 = 0.9. According to Assump-
tion 4.2, each of the two documents that contain word
computer will do so with weight y = 0.225, each of
the 9 documents that contain word science ,will do so
with weight y = 0.022, and so on.

gG1OSSuses the assumptions above to estimat,e how
many documentjs in a dat#abase have similarity greater
than some threshold 1 to a given query, and what the
added similarity of these documents is. These esti-
mates determine the Max(l) database rank.

Consider database dbi with its two associated vec-
tors fi* and loi+, and query q, with it#s associated vec-
tor Q. Suppose that the words in q are tl, . , t,, with
fia 2 fib for all 1 5 a 2 b < n. Assume that fil > 0.
From Assumption 4.1, the fil document,s in dbi that
contain word t 1 also contain all of the other n- 1 query
words. From Assumption 4.2, the similarity of any of
these fil documents tjo t,he query y is:

siinl = c
j=l, ..,n

Qi x z

Furthermore, these fil documents ha.ve the highest,
similarit,y to q among the document,s in dbi. There-
fore, if siml 5 1, then there are no documents in dbi
with similarity greater than threshold 1. If, on the
other hand, sirn,l > 1, then gGlOSS should explore
the fir, - fil documents (Assumption 4.1) that cont,ain
words t2,. . , t,,, but not, word tl. Thus, gG1OSSfinds
p such that:

sim, = c
.1=p> ..,n

qj x 2 > 1, but, 0)

sim,+l = c 5 1 (3)
j=p+l,...,n

Then, the fip documents having (at least) query words
t,, . . , t, have an estimated similarity to q greater
than threshold 1 (Condition 2), whereas the documents
having only query words tp+l, , t, do not.

Using this definition of p and the assump-
tions above, we give the first definition for
Estimate(1, q, dbi), th e estimated goodness of database
dbi for query q, that determines the Max(l) database
rank:

Estimate(1, q, dbi) =

= C (fij - fi(j-1,) X simj
j=l,...,p

= (C qj xwij)+fipXCQiX tuij (4)
j=l,...,p j =p+1,...,n fij

where we define fro = 0, and simj is the similarity
between q and any document having words ti, , t,,
but not words tl, . . , tj-1. There are fij - fici _ 1) such
documents in dbi. This definition computes the added
similarity of the fip documents estimated to have sim-
ilarity to q greater than threshold 1. (See Conditions 2
and 3, and Assumptions 4.1 and 4.2.)

Example 4.2 (cont.) Assume that query q has
weight 1 for each of its three words. According to As-
sumption 4.1, the two documents with, the word corn-
puter also havp the words science and department in
them. The similarity of any of these two documents
to q is, using Assumption 4.2, y + 7 + g =
0.337. If our threshold 1 is 0.2, then all of these doc-
uments are acceptable, because their similarity to q
is higher than 0.2. Also, there are 9 - 2 = 7 doc-
um,ents with the words science and department but
not computer. The similarity of any of these 7 doc-
uments to q is 7 + z = 0.112. Then these docu-
ments are not acceptable for threshold 1 = 0.2. There
is 10 - 9 = 1 document with only the word depart-
ment, but this document’s similarity to q is even lower.
Consequently, p = 1. (See Conditions 2 and 3.)
Then, according to the Max(0.2) definition of Esti-
mate, Estimate(0.2, q, dbi) = fil x (q1 x F+q2 x z+

q3 x 2) = 2 x (1 x y + 1 x $? + 1 x y) = 0.674.

4.2 Disjoint Scenario

To derive Sum(l), another rank that gGlOSS uses
to approxima.te Ideal(l), gGlOSS assumes that if two
words appear together in a user query, then these
words do not appear together in any database doc-
ument (if possible):

Assumption 4.3 The set of dbi documents with mord
tl is disjoint with the set of dbi documents with word
t2, for all tl and t2, tl #tar that appear in query q.

82

Therefore, the words that appear in a user query are
assumed to be negatively correlated in the database
documents. gGlOSS also needs to make Assump-
tion 4.2, that is, the assumption that weights are uni-
formly distributed.

Consider database dbi with its two associated vec-
tors fi+ and wit, and query q, with its associated vec-
tor Q. Suppose that the words in q are tl, . , t,. For
any query word tj (1 5 j 5 n), then the fij docu-
ments containing ti do not contain query word t,, for
all 1 5 p 5, n2, p # j (A ssumption 4.3). Furthermore,
the similarity of each of these fij documents to q is
exactly qj x 2, if fij > 0 (from Assumption 4.2).

For rank Sum(l) we then define Estimate(1, q, dbi),
the estimated goodness of database dbi for query q, as:

Estimate(1, q? dbi) =

= c i=l,...,nl(f~l>O)A(q,x~>l) fij x (4Jj x Z’

c qj X Wij (5)

Example 4.3 Consider the data of Example 4.2. Ac-
cording to Assumption 4.3, there are 2 documents
containing the word computer and none of the other
query words, 9 documents containing the word sci-
ence and none of the other query words, and 10 docu-
ments containing the word department and none of
the other query words. The documents in the first
group have similarity y = 0.225 (from Assump-
tion 4.2), and are thus acceptable, because our thresh-
old 1 is 0.2. The documents in the second and third
groups have similarity 7 = 0.022 and g = 0.09, re-
spectively, and are thus not acceptable for our thresh-
old. So, the only documents close enough to query q
are the two documents that contain word computer.
Then, according to the Sum(0.2) definition of Esti-
mate, Estimate(0.2,q,dbi) = fil x z = 0.45.

Notice the special case when the threshold 1 is zero.
In this case, the Max(O) and Sum(O) definitions of
Estimate (Equations 4 and 5) become:

Estimate(O,q,dbi) = C qj x euii
j=l,...,n

assuming that if fii = 0, then wij = 0. Then,
Estimate(0, q, dbi) b ecomes the inner product Q ‘1~;~.
To compute the Alax and Sum(O) ranks, gGlOSS
does not need the matrix F of document frequencies
of the words; it only needs the matrix W of added
weights. 6 Therefore, the storage requirements for

6 We might need F, though, to compute the weight vector for
the queries, depending on the algorithm used for this.

gGlOSS to compute the database ranks may be much
lower if 1 = 0. We pay special attention to these ranks
in our experiments of Section 6.2.

5 Comparing Database Ranks

In this section we analyze how we can compare
gG1OSS’s ranks (Section 4) to the ideal one (Sec-
tion 3) ‘. In the following section we report experi-
mental results using the comparison methodology of
this section.

Let q be a query, and DB = {dbl, , db,} be the
set of available databases. Let G = (db,, , , dbgs,) be
the database rank that gGlOSS generated for q, using
one of the schemes of Section 4. We only include in G
those databases with estimated goodness greater t,han
zero: we assume that users ignore databases with zero
estimated goodness. Thus, in general, s’ < s. Finally,
let I = (db;, , , dbi,,,) be the ideal database rank. We
only include in I those databases with actual goodness
greater than zero. Our goal is to compare G against
I, and quantify how close the two ranks are.

One way to compare the G and I ranks is by us-
ing the Goodness metric that we used to build I. We
consider the top n databases in rank I, and compute
i,, the accumulated goodness of these n databases for
query q. Because rank 1 was generated using this
metric, the top n databases in rank I have the max-
imum accumulated goodness for q that. any subset of
n databases of DB can have. We then consider the
top n databases in rank G, and compute gn, t#he accu-
mulated goodness of these n databases for q. Because
gGlOSS generated rank G using only partial informa-
tion about the databases, in general gn 5 i,. (If n > s’
(resp. n > s”), we compute gn (in) by just taking the
s’ (s”) databases in G (I).) We then compute:

R,= f 1
if i, > 0
otherwise

This number gives us t,he fraction of the optimum
goodness (in) that gGlOSS captured in the top n
databases in G, and models what the user that,
searches the top n databases that gGlOSS suggests
would get, compared to what the user would have got-
ten by searching the top n databases in the ideal rank.

Example 5.1 Consider a query q, and jive databases
dbi, 1 5 i 5 5. Table 1 shows I, the ideal database
rank, and G and H, t,wo different gGlOSS database
ranks for q, for some definition of these ranks. FOI
example, dbl is the top database in the ideal rank,
with Goodness(1, q, dbl) = 0.9. Database clbs does
not appear in rank I, because Goodness(l,q, dbs) =

‘Our definition of the ‘R, metric in this section is partially
based on the normalized cumulative recall metric of [14].

83

I G H I
db Goodness db Estimate db Estimate

dh 0.9 dba 0.8 dbz 0.9
dbz 0.4 dh 0.6 dbl 0.8
db3 0.3 dbs 0.3 db3 0.4
db4 0.2 & 0.2

Table 1: The ideal and gGlOSS database ranks for
Example 5.1.

0. gGlOSS correctly predicted this for rank G
(Estimate(1, q, dbs) = 0 for G), and so db5 does not
appear in G. However, db:, does appear in H, because
Estimate(1, q, dbs) = 0.2 for H.

Let us focus on the G rank: dba is the top database
in G, with Estimate(l,q,dbn) = 0.8. The real good-
ness of dba for q is Goodness(l,q,dbz) = 0.4. From
the ranks of Table 1, RI = $$: if we access
dba, the top database from the G rank, we obtain
Goodness(l,q, db2) = 0.4, whereas the best database
for q is dbl, with Goodness(l,q,dbl) = 0.9. Similarly,
I& = o.4to.gto 3 = 1. In this case, by accessing the 0.9+0.4+0.3
top three databases in the G rank we access exactly the
top three databases in the ideal rank, and thus I& = 1.

0.4to.9to.3 However, R4 = o,g+o,4+o,3+o~2 = 0.89, since the G
rank does not include db4 (Estimate(1, q, db4) = 0),
which is actually useful for q (Goodness(1, q, db4) =
0.2).

Now consider the H rank. H includes all the
databases that have Goodness> 0 in exactly the same
order as G. Therefore, the ‘R, metric for H coincides
with that for G, for all n. However, rank G is in some
sense better than rank H, since it predicted that dbs
has zero goodness, as we mentioned above. H jailed
to predict this. The R.,, metric does not distinguish
between the two ranks. This is why we introduce our
following metric.

As the previous example mot,ivated, we need an-
other metric, P,, to distinguish between gGlOSS ranks
that include useless databases and those that do not.
Given a gGlOSS rank G for query q, Pn is the fraction
of Topn(G), the top n databases of G (which have a
non-zero Estimate for being in G), that actually have
non-zero goodness for query q:

P, =
I{db E Top,(G)1 Goodness(1, q, db) > O}l

ITOP, (G) I

(Actually, P, = 1 if for all db, Estimate(l,q,db) = 0.)
Note that P, is independent of the ideal database rank
I: it just depends on how many databases that gG1OSS
estimated as potentially useful turned out to actually
be useful for the query. From the point of view of the
end users, a ranking with higher P, is better because
it leads them to fewer fruitless database searches.

Example 5.1 (cont.) In the previous example, P4 =
3 - 1 for G, because all of the databases in G have 3-
actual non-zero goodness. However, P4 = z = 0.75
for H: of the four databases in H, only three have
non-zero goodness.

6 Evaluating gGlOSS

In this section we evaluate different gGlOSS ranking
algorithms experimentally. We first describe the real-
user queries and databases that we used in the experi-
ments. Then, we report results for Max(l) and Sum(l),
the two gGlOSS ranks of Section 4.

6.1 Queries and Databases

To evaluate gGlOSS experimentally, we used real-user
queries and databases. The queries that we used where
profiles that real users submitted to the SIFT Net-
news server developed at Stanford [15] ‘. Users send
profiles in the form of boolean or vector-space queries
to the SIFT server, which in turn filters Netnews ar-
ticles every day and sends the articles matching the
profiles to the corresponding users. We used the 6800
vector-space profiles that were active on the server in
December 1994.

To evaluate the gGlOSS performance using these
6800 queries, we used 53 newsgroups as 53 databases:
we took a snapshot of the articles that were active
at the Stanford Computer-Science-Department news
host on one arbitrary day, and used these articles
to populate the 53 databases. We selected all the
newsgroups in the camp. databases, camp . graphics,
comp.infosystems, camp. security, rec.arts.-
books, rec. arts. cinema, rec. arts. comics, and
rec. arts. theatre hierarchies that had active docu-
ments in them when we took the snapshot.

We indexed the 53 databases and evaluated the
6800 queries on them using the SMART system (ver-
sion 11.0) developed at Cornell University. To keep
our experiments simple, we chose the same weighting
algorithms for the queries and the documents across
all of the databases. We indexed the documents using
the SMART ntc formula, which generates document
weight vectors using the cosine-normalized tf.idf prod-
uct [6]. We indexed the queries using the SMART
nnn formula, which generates query weight vectors us-
ing the word frequencies in the queries. The similarity
coefficient between a document vector and a query vec-
tor is computed by taking the inner product of the two
vectors.

For each query and gGlOSS ranking algorithm we
compared the ideal rank against the gGlOSS rank us-
ing the methodology of Section 5. We evaluated each

‘SIFT is accessible at http: //sift. Stanford. edu.

84

query at each of the 53 databases to generate its ideal
database rank. For a fixed gGlOSS ranking definition
and a query, we computed the rank of databases that
gGlOSS would produce for that query: we extracted
the (partial) information that gGlOSS needs from each
of the 53 databases. For each query word, gGlOSS
needs the number of documents in each database that
include the word, and the sum of the weight of the
word in each of these documents. To extract all this
information, we queried the 53 databases using each
query word individually, which totaled an extra 18,213
queries. We should stress that this is just the way
we performed the experiments, not the way a gGlOSS
server will obtain the information it needs about each
database: in a real system, each database will period-
ically scan its indexes, generate the information that
gGlOSS needs, and send it to the gGlOSS server. (See
Section 4.)

6.2 Experimental Results

In this section we experimentally compare the gGlOSS
database ranks against the ideal ranks in terms of the
R, and P, metrics. We study which of the Max(l)
and Sum(l) database ranks is better at predicting ideal
rank Ideal(l), and what impact the threshold 1 has
on t,he performance of gG1OSS. We also investigate
whether keeping both the F and W matrices of Sec-
tion 4 is really necessary, since gGlOSS needs only
one of these matrices to compute ranks MUX(O) and
Sum(O) (Section 4.2).

Ideal database rank Ideal(O) considers any docu-
ment with a non-zero similarity to the query as useful.
Ranks MUX(O) and Sum(O) are identical to Ideal(O),
and so they have R, = P, = 1 for all n. Consequently,
if a user wishes to locate databases where the overall
similarity between documents and the given query is
highest and any document with non-zero similarity is
interesting, gGlOSS should use the McxE(O) (or, iden-
tically, Sum(O)) ranks and get perfect results.

To study the impact of higher rank thresholds, Fig-
ures 1 and 2 show results for the Zdeal(0.2) ideal
rank. We show ‘R, and P, for values of n rang-
ing from 1 to 15. We do not report data for higher
n’s because most of the queries have fewer than 15
useful databases according to Ideal(0.2) and hence,
the results for high values of n are not that signif-
icant. Figure 2 shows that rank Sum(0.2) has per-
fect p, (Pn = 1) for all n, because if a database
db has Estimate(0,2,q,db) > 0 according to the
Sum(0.2) rank, then Goodness(0.2, q, db) > 0 accord-
ing to Zdeal(0.2). I n other words, rank Sum(0.2) only
includes databases that are guaranteed to be useful.
Rank Mu~(0.2) may include databases not guaranteed
to be useful, yielding higher R, values (Figure l), but

lower P, values (Figure 2).
To decide whether gGlOSS really needs to keep both

matrices F and W (Section 4), we also use ranks
MUX(O) and Sum(O) to approximate rank Zdeal(0.2).
gGlOSS needs only one of the two matrices to com-
pute these ranks (Section 4.2). Since ranks MEE(O)
and Sum(O) are always identical, we just present their
data once labeled Max(O)/Sum(O). Figure 1 shows
that the Max(O) rank has the highest values of R,.
This rank assumes a threshold 1 = 0, and thus it tends
to include more databases than its counterparts with
threshold 0.2. This is also why Mu%(O) has much lower
P, values (Figure 2) than Mu~(0.2) and Sum(0.2): it,
includes more databases that have zero goodness ac-
cording to Zdeal(0.2).

In summary, if the users are interested in not miss-
ing any useful database, but are willing to search
some useless ones, then Map is the best choice for
gGlOSS, and gGlOSS can do without matrix F. If
the users wish to avoid searching useless databases,
then Sum(0.2) is the best choice. Unfortunately,
Sum(0.2) 1 h 1 a so as ow R, values, which means it can
also miss some useful sources. As a compromise, a
user can have Mu~(0.2), which has much better P,,
values than MUX(O) and generally better R, values
than Sum(0.2). Al so, note that in the special case
where users are interested in accessing only one or two
databases (n = 1,2) t,hen Muz(O.2) is the best choice
for the R, metric. In this case, it is worthwhile for
gGlOSS to keep both matrices F and W.

To show the impact of the rank thresholds, Fig-
ures 3 and 4 show the R, and Pn values for the dif-
ferent ranks and a fixed n = 3, and for values of
the threshold 1 from 0 to 0.4. For larger values of
1, most of the queries have no database with good-
ness greater than zero. For example, for ideal rank
Zdeal(0.6) each query has on average only 0.29 use-
ful databases. Therefore, we only show the data for
threshold 0.4 and lower. At first glance one might ex-
pect the R, and P, performance of MUX(O) not to
change as the threshold 1 varies, since the ranking it
computes is independent of the desired 1. However, as
1 increases, the ideal rank Ideal(l) changes, and the
static estimate provided by Muz(0) performs worse
and worse for P,. The Max(l) and Sum(l) ranks do
take into account the target 1 values, and hence do
substantially better. Our earlier conclusion still holds:
strategy Sum(l) is best at avoiding useless databases,
while MUX(O) provides the best ‘E,, values (at, t,he cost
of low P, values).

In summary, gGlOSS generally predicts fairly well
the best databases for a given query. Actually, the
more gGlOSS knows about the users’ expectat,ions,
the better gGlOSS can rank the databases for the
query. If high values of both R, and P, are of in-

a5

0.85
k A-

A. A. L
0.8

0.75 O.@.Q. 0. (

1 3 5 7 9 11 13 15
n

Figure 1: Parameter R, as a function of n, the num-
ber of databases examined from the ranks, for the
Ideul(0.2) ideal database ranking and the different
gGlOSS rankings.

0.4

0.3

0.

‘A.

0.

A.

0.2 ’ I I I I I I T
1 3 5 7 9 11 13 15

n

Figure 2: Parameter P, as a function of n, the num-
ber of databases examined from the ranks. for the
Ideul(0.2) ideal database ranking and the different
gGlOSS ra,nkings.

terest, then gGlOSS should produce ranks based on
the high-correlation assumption of Section 4.1: rank
Muz(l) is the best candidate for rank Ideal(l) with
1 > 0. If only high values of R, are of interest, then
gG1OSS can do without matrix F, and produce ranks
MUX(O) or Sum(O). If only high values of ‘P, are of
interest, then gGlOSS should produce ranks based on
the disjoint-scenario assumption of Section 4.2: rank
Sum(l) is th b t e es candidate. For rank Ideal(O), ranks
Max(0) and Sum(O) give perfect answers.

7 Alternative Ideal Ranks

Section 3 presented a way of defining the goodness of a
database for a query, and also showed a problem with
its associated ideal database rank. In this section we
explore alternative ideal database ranks for a query.
(Even other possibilities are discussed in [16].)

We can organize the different database ranks for a

R3
0.8

0.75
0.7

0.65
0.6

0.55 ’ I I I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1

Figure 3: Parameter ‘Rs as a function of the threshold
1, for ideal rank Ideal(l).

P, 0.6

0.5 t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1

Figure 4: Parameter Ps as a function of the threshold
1, for ideal rank Ideal(l).

query into two classes, according to whether the ranks
depend on the number of relevant documents for the
query in each databa.se or not [17]. The first two al-
ternative ranks belong to the first class.

The first rank, RelAll, simply orders the databases
based on the number of relevant documents they con-
tain for the given query. By relevant we mean tha.t
the user who submits Q will judge these documents to
be of interest. To see a problem with this rank, con-
sider a database db that contains, say, three relevant
documents for some query Q. Unfortunately, it turns
out that the search engine at db does not include any
of these documents in the answer to q. So, the user
will not benefit from these three relevant documents.
Thus, we believe it is best t,o evaluate the ideal good-
ness of a database by what its search engine might
retrieve, not by what potentially relevant documents
it might contain. Notice that a user might eventually
obtain these relevant documents by successively mod-
ifying the query. Our model would treat each of these
queries separately, and decide which databases are the
best for each individual query.

86

Our second rank, Rel-Rank(l), improves on ReLAll
by considering only the relevant documents in each
database that have a similarity to q greater than a
threshold 1, as computed by the individual databases.
The underlying assumption is that users will not ex-
amine documents with lower similarity in the answers
to the queries, because these documents are unlikely
to be useful. This definition does not suffer from the
problem of the ReLAll rank: we simply ignore relevant
documents that db does not include in the answer to
q with sufficiently high similarity. However, in general
we believe that ranks based on end-user relevance are
not appropriate for evaluating schemes like gG1OSS.
That is, the best we can hope for any tool like gGlOSS
is that it predicts the answers that the databases will
give when presented with a query. If the databases
cannot rank the relevant documents high and the non-
relevant ones low with complete index information, it
is asking too much that gGlOSS derive relevance judg-
ments with only partial information. Consequently,
the database rankings that are not based on docu-
ment relevance seem a more useful frame of reference
to evaluate the effectiveness of gGlOSS. Hence, the
remaining ranks that we consider do not use relevance
information.

The Global(l) rank is based on considering the con-
tents of all the databases as a single collection. The
documents are then ranked according to their “global”
similarity to query q. We consider only those docu-
ments having similarity to q greater than a threshold
1. The Goodness metric associated with rank Global(l)
would add the similarities of the acceptable docu-
ments. The problem with this rank is relat,ed to the
problem with the Rel-All rank: a database db may get
high goodness values for documents that do not appear
(high) in the answer that the database produces for q.
Therefore, db is not as useful to q as the Goodness met-
ric predicted. To avoid this problem, the goodness of a
database for a query should be based on the document
rank that the database generates for the given query.

The definition of Goodness of Section 3 does not
rely on relevance judgments, and is based on the docu-
ment ranks that the databases produce for the queries.
Therefore, that definition does not suffer from the
problems of the alternative ranks that we considered
so far in this section. However, as we mentioned in
Section 3, a problem is that the similarities computed
at the local databases can depend on the characteris-
tics of the collections, and thus they might not be valid
globally. The next definition attempts to compensate
for this collection-dependent computations.

The next rank, Local(l), considers only the set of
documents in db having scaled similarity to q greater
than a threshold 1. We scale the similarities coming
from different databases differently, to compensate for

the collection-dependent way in which these similari-
ties are computed. Also, we should base the goodness
of each database on its answer to the query, to avoid
the anomalies we mentioned above for the Rel-All and
the Global ranks. One way to achieve these two goals
is to multiply the similarities computed by database
db by a positive constant scale(q, db):

Goodness(1, q, db) = scale(q, db) x c sim(q, d)

d E Scaled-Rank(l, g, db)

where scale(q, db) is the scaling factor associated with
query q and database db, and Scaled-Rank(1, q, db) =
{d E db@n(q, d) x scale(q, db) > 1).

The problem of how to modify the locally computed
similarities to compensate for collection-dependent
factors in their computation has received attention re-
cently in the context of the collection-fusion problem.
The collection-fusion problem [18, 10, 191 studies how
to merge document rankings for a query from different
sources into a single document ranking. (See [lo] for
a way to use Gloss-like information to scale t,he sim-
ilarities computed at each source.) In general, deter-
mining what scaling factor to use to define the Local(l)
ideal database rank is an interesting problem that we
will explore in the near future. Also, if we incorporate
scaling into the Goodness definition, we should modify
gGlOSS’s ranks to imitate this scaling.

In summary, none of the database ranking schemes
that we have discussed is perfect, including the ones we
used for our experiments. Each scheme has its limita-
tions, and hence, should be used with care. However,
we believe that the ranking that we used (Section 3)
is a good starting point for now, until more work on
scaling is done.

8 Decentralizing gGlOSS

So far, we described gGlOSS as a centralized server
that users query to select the most promising sources
for their queries. In this section we show how we can
build a more distributed version of gGlOSS using es-
sentially the same methodology that we developed in
the previous sections.

Suppose that we have a number of gGlOSS servers
G1, . . . , G,, indexing each a set of databases as we de-
scribed in the previous sections. (Each of these servers
can index the databases at one university or com-
pany, for example.) We will now build a higher-level
gGlOSS server, hGlOSS, that summarizes the contents
of the gGlOSS servers in much the same way as the
gGlOSS servers summarize the contents of the underly-
ing databases. ’ The users will then query the hGlOSS

gAlthough our discussion focuses on a 2-level hierarchy of
servers, we can use the same principles to construct deeper
hierarchies.

87

server first, and obtain a rank of the gGlOSS servers
according to how likely they are to have indexed useful
databases. Later, the gGlOSS servers will produce the
final database ranks. Although the hGlOSS server is
still a single entry point for users to search for docu-
ments, the size of this server will be so small that it
will be inexpensive to massively replicate it, distribut-
ing the access load among the replicas. In this way,
organizations will be able to manage their own “tradi-
tional” gGlOSS servers, and will let replicas of a log-
ically unique higher-level gGlOSS, hGlOSS, concisely
summarize the contents of their gGlOSS servers.

The key point is to notice that hGlOSS can treat the
information about a database at a traditional gGlOSS
server in the same way as the traditional gGlOSS
servers treat the information about a document at the
underlying databases. The “documents” for hGlOSS
will be the database summaries at the gGlOSS servers.

To keep the size of the hGlOSS server small, the
information that the hGlOSS server keeps about a
gGlOSS server G, is limited. For example, hGlOSS
keeps one or both of the following matrices (see Sec-
tion 4):

l H= (h,.?): h,.j is the number of databases in
gGlOSS G, that contain word ti

l D= (d,j): d,j is the sum of the number of doc-
uments that contain word tj in each database in
gGlOSS G,

In other words, for each word tj and each gGlOSS
server G,, hGlOSS needs (at most) two numbers, in
much the same way as the gGlOSS servers summarize
the contents of the document databases (Section 4).

Example 8.1 Consider a gG1OSS server G, and the
word computer. Suppose that the following are the
databases in G, having documents with the word
computer in them, together with their corresponding
gGlOSS weights and frequencies:

computer : (db1,5,3.4), (dbz,2,1.8), (dbz, 1,0.3)

That is, database dbl has five documents with the
word computer in them, and their added weight is
3.4 for that word, database db:! has two documents
with the word computer in them., and so on. hGlOSS
will only know that the word computer appears in
three databases in G,, and that the sum of the num-
ber of documents for the word and the databases is
5 + 2 + 1 = 8. hGlOSS will not know the identities
of these databases, or the individual document counts
associated with the word and each database.

We can now use the same methodology we used for
gG1OSS in the previous sections: given a query q, we

define the goodness of each gG1OSS server G, for the
query: for example, we can take the database rank
that G, produces for q, together with the goodness
estimate for each of these databases according to G,,
and define the goodness of G, for q as a function of
this rank. This computation is analogous to how we
computed the goodness of the databases in Section 3.

After defining what the goodness of each gGlOSS
server is for query q, we define how hGlOSS is going to
estimate this goodness given only partial information
about each gGlOSS server. hGlOSS will determine the
Estimate for a gGlOSS server G, using the vectors h,,
and d,, for G, in a way analogous to how the gGlOSS
servers determine the Estimate for a database dbi using
the fi* and wi+ vectors. After defining the Estimate for
each gGlOSS server, hGlOSS ranks the gGlOSS servers
so that the users can access the most promising servers
first, i.e., those most likely to index useful databases.

Due to space limitations, we are unable to present
detailed results for hG1OSS. However, simply to illus-
trate its potential, here we briefly describe one exper-
iment. For this, we divide the 53 databases of Sec-
tion 6 into five randomly-chosen groups of around ten
databases each. Each of these groups corresponds to
a different gGlOSS server.

We assume that the gGlOSS servers approximate
ideal rank Ideal(O) with the Max(O) database rank.
Next, we define the goodness of a gGlOSS server G,
for a query q as the number of databases indexed by
G, having a goodness Estimate for q greater than zero.
This definition determines the ideal rank of gGlOSS
servers. To approximate this ideal rank, hGlOSS pe-
riodically receives the H matrix defined above from
the underlying gGlOSS servers. For query q with
words tl,. . . , t, and gGlOSSserver G,, h,l, . . , h,, are
the database counts for G,. associated with the query
words. (Word tl appears in h,l databases in gGlOSS
server G,, and so on.) Assume that h,.l < . . 5 h,,.
Then, hGlOSS estimates the goodness of G, for q as
h,,. In other words, hGlOSS estimates that there are
h,, databases in G, that have a non-zero goodness
estimate for q.

Table 2 shows the different values of the (adapted)
R, and P, metrics for the 6,800 queries of Section 6.
Note that P, = 1 for all n, because every time hGlOSS
chooses a gGlOSS server using the ranking described
above, this server actually has databases with non-zero
estimates. From the high values for R, it follows that
hGlOSS is extremely good at ranking “useful” gGlOSS
servers.

Our single experiment used a particular ideal rank-
ing and evaluation strategy. We can also use the other
rankings and strategies we have presented adapted to
the hGlOSS level, and tuned to the actual user require-
ments. Also, the hGlOSS server will be very small in

88

Table 2: The R, and P, metrics for hGlOSS and our
sample experiment.

size and easily replicated, thus eliminating the poten-
tial bottleneck that the centralized gGlOSS architec-
ture can suffer.

9 Conclusion

We have shown how to construct an information broker
for both vector-space text databases and hierarchies
of brokers. Based on compact collected statistics, the
broker can provide very good hints for finding the rele-
vant databases, or finding relevant lower-level brokers
with more information for a given query. An impor-
tant feature of our approach is that the same machin-
ery can be used for both types of brokers, either the
lower-level or the higher-level ones. Our experimental
results show that the gG1OSS and the hGlOSS brokers
are quite promising and could provide useful services
in large, distributed information systems.

Acknowledgments

We thank Anthony Tomasic, Tak Yan, and the anonymous
referees for their useful comments on the paper.

References

[II

PI

PI

[41

[51

k31

Luis Gravano, HCctor Garcia-Molina, and Anthony
Tomasic. The effectiveness of GlOSS for the text-
database discovery problem. In Proceedings of the
1994 ACM SIGMOD Conference, May 1994.

Michael F. Schwartz, Alan Emtage, Brewster Kahle,
and B. Clifford Neuman. A comparison of Internet re-
source discovery approaches. Computer Systems, 5(4),
1992.

Katia Obraczka, Peter B. Danzig, and Shih-Hao Li.
Internet resource discovery services. IEEE Computer,
September 1993.

Luis Gravano, HCctor Garcia-Molina, and Anthony
Tomasic. Precision and recall of GlOSS estimators
for database discovery. In Proceedings of the 3rd In-
ternational Conference on Parallel and Distributed In-
formation Systems (PDIS’94), September 1994.

Gerard Salton and Michael J. McGill. Introduction to
modern information retrieval. McGraw-Hill, 1983.

Gerard Salton. Automatic text processing: the trans-
formation, analysis, and retrieval of information by
computer. Addison Wesley, 1989.

PI

PI

PI

WI

Pll

P21

[I31

[I41

[I51

WI

P71

W31

P91

B. Clifford Neuman. The Prosper0 File System: A
global file system based on the Virtual System model.

Computer Systems, 5(4), 1992.

Tim Berners-Lee, Robert Cailliau, Jean-F. Groff, and
Bernd Pollermann. World-Wide Web: The Informa-
tion Universe. Electronic Networking: Research, Ap-
plications and Policy, l(2), 1992.

Brewster Kahle and Art Medlar. An information
system for corporate users: Wide Area Information
Servers. Technical Report TMC199, Thinking Ma-
chines Corporation, April 1991.

James P. Callan, Zhihong Lu, and W. Bruce Croft.
Searching distributed collections with inference net-
works. In Proceedings of the 18th Annual SIGIR Con-
ference, 1995.

Mark A. Sheldon, Andrzej Duda, Ron Weiss,
James W. O’Toole, and David K. Gifford. A content
routing system for distributed information servers. In
Proceedings of the qth International Conference on
Extending Database Technology, 1994.

Andrzej Duda and Mark A. Sheldon. Content routing
in a network of WAIS servers. In 14th IEEE Interna-
tional Conference on Distributed Computing Systems,
1994.

C. Mic Bowman, Peter B. Danzig, Darren R. Hardy,
Udi Manber, and Michael F. Schwartz. Harvest: A
scalable, customizable discovery and access system.
Technical Report CU-CS-732-94, Department of Com-
puter Science, University of Colorado-Boulder, Au-
gust 1994.

Anthony Tomasic, Luis Gravano, Calvin Lue, Peter
Schwarz, and Laura Haas. Data structures for effi-
cient broker implementation. Technical report, IBM
Almaden Research Center, June 1995.

Tak W. Yan and HCctor Garcia-Molina. SIFT-a tool
for wide-area information dissemination. In Proceed-
ings of the USENIX 1995 Technical Conference, pages
177-86, 1995.

Luis Gravano and HCctor
Garcia-Molina. Generalizing GlOSS to vector-space
databases and broker hierarchies. Technical Report
STAN-CS-TN-95-21, Stanford University, May 1995.

Available as ftp: //db. Stanford. edu/pub/gravano/-
1995/stan.cs.tn.95.21.ps.

Luis Gravano, HCctor Garcia-Molina, and Anthony
Tomasic. Precision and recall of GlOSS esti-
mators for database discovery. Technical Report
STAN-CS-TN-94-010, Stanford University, July 1994.
Available as ftp://db.stanford. edu/pub/gravano/-
1994/stan.cs.tn.94.0iO.ps.

Ellen M. Voorhees, Narendra I<. Gupta, and Ben
Johnson-Laird. The collection fusion problem. In Pro-
ceedings of the srd Text Retrieval Conference (TREC-
3), 1995.

Alistair Moffat and Justin Zobel. Information retrieval
systems for large document collections. In Proceedings
of the 3’d Text Retrieval Conference (TREC-3), 1995.

89

