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Abstract 

Object-oriented and object-relational databases (OODB) need 
to be able to load the vast quantities of data that OODB users 
bring to them. Loading OODB data is significantly more com- 
plicated than loading relational data due to the presence of re- 
lationships, or references, in the data; the presence of these 
relationships means that naive loading algorithms are slow 
to the point of being unusable. In our previous work, we 
presented the late-invsort algorithm, which performed signif- 
icantly better than naive algorithms on all the data sets we 
tested. Unfortunately, further experimentation with the late- 
invsort algorithm revealed that for large data sets (ones in 
which a critical data structure of the load algorithm does not fit 
in memory), the performance of late-invsort rapidly degrades 
to where it, too, is unusable. In this paper we propose a new 
algorithm, the partitioned-list algorithm, whose performance 
almost matches that of late-invsort for smaller data sets but 
does not degrade for large data sets. We present a performance 
study of an implementation within the Shore persistent ob- 
ject repository showing that the partitioned-list algorithm is at 
least an order of magnitude better than previous algorithms on 
large data sets. In addition, because loading gigabytes and ter- 
abytes of data can take hours, we describe how to checkpoint 
the partitioned-list algorithm and resume a long-running load 
after a system crash or other interruption. 

1 Introduction 

As object-oriented and object-relational databases (OODB) 
attract more and more users, the problem of loading the users’ 
data into the OODB becomes more and more important. The 
current methods of loading create only one object at a time. 
These methods, i.e., insert statements in a data manipulation 
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language, or new statements in a database programming lan- 
guage, are more appropriate for loading tens and hundreds of 
objects than for loading millions of objects. Loading large 
amounts of data is currently a bottleneck in many OODB ap- 
plications [CMR92, CMR+94]. 

Relational database systems provide a load utility to by- 
pass the individual language statements. The load utility takes 
an ASCII description of all of the data to be loaded and re- 
turns when it has loaded it. For these relational systems, a load 
utility significantly improves performance even when load- 
ing only a small number of objects, because it is based in the 
database server [Moh93b]. The load utility can therefore dra- 
matically reduce the amount of client-server interaction, and 
hence both the layers of software traversed and the communi- 
cation overhead to create each new object. 

There are many commercial object-oriented database 
products today, including Ontos [Ont94], 02 [Deu90], Ob- 
jectivity [Obj92], ObjectStore [LLOW91], Versant [Ver93], 
and Gemstone [MS90]. Yet to our knowledge no commercial 
OODB has a load uti1ity.l Why not‘? Relative to loading re- 
lational data, loading object-oriented (and object-relational) 
data is complicated by the presence of relationships among 
the objects; these relationships prevent using a relational load 
utility for an OODB. 

Relationships between objects are represented by object 
identifiers (OIDs) in the database. These OIDs are created 
and maintained by the database and are usually not visible 
to the user. Furthermore, these OIDs are not available at all 
when the load file is written, because the corresponding ob- 
jects have not yet been created. Relationships must there- 
fore be represented by some other means in the load file, 
which we call a surrogate identifier. We use a data struc- 
ture called an id map to map each surrogate to its corre- 
sponding OID as the objects are loaded. 

Relationships may be forward references in the data file. 
The surrogate used to represent a relationship may belong 
to an object described later in the data file. It may not be 
possible to resolve the surrogate into an OID when it is first 
seen in the data file. 

Relationships may have system-maintained inverse rela- 
tionships, so that the description of one object in the data 

1 Objectivity has something it calls a load utility, however, it can only load 
data that already contains system-specific object identifiers (OlDs) [Obj92]. 
Similarly, Ontos’s bulk load facility is really just an option to turn off logging 
while running user code that creates large amounts of data [Ont94]. 
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file may cause another object (its inverse for a given re- 
lationship) to be updated as well. Inverse relationships 
are sometimes called bidirectional relationships, and are 
part of the ODMG standard [Cat93]. Ontos, Objectivity, 
ObjectStore, and Versant all support inverse relationships 
[Ont94,Obj92, LLOW9 1, Ver93]. 

In addition to dealing with relationships, a good load utility 
must be able to load data sets of widely varying sizes. As the 
size of the data set increases, an increasing degree of care and 
cleverness is required to load the data quickly. We categorize 
data sets into three classes of sizes, relative to the amount of 
physical memory available for the load, as follows: 

I. All of the data to be LoadedJits in physical memory. 

Naive algorithms suffice to load this class. However, a 
good load algorithm can achieve a 20-30% performance gain 
[WN94]. Also, as we mentioned above, a load utility can de- 
crease client-server interaction to speed up loading, which in- 
dividual new and insert statements can not. 

2. The data itself is too largefor memory, but the id map does 
pt. (The size of the id map is a function of the number of ob- 
jects regardless of their size.) 

For this class of load sizes, our previously proposed algo- 
rithms [WN94] work well, improving performance by one to 
two orders of magnitude over naive algorithms. 

3. Neither the data nor the id map fits in memory. 

As a followup to [WN94], we ran experiments with loads 
in this range and found that our previously proposed algo- 
rithms exhibited terrible performance due to thrashing (exces- 
sive paging of the id map) on id map lookups. Unfortunately, 
it is for these large loads that a fast load algorithm is most 
needed. In this paper we propose the partitioned-list algo- 
rithm, which, unlike our previous algorithms, provides good 
performance even for this range of problem sizes. 

The third class is not only the most challenging, it is also 
the class in which many data sets fall. We give two examples 
of such data sets from the scientific community. In both cases, 
the scientists involved are using or planning to use an OODB 
to store their data. 

The Human Genome Database [Cam95 CPea93] is cur- 
rently just over 1 gigabyte of 50-200 byte objects, con- 
taining 3- 15 bidirectional relationships each. Loading this 
database when it moves to an OODB (which is planned for 
sometime in 1995) will require an id map of at least 160 
megabytes. 

The climate modeling project at Lawrence Livermore Na- 
tional Laboratory generates up to 20,000 time points, each 
a complex object (i.e., many interconnected objects), in a 
simulation history. In the range of 40 gigabytes to 3 ter- 
abytes of data is produced in a single simulation history 
[DLP+93]! An id map for a single data set requires up- 
wards of 200 megabytes. 
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We note that the physical memory available for a load is 
not necessarily the total physical memory of the machine, but 
rather the memory not being used by other concurrent queries 
or utilities. 

Additionally, because loading hundreds of megabytes 
takes hours, it is desirable not to lose all of the data loaded 
when a system crash occurs. Resuming a load (or any other 
transaction) after a crash is non-trivial, however. We show 
both what to save in a restart checkpoint of the partitioned-list 
algorithm and how to resume from one of these checkpoints. 
We show that only minimal information need be saved in the 
restart checkpoints for partitioned-list, the checkpoints can be 
taken relatively frequently, and only the work done after the 
last restart checkpoint is lost if the system crashes. 

1 .l Related work 

Several published techniques are available for loading com- 
plex data structures with relationships from an ASCII file, but 
they all assume the smallest class of data sets. That is, they 
assume that all of the data can fit in memory and are unsuit- 
able when it can not. Both Snodgrass’s Interface Description 
Language [Sno89] and Pkl for Modula 3 [Nel91] fall in this 
category. 

Our previous work focused on loading data sets in the sec- 
ond class of sizes [WN94]. We presented alternative strate- 
gies for handling forward references in the data file and for 
handling updates due to inverse relationships. We recom- 
mended one clearly superior algorithm to use for a load utility, 
and we will revisit its performance for loading data sets of all 
sizes in this paper. There has been no work, however, on load- 
ing very large data sets, i.e., data sets so large that they fall in 
the third class of sizes and the id map does not fit in physical 
memory. 

Teradata provides a resumable load for their relational 
database [WCK93] as does DB2 [RZ89]. Mohan and Narang 
provide an algorithm for what to checkpoint for a resumable 
sort [MN92], which was the original inspiration for what to 
checkpoint during a load to make it resumable. 

1.2 Structure of the paper 

The remainder of the paper is structured as follows: In Sec- 
tion 2 we present an example database schema and data file. 
In Section 3 we review the best of our previous algorithms, 
describe adaptations of it for large data sets, and present our 
new algorithm. Section 4 describes our implementation of the 
algorithms and in Section 5 we present our performance tests 
and results. We specify how to make our new load algorithm 
resumable in Section 6. In Section 7 we conclude and outline 
our future work. 

2 Loading example 

We use an example database schema and data file to illustrate 
the loading algorithms, which we will describe in the next sec- 
tion. 



2.1 Example database schema 

interface Experiment { 
attribute char scientist[l6]; 
relationship Ref<Input> input 

inverse 1nput::expts; 
relationship Ref<Output> output 

inverse 0utput::expt; 
1: 
interface Input { 

attribute double temperature; 
attribute long humidity; 
relationship Set<Experiment> 

expts 

1; 
inverse Experiment::input; 

interface Output { 
attribute double plant-growth; 
relationship Ref<Experiment> expt 

inverse Experiment::output; 
1; 

Figure 1: Experiment schema definition in ODL. 

The example schema describes the data for a simplified soil 
science experiment. In this schema, each Experiment object 
has a many-to-one relationship with an Znput object and a one- 
to-one relationship with an Output object. Figure 1 defines 
the schema in the Object Definition Language proposed by 
ODMG [Cat93]. 

2.2 Example data file 

InputCtemperature, humidity) { 
101: 21.2, 14; 
102: 14.8, 87; 
103: 21.5, 66; 

> 1. Read the data file. 
Experiment(scientist, input, output) 

{ 
1: "Lisa", 101, 201; 
2: "Alex", 103, 202; 
3: "Alex", 101, 203; 
4: "Jill", 102, 202; 

Output(plant-growth) { 
201: 2.1; 
202: 1.75; 
203: 2.0; 

Figure 2: Sample data file for the Experiment schema. 

Figure 2 shows a sample ASCII data file for the schema in 
Figure 1. Within the data file, objects are grouped together 
by class, although the classes may appear in any order and 
a given class may appear more than once. Each class is,de- 
scribed by its name, attributes, and relationships. If a rela- 
tionship of the class is not specified, then objects get a null 
value for that relationship. Next, each object in the class is 

described by a surrogate identifier and a list of its values. In 
this example, the surrogates are integers, andthey are unique 
in the data file. In general, however, the surrogates may be 
strings or numbers; if the class has a key they may be part of 
the object’s data [PG88]. 

Wherever one object references another object, the data file 
entry for the referencing object contains the surrogate for the 
referenced object. The process of loading includes translating 
each surrogates into the OID assigned to the corresponding 
object. To facilitate this translation, we use an id map. When 
an OID is assigned to an object, an entry is made in the id map 
containing the surrogate and OID for that object. Whenever 
a surrogate is seen as part of the description of an object, a 
lookup in the id map yields the corresponding OID to store in 
the object. 

3 Load algorithms 

We first present the naive algorithm for comparison purposes. 
Then we present our best previous algorithm (formerly called 
late-invsort for loading the database when there is enough 
memory to store the id map. We also describe two simple 
modifications to the id map data structure which allow it to ex- 
ceed memory size but do not alter the basic load algorithm. Fi- 
nally, we introduce our new algorithm, partitioned-list, which 
is optimized for the case when the id map is significantly 
larger than the amount of memory available. 

3.1 Naive algorithm 

The naive algorithm reads the data file twice, so that forward 
references in the data file can be handled correctly. The id map 
is stored as an in-memory open addressing hash table hashed 
on surrogate. It is kept separate from the database buffer pool. 
The algorithm has 2 steps. 

- For each object, read its surrogate, create an empty object, 
and store the surrogate and returned OID in the id map. Ig- 
nore all attribute and relationship descriptions. 

At the end of this step, the id map is complete, and all of the 
objects have been created and initialized, although their con- 
tents are blank. Figure 3 shows the id map for the example 
data file. 

2. Read the datajile again and create the database. 

- For each object, look up its surrogate in theid map and find 
out its OID. 

- Read the object from the database. 

- For each relationship described with the object, look up its 
surrogate in the id map. Store the corresponding OID in 
the object. Note that all valid surrogates will be found in 
the id map, since it was completed in step 1. 
- If the relationship has an inverse, read the inverse object 

from the database and store this object’s OID in it. 
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- For each other attribute of the object, store it in the object. 

- Write the updated object back to the database. 

In this algorithm, each inverse relationship will cause an- 
other object to be updated, probably changing the size of that 
object. Sometimes the inverse object will be described later 
in the data file, and sometimes earlier. It is necessary to cre- 
ate empty objects in step 1 so that the inverse object always 
exists in step 2, even if it is described later in the data file. 
Similarly, it is necessary to read the object from the database 
in step 2 because it may already contain OIDs for its inverse 
relationships, stored there by inverse updates to this object. 

One additional step is necessary before pronouncing the 
load complete. If an archive copy of the database is main- 
tained in case of media failure, a full archive copy of the newly 
loaded data must be made before the data is read or written 
[MN93]. Otherwise, the data might be lost due to media fail- 
ure, since there is no log record of the loaded data. This step 
will be necessary for all of the algorithms although we do not 
mention it again. 

3.2 Basic algorithm: id map is an in-memory hash table 

In this algorithm, the data file is also read twice to handle for- 
ward references, and the id map is also an in-memory hash ta- 
ble. Unlike in the naive algorithm, OIDs are pm-assigned to 
objects. Pre-assigning an OID involves requesting an unused 
OID from the database without creating the correspondingob- 
ject on disk. In general, pre-assignment is only possible with 
logical OIDs, since the future location and size of the object 
are not known when its OID is pre-assigned. If the database 
only provides physical OIDs, the algorithm may be modified 
to create the object in order to get its OID. 

We believe that any OODB that provides logical OIDs can 
also provide pre-assignment of OIDs; we know it is possi- 
ble at the buffer manager level in Gemstone [Mai94] and in 
Ontos, as well as in Shore [CDF+94]. Using logical OIDs 
does require the database to store an extra index that maps 
logical to physical OIDs. However, we found previously that 
the advantages of using logical OIDs (such as having smaller 
OIDs) outweigh the costs of maintaining and using this index 
[wN94]. 

Surrogate 1 OID 1 
101 1 OIDl 1 

Figure 3: Id map built by the load algorithm. 

The algorithm has 3 steps. 

Surrogate for Update 
object to update OID to store offset 

101 OID4 12 
201 OlDA ?. r_- . 

103 OID5 12 
202 OID5 8 
101 OID6 12 
203 OID6 8 
102 OID7 12 
202 OID7 8 

Figure 4: Inverse todo list built for the load algorithms. 

OID for Update 
object to update OID to store offset 

OIDl 01n4 12 

Figure 5: Update list after sorting. 

1. Read the datajle. 
- For each object, pre-assign an OID, and make an entry in 

the id map. 

- For each relationship described with that object, if the re- 
lationship has an inverse, make an entry on an inverse todo 
list, indicating that the inverse object should be updated to 
contain the OID of this object. Note that the inverse ob- 
ject is described by a surrogate in the data file. Therefore 
each inverse todo entry contains a surrogate for the object 
to update, the OID to store in that object, and an offset in- 
dicating where to store it. 

At the end of this step, the id map is complete and the in- 
verse todo list contains entries for all of the updates dictated 
by inverse relationships. The inverse todo list is stored in the 
database, because it is too large to reside in memory. Figures 3 
and 4 show the id map and inverse todo list for the example 
data file. 

2. Sort the inverse todo list. 
- First, translate to an OID the surrogate in each entry indi- 

cating which object to update. Each translation involves a 
lookup in the id map. We call the new entries update en- 
tries, and the translated list an update list. Each update en- 
try consists of the OID of the object to update, the OID to 
store in it, and an offset. 

- Sort the update entries, using a standard external sort, by 
the OID of the object to update. In our sort, we sort chunks 
of the update list in memory as the update list is generated, 
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and write each chunk out to disk as a sorted run. Then 
we merge the sorted runs, as many as can fit in memory 
at once, until the entire list is sorted. However, we defer 
the final merge pass until step 3. Figure 5 shows the sorted 
update list. 

Sorting by OID groups all of the updates to a single object 
together. Additionally, because the OIDs are assigned in in- 
creasing order, it organizes the updates into the same order as 
the objects appear in the data file. (If OIDs are not assigned in 
a monotonically increasing sequence, an integer counter can 
be used to assign a creation order to each object. Then the cre- 
ation order for each object is stored as an additional field in the 
id map and in each update entry, and used as the sort key.) 

3. Read the data$le again and create the database. 

- For each object, look up its surrogate in the id map and re- 
trieve the OID that has been assigned to it. 

- For each relationship described with the object, look up its 
surrogate in the id map. Store the retrieved OID in the ob- 
ject. 

- Store each other attribute of the object in the object. 

- For each update entry that updates this object, read the en- 
try from the sorted update list and store the appropriate 
OID in the object. 

The last merge pass of sorting the update list happens concur- 
rently with reading the data file and creating the objects. Note 
that except for the id map, which is in memory, no other data 
structures or objects are being accessed repeatedly during any 
step of the algorithm. Therefore, the buffer pool is fully avail- 
able for merging the last set of sorted runs in step 3 and the last 
merge pass is never written to disk; the merged entries can be 
discarded as soon as they have been retrieved and read. 

An important advantage of this algorithm over similar vari- 
ants is that by pre-assigning OIDs to objects in step 1, cre- 
ating the objects can be postponed until all the data (includ- 
ing inverse relationships) to be stored in an object is available. 
Therefore, when the object is initially created, it is of the cor- 
rect size. (This advantage is only possible with logical OIDs.) 
Updates that add inverse relationships, on the other hand, usu- 
ally change the size of the object. Since changing the sizes 
of objects often severely impacts the clustering of the objects, 
this advantage is quite significant. 

Note that, except for the id map, no data structure - in- 
verse todo list, update list sorted run, database object - is 
read or written more than once. We have eliminated all of the 
random and multiple accesses to objects that were caused by 
inverse relationship updates in the naive algorithm. Lookups 
in the id map are still by random associate access. However, 
if the id map is resident in physical memory, then no I/OS are 
necessary to read from it. 

3.3 Modification 1: id map is a persistent B+-tree 

The basic algorithm requires enough virtual memory to store 
the id map. However, it accesses the id map so frequently 
that it is more correct to say that it expects and relies on both 
the buffer pool and the id map being in physical memory. To 
overcome the limitation of needing physical memory for the 
id map, we redesigned it as a persistent B+-tree. The amount 
of the id map resident in memory is constrained by the size of 
the buffer pool. Paging the id map is delegated to the storage 
manager, and only the buffer pool needs to remain in phys- 
ical memory. The load algorithm remains the same; id map 
lookups are still associative accesses, now to the B+-tree. 

Note that the choice of a B+-tree instead of a persistent 
hash table will not be relevant: the important feature of the 
B+-tree is that it supports random accesses to the id map by 
paging the id map in the buffer pool. The same would be true 
of a persistent hash table, and in both cases, random accesses 
to the id map mean random accesses to the pages of the per- 
sistent B+-tree or hash table. 

3.4 Modification 2: id map is a persistent B+-tree with 
an in-memory cache 

Changing the id map from a virtual memory hash table to a 
persistent B+-tree had the side effect of placing the id map 
under the control of the storage manager. In addition to man- 
aging the id map’s buffer pool residency, the storage manager 
also introduces concurrency control overhead to the id map. 
To avoid some of this overhead, we decided to take advantage 
of a limited amount of virtual memory for the id map. For this 
algorithm, we keep the B+-tree implementation of the id map, 
but introduce an in-memory cache of id map entries. 

The cache is implemented as a hash table. All inserts store 
the id map entry in both the B+-tree and the cache. Whenever 
an insert causes a collision in a hash bucket of the cache, the 
previous hash bucket entry is discarded and the new entry in- 
serted. All lookups check the cache first. If the entry is not 
found in the cache, the Bf-tree is checked, and the retrieved 
entry is inserted into the cache. 

The load algorithm remains the same as the basic algo- 
rithm; id map lookups are still associative accesses, now first 
to the cache and then, if necessary, to the B+-tree. 

3.5 New algorithm: id map is a persistent partitioned list 

The associative accesses to the id map in the above algorithms 
are random accesses, and when the id map does not fit in phys- 
ical memory, they cause random disk I/O. The goal of this al- 
gorithm is to eliminate the random I/O. 

In the above algorithms, half of the id map lookups were to 
convert the inverse todo entries into update entries. A funda- 
mental observation led to the new algorithm: these lookups, 
grouped together, constitute a join between the inverse todo 
list and the id map. The other half of the id map lookups were 
performed while reading the data file a second time, in step 3, 
to retrieve the OIDs for each relationship. These lookups were 
interspersed with reading the data file and creating objects. 

34 



However, by separating the surrogates from the data file, into 
a different todo list, the surrogates can also be joined, as a 
group, with the id map. 

In this algorithm the id map is written to disk in two dif- 
ferent forms at the same time. First, it is written sequentially, 
so that the OIDs can be retrieved in the same order as they 
are generated, which is necessary for creating the objects with 
the OIDs that have been pre-assigned to them. Second, the id 
map is written so that it can be joined with the surrogates to 
be looked up. We use a hash join with the id map as the inner 
relation, so the second time, the id map is written into hash 
partitions. As many partitions as can fit in the buffer pool are 
initially allocated. The algorithm has 5 steps. 

Partition I 

pj$y /ygy-& 

L 

2 OID5 1 OID4 
4 OID7 3 OID6 

202 OID9 201 OID8 
203 OIDlO 

Figure 6: Id map with 2 partitions. 

OID for 
Partition 0 
1 Surrogate for 1 Update 

object to update object-to store offset 
OID5 202 24 
OID7 102 16 
OID7 202 24 

OID for 
Partition 1 
1 Surrogate for 1 Update 

Figure 7: Todo list with 2 partitions. 

1. Read the datajile. 
- For each object, read and hash the surrogate. Pre-assign an 

OID to the object, and make an entry in both the sequential 
id map and in the id map hash-partitioned on surrogate. 

- For each relationship described with the object, hash the 
surrogate for the relationship and make an entry in the ap- 
propriate partition of a todo list. Each todo entry contains 
the OID just pre-assigned to the object, the surrogate to 
look up, and an offset indicating where to store it. The todo 
list is hash-partitioned by surrogate, using the same hash 
function as the id map. 

- If the relationship has an inverse, hash the surrogate for 
the relationship and make an entry on an inverse todo 
list, indicating that the inverse object should be updated 
to contain the OID of this object. Each inverse todo en- 

Figure 8: Inverse todo list with 2 partitions. 

try contains a surrogate for the object to update, the OID 
to store in that object, and an offset indicating where to 
store it. The inverse todo list is also hash-partitioned by 
surrogate, using the same hash function as the id map. 

The buffer pool size determines the number of partitions of the 
id map. Since there must be a corresponding todo list partition 
and inverse todo list partition for each id map partition, the 
number of partitions is no more than the number of pages in 
the buffer pool divided by 3. 

Figure 7 shows the todo list constructed for the example data 
file, with 2 partitions. The id map and the inverse todo list are 
the same as for the basic algorithm, shown in Figures 3 and 
4, except that they are now partitioned as shown in Figures 6 
and 8. 

2. Repartition the id map as necessary. 
If any of the id map partitions is too large to fit in memory, split 
that partition and the corresponding todo list and inverse todo 
list partitions by further hashing on the surrogates. Repeat un- 
til all id map partitions can (individually) fit in memory, which 
is necessary for building the hash table in the following step. 

3. Join the todo and inverse todo lists with th’e id map to cre- 
ate the update list. Join one partition at a time. 
- Build a hash table on the entries in the id map partition in 

virtual memory. 

- For each entry in the todo list partition, probe the hash table 
for its surrogate. Make an entry on the update list contain- 
ing the OID of the object to update (taken from the todo 
entry), the OID to store in the object (just retrieved from 
the hash table), and the offset (from the todo entry). 

- For each entry in the inverse todo list partition, probe the 
hash table for its surrogate. Make an entry on the update 
list containing the OID of the object to update (just re- 
trieved from the hash table), the OID to store in the object 
(taken from the inverse todo entry), and the offset (from the 
inverse todo entry). 
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Note that all entries on the update list look alike, regardless of 
whether they were originally on the todo or inverse todo list. 

4. Sort the update list. 

- As the update entries are generated in step 3, sort them by 
OID of the object to update and write them out in sorted 
runs. In this step, use an external merge sort to merge the 
sorted runs. As in the basic algorithm, postpone the final 
merge pass until the last step. 

5. Read the data file again and create the database. 

- For each object, look up its surrogate in the sequential id 
map and retrieve the OID that has been assigned to it. 

- For each non-relationship attribute of the object, store it in 
the object. 

- For each update entry in the sorted update list that updates 
this object, read the entry and store the appropriate OID in 
the object. The final merge pass of sorting the update list 
happens as the update entries are needed. 

- Create the object with the storage manager now that the in- 
memory representation is complete. 

Note that since the sequential id map entries are read in the 
same order in which they are generated, it is only necessary to 
store the OID in each entry, and not the corresponding surro- 
gate. 

Each data structure used by the load is now being written 
and read exactly once, in sequential order. There is very little 
random I/O being performed on behalf of the algorithm, be- 
cause there is no longer random access to any load data struc- 
ture. 

4 Implementation 

We implemented all of the algorithms in C++. The database 
was stored under the Shore storage manager [CDF+94]. We 
used the Shore persistent object manager, even though it is 
still under development, for two reasons. First, Shore pro- 
vides the notion of a “value-added server” (VAS), which al- 
lowed us to place the load utility directly in the server. Sec- 
ond, Shore provides logical OIDs, which allowed us to pre- 
assign OIDs. Each list or list partition (e.g., each partition of 
the id map in the new algorithm) was stored as a single large 
object in Shore. 

We used a Hewlett-Packard 9000/720 with 32 megabytes 
of physical memory to run all of the algorithms. However, 
due to operating system and daemon memory requirements, 
we were only able to use about 16 Mb for any test run. The 
database volume was a 2 gigabyte Seagate ST-12400N disk 
controlled exclusively by Shore. The data file resided on a 
separate disk and thus did not interfere with the database I/O. 
For these tests, we turned logging off, as would be expected 
in a load utility [Moh93a]. 
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5 Performance tests 

We ran a series of performance tests to show how quickly (or 
slowly!) each algorithm could load different size data sets. In 
this section, we will use the names in Table 1 to refer to each 
algorithm. 

r Algorithm 1 Major data structures 1 Described in 1 
naive in-memory hash table id map Section 3.1 

immediate inverse updates 
in-mem in-memory hash table id map Section 3.2 

inverse todo list 
btree B+-tree id map Section 3.3 

inverse todo list 
cache B+-tree plus cache id map Section 3.4 

inverse todo list 
partitioned partitioned list id map Section 3.5 
-list todo and inverse todo lists 

Table 1: Algorithm names used in performance graphs. 

5.1 Data sets loaded 

For the performance experiments we created 200 byte objects. 
The schema for each object contained ten bidirectional rela- 
tionships. In the data file, we listed five relationships with 
each object. Each object also contained an average of five re- 
lationships that were listed with the inverse object, but stored 
in both objects. (For the final set of experiments, we explic- 
itly listed all ten relationships with each object and had no in- 
verses in the schema.) We varied the number of objects to 
control the size of the database; each data set had 5000 objects 
per megabyte (Mb) of data. The data files were approximately 
one-third as large as the data sets they described, e.g., the data 
file for the 100 Mb data set was 36 Mb. 

We modeled a high degree of locality of reference among 
the objects for most of the experiments. In the data sets with 
a high degree of locality, 90% of relationships from an object 
are to other objects within 10% of it in the data file (and hence 
the database). The remaining 10% of the relationships are to 
other objects chosen at random from the entire database. We 
believe that a high degree of locality models a database clus- 
tered by complex object. For a few experiments, we also mod- 
eled no locality of reference. In those data sets, all relation- 
ships are to objects chosen at random. 

5.2 Performance results 

5.2.1 Comparing algorithms with different classes of 
data set sizes 

For the first set of experiments, we compared the perfor- 
mance of naive, in-mem and partitioned-list. We held the 
buffer pool size constant at 4 Mb, and varied the size of the 
data set being loaded from 5 Mb to 200 Mb. 

Each algorithm used some transient heap memory in addi- 
tion to the buffer pool. Naive and in-mem allocate the id map 
in virtual memory. With the 5 Mb data set, the id map was 
0.4 Mb; with the 100 Mb data set it was 12.5 Mb. In general, 
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the size of the id map was 7-13% of the data set size. As the 
data set size increases, so does the amount of memory used by 
naive and in-mem; the total amount of memory each used was 
the size of the buffer pool plus the size of the id map. 

Partitioned-list creates a full page of data for each id map, 
todo list, and inverse todo list partition in memory before it 
sends that page to the storage manager. This minimizes the 
number of calls to the storage manager and reduces the rate 
of pinning and unpinning of pages and objects in the buffer 
pool, but it requires roughly as many pages of heap memory as 
there are pages in the buffer pool. The total amount of mem- 
ory required by partitioned-list is therefore twice the size of 
the buffer pool. 

Therefore, for the smallest class of data set sizes, the 
partitioned-list algorithm used more memory than the other 
algorithms. However, with a 4 Mb buffer pool, naive and in- 
mem were already using more memory to load the 60 Mb data 
set: they used 10.3 Mb while partitioned-list used only 8 Mb. 

Figure 9(a) shows the wall clock time for the naive, in- 
mem, and partitioned-list algorithms as we loaded data sets 
of 2 to 200 Mb. Figures 9(b) and 9(c) show the number of 
I/OS that were performed by the same experiments: 9(b) de- 
picts the number of I/OS in the buffer pool, and 9(c) depicts the 
number of I/OS performed as virtual memory is swapped in 
and out of physical memory. (We measured the virtual mem- 
ory page swaps with the getrusage system call; Shore pro- 
vided the buffer pool I/O statistics.) We show the partitioned- 
list algorithm above for comparison and discuss it in more de- 
tail in the next section. 

The naive algorithm performs comparably to the in-mem 
algorithm on the 2 Mb data set when nearly the entire data set 
fits in the 4 Mb buffer pool: they complete the load in 19.6 
and 19.0 seconds, respectively. However, as the data set size 
increases, naive starts thrashing as it tries to bring the inverse 
relationship objects into the buffer pool, as is clear from the 
correlation between the wall clock time and the buffer pool 
I/OS. At 5 Mb, naive is already taking 5 times as long to load: 
276 vs. 5 1 seconds. Naive’s performance is so poor because 
the buffer pool must randomly read and write an object for 
each inverse update. By the 60 Mb data set, naive is over an 
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order of magnitude worse than in-mem, taking over 10 hours 
to load while in-mem finishes in 15 minutes. Naive is clearly 
unsuitable for loading once the data set exceeds the size of the 
buffer pool. 

The in-mem algorithm performs quite well - the best - 
until the id map no longer fits in physical memory. For the 80 
Mb data set, the id map still fits in physical memory. As the 
id map grows for the data sets between 100 and 160 Mb, it no 
longer fits in physical memory, and the load time for in-mem 
becomes proportional to the number of I./OS performed for vir- 
tual memory page swaps. By the 180 Mb data set, the id map 
is 25 Mb and virtual memory begins to thrash so badly that the 
load cannot complete at all. In fact, in over 4 hours, in-mem 
had completed less than 10% of step 1 of the algorithm. (In- 
mem loaded the entire 160 Mb data set in under 3 hours.) We 
therefore recommend that in-mem be used only when there is 
plenty of physical memory for the id map. 

In-mem is better than partitioned-list when the id map does 
fit in memory because it writes neither the id map nor a todo 
list to disk. This performance gap could be narrowed by us- 
ing a hybrid hash join [Sha86] in the partitioned-list algorithm 
instead of the standard Grace hash join [Kea83] to join the 
id map, todo list, and inverse todo lists. However, it would 
only save writing the id map to disk; the todo list (which is 
not needed by in-mem) would still be written to disk. 

5.2.2 Comparing viable algorithms for loading large 
data sets with very little memory 

In-mem is simply not a viable algorithm when the size of 
the id map, which depends on the number of objects to be 
loaded, exceeds the size of memory. However, both modifi- 
cations to the in-mem algorithm place the id map in the buffer 
pool, and allow the storage manager to handle paging it in 
and out of physical memory. Therefore, the amount of physi- 
cal memory required remains constant. We now compare the 
modified algorithms, btree and cache, to partitioned-list. 

As we noted in the previous section, partitioned-list used 
both the 4 Mb buffer pool and an equal amount of transient 
memory, for a total of 8 Mb. Cache used both the buffer pool 
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Figure 10: Comparing algorithms for loading data sets with very little memory available. 

and an in-memory cache of the id map. We therefore allocated 
a 4 Mb cache as well as the 4 Mb buffer pool, so that cache 
also used 8 Mb of physical memory. B+-tree had no transient 
memory requirements; therefore, to be fair in terms of total 
memory allocated, we tested the B+-tree algorithm with an 8 
Mb buffer pool. 

Figure IO shows the wall clock time, CPU time, and num- 
ber of buffer pool I/OS incurred by the btree, cache, and 
partitioned-list algorithms to load data sets of 5 to 500 Mb. 
(We were unable to load more than 500 Mb due to disk space 
limitations.) 

Partitioned-list is clearly the best algorithm; it loaded all of 
the data sets in the least amount of wall clock time and CPU 
time, with the fewest number of I/OS. However, although the 
number of I/OS scales linearly with increasing data set sizes, 
the CPU time (and hence the wall clock time) does not. This 
is due to a bug in the page allocation routine of the Shore stor- 
age manager which has since been fixed.2 Comparing the wall 
clock time to the CPU time for partitioned-list reveals that ap- 
proximately 75% of the wall clock time is CPU-time. This is 
due to two factors. First, a background thread writes the dirty 
pages of the buffer pool out to disk asynchronously, in groups 
of sequential pages, and so many of the write operations over- 
lap with the CPU time. Second, the partitioned-list algorithm 
was carefully designed to minimize I/O. We succeeded in this 
regard; partitioned-list is not I/O-bound. 

The cache algorithm is competitive with partitioned-list 
while the id map fits in memory. As the data set sizes exceeds 
80 Mb, however, the close correlation between the wall clock 
time and the amount of buffer pool I/O for the cache algorithm 
show that it is spending most of its time bringing id map pages 
into the buffer pool. To load the 160 Mb data set, cache takes 
nearly 9 hours (while partitioned-list completes the load in 1.5 
hours). 

The cache algorithm is better than the btree algorithm 
while the id map fits in the total allocated memory, because 

2Preliminary tests with the bug fix show linear CPU time, so that, e.g., 
partitioned-list finishes loading the 500 Mb data set in 3.5 hours. The per- 
forance of I/O-bound algorithms such as btree and naive is not significantly 
affected. 
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cache accesses are much faster than B+-tree’accesses in the 
buffer pool. (Even when the desired page of the B+-tree is 
resident in the buffer pool, accessing it still involves fixing the 
page, pinning and locking the B+-tree entry, and other concur- 
rency control operations.) However, once the id map greatly 
exceeds the cache size, most id map lookups go through the 
B+-tree. Then the btree algorithm is better because it has 
twice as large a buffer pool in which to keep pages of the id 
map resident. (The cache algorithm has the same total amount 
of memory, but there is a high degree of duplication between 
the cache and B+-tree entries.) 

We expected the btree algorithm to begin paging the id map 
once the size of the id map exceeded the buffer pool. Yet it is 
not until loading the 180 Mb data set that the btree algorithm 
begins to page in the buffer pool. A combination of three fac- 
tors explains btree’s ability to load 160 Mb (with a 36 Mb id 
map) without excessive paging in the buffer pool. First, sur- 
rogates are assigned sequentially in our test data files, so two 
objects listed consecutively in a data file have consecutive sur- 
rogates. Second, a high locality of reference means that most 
of the lookups will be for surrogates sequentially close to that 
of the referencing object. Third, a clustered B+-tree index 
means that sequentially similar keys (surrogates) will be in 
nearby entries. Therefore, for the above data sets, keeping the 
nearest 20% of the id map in the buffer pool suffices to satisfy 
90% of the id map lookups. 20% of the id map for the 160 Mb 
data set is only 7 Mb, and fits easily in the 8 Mb buffer pool. 

Loading some data sets with no locality of reference vali- 
dated this theory, and we show the results in Figure 11. There 
was no difference in the partitioned-list algorithm when load- 
ing data sets with and without locality of reference; the times 
varied so slightly that the lines appear to overlay each other 
on the graph. The btree algorithm, by contrast, was very sen- 
sitive. As soon as the entire id map did not fit in the buffer 
pool, the btree algorithm began thrashing as we originally pre- 
dicted. This happened at the 40 Mb data set, when the id map 
was approximately 10 Mb, and got worse for larger data sets. 
It is interesting to note that there is very little extra CPU over- 
head to fetch a non-resident page; most of the CPU time is 
spent on concurrency control inside the buffer pool, which 
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Figure 11: Comparing the sensitivity of the btree and partitioned-list algorithms to the locality of reference in 
the data set. 

happens whether or not the page must first be (expensively) 
fetched from disk. 

5.2.3 Comparing large data set algorithms when there 
are no inverse relationships 

Although all of the major commercial OODB vendors sup- 
port inverse relationships, many object-relational DBs do not 
(e.g., Illustra [Ube94] and UniSQL [Kim94]) and/or users 
may choose not to use them. As a final comparison of the 
algorithms for handling large data sets, we altered the data 
file to explicitly list all ten relationships from each object and 
removed the inverse relationships from the schema. We ran 
both partitioned-list and btree, as well as a version of naive, 
identified as naive-btree, that was adapted to use a B+-tree 
id map instead of keeping the id map in memory. Figure 12 
shows the results. Naive-btree and btree are nearly indistin- 
guishable on the graphs (btree is actually 56% faster). The 
major difference between them, their handling of inverse re- 
lationships, has been removed. However, partitioned-list is 
clearly still an order of magnitude faster than both of them, 
completing the load of 80 Mb in less than 1 hour while btree 
takes over 11 hours. 

5.2.4 Discussion 

When the id map fits in memory, partitioned-list, our new al- 
gorithm, is less than twice the cost of in-mem, which does not 
create a todo list nor write the id map to disk. Using hybrid 
hash join instead of Grace hash join to join the id map with 
the todo list and inverse todo list would eliminate the extra 
cost of writing the id map and narrow the gap, but the todo list 
would still be written. When the id map does not fit in mem- 
ory, in-mem is simply inviable, first because it thrashes virtual 
memory and then because it runs out of swap space. 

Partitioned-list is an order of magnitude better than either 
btree or cache, the other algorithms that can deal with an id 
map that does not fit in memory. Without locality of reference 
in the data set, partitioned-list completed 16 times faster than 
btree on a 60 Mb data set! Even when there are no inverse re- 
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lationships in the schema, e.g., in object-relational databases 
such as Illustra [Ube94] and UniSQL [Kim94], partitioned- 
list is an order of magnitude faster. By eliminating all ran- 
dom accesses to data structures, and by writing and read- 
ing each data item exactly once, we achieve linear I/O costs 
for partitioned-list in the size of the data set. For a sys- 
tem that needs to handle very large loads, e.g., gigabytes of 
data, and does not have gigabytes of memory,‘we recommend 
partitioned-list as the best algorithm to implement. 

6 Resumable load 

From the above performance results, it is clear that loading 
gigabytes and terabytes takes hours. Losing all of the first ten 
hours of a load due to a system crash would be extremely un- 
desirable. Rather, we would like to be able to resume the load 
after the system recovers, and to resume it close to where it 
was at the time of the crash. It is also desirable to resume a 
load that was stopped for other reasons, e.g., to use all of the 
CPU power for an urgent query, or because disk space was 
temporarily unavailable. Furthermore, we wish to resume a 
load without requiring logging of the newly loaded data, and 
without undoing most of the load before restarting. 

Therefore, the best solution for resuming a load is to pe- 
riodically take a restart checkpoint: to commit the current 
state of the load and save persistent information that indicates 
where and how to resume the load from this checkpoint. In 
this section we discuss how to adapt the partitioned-list algo- 
rithm presented in Section 3.5 to make it resumable. We iden- 
tify the specific information to save during ,a restart check- 
point and discuss how to resume the partitioned-list algorithm 
from a given checkpoint. 

6.1 Restart checkpoint records 

Whenever a restart checkpoint is taken, it is necessary to flush 
all partitions and lists from memory to the buffer pool, and 
then flush the dirty pages of the buffer pool to disk. Then a 
restart checkpoint record containing the necessary informa- 
tion is written and also flushed to disk. Flushing the buffer 
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pool ensures that the state of the load as of the checkpoint can 
be recovered from disk after a crash. Teradata also flushes all 
loaded data to disk when taking a resumable load checkpoint 
[WCK93]. 

For each step of our partitioned-list load algorithm, we 
now summarize the action of the step, describe when a check- 
point is permitted, what to write in the checkpoint record, and 
how to use the checkpoint record information to resume the 
load. 

1. Read the data file and create the sequential id map, id map 
partitions, todo list partitions, and inverse todo list partitions. 

A restart checkpoint is permitted between reading any two 
objects. After the Nth object, record the current position in 
the data file, the sequential id list, and each id map, todo list, 
and inverse todo list partition. When resuming a load at this 
checkpoint, discard all entries in the above lists and partitions 
after the recorded positions. Then continue by reading the 
(N + l)th object from the data file. 

2. Join the id map, one partition at a time, with the todo list 
and inverse todo list to create the update list. 

A restart checkpoint is permitted at any time. Record which 
partition is being joined, and the current position in either 
the todo or inverse todo list (whichever is being joined at the 
time). Record the current end of the update list. When re- 
suming a load from this checkpoint, first rebuild the hash ta- 
ble on the id map partition. Discard all update entries after 
the recorded point in the update list. Then continue reading 
the todo or inverse todo list and joining it with the id map. 
Note that taking a checkpoint terminates a sorted run of the 
update list; very frequent checkpoints may generate more runs 
to merge than would otherwise be created. 

3. Merge sorted runs of the update list until only one merge 
pass remains. 

A restart checkpoint is permitted at any time. Record which 
runs are being merged, the location of the next entry to merge 
in each run, and the end of the new merged run. To resume, 
discard all entries in the merged run after the recorded point, 
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and all entries in subsequent merged runs. Resume merging 
from the recorded points in each sorted run. 

4. Read the data$le and sequential id map, perform theJina1 
merge pass of the update list and create the database objects, 

A restart checkpoint is permitted between creating any two 
objects. Record the current position in the data file, sequen- 
tial id map, and each sorted run of the update list. Record the 
OID of the last created object. 

Resuming from a checkpoint here is trickier; objects that were 
created after this checkpoint, but before the crash, cannot sim- 
ply be “recreated:” they already exist and trying to create an 
object with the same OID would cause an error. However, 
if only part of an object (spread across multiple pages) was 
written to disk, then the entire object is invalid. It is there- 
fore necessary to remove the objects created after the check- 
point and recreate them. However, the objects cannot simply 
be deleted because that would invalidate their OIDs, which we 
are already using to reference those objects. We recommend 
truncating the objects to zero length instead. 

Resume reading the data file, sequential id map, and update 
list from their respective recorded points. For each object, 
try to read the object with the corresponding OID from the 
database. If the object is found, first truncate it, then update 
it with the correct data. When an object is not found, resume 
normal loading with creating that object. 

As we indicate in each step above, a checkpoint can be 
taken at virtually any time during the load. However, there is 
a tradeoff between taking frequent checkpoints (and losing lit- 
tle work) and occasional checkpoints (and avoiding the over- 
head of flushing the buffer pool). Some balance between the 
two should be struck. 

7 Conclusions 

A bulk loading utility is critical to users of OODBs with sig- 
nificant amounts of data. Loading new data is a bottleneck 
in object-oriented applications; however, it need not be. In 
this performance study we showed that even when less than 



1% of the data fits in memory, good performance can still be 
achieved. The key lies in minimizing the number of random 
accesses to both the database and any other secondary storage 
data structures. 

In this paper we developed algorithms to load a data set 
so large that its id map can not fit in physical memory. We 
believe that many scientific data and legacy data sets fit in 
this category. We presented a new algorithm, partitioned-list, 
in which we were able to eliminate random data accesses by 
writing the id map out to disk as a persistent list, and then us- 
ing a hash join to perform lookups on the id map. This funda- 
mental change allowed the algorithm to scale gracefully with 
increasing data sizes, instead of spending all its time bringing 
needed id map pages into memory once the id map (as either a 
virtual memory structure or as a persistent B+-tree) no longer 
fit in physical memory. 

Our new algorithm also incorporates techniques for effi- 
ciently handling inverse relationships. We note that a load 
utility must be able to turn off the automatic maintenance of 
inverse relationships for the duration of the load. Otherwise, 
the load utility can do no better than a naive algorithm, i.e. or- 
ders of magnitude worse than a clever algorithm for handling 
inverse relationships. However, the partitioned-list algorithm 
achieves another order of magnitude performance improve- 
ment on top of that for handling inverse relationships due to 
its handling of the id map lookups. This performance gain oc- 
curs even in data whose relationships have no inverses. 

We also presented a resumable load algorithm. We de- 
scribed both what to write in a checkpoint record for the 
partitioned-list algorithm and how to resume the algorithm 
from the last checkpoint. Restart checkpoints allow a single 
load transaction to be paused and resumed many times, for 
any reason, with a minimal loss of work. 

Our future work includes looking at techniques for load- 
ing new objects which share relationships with existing ob- 
jects in the database. Specifically, we are investigating when 
to retrieve such objects from the database and when to update 
them to maximize both concurrency and loading speed. We 
also plan to investigate algorithms for loading objects in par- 
allel on one or more servers with multiple database volumes. 
In addition, we are integrating the load implementation with 
the higher levels of Shore and turning it into a utility to be dis- 
tributed with a future release of Shore. 

8 Acknowledgements 

We would like to thank S. Sudarshan for suggesting that the id 
map lookups could be seen as a join, and C. Mohan and Nancy 
Hall for discussion of our resumable load ideas. We also want 
to thank Mike Zwilling and C. K. Tan for many hours of dis- 
cussion and support for our implementation as a Shore value- 
added server, and Mark McAuliffe for many helpful sugges- 
tions regarding both our implementation and this paper. 

References 
[Cam951 John Campbell, Jan. 1995. Personal communication. 

[Cat931 R. G. G. Cattell, editor. The Object Databnse Standard: 
ODMG-93. Morgan-Kaufman, Inc., 1993. 

[CDFf94] M. Carey, et al.. Shoring Up Persistent Applications. 
Proc. SIGMOD, p. 383-394, 1994. 

[CMR92] J. B. Cushing, D. Maier, and M. Rao. Computational 
Proxies: Modeling Scientific Applications in Object Databases. 
Tech. Report 92-020, Oregon Graduate Institute, Dec. 1992. Re- 
vised May, 1993. 

[CMR+94] J. B. Cushing, D. Maier, M. Rao, D. Abel, D. Feller, 
and D. M. DeVaney. Computational Proxies: Modeling Scientific 
Applications in Object Databases. Proc. ScientiJic and Statistical 
Database Management, Sept. 1994. 

[CPea93] M.A. Chipperfield, C.J. Porter, er al. Growth of Data in 
the Genome Data Base since CCM92 and Methods for Access. 
Human Genome Mapping, p. 3-5, 1993. 

[Deu90] 0. Deux. The Story of 02. IEEE Trans. on Knowledge and 
Data Engineering, 2(1):91-108, Mar. 1990. 

[DLP+93] R. Drach, et al. Optimizing Mass Storage Organization 
and Access for Multi-Dimensional Scientific Data. Proc. IEEE 
Symposium on Mass Storage Systems, Apr. 1993. 

[Kea83] M. Kitsuregawa and et al. Application of Hash to Data 
Base Machine and its Architecture. New Generation Computing, 
1:62-74, 1983. 

[Kim941 W. Kim. UniSQL/X Unified Relational and Object- 
Oriented Database System. Proc. SIGMOD, p. 481, 1994. 

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The 
ObjectStore Database System. CACM, 34( 10):50-63, Oct. 1991. 

TMai941 David Maier. Jan. 1994. Personal communication. 
iMN92j C. Mohan and I. Narang. Algorithms for Creating Indexes 

for Verv Large Tables Without Ouiescing Undates. Proc. SIG- 
MOD, i. 361-370, 1992. - ” ’ 

[MN931 C. Mohan and I. Narang. An Efficient and Flexible Method 
for Archiving a Data Base. Proc. SIGMOD, p. 139-146, 1993. 

[Moh93a] C. Mohan. A Survey of DBMS Research Issues in Sup- 
porting Very Large Tables. Proc. Foundations of Data Organiza- 
tion and Algorithms, p. 279-300, 1993. 

[Moh93b] C. Mohan. IBM’s Relational DBMS Products: Features 
and Technologies. Proc. SIGMOD, p. 445-448, 1993. 

[MS901 D. Maier and J. Stein. Development and Implementation 
of an Object-Oriented DBMS. In S. B. Zdonik and D. Maier, edi- 
tors, Readings in Object-Oriented Database Systems, p. 167-185. 
Morgan-Kaufman, Inc., 1990. 

[Ne1911 G. Nelson, editor. Systems Programming with Modula-3. 
Prentice Hall, 199 1. 

[Obj92] Objectivity, Inc. Objectivity/DB Documentation, 2.0 edi- 
tion, Sept. 1992. 

[Ont94] Ontos, Inc. Ontos DB Reference Manual, release 3.0 beta 
edition, 1994. 

[PGSS] N. W. Paton and P. M. D. Gray. Identification of Database 
Objects by Key. Proc. 2nd Workshop on Object-Oriented 
Database Systems, p. 280-285, 1988. 

[RZ89] R. Reinsch and M. Zimowski. Method for Restart- 
ing a Long-Running, Fault-Tolerant Operation in a Transaction- 
Oriented Data Base System Without Burdening the System Log. 
U.S. Patent 4,868,744, IBM, 1989. 

[Sha86] L.D. Shapiro. Join Processing in Database Systems with 
Large Main Memories. ACM Trans. on Database Systems, 11(3), 
Sept. 1986. 

[Sno89] R. Snodgrass. The Interface Description Language: De& 
nition and Use. Computer Science Press, 1989. 

[Ube94] M. Ubell. The Montage Extensible DataBlade Architec- 
ture. Proc. SIGMOD. D. 482. 1994. 

[Ver93] Versant Object ;Tkchnoiogy. Versant Object Database Man- 
agement System C++Versant Manual, release 2 edition, July 
1393. . 

IWCK931 A. Witkowski, F. CariBo, and P. Kostamaa. NCR 3700 
- The Next-Generation Industrial Database Computer. Proc. 
VLDB. o. 230-243. 1993. 

[WN94] y L. Wiener and J. F. Naughton. Bulk Loading into an 
OODB: A Performance Study. Proc. VLDB, p. 120-13 1, 1994. 

41 


