
OODB Bulk Loading Revisited: The Partitioned-List Approach*

Janet L. Wiener t Jeffrey F. Naughton

Department of Computer Sciences
University of Wisconsin-Madison

1210 W. Dayton St., Madison, WI 53706
{ wienernaughton} @cs.wisc.edu

Abstract

Object-oriented and object-relational databases (OODB) need
to be able to load the vast quantities of data that OODB users
bring to them. Loading OODB data is significantly more com-
plicated than loading relational data due to the presence of re-
lationships, or references, in the data; the presence of these
relationships means that naive loading algorithms are slow
to the point of being unusable. In our previous work, we
presented the late-invsort algorithm, which performed signif-
icantly better than naive algorithms on all the data sets we
tested. Unfortunately, further experimentation with the late-
invsort algorithm revealed that for large data sets (ones in
which a critical data structure of the load algorithm does not fit
in memory), the performance of late-invsort rapidly degrades
to where it, too, is unusable. In this paper we propose a new
algorithm, the partitioned-list algorithm, whose performance
almost matches that of late-invsort for smaller data sets but
does not degrade for large data sets. We present a performance
study of an implementation within the Shore persistent ob-
ject repository showing that the partitioned-list algorithm is at
least an order of magnitude better than previous algorithms on
large data sets. In addition, because loading gigabytes and ter-
abytes of data can take hours, we describe how to checkpoint
the partitioned-list algorithm and resume a long-running load
after a system crash or other interruption.

1 Introduction

As object-oriented and object-relational databases (OODB)
attract more and more users, the problem of loading the users’
data into the OODB becomes more and more important. The
current methods of loading create only one object at a time.
These methods, i.e., insert statements in a data manipulation

This work supported in part by NSF grant IRI-9157357 and by the Ad-
vanced Research Project Agency, ARPA order number 018 (formerly 8230),
monitored by the U.S. Army Research Laboratory under contract DAAB07-
9l-C-Q518.

Author’s current address: wiener@db.stanford.edu or Dept. of Com-
puter Science, Stanford University, Stanford, CA 94305.

Permission to copy withoutfee all orpart of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee cm&or special
permission from the Endowment.

Proceedings of the 21st VLDB Conference
Zurich, Switzerland, 1995

language, or new statements in a database programming lan-
guage, are more appropriate for loading tens and hundreds of
objects than for loading millions of objects. Loading large
amounts of data is currently a bottleneck in many OODB ap-
plications [CMR92, CMR+94].

Relational database systems provide a load utility to by-
pass the individual language statements. The load utility takes
an ASCII description of all of the data to be loaded and re-
turns when it has loaded it. For these relational systems, a load
utility significantly improves performance even when load-
ing only a small number of objects, because it is based in the
database server [Moh93b]. The load utility can therefore dra-
matically reduce the amount of client-server interaction, and
hence both the layers of software traversed and the communi-
cation overhead to create each new object.

There are many commercial object-oriented database
products today, including Ontos [Ont94], 02 [Deu90], Ob-
jectivity [Obj92], ObjectStore [LLOW91], Versant [Ver93],
and Gemstone [MS90]. Yet to our knowledge no commercial
OODB has a load uti1ity.l Why not‘? Relative to loading re-
lational data, loading object-oriented (and object-relational)
data is complicated by the presence of relationships among
the objects; these relationships prevent using a relational load
utility for an OODB.

Relationships between objects are represented by object
identifiers (OIDs) in the database. These OIDs are created
and maintained by the database and are usually not visible
to the user. Furthermore, these OIDs are not available at all
when the load file is written, because the corresponding ob-
jects have not yet been created. Relationships must there-
fore be represented by some other means in the load file,
which we call a surrogate identifier. We use a data struc-
ture called an id map to map each surrogate to its corre-
sponding OID as the objects are loaded.

Relationships may be forward references in the data file.
The surrogate used to represent a relationship may belong
to an object described later in the data file. It may not be
possible to resolve the surrogate into an OID when it is first
seen in the data file.

Relationships may have system-maintained inverse rela-
tionships, so that the description of one object in the data

1 Objectivity has something it calls a load utility, however, it can only load
data that already contains system-specific object identifiers (OlDs) [Obj92].
Similarly, Ontos’s bulk load facility is really just an option to turn off logging
while running user code that creates large amounts of data [Ont94].

30

file may cause another object (its inverse for a given re-
lationship) to be updated as well. Inverse relationships
are sometimes called bidirectional relationships, and are
part of the ODMG standard [Cat93]. Ontos, Objectivity,
ObjectStore, and Versant all support inverse relationships
[Ont94,Obj92, LLOW9 1, Ver93].

In addition to dealing with relationships, a good load utility
must be able to load data sets of widely varying sizes. As the
size of the data set increases, an increasing degree of care and
cleverness is required to load the data quickly. We categorize
data sets into three classes of sizes, relative to the amount of
physical memory available for the load, as follows:

I. All of the data to be LoadedJits in physical memory.

Naive algorithms suffice to load this class. However, a
good load algorithm can achieve a 20-30% performance gain
[WN94]. Also, as we mentioned above, a load utility can de-
crease client-server interaction to speed up loading, which in-
dividual new and insert statements can not.

2. The data itself is too largefor memory, but the id map does
pt. (The size of the id map is a function of the number of ob-
jects regardless of their size.)

For this class of load sizes, our previously proposed algo-
rithms [WN94] work well, improving performance by one to
two orders of magnitude over naive algorithms.

3. Neither the data nor the id map fits in memory.

As a followup to [WN94], we ran experiments with loads
in this range and found that our previously proposed algo-
rithms exhibited terrible performance due to thrashing (exces-
sive paging of the id map) on id map lookups. Unfortunately,
it is for these large loads that a fast load algorithm is most
needed. In this paper we propose the partitioned-list algo-
rithm, which, unlike our previous algorithms, provides good
performance even for this range of problem sizes.

The third class is not only the most challenging, it is also
the class in which many data sets fall. We give two examples
of such data sets from the scientific community. In both cases,
the scientists involved are using or planning to use an OODB
to store their data.

The Human Genome Database [Cam95 CPea93] is cur-
rently just over 1 gigabyte of 50-200 byte objects, con-
taining 3- 15 bidirectional relationships each. Loading this
database when it moves to an OODB (which is planned for
sometime in 1995) will require an id map of at least 160
megabytes.

The climate modeling project at Lawrence Livermore Na-
tional Laboratory generates up to 20,000 time points, each
a complex object (i.e., many interconnected objects), in a
simulation history. In the range of 40 gigabytes to 3 ter-
abytes of data is produced in a single simulation history
[DLP+93]! An id map for a single data set requires up-
wards of 200 megabytes.

31

We note that the physical memory available for a load is
not necessarily the total physical memory of the machine, but
rather the memory not being used by other concurrent queries
or utilities.

Additionally, because loading hundreds of megabytes
takes hours, it is desirable not to lose all of the data loaded
when a system crash occurs. Resuming a load (or any other
transaction) after a crash is non-trivial, however. We show
both what to save in a restart checkpoint of the partitioned-list
algorithm and how to resume from one of these checkpoints.
We show that only minimal information need be saved in the
restart checkpoints for partitioned-list, the checkpoints can be
taken relatively frequently, and only the work done after the
last restart checkpoint is lost if the system crashes.

1 .l Related work

Several published techniques are available for loading com-
plex data structures with relationships from an ASCII file, but
they all assume the smallest class of data sets. That is, they
assume that all of the data can fit in memory and are unsuit-
able when it can not. Both Snodgrass’s Interface Description
Language [Sno89] and Pkl for Modula 3 [Nel91] fall in this
category.

Our previous work focused on loading data sets in the sec-
ond class of sizes [WN94]. We presented alternative strate-
gies for handling forward references in the data file and for
handling updates due to inverse relationships. We recom-
mended one clearly superior algorithm to use for a load utility,
and we will revisit its performance for loading data sets of all
sizes in this paper. There has been no work, however, on load-
ing very large data sets, i.e., data sets so large that they fall in
the third class of sizes and the id map does not fit in physical
memory.

Teradata provides a resumable load for their relational
database [WCK93] as does DB2 [RZ89]. Mohan and Narang
provide an algorithm for what to checkpoint for a resumable
sort [MN92], which was the original inspiration for what to
checkpoint during a load to make it resumable.

1.2 Structure of the paper

The remainder of the paper is structured as follows: In Sec-
tion 2 we present an example database schema and data file.
In Section 3 we review the best of our previous algorithms,
describe adaptations of it for large data sets, and present our
new algorithm. Section 4 describes our implementation of the
algorithms and in Section 5 we present our performance tests
and results. We specify how to make our new load algorithm
resumable in Section 6. In Section 7 we conclude and outline
our future work.

2 Loading example

We use an example database schema and data file to illustrate
the loading algorithms, which we will describe in the next sec-
tion.

2.1 Example database schema

interface Experiment {
attribute char scientist[l6];
relationship Ref<Input> input

inverse 1nput::expts;
relationship Ref<Output> output

inverse 0utput::expt;
1:
interface Input {

attribute double temperature;
attribute long humidity;
relationship Set<Experiment>

expts

1;
inverse Experiment::input;

interface Output {
attribute double plant-growth;
relationship Ref<Experiment> expt

inverse Experiment::output;
1;

Figure 1: Experiment schema definition in ODL.

The example schema describes the data for a simplified soil
science experiment. In this schema, each Experiment object
has a many-to-one relationship with an Znput object and a one-
to-one relationship with an Output object. Figure 1 defines
the schema in the Object Definition Language proposed by
ODMG [Cat93].

2.2 Example data file

InputCtemperature, humidity) {
101: 21.2, 14;
102: 14.8, 87;
103: 21.5, 66;

> 1. Read the data file.
Experiment(scientist, input, output)

{
1: "Lisa", 101, 201;
2: "Alex", 103, 202;
3: "Alex", 101, 203;
4: "Jill", 102, 202;

Output(plant-growth) {
201: 2.1;
202: 1.75;
203: 2.0;

Figure 2: Sample data file for the Experiment schema.

Figure 2 shows a sample ASCII data file for the schema in
Figure 1. Within the data file, objects are grouped together
by class, although the classes may appear in any order and
a given class may appear more than once. Each class is,de-
scribed by its name, attributes, and relationships. If a rela-
tionship of the class is not specified, then objects get a null
value for that relationship. Next, each object in the class is

described by a surrogate identifier and a list of its values. In
this example, the surrogates are integers, andthey are unique
in the data file. In general, however, the surrogates may be
strings or numbers; if the class has a key they may be part of
the object’s data [PG88].

Wherever one object references another object, the data file
entry for the referencing object contains the surrogate for the
referenced object. The process of loading includes translating
each surrogates into the OID assigned to the corresponding
object. To facilitate this translation, we use an id map. When
an OID is assigned to an object, an entry is made in the id map
containing the surrogate and OID for that object. Whenever
a surrogate is seen as part of the description of an object, a
lookup in the id map yields the corresponding OID to store in
the object.

3 Load algorithms

We first present the naive algorithm for comparison purposes.
Then we present our best previous algorithm (formerly called
late-invsort for loading the database when there is enough
memory to store the id map. We also describe two simple
modifications to the id map data structure which allow it to ex-
ceed memory size but do not alter the basic load algorithm. Fi-
nally, we introduce our new algorithm, partitioned-list, which
is optimized for the case when the id map is significantly
larger than the amount of memory available.

3.1 Naive algorithm

The naive algorithm reads the data file twice, so that forward
references in the data file can be handled correctly. The id map
is stored as an in-memory open addressing hash table hashed
on surrogate. It is kept separate from the database buffer pool.
The algorithm has 2 steps.

- For each object, read its surrogate, create an empty object,
and store the surrogate and returned OID in the id map. Ig-
nore all attribute and relationship descriptions.

At the end of this step, the id map is complete, and all of the
objects have been created and initialized, although their con-
tents are blank. Figure 3 shows the id map for the example
data file.

2. Read the datajile again and create the database.

- For each object, look up its surrogate in theid map and find
out its OID.

- Read the object from the database.

- For each relationship described with the object, look up its
surrogate in the id map. Store the corresponding OID in
the object. Note that all valid surrogates will be found in
the id map, since it was completed in step 1.
- If the relationship has an inverse, read the inverse object

from the database and store this object’s OID in it.

32

- For each other attribute of the object, store it in the object.

- Write the updated object back to the database.

In this algorithm, each inverse relationship will cause an-
other object to be updated, probably changing the size of that
object. Sometimes the inverse object will be described later
in the data file, and sometimes earlier. It is necessary to cre-
ate empty objects in step 1 so that the inverse object always
exists in step 2, even if it is described later in the data file.
Similarly, it is necessary to read the object from the database
in step 2 because it may already contain OIDs for its inverse
relationships, stored there by inverse updates to this object.

One additional step is necessary before pronouncing the
load complete. If an archive copy of the database is main-
tained in case of media failure, a full archive copy of the newly
loaded data must be made before the data is read or written
[MN93]. Otherwise, the data might be lost due to media fail-
ure, since there is no log record of the loaded data. This step
will be necessary for all of the algorithms although we do not
mention it again.

3.2 Basic algorithm: id map is an in-memory hash table

In this algorithm, the data file is also read twice to handle for-
ward references, and the id map is also an in-memory hash ta-
ble. Unlike in the naive algorithm, OIDs are pm-assigned to
objects. Pre-assigning an OID involves requesting an unused
OID from the database without creating the correspondingob-
ject on disk. In general, pre-assignment is only possible with
logical OIDs, since the future location and size of the object
are not known when its OID is pre-assigned. If the database
only provides physical OIDs, the algorithm may be modified
to create the object in order to get its OID.

We believe that any OODB that provides logical OIDs can
also provide pre-assignment of OIDs; we know it is possi-
ble at the buffer manager level in Gemstone [Mai94] and in
Ontos, as well as in Shore [CDF+94]. Using logical OIDs
does require the database to store an extra index that maps
logical to physical OIDs. However, we found previously that
the advantages of using logical OIDs (such as having smaller
OIDs) outweigh the costs of maintaining and using this index
[wN94].

Surrogate 1 OID 1
101 1 OIDl 1

Figure 3: Id map built by the load algorithm.

The algorithm has 3 steps.

Surrogate for Update
object to update OID to store offset

101 OID4 12
201 OlDA ?. r_- .

103 OID5 12
202 OID5 8
101 OID6 12
203 OID6 8
102 OID7 12
202 OID7 8

Figure 4: Inverse todo list built for the load algorithms.

OID for Update
object to update OID to store offset

OIDl 01n4 12

Figure 5: Update list after sorting.

1. Read the datajle.
- For each object, pre-assign an OID, and make an entry in

the id map.

- For each relationship described with that object, if the re-
lationship has an inverse, make an entry on an inverse todo
list, indicating that the inverse object should be updated to
contain the OID of this object. Note that the inverse ob-
ject is described by a surrogate in the data file. Therefore
each inverse todo entry contains a surrogate for the object
to update, the OID to store in that object, and an offset in-
dicating where to store it.

At the end of this step, the id map is complete and the in-
verse todo list contains entries for all of the updates dictated
by inverse relationships. The inverse todo list is stored in the
database, because it is too large to reside in memory. Figures 3
and 4 show the id map and inverse todo list for the example
data file.

2. Sort the inverse todo list.
- First, translate to an OID the surrogate in each entry indi-

cating which object to update. Each translation involves a
lookup in the id map. We call the new entries update en-
tries, and the translated list an update list. Each update en-
try consists of the OID of the object to update, the OID to
store in it, and an offset.

- Sort the update entries, using a standard external sort, by
the OID of the object to update. In our sort, we sort chunks
of the update list in memory as the update list is generated,

33

and write each chunk out to disk as a sorted run. Then
we merge the sorted runs, as many as can fit in memory
at once, until the entire list is sorted. However, we defer
the final merge pass until step 3. Figure 5 shows the sorted
update list.

Sorting by OID groups all of the updates to a single object
together. Additionally, because the OIDs are assigned in in-
creasing order, it organizes the updates into the same order as
the objects appear in the data file. (If OIDs are not assigned in
a monotonically increasing sequence, an integer counter can
be used to assign a creation order to each object. Then the cre-
ation order for each object is stored as an additional field in the
id map and in each update entry, and used as the sort key.)

3. Read the data$le again and create the database.

- For each object, look up its surrogate in the id map and re-
trieve the OID that has been assigned to it.

- For each relationship described with the object, look up its
surrogate in the id map. Store the retrieved OID in the ob-
ject.

- Store each other attribute of the object in the object.

- For each update entry that updates this object, read the en-
try from the sorted update list and store the appropriate
OID in the object.

The last merge pass of sorting the update list happens concur-
rently with reading the data file and creating the objects. Note
that except for the id map, which is in memory, no other data
structures or objects are being accessed repeatedly during any
step of the algorithm. Therefore, the buffer pool is fully avail-
able for merging the last set of sorted runs in step 3 and the last
merge pass is never written to disk; the merged entries can be
discarded as soon as they have been retrieved and read.

An important advantage of this algorithm over similar vari-
ants is that by pre-assigning OIDs to objects in step 1, cre-
ating the objects can be postponed until all the data (includ-
ing inverse relationships) to be stored in an object is available.
Therefore, when the object is initially created, it is of the cor-
rect size. (This advantage is only possible with logical OIDs.)
Updates that add inverse relationships, on the other hand, usu-
ally change the size of the object. Since changing the sizes
of objects often severely impacts the clustering of the objects,
this advantage is quite significant.

Note that, except for the id map, no data structure - in-
verse todo list, update list sorted run, database object - is
read or written more than once. We have eliminated all of the
random and multiple accesses to objects that were caused by
inverse relationship updates in the naive algorithm. Lookups
in the id map are still by random associate access. However,
if the id map is resident in physical memory, then no I/OS are
necessary to read from it.

3.3 Modification 1: id map is a persistent B+-tree

The basic algorithm requires enough virtual memory to store
the id map. However, it accesses the id map so frequently
that it is more correct to say that it expects and relies on both
the buffer pool and the id map being in physical memory. To
overcome the limitation of needing physical memory for the
id map, we redesigned it as a persistent B+-tree. The amount
of the id map resident in memory is constrained by the size of
the buffer pool. Paging the id map is delegated to the storage
manager, and only the buffer pool needs to remain in phys-
ical memory. The load algorithm remains the same; id map
lookups are still associative accesses, now to the B+-tree.

Note that the choice of a B+-tree instead of a persistent
hash table will not be relevant: the important feature of the
B+-tree is that it supports random accesses to the id map by
paging the id map in the buffer pool. The same would be true
of a persistent hash table, and in both cases, random accesses
to the id map mean random accesses to the pages of the per-
sistent B+-tree or hash table.

3.4 Modification 2: id map is a persistent B+-tree with
an in-memory cache

Changing the id map from a virtual memory hash table to a
persistent B+-tree had the side effect of placing the id map
under the control of the storage manager. In addition to man-
aging the id map’s buffer pool residency, the storage manager
also introduces concurrency control overhead to the id map.
To avoid some of this overhead, we decided to take advantage
of a limited amount of virtual memory for the id map. For this
algorithm, we keep the B+-tree implementation of the id map,
but introduce an in-memory cache of id map entries.

The cache is implemented as a hash table. All inserts store
the id map entry in both the B+-tree and the cache. Whenever
an insert causes a collision in a hash bucket of the cache, the
previous hash bucket entry is discarded and the new entry in-
serted. All lookups check the cache first. If the entry is not
found in the cache, the Bf-tree is checked, and the retrieved
entry is inserted into the cache.

The load algorithm remains the same as the basic algo-
rithm; id map lookups are still associative accesses, now first
to the cache and then, if necessary, to the B+-tree.

3.5 New algorithm: id map is a persistent partitioned list

The associative accesses to the id map in the above algorithms
are random accesses, and when the id map does not fit in phys-
ical memory, they cause random disk I/O. The goal of this al-
gorithm is to eliminate the random I/O.

In the above algorithms, half of the id map lookups were to
convert the inverse todo entries into update entries. A funda-
mental observation led to the new algorithm: these lookups,
grouped together, constitute a join between the inverse todo
list and the id map. The other half of the id map lookups were
performed while reading the data file a second time, in step 3,
to retrieve the OIDs for each relationship. These lookups were
interspersed with reading the data file and creating objects.

34

However, by separating the surrogates from the data file, into
a different todo list, the surrogates can also be joined, as a
group, with the id map.

In this algorithm the id map is written to disk in two dif-
ferent forms at the same time. First, it is written sequentially,
so that the OIDs can be retrieved in the same order as they
are generated, which is necessary for creating the objects with
the OIDs that have been pre-assigned to them. Second, the id
map is written so that it can be joined with the surrogates to
be looked up. We use a hash join with the id map as the inner
relation, so the second time, the id map is written into hash
partitions. As many partitions as can fit in the buffer pool are
initially allocated. The algorithm has 5 steps.

Partition I

pj$y /ygy-&

L

2 OID5 1 OID4
4 OID7 3 OID6

202 OID9 201 OID8
203 OIDlO

Figure 6: Id map with 2 partitions.

OID for
Partition 0
1 Surrogate for 1 Update

object to update object-to store offset
OID5 202 24
OID7 102 16
OID7 202 24

OID for
Partition 1
1 Surrogate for 1 Update

Figure 7: Todo list with 2 partitions.

1. Read the datajile.
- For each object, read and hash the surrogate. Pre-assign an

OID to the object, and make an entry in both the sequential
id map and in the id map hash-partitioned on surrogate.

- For each relationship described with the object, hash the
surrogate for the relationship and make an entry in the ap-
propriate partition of a todo list. Each todo entry contains
the OID just pre-assigned to the object, the surrogate to
look up, and an offset indicating where to store it. The todo
list is hash-partitioned by surrogate, using the same hash
function as the id map.

- If the relationship has an inverse, hash the surrogate for
the relationship and make an entry on an inverse todo
list, indicating that the inverse object should be updated
to contain the OID of this object. Each inverse todo en-

Figure 8: Inverse todo list with 2 partitions.

try contains a surrogate for the object to update, the OID
to store in that object, and an offset indicating where to
store it. The inverse todo list is also hash-partitioned by
surrogate, using the same hash function as the id map.

The buffer pool size determines the number of partitions of the
id map. Since there must be a corresponding todo list partition
and inverse todo list partition for each id map partition, the
number of partitions is no more than the number of pages in
the buffer pool divided by 3.

Figure 7 shows the todo list constructed for the example data
file, with 2 partitions. The id map and the inverse todo list are
the same as for the basic algorithm, shown in Figures 3 and
4, except that they are now partitioned as shown in Figures 6
and 8.

2. Repartition the id map as necessary.
If any of the id map partitions is too large to fit in memory, split
that partition and the corresponding todo list and inverse todo
list partitions by further hashing on the surrogates. Repeat un-
til all id map partitions can (individually) fit in memory, which
is necessary for building the hash table in the following step.

3. Join the todo and inverse todo lists with th’e id map to cre-
ate the update list. Join one partition at a time.
- Build a hash table on the entries in the id map partition in

virtual memory.

- For each entry in the todo list partition, probe the hash table
for its surrogate. Make an entry on the update list contain-
ing the OID of the object to update (taken from the todo
entry), the OID to store in the object (just retrieved from
the hash table), and the offset (from the todo entry).

- For each entry in the inverse todo list partition, probe the
hash table for its surrogate. Make an entry on the update
list containing the OID of the object to update (just re-
trieved from the hash table), the OID to store in the object
(taken from the inverse todo entry), and the offset (from the
inverse todo entry).

35

Note that all entries on the update list look alike, regardless of
whether they were originally on the todo or inverse todo list.

4. Sort the update list.

- As the update entries are generated in step 3, sort them by
OID of the object to update and write them out in sorted
runs. In this step, use an external merge sort to merge the
sorted runs. As in the basic algorithm, postpone the final
merge pass until the last step.

5. Read the data file again and create the database.

- For each object, look up its surrogate in the sequential id
map and retrieve the OID that has been assigned to it.

- For each non-relationship attribute of the object, store it in
the object.

- For each update entry in the sorted update list that updates
this object, read the entry and store the appropriate OID in
the object. The final merge pass of sorting the update list
happens as the update entries are needed.

- Create the object with the storage manager now that the in-
memory representation is complete.

Note that since the sequential id map entries are read in the
same order in which they are generated, it is only necessary to
store the OID in each entry, and not the corresponding surro-
gate.

Each data structure used by the load is now being written
and read exactly once, in sequential order. There is very little
random I/O being performed on behalf of the algorithm, be-
cause there is no longer random access to any load data struc-
ture.

4 Implementation

We implemented all of the algorithms in C++. The database
was stored under the Shore storage manager [CDF+94]. We
used the Shore persistent object manager, even though it is
still under development, for two reasons. First, Shore pro-
vides the notion of a “value-added server” (VAS), which al-
lowed us to place the load utility directly in the server. Sec-
ond, Shore provides logical OIDs, which allowed us to pre-
assign OIDs. Each list or list partition (e.g., each partition of
the id map in the new algorithm) was stored as a single large
object in Shore.

We used a Hewlett-Packard 9000/720 with 32 megabytes
of physical memory to run all of the algorithms. However,
due to operating system and daemon memory requirements,
we were only able to use about 16 Mb for any test run. The
database volume was a 2 gigabyte Seagate ST-12400N disk
controlled exclusively by Shore. The data file resided on a
separate disk and thus did not interfere with the database I/O.
For these tests, we turned logging off, as would be expected
in a load utility [Moh93a].

36

5 Performance tests

We ran a series of performance tests to show how quickly (or
slowly!) each algorithm could load different size data sets. In
this section, we will use the names in Table 1 to refer to each
algorithm.

r Algorithm 1 Major data structures 1 Described in 1
naive in-memory hash table id map Section 3.1

immediate inverse updates
in-mem in-memory hash table id map Section 3.2

inverse todo list
btree B+-tree id map Section 3.3

inverse todo list
cache B+-tree plus cache id map Section 3.4

inverse todo list
partitioned partitioned list id map Section 3.5
-list todo and inverse todo lists

Table 1: Algorithm names used in performance graphs.

5.1 Data sets loaded

For the performance experiments we created 200 byte objects.
The schema for each object contained ten bidirectional rela-
tionships. In the data file, we listed five relationships with
each object. Each object also contained an average of five re-
lationships that were listed with the inverse object, but stored
in both objects. (For the final set of experiments, we explic-
itly listed all ten relationships with each object and had no in-
verses in the schema.) We varied the number of objects to
control the size of the database; each data set had 5000 objects
per megabyte (Mb) of data. The data files were approximately
one-third as large as the data sets they described, e.g., the data
file for the 100 Mb data set was 36 Mb.

We modeled a high degree of locality of reference among
the objects for most of the experiments. In the data sets with
a high degree of locality, 90% of relationships from an object
are to other objects within 10% of it in the data file (and hence
the database). The remaining 10% of the relationships are to
other objects chosen at random from the entire database. We
believe that a high degree of locality models a database clus-
tered by complex object. For a few experiments, we also mod-
eled no locality of reference. In those data sets, all relation-
ships are to objects chosen at random.

5.2 Performance results

5.2.1 Comparing algorithms with different classes of
data set sizes

For the first set of experiments, we compared the perfor-
mance of naive, in-mem and partitioned-list. We held the
buffer pool size constant at 4 Mb, and varied the size of the
data set being loaded from 5 Mb to 200 Mb.

Each algorithm used some transient heap memory in addi-
tion to the buffer pool. Naive and in-mem allocate the id map
in virtual memory. With the 5 Mb data set, the id map was
0.4 Mb; with the 100 Mb data set it was 12.5 Mb. In general,

-0.. naive
--O- in-mem
*partitioned-list

(4 (b)

-0.. naive
--O- in-mem
-A- partitioned-list

?

200000

?& 150000

2
~lOoooO

B

0

Figure 9: Comparing algorithms across different classes of data set sizes.

-0. naive
--O- in-mem
+- partitioned-list

p

the size of the id map was 7-13% of the data set size. As the
data set size increases, so does the amount of memory used by
naive and in-mem; the total amount of memory each used was
the size of the buffer pool plus the size of the id map.

Partitioned-list creates a full page of data for each id map,
todo list, and inverse todo list partition in memory before it
sends that page to the storage manager. This minimizes the
number of calls to the storage manager and reduces the rate
of pinning and unpinning of pages and objects in the buffer
pool, but it requires roughly as many pages of heap memory as
there are pages in the buffer pool. The total amount of mem-
ory required by partitioned-list is therefore twice the size of
the buffer pool.

Therefore, for the smallest class of data set sizes, the
partitioned-list algorithm used more memory than the other
algorithms. However, with a 4 Mb buffer pool, naive and in-
mem were already using more memory to load the 60 Mb data
set: they used 10.3 Mb while partitioned-list used only 8 Mb.

Figure 9(a) shows the wall clock time for the naive, in-
mem, and partitioned-list algorithms as we loaded data sets
of 2 to 200 Mb. Figures 9(b) and 9(c) show the number of
I/OS that were performed by the same experiments: 9(b) de-
picts the number of I/OS in the buffer pool, and 9(c) depicts the
number of I/OS performed as virtual memory is swapped in
and out of physical memory. (We measured the virtual mem-
ory page swaps with the getrusage system call; Shore pro-
vided the buffer pool I/O statistics.) We show the partitioned-
list algorithm above for comparison and discuss it in more de-
tail in the next section.

The naive algorithm performs comparably to the in-mem
algorithm on the 2 Mb data set when nearly the entire data set
fits in the 4 Mb buffer pool: they complete the load in 19.6
and 19.0 seconds, respectively. However, as the data set size
increases, naive starts thrashing as it tries to bring the inverse
relationship objects into the buffer pool, as is clear from the
correlation between the wall clock time and the buffer pool
I/OS. At 5 Mb, naive is already taking 5 times as long to load:
276 vs. 5 1 seconds. Naive’s performance is so poor because
the buffer pool must randomly read and write an object for
each inverse update. By the 60 Mb data set, naive is over an

77

order of magnitude worse than in-mem, taking over 10 hours
to load while in-mem finishes in 15 minutes. Naive is clearly
unsuitable for loading once the data set exceeds the size of the
buffer pool.

The in-mem algorithm performs quite well - the best -
until the id map no longer fits in physical memory. For the 80
Mb data set, the id map still fits in physical memory. As the
id map grows for the data sets between 100 and 160 Mb, it no
longer fits in physical memory, and the load time for in-mem
becomes proportional to the number of I./OS performed for vir-
tual memory page swaps. By the 180 Mb data set, the id map
is 25 Mb and virtual memory begins to thrash so badly that the
load cannot complete at all. In fact, in over 4 hours, in-mem
had completed less than 10% of step 1 of the algorithm. (In-
mem loaded the entire 160 Mb data set in under 3 hours.) We
therefore recommend that in-mem be used only when there is
plenty of physical memory for the id map.

In-mem is better than partitioned-list when the id map does
fit in memory because it writes neither the id map nor a todo
list to disk. This performance gap could be narrowed by us-
ing a hybrid hash join [Sha86] in the partitioned-list algorithm
instead of the standard Grace hash join [Kea83] to join the
id map, todo list, and inverse todo lists. However, it would
only save writing the id map to disk; the todo list (which is
not needed by in-mem) would still be written to disk.

5.2.2 Comparing viable algorithms for loading large
data sets with very little memory

In-mem is simply not a viable algorithm when the size of
the id map, which depends on the number of objects to be
loaded, exceeds the size of memory. However, both modifi-
cations to the in-mem algorithm place the id map in the buffer
pool, and allow the storage manager to handle paging it in
and out of physical memory. Therefore, the amount of physi-
cal memory required remains constant. We now compare the
modified algorithms, btree and cache, to partitioned-list.

As we noted in the previous section, partitioned-list used
both the 4 Mb buffer pool and an equal amount of transient
memory, for a total of 8 Mb. Cache used both the buffer pool

-0 btree -0 btree -c- btree
-o- cache -0. cache -0. cache
+ partitioned-list + partitioned-list *partitioned-list

40000 52 30000 2000

5i-
a m

2 30000 Q

.3 g 20000

s 1500

8 ‘ij
~20000

i

2 a” 1000

g 10000 3

G loooo
E

Gj 500
m

0 * 0 0 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Data set size (Mb) Data set size (Mb) Data set size (Mb)

(4 (b) cc>

Figure 10: Comparing algorithms for loading data sets with very little memory available.

and an in-memory cache of the id map. We therefore allocated
a 4 Mb cache as well as the 4 Mb buffer pool, so that cache
also used 8 Mb of physical memory. B+-tree had no transient
memory requirements; therefore, to be fair in terms of total
memory allocated, we tested the B+-tree algorithm with an 8
Mb buffer pool.

Figure IO shows the wall clock time, CPU time, and num-
ber of buffer pool I/OS incurred by the btree, cache, and
partitioned-list algorithms to load data sets of 5 to 500 Mb.
(We were unable to load more than 500 Mb due to disk space
limitations.)

Partitioned-list is clearly the best algorithm; it loaded all of
the data sets in the least amount of wall clock time and CPU
time, with the fewest number of I/OS. However, although the
number of I/OS scales linearly with increasing data set sizes,
the CPU time (and hence the wall clock time) does not. This
is due to a bug in the page allocation routine of the Shore stor-
age manager which has since been fixed.2 Comparing the wall
clock time to the CPU time for partitioned-list reveals that ap-
proximately 75% of the wall clock time is CPU-time. This is
due to two factors. First, a background thread writes the dirty
pages of the buffer pool out to disk asynchronously, in groups
of sequential pages, and so many of the write operations over-
lap with the CPU time. Second, the partitioned-list algorithm
was carefully designed to minimize I/O. We succeeded in this
regard; partitioned-list is not I/O-bound.

The cache algorithm is competitive with partitioned-list
while the id map fits in memory. As the data set sizes exceeds
80 Mb, however, the close correlation between the wall clock
time and the amount of buffer pool I/O for the cache algorithm
show that it is spending most of its time bringing id map pages
into the buffer pool. To load the 160 Mb data set, cache takes
nearly 9 hours (while partitioned-list completes the load in 1.5
hours).

The cache algorithm is better than the btree algorithm
while the id map fits in the total allocated memory, because

2Preliminary tests with the bug fix show linear CPU time, so that, e.g.,
partitioned-list finishes loading the 500 Mb data set in 3.5 hours. The per-
forance of I/O-bound algorithms such as btree and naive is not significantly
affected.

38

cache accesses are much faster than B+-tree’accesses in the
buffer pool. (Even when the desired page of the B+-tree is
resident in the buffer pool, accessing it still involves fixing the
page, pinning and locking the B+-tree entry, and other concur-
rency control operations.) However, once the id map greatly
exceeds the cache size, most id map lookups go through the
B+-tree. Then the btree algorithm is better because it has
twice as large a buffer pool in which to keep pages of the id
map resident. (The cache algorithm has the same total amount
of memory, but there is a high degree of duplication between
the cache and B+-tree entries.)

We expected the btree algorithm to begin paging the id map
once the size of the id map exceeded the buffer pool. Yet it is
not until loading the 180 Mb data set that the btree algorithm
begins to page in the buffer pool. A combination of three fac-
tors explains btree’s ability to load 160 Mb (with a 36 Mb id
map) without excessive paging in the buffer pool. First, sur-
rogates are assigned sequentially in our test data files, so two
objects listed consecutively in a data file have consecutive sur-
rogates. Second, a high locality of reference means that most
of the lookups will be for surrogates sequentially close to that
of the referencing object. Third, a clustered B+-tree index
means that sequentially similar keys (surrogates) will be in
nearby entries. Therefore, for the above data sets, keeping the
nearest 20% of the id map in the buffer pool suffices to satisfy
90% of the id map lookups. 20% of the id map for the 160 Mb
data set is only 7 Mb, and fits easily in the 8 Mb buffer pool.

Loading some data sets with no locality of reference vali-
dated this theory, and we show the results in Figure 11. There
was no difference in the partitioned-list algorithm when load-
ing data sets with and without locality of reference; the times
varied so slightly that the lines appear to overlay each other
on the graph. The btree algorithm, by contrast, was very sen-
sitive. As soon as the entire id map did not fit in the buffer
pool, the btree algorithm began thrashing as we originally pre-
dicted. This happened at the 40 Mb data set, when the id map
was approximately 10 Mb, and got worse for larger data sets.
It is interesting to note that there is very little extra CPU over-
head to fetch a non-resident page; most of the CPU time is
spent on concurrency control inside the buffer pool, which

-0 btree, high locality
--[7- btree, no locality
+ partitioned-list, hi&h locality

-0 btree, high locality
--D. btree, no locality
+ partitioned-list, high locality
A- partitioned-list, no locality

30000]

0
0 20 40 60 80 100

Data set size (Mb)

-+ btree, high locality
-.o- btree, no locality
+ partitioned-list, high locality
-A- partitioned-list, no locality

3 6000
a 0

g
I’ I’

ki 4000
3

3
g 2000

z
u 0

0 20 40 60 80 100
Data set size (Mb)

(4 (b) Cc)

Figure 11: Comparing the sensitivity of the btree and partitioned-list algorithms to the locality of reference in
the data set.

happens whether or not the page must first be (expensively)
fetched from disk.

5.2.3 Comparing large data set algorithms when there
are no inverse relationships

Although all of the major commercial OODB vendors sup-
port inverse relationships, many object-relational DBs do not
(e.g., Illustra [Ube94] and UniSQL [Kim94]) and/or users
may choose not to use them. As a final comparison of the
algorithms for handling large data sets, we altered the data
file to explicitly list all ten relationships from each object and
removed the inverse relationships from the schema. We ran
both partitioned-list and btree, as well as a version of naive,
identified as naive-btree, that was adapted to use a B+-tree
id map instead of keeping the id map in memory. Figure 12
shows the results. Naive-btree and btree are nearly indistin-
guishable on the graphs (btree is actually 56% faster). The
major difference between them, their handling of inverse re-
lationships, has been removed. However, partitioned-list is
clearly still an order of magnitude faster than both of them,
completing the load of 80 Mb in less than 1 hour while btree
takes over 11 hours.

5.2.4 Discussion

When the id map fits in memory, partitioned-list, our new al-
gorithm, is less than twice the cost of in-mem, which does not
create a todo list nor write the id map to disk. Using hybrid
hash join instead of Grace hash join to join the id map with
the todo list and inverse todo list would eliminate the extra
cost of writing the id map and narrow the gap, but the todo list
would still be written. When the id map does not fit in mem-
ory, in-mem is simply inviable, first because it thrashes virtual
memory and then because it runs out of swap space.

Partitioned-list is an order of magnitude better than either
btree or cache, the other algorithms that can deal with an id
map that does not fit in memory. Without locality of reference
in the data set, partitioned-list completed 16 times faster than
btree on a 60 Mb data set! Even when there are no inverse re-

39

lationships in the schema, e.g., in object-relational databases
such as Illustra [Ube94] and UniSQL [Kim94], partitioned-
list is an order of magnitude faster. By eliminating all ran-
dom accesses to data structures, and by writing and read-
ing each data item exactly once, we achieve linear I/O costs
for partitioned-list in the size of the data set. For a sys-
tem that needs to handle very large loads, e.g., gigabytes of
data, and does not have gigabytes of memory,‘we recommend
partitioned-list as the best algorithm to implement.

6 Resumable load

From the above performance results, it is clear that loading
gigabytes and terabytes takes hours. Losing all of the first ten
hours of a load due to a system crash would be extremely un-
desirable. Rather, we would like to be able to resume the load
after the system recovers, and to resume it close to where it
was at the time of the crash. It is also desirable to resume a
load that was stopped for other reasons, e.g., to use all of the
CPU power for an urgent query, or because disk space was
temporarily unavailable. Furthermore, we wish to resume a
load without requiring logging of the newly loaded data, and
without undoing most of the load before restarting.

Therefore, the best solution for resuming a load is to pe-
riodically take a restart checkpoint: to commit the current
state of the load and save persistent information that indicates
where and how to resume the load from this checkpoint. In
this section we discuss how to adapt the partitioned-list algo-
rithm presented in Section 3.5 to make it resumable. We iden-
tify the specific information to save during ,a restart check-
point and discuss how to resume the partitioned-list algorithm
from a given checkpoint.

6.1 Restart checkpoint records

Whenever a restart checkpoint is taken, it is necessary to flush
all partitions and lists from memory to the buffer pool, and
then flush the dirty pages of the buffer pool to disk. Then a
restart checkpoint record containing the necessary informa-
tion is written and also flushed to disk. Flushing the buffer

-n- btree -D- btree
-+ naive-btree -* naive-btree
+ partitioned-list *partitioned-list

G-
50000

a
g 40000 ,16

%
,!’ ,,:

z 30000

.i 20000
c

.“c

?”

-z

g

10000 .d

0 I 4’ .H
0 20 40 60 80 100

Data set size (Mb)
0 20 40 60 80 100 0

Data set size (Mb)

2
5000

a
g 4000

%
2 3000 1

(a> (b)

Figure 12: Comparing algorithms when there are no inverse relationships.

20 40 60 80 100
Data set size (Mb)

pool ensures that the state of the load as of the checkpoint can
be recovered from disk after a crash. Teradata also flushes all
loaded data to disk when taking a resumable load checkpoint
[WCK93].

For each step of our partitioned-list load algorithm, we
now summarize the action of the step, describe when a check-
point is permitted, what to write in the checkpoint record, and
how to use the checkpoint record information to resume the
load.

1. Read the data file and create the sequential id map, id map
partitions, todo list partitions, and inverse todo list partitions.

A restart checkpoint is permitted between reading any two
objects. After the Nth object, record the current position in
the data file, the sequential id list, and each id map, todo list,
and inverse todo list partition. When resuming a load at this
checkpoint, discard all entries in the above lists and partitions
after the recorded positions. Then continue by reading the
(N + l)th object from the data file.

2. Join the id map, one partition at a time, with the todo list
and inverse todo list to create the update list.

A restart checkpoint is permitted at any time. Record which
partition is being joined, and the current position in either
the todo or inverse todo list (whichever is being joined at the
time). Record the current end of the update list. When re-
suming a load from this checkpoint, first rebuild the hash ta-
ble on the id map partition. Discard all update entries after
the recorded point in the update list. Then continue reading
the todo or inverse todo list and joining it with the id map.
Note that taking a checkpoint terminates a sorted run of the
update list; very frequent checkpoints may generate more runs
to merge than would otherwise be created.

3. Merge sorted runs of the update list until only one merge
pass remains.

A restart checkpoint is permitted at any time. Record which
runs are being merged, the location of the next entry to merge
in each run, and the end of the new merged run. To resume,
discard all entries in the merged run after the recorded point,

40

--D- btree
-+ naive-btree
*partitioned-list

3ooooooj

Data set size (Mb)

(c>

20 40 60 80 100

and all entries in subsequent merged runs. Resume merging
from the recorded points in each sorted run.

4. Read the data$le and sequential id map, perform theJina1
merge pass of the update list and create the database objects,

A restart checkpoint is permitted between creating any two
objects. Record the current position in the data file, sequen-
tial id map, and each sorted run of the update list. Record the
OID of the last created object.

Resuming from a checkpoint here is trickier; objects that were
created after this checkpoint, but before the crash, cannot sim-
ply be “recreated:” they already exist and trying to create an
object with the same OID would cause an error. However,
if only part of an object (spread across multiple pages) was
written to disk, then the entire object is invalid. It is there-
fore necessary to remove the objects created after the check-
point and recreate them. However, the objects cannot simply
be deleted because that would invalidate their OIDs, which we
are already using to reference those objects. We recommend
truncating the objects to zero length instead.

Resume reading the data file, sequential id map, and update
list from their respective recorded points. For each object,
try to read the object with the corresponding OID from the
database. If the object is found, first truncate it, then update
it with the correct data. When an object is not found, resume
normal loading with creating that object.

As we indicate in each step above, a checkpoint can be
taken at virtually any time during the load. However, there is
a tradeoff between taking frequent checkpoints (and losing lit-
tle work) and occasional checkpoints (and avoiding the over-
head of flushing the buffer pool). Some balance between the
two should be struck.

7 Conclusions

A bulk loading utility is critical to users of OODBs with sig-
nificant amounts of data. Loading new data is a bottleneck
in object-oriented applications; however, it need not be. In
this performance study we showed that even when less than

1% of the data fits in memory, good performance can still be
achieved. The key lies in minimizing the number of random
accesses to both the database and any other secondary storage
data structures.

In this paper we developed algorithms to load a data set
so large that its id map can not fit in physical memory. We
believe that many scientific data and legacy data sets fit in
this category. We presented a new algorithm, partitioned-list,
in which we were able to eliminate random data accesses by
writing the id map out to disk as a persistent list, and then us-
ing a hash join to perform lookups on the id map. This funda-
mental change allowed the algorithm to scale gracefully with
increasing data sizes, instead of spending all its time bringing
needed id map pages into memory once the id map (as either a
virtual memory structure or as a persistent B+-tree) no longer
fit in physical memory.

Our new algorithm also incorporates techniques for effi-
ciently handling inverse relationships. We note that a load
utility must be able to turn off the automatic maintenance of
inverse relationships for the duration of the load. Otherwise,
the load utility can do no better than a naive algorithm, i.e. or-
ders of magnitude worse than a clever algorithm for handling
inverse relationships. However, the partitioned-list algorithm
achieves another order of magnitude performance improve-
ment on top of that for handling inverse relationships due to
its handling of the id map lookups. This performance gain oc-
curs even in data whose relationships have no inverses.

We also presented a resumable load algorithm. We de-
scribed both what to write in a checkpoint record for the
partitioned-list algorithm and how to resume the algorithm
from the last checkpoint. Restart checkpoints allow a single
load transaction to be paused and resumed many times, for
any reason, with a minimal loss of work.

Our future work includes looking at techniques for load-
ing new objects which share relationships with existing ob-
jects in the database. Specifically, we are investigating when
to retrieve such objects from the database and when to update
them to maximize both concurrency and loading speed. We
also plan to investigate algorithms for loading objects in par-
allel on one or more servers with multiple database volumes.
In addition, we are integrating the load implementation with
the higher levels of Shore and turning it into a utility to be dis-
tributed with a future release of Shore.

8 Acknowledgements

We would like to thank S. Sudarshan for suggesting that the id
map lookups could be seen as a join, and C. Mohan and Nancy
Hall for discussion of our resumable load ideas. We also want
to thank Mike Zwilling and C. K. Tan for many hours of dis-
cussion and support for our implementation as a Shore value-
added server, and Mark McAuliffe for many helpful sugges-
tions regarding both our implementation and this paper.

References
[Cam951 John Campbell, Jan. 1995. Personal communication.

[Cat931 R. G. G. Cattell, editor. The Object Databnse Standard:
ODMG-93. Morgan-Kaufman, Inc., 1993.

[CDFf94] M. Carey, et al.. Shoring Up Persistent Applications.
Proc. SIGMOD, p. 383-394, 1994.

[CMR92] J. B. Cushing, D. Maier, and M. Rao. Computational
Proxies: Modeling Scientific Applications in Object Databases.
Tech. Report 92-020, Oregon Graduate Institute, Dec. 1992. Re-
vised May, 1993.

[CMR+94] J. B. Cushing, D. Maier, M. Rao, D. Abel, D. Feller,
and D. M. DeVaney. Computational Proxies: Modeling Scientific
Applications in Object Databases. Proc. ScientiJic and Statistical
Database Management, Sept. 1994.

[CPea93] M.A. Chipperfield, C.J. Porter, er al. Growth of Data in
the Genome Data Base since CCM92 and Methods for Access.
Human Genome Mapping, p. 3-5, 1993.

[Deu90] 0. Deux. The Story of 02. IEEE Trans. on Knowledge and
Data Engineering, 2(1):91-108, Mar. 1990.

[DLP+93] R. Drach, et al. Optimizing Mass Storage Organization
and Access for Multi-Dimensional Scientific Data. Proc. IEEE
Symposium on Mass Storage Systems, Apr. 1993.

[Kea83] M. Kitsuregawa and et al. Application of Hash to Data
Base Machine and its Architecture. New Generation Computing,
1:62-74, 1983.

[Kim941 W. Kim. UniSQL/X Unified Relational and Object-
Oriented Database System. Proc. SIGMOD, p. 481, 1994.

[LLOW91] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The
ObjectStore Database System. CACM, 34(10):50-63, Oct. 1991.

TMai941 David Maier. Jan. 1994. Personal communication.
iMN92j C. Mohan and I. Narang. Algorithms for Creating Indexes

for Verv Large Tables Without Ouiescing Undates. Proc. SIG-
MOD, i. 361-370, 1992. - ” ’

[MN931 C. Mohan and I. Narang. An Efficient and Flexible Method
for Archiving a Data Base. Proc. SIGMOD, p. 139-146, 1993.

[Moh93a] C. Mohan. A Survey of DBMS Research Issues in Sup-
porting Very Large Tables. Proc. Foundations of Data Organiza-
tion and Algorithms, p. 279-300, 1993.

[Moh93b] C. Mohan. IBM’s Relational DBMS Products: Features
and Technologies. Proc. SIGMOD, p. 445-448, 1993.

[MS901 D. Maier and J. Stein. Development and Implementation
of an Object-Oriented DBMS. In S. B. Zdonik and D. Maier, edi-
tors, Readings in Object-Oriented Database Systems, p. 167-185.
Morgan-Kaufman, Inc., 1990.

[Ne1911 G. Nelson, editor. Systems Programming with Modula-3.
Prentice Hall, 199 1.

[Obj92] Objectivity, Inc. Objectivity/DB Documentation, 2.0 edi-
tion, Sept. 1992.

[Ont94] Ontos, Inc. Ontos DB Reference Manual, release 3.0 beta
edition, 1994.

[PGSS] N. W. Paton and P. M. D. Gray. Identification of Database
Objects by Key. Proc. 2nd Workshop on Object-Oriented
Database Systems, p. 280-285, 1988.

[RZ89] R. Reinsch and M. Zimowski. Method for Restart-
ing a Long-Running, Fault-Tolerant Operation in a Transaction-
Oriented Data Base System Without Burdening the System Log.
U.S. Patent 4,868,744, IBM, 1989.

[Sha86] L.D. Shapiro. Join Processing in Database Systems with
Large Main Memories. ACM Trans. on Database Systems, 11(3),
Sept. 1986.

[Sno89] R. Snodgrass. The Interface Description Language: De&
nition and Use. Computer Science Press, 1989.

[Ube94] M. Ubell. The Montage Extensible DataBlade Architec-
ture. Proc. SIGMOD. D. 482. 1994.

[Ver93] Versant Object ;Tkchnoiogy. Versant Object Database Man-
agement System C++Versant Manual, release 2 edition, July
1393. .

IWCK931 A. Witkowski, F. CariBo, and P. Kostamaa. NCR 3700
- The Next-Generation Industrial Database Computer. Proc.
VLDB. o. 230-243. 1993.

[WN94] y L. Wiener and J. F. Naughton. Bulk Loading into an
OODB: A Performance Study. Proc. VLDB, p. 120-13 1, 1994.

41

